IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • -半導体装置および半導体装置の製造方法 図1
  • -半導体装置および半導体装置の製造方法 図2
  • -半導体装置および半導体装置の製造方法 図3
  • -半導体装置および半導体装置の製造方法 図4
  • -半導体装置および半導体装置の製造方法 図5
  • -半導体装置および半導体装置の製造方法 図6
  • -半導体装置および半導体装置の製造方法 図7
  • -半導体装置および半導体装置の製造方法 図8
  • -半導体装置および半導体装置の製造方法 図9
  • -半導体装置および半導体装置の製造方法 図10
  • -半導体装置および半導体装置の製造方法 図11
  • -半導体装置および半導体装置の製造方法 図12
  • -半導体装置および半導体装置の製造方法 図13
  • -半導体装置および半導体装置の製造方法 図14
  • -半導体装置および半導体装置の製造方法 図15
  • -半導体装置および半導体装置の製造方法 図16
  • -半導体装置および半導体装置の製造方法 図17
  • -半導体装置および半導体装置の製造方法 図18
  • -半導体装置および半導体装置の製造方法 図19
  • -半導体装置および半導体装置の製造方法 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-17
(45)【発行日】2025-02-26
(54)【発明の名称】半導体装置および半導体装置の製造方法
(51)【国際特許分類】
   H10D 30/66 20250101AFI20250218BHJP
   H10D 62/10 20250101ALI20250218BHJP
   H10D 30/01 20250101ALI20250218BHJP
【FI】
H01L29/78 652P
H01L29/78 652T
H01L29/06 301G
H01L29/06 301V
H01L29/78 652N
H01L29/78 653A
H01L29/78 652D
H01L29/78 652J
H01L29/78 652H
H01L29/78 652M
H01L29/78 652Q
H01L29/78 658E
H01L29/78 658A
【請求項の数】 14
(21)【出願番号】P 2020150445
(22)【出願日】2020-09-08
(65)【公開番号】P2022044997
(43)【公開日】2022-03-18
【審査請求日】2023-08-10
(73)【特許権者】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】100104190
【弁理士】
【氏名又は名称】酒井 昭徳
(72)【発明者】
【氏名】星 保幸
【審査官】西村 治郎
(56)【参考文献】
【文献】特開2018-067690(JP,A)
【文献】特開2006-013552(JP,A)
【文献】特開2006-073740(JP,A)
【文献】国際公開第2017/064948(WO,A1)
【文献】特開2013-236040(JP,A)
【文献】国際公開第2012/056705(WO,A1)
【文献】特開2016-201448(JP,A)
【文献】特開2016-187006(JP,A)
【文献】特開2017-063079(JP,A)
【文献】特開2018-116979(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/336
H01L 21/76
H01L 29/06
H01L 29/12
H01L 29/739
H01L 29/78
(57)【特許請求の範囲】
【請求項1】
主電流が流れる活性領域と、前記活性領域の周囲を囲む終端領域と、を有する半導体装置であって、
シリコンよりもバンドギャップの広い半導体からなる半導体基板と、
前記半導体基板の内部に設けられた第1導電型の第1半導体領域と、
前記活性領域において前記半導体基板の第1主面と前記第1半導体領域との間に設けられた第2導電型の第2半導体領域と、
前記活性領域において前記第2半導体領域と前記第1半導体領域とのpn接合で形成された所定の素子構造と、
前記第2半導体領域に電気的に接続された第1電極と、
前記半導体基板の第2主面に設けられた第2電極と、
前記終端領域において前記半導体基板の第1主面と前記第1半導体領域との間に、前記素子構造と離れて、前記活性領域の周囲を囲む同心状に互いに離れて複数設けられた第2導電型耐圧領域と、
を備え、
前記半導体基板の第1主面は前記活性領域から前記終端領域にわたって平坦面であり、
前記半導体基板の第1主面を形成する第1導電型エピタキシャル層を有し、
前記第2半導体領域および前記第2導電型耐圧領域は、それぞれ前記第1導電型エピタキシャル層の内部に選択的に設けられており、
前記第1半導体領域は、前記第1導電型エピタキシャル層のうち前記第2半導体領域および前記第2導電型耐圧領域を除く部分であり、互いに隣り合う前記第2導電型耐圧領域の間において前記半導体基板の第1主面まで達し、
複数の前記第2導電型耐圧領域は、それぞれ、深さ方向に隣接する複数の第2導電型領域を有し、
前記終端領域には深さ方向に隣接して3つ以上の前記第2導電型領域が設けられており、
深さ方向に隣接する3つ以上の前記第2導電型領域のうち、前記第2導電型耐圧領域の深さ方向の中央の前記第2導電型領域の不純物濃度が他の前記第2導電型領域の不純物濃度よりも低いことを特徴とする半導体装置。
【請求項2】
主電流が流れる活性領域と、前記活性領域の周囲を囲む終端領域と、を有する半導体装置であって、
シリコンよりもバンドギャップの広い半導体からなる半導体基板と、
前記半導体基板の内部に設けられた第1導電型の第1半導体領域と、
前記活性領域において前記半導体基板の第1主面と前記第1半導体領域との間に設けられた第2導電型の第2半導体領域と、
前記活性領域において前記第2半導体領域と前記第1半導体領域とのpn接合で形成された所定の素子構造と、
前記第2半導体領域に電気的に接続された第1電極と、
前記半導体基板の第2主面に設けられた第2電極と、
前記終端領域において前記半導体基板の第1主面と前記第1半導体領域との間に、前記素子構造と離れて、前記活性領域の周囲を囲む同心状に互いに離れて複数設けられた第2導電型耐圧領域と、
を備え、
前記半導体基板の第1主面は前記活性領域から前記終端領域にわたって平坦面であり、
前記半導体基板の第1主面を形成する第1導電型エピタキシャル層を有し、
前記第2半導体領域および前記第2導電型耐圧領域は、それぞれ前記第1導電型エピタキシャル層の内部に選択的に設けられており、
前記第1半導体領域は、前記第1導電型エピタキシャル層のうち前記第2半導体領域および前記第2導電型耐圧領域を除く部分であり、互いに隣り合う前記第2導電型耐圧領域の間において前記半導体基板の第1主面まで達し、
複数の前記第2導電型耐圧領域は、それぞれ、深さ方向に隣接する複数の第2導電型領域を有し、
前記素子構造は、
前記半導体基板の第1主面と前記第2半導体領域との間に選択的に設けられた第1導電型の第3半導体領域と、
前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達するトレンチと、
前記トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
前記半導体基板の第1主面と前記第2半導体領域との間において、前記第3半導体領域よりも前記トレンチから離れた位置に選択的に設けられた、前記第2半導体領域よりも不純物濃度の高い第2導電型の第4半導体領域と、
前記第1半導体領域の内部に選択的に設けられ、前記トレンチの底面よりも前記半導体基板の第2主面側に位置する、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域と、をさらに備え、
複数の前記第2導電型領域のいずれかは、前記第2半導体領域と同じ深さに位置し、前記第2半導体領域と同じ不純物濃度を有し、
複数の前記第2導電型領域の残りの前記第2導電型領域は、前記第2半導体領域と異なる深さに位置し、前記第2半導体領域と異なる不純物濃度を有することを特徴とする半導体装置。
【請求項3】
前記終端領域において、前記第1半導体領域の内部に設けられ、複数の前記第2導電型耐圧領域に接する、前記第1半導体領域より不純物濃度の高い第1導電型領域をさらに備えることを特徴とする請求項1または2に記載の半導体装置。
【請求項4】
深さ方向に隣接する複数の前記第2導電型領域同士の法線方向の位置は互いに0.05μm以上0.3μm以下ずれていることを特徴とする請求項1または2に記載の半導体装置。
【請求項5】
深さ方向に隣接する複数の前記第2導電型領域のうち、少なくとも1つの前記第2導電型領域の法線方向の幅が他の前記第2導電型領域の法線方向の幅と異なることを特徴とする請求項1~4のいずれか一つに記載の半導体装置。
【請求項6】
深さ方向に隣接する複数の前記第2導電型領域のうち、少なくとも1つの前記第2導電型領域の不純物濃度が他の前記第2導電型領域の不純物濃度と異なることを特徴とする請求項1~4のいずれか一つに記載の半導体装置。
【請求項7】
前記終端領域には深さ方向に隣接して3つ以上の前記第2導電型領域が設けられており、
深さ方向に隣接する3つ以上の前記第2導電型領域のうち、前記第2導電型耐圧領域の深さ方向の中央の前記第2導電型領域の不純物濃度が他の前記第2導電型領域の不純物濃度よりも低いことを特徴とする請求項2に記載の半導体装置。
【請求項8】
前記素子構造は、
前記半導体基板の第1主面と前記第2半導体領域との間に選択的に設けられた第1導電型の第3半導体領域と、
前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達するトレンチと、
前記トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
前記半導体基板の第1主面と前記第2半導体領域との間において、前記第3半導体領域よりも前記トレンチから離れた位置に選択的に設けられた、前記第2半導体領域よりも不純物濃度の高い第2導電型の第4半導体領域と、
前記第1半導体領域の内部に選択的に設けられ、前記トレンチの底面よりも前記半導体基板の第2主面側に位置する、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域と、をさらに備え、
前記終端領域には深さ方向に隣接して3つの前記第2導電型領域が設けられており、
深さ方向に隣接する3つの前記第2導電型領域のうち、
前記半導体基板の第1主面に最も近い前記第2導電型領域は、前記第4半導体領域と同じ不純物濃度を有し、
前記半導体基板の第1主面から最も遠い前記第2導電型領域は、前記第2導電型高濃度領域と同じ不純物濃度を有し、
残りの前記第2導電型領域は、前記第2半導体領域と同じ不純物濃度を有することを特徴とする請求項1に記載の半導体装置。
【請求項9】
前記終端領域には深さ方向に隣接して3つの前記第2導電型領域が設けられており、
深さ方向に隣接する3つの前記第2導電型領域のうち、
前記半導体基板の第1主面に最も近い前記第2導電型領域は、前記第4半導体領域と同じ不純物濃度を有し、
前記半導体基板の第1主面から最も遠い前記第2導電型領域は、前記第2導電型高濃度領域と同じ不純物濃度を有し、
残りの前記第2導電型領域は、前記第2半導体領域と同じ不純物濃度を有することを特徴とする請求項2に記載の半導体装置。
【請求項10】
前記素子構造は、
前記半導体基板の第1主面と前記第2半導体領域との間に選択的に設けられた第1導電型の第3半導体領域と、
前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達するトレンチと、
前記トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
前記第1半導体領域の内部に選択的に設けられ、前記トレンチの底面よりも前記半導体基板の第2主面側に位置する、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域と、をさらに備え、
前記第2導電型耐圧領域は、前記半導体基板の第1主面から、前記第2導電型高濃度領域よりも浅い位置で終端していることを特徴とする請求項1に記載の半導体装置。
【請求項11】
前記第2導電型耐圧領域は、前記半導体基板の第1主面から、前記第2導電型高濃度領域よりも浅い位置で終端していることを特徴とする請求項2に記載の半導体装置。
【請求項12】
前記第2導電型高濃度領域は、
深さ方向に前記トレンチの底面に対向する第1高濃度領域と、
前記第1高濃度領域および前記トレンチと離れて、かつ前記第2半導体領域に接する第2高濃度領域と、を有することを特徴とする請求項10または11に記載の半導体装置。
【請求項13】
シリコンよりもバンドギャップの広い半導体からなる半導体基板に、第1導電型の第1半導体領域と第2導電型の第2半導体領域とのpn接合で形成された所定の素子構造が設けられた活性領域と、前記活性領域の周囲を囲む終端領域と、を備えた半導体装置の製造方法であって、
前記半導体基板の第1主面を形成する第1導電型エピタキシャル層をエピタキシャル成長させる第1工程と、
前記活性領域において前記第1導電型エピタキシャル層の表面領域に所定の不純物を導入して少なくとも前記第2半導体領域となる拡散領域を形成し、前記第2半導体領域と、前記活性領域における前記第1導電型エピタキシャル層の前記拡散領域を除く部分である前記第1半導体領域との前記pn接合を含む前記素子構造を形成する第2工程と、
前記終端領域において前記第1導電型エピタキシャル層の表面領域に、前記素子構造と離れて、前記活性領域の周囲を囲む同心状に互いに離れて複数の第2導電型耐圧領域を形成し、互いに隣り合う前記第2導電型耐圧領域の間に前記第1半導体領域となる前記第1導電型エピタキシャル層を残す第3工程と、
を含み、
前記第1工程では、複数の前記第1導電型エピタキシャル層を多段に堆積した積層構造を形成して、前記半導体基板の第1主面を前記活性領域から前記終端領域にわたって平坦に形成し、
前記第2工程では、前記素子構造として、
複数の前記第1導電型エピタキシャル層のうちのいずれかの前記第1導電型エピタキシャル層に前記第2半導体領域を形成し、
前記半導体基板の第1主面と前記第2半導体領域との間に第1導電型の第3半導体領域を選択的に形成し、
前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達するトレンチを形成し、
前記トレンチの内部にゲート絶縁膜を介してゲート電極を形成し、
前記半導体基板の第1主面と前記第2半導体領域との間において、前記第3半導体領域よりも前記トレンチから離れた位置に、前記第2半導体領域よりも不純物濃度の高い第2導電型の第4半導体領域を選択的に形成し、
前記第1半導体領域の内部において、前記トレンチの底面よりも深い位置に、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域を選択的に形成し、
前記第3工程では、
複数の前記第1導電型エピタキシャル層にそれぞれ第2導電型領域を形成し、複数の前記第2導電型領域を深さ方向に隣接させて前記第2導電型耐圧領域を形成し、
複数の前記第2導電型領域のいずれかを、前記第2半導体領域と同じ深さ位置に、前記第2半導体領域と同じ不純物濃度で形成し、
複数の前記第2導電型領域の残りの前記第2導電型領域を、前記第2半導体領域と異なる深さ位置に、前記第2半導体領域と異なる不純物濃度で形成することを特徴とする半導体装置の製造方法。
【請求項14】
前記第2工程では、複数の前記第1導電型エピタキシャル層のうちの1つの前記第1導電型エピタキシャル層に前記第2半導体領域を形成し、
前記第3工程では、複数の前記第1導電型エピタキシャル層のうち、前記第2半導体領域が形成される前記第1導電型エピタキシャル層には、前記第2半導体領域と同時に、前記第2導電型領域を形成することを特徴とする請求項13に記載の半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、半導体装置および半導体装置の製造方法に関する。
【背景技術】
【0002】
従来、高電圧や大電流を制御するパワー半導体装置には、例えば、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲート(MOSゲート)を備えたMOS型電界効果トランジスタ)など複数種類あり、これらは用途に合わせて使い分けられている。
【0003】
例えば、バイポーラトランジスタやIGBTは、MOSFETと比べて電流密度が高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは数十kHz程度のスイッチング周波数での使用が限界である。一方、MOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。
【0004】
また、MOSFETは、IGBTと異なり、半導体基板(半導体チップ)の内部にp型ベース領域とn-型ドリフト領域とのpn接合で形成される寄生ダイオードを内蔵している。このため、MOSFETは、インバータ用デバイスである場合、自身を流れる負荷電流を転流させるためのダイオード(FWD:Free Wheeling Diode)としての機能と、自身を保護するための還流ダイオードとしての機能と、にこの寄生ダイオードを用いることができる。
【0005】
パワー半導体装置の構成材料としてシリコン(Si)が用いられているが、市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強く、IGBTやMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。このため、パワー半導体装置の観点からシリコンに代わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として炭化珪素(SiC)が注目を集めている。
【0006】
炭化珪素は、化学的に非常に安定した半導体材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用することができる。また、炭化珪素は、最大電界強度もシリコンより1桁以上大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待される。このような炭化珪素の特長は、炭化珪素だけでなく、シリコンよりもバンドギャップの広いすべての半導体(以下、ワイドバンドギャップ半導体とする)も同様に有する。
【0007】
また、IGBTやMOSFET等のMOS型半導体装置は、パワー半導体装置の大電流化に伴い、半導体チップのおもて面に沿ってチャネル(反転層)が形成されるプレーナゲート構造とする場合と比べて、トレンチの側壁に沿って半導体チップのおもて面と直交する方向にチャネルが形成されるトレンチゲート構造とすることはコスト面で有利である。その理由は、トレンチゲート構造が単位面積当たりの単位セル(素子の構成単位)密度を増やすことができるため、単位面積当たりの電流密度を増やすことができるからである。
【0008】
単位面積当たりの電流密度を増加させた分、単位セルの占有体積に応じた温度上昇率が高くなるため、放電効率の向上と信頼性の安定化とを図るために両面冷却構造が必要になる。さらに、パワー半導体装置の主動作を行うメイン半導体素子となるMOSFETと同一の半導体基板に、当該メイン半導体素子を保護・制御するための回路部として電流センス部、温度センス部および過電圧保護部等の高機能部を配置した高機能構造とすることで信頼性を向上させたパワー半導体装置が提案されている。
【0009】
また、高耐圧半導体装置では、素子構造が形成された活性領域だけでなく、活性領域の周囲を囲むエッジ終端領域にも高電圧が印加され、エッジ終端領域に電界が集中する。半導体装置の耐圧は半導体(ドリフト領域)の不純物濃度、厚さおよび電界強度で決定され、これら半導体固有の特長で決定される破壊耐量は活性領域からエッジ終端領域にわたって等しい。このため、エッジ終端領域に電界が集中して、エッジ終端領域に破壊耐量を超えた電気的負荷がかかると、エッジ終端領域で破壊に至る虞があり、エッジ終端領域の耐圧で半導体装置全体の耐圧が決まってしまう。
【0010】
そこで、エッジ終端領域に接合終端(JTE:Junction Termination Extension)構造や、フィールドリミッティングリング(FLR:Field Limiting Ring)などの耐圧構造を配置して、エッジ終端領域の電界を緩和または分散させることで、エッジ終端領域の耐圧を向上させて、半導体装置全体の耐圧を向上させた構造が公知である。また、FLRに接するフローティングの金属電極をフィールドプレート(FP:Field Plate)としてエッジ終端領域に配置した構造が公知である。
【0011】
従来の炭化珪素半導体装置の構造について説明する。図20は、従来の炭化珪素半導体装置の構造を示す断面図である。図20に示す従来の半導体装置230は、炭化珪素からなる半導体基板(半導体チップ)210に、主電流(ドリフト電流)が流れる活性領域201と、活性領域201の周囲を囲むエッジ終端領域202と、を備えたトレンチゲート構造の縦型MOSFETである。半導体基板210は、炭化珪素からなるn+型出発基板271上にn-型エピタキシャル層272およびp型エピタキシャル層273を順にエピタキシャル成長させてなる。
【0012】
p型エピタキシャル層273の、エッジ終端領域202の部分はエッチングにより除去され、半導体基板210のおもて面には、エッジ終端領域202に段差291が形成されている。半導体基板210のおもて面は、段差291を境にして、内側(チップ中央(半導体基板210の中央)側)の第1面210aよりも外側(チップ端部(半導体基板210の端部)側)の第2面210bでドレイン電極252側に凹んでいる。この段差291により、半導体基板210のおもて面(p型エピタキシャル層273側の主面)の中央側にp型エピタキシャル層273がメサ状に残っている。
【0013】
半導体基板210のおもて面の第1,2面210a,210bは、それぞれp型エピタキシャル層273およびn-型エピタキシャル層272で形成されている。活性領域201においてn-型エピタキシャル層272の、p型エピタキシャル層273側の表面領域に、n型電流拡散領域233および第1,2p+型領域261,262がそれぞれ選択的に設けられている。また、活性領域には、半導体基板210のおもて面の第1面210aの表面領域においてp型エピタキシャル層273の内部に、n+型ソース領域235およびp++型コンタクト領域236がそれぞれ選択的に設けられている。
【0014】
第2p+型領域262(262a)、p型ベース領域234(234a)およびp++型コンタクト領域236(236a)は、活性領域201から、活性領域201とエッジ終端領域202との間の中間領域203に延在し、半導体基板210のおもて面の第1面210aと第2面210bとをつなぐ第3面(段差のメサエッジ)210cに達する。エッジ終端領域202には、半導体基板210のおもて面の第2面210bの表面領域においてn-型エピタキシャル層272の内部に選択的に設けられた複数のp-型領域221および複数のp--型領域222で空間変調型のFLR220が構成される。
【0015】
空間変調型とは、外側へ向かうほど単位体積当たりのp型不純物濃度を段階的に低くした構造である。具体的には、複数のp-型領域221は、互いに離れて配置され、最も内側のp-型領域221よりも内側の部分を同心状に囲む。外側に配置されたp-型領域221ほど、幅が狭く、かつ内側に隣り合うp-型領域221との間隔が狭い。最も内側のp--型領域222はすべてのp-型領域221の周囲を囲み、互いに隣り合うすべてのp-型領域221間に配置される。最も内側のp-型領域221および最も内側のp--型領域222は、第2p+型領域262aを介してp型ベース領域234aに電気的に接続される。
【0016】
複数のp--型領域222は、互いに離れて配置され、最も内側のp--型領域222よりも内側の部分を同心状に囲む。外側に配置されたp--型領域222ほど、幅が狭く、かつ内側に互いに隣り合うp--型領域222との間隔が狭い。複数のp--型領域222は、最も内側のp--型領域222を除いて、p-型領域221よりも外側に配置されている。n-型ドリフト領域232はすべてのp-型領域221の周囲を囲み、互いに隣り合うすべてのp-型領域221間に配置される。このようにp-型領域221およびp--型領域222の幅および配置を調整することで空間変調型のFLR220が構成される。
【0017】
+型ソース領域235、p++型コンタクト領域236、n型電流拡散領域233、第1,2p+型領域261,262、p-型領域221、p--型領域222およびn+型チャネルストップ領域223は、イオン注入により形成される拡散領域である。p型エピタキシャル層273の、n+型ソース領域235およびp++型コンタクト領域236を除く部分がp型ベース領域234である。n-型エピタキシャル層272の、n型電流拡散領域233、第1,2p+型領域261,262、p-型領域221、p--型領域222およびn+型チャネルストップ領域223を除く部分がn-型ドリフト領域232である。
【0018】
符号231は、n+型出発基板271で構成されたn+型ドレイン領域である。符号238,239,240,240a,241,281~283は、それぞれ、ゲート絶縁膜、ゲート電極、層間絶縁膜、コンタクトホール、金属シリサイド膜、フィールド酸化膜、ゲートポリシリコン配線層およびゲート金属配線層である。符号242~245は、バリアメタル246を構成する金属膜である。符号248,249は、それぞれ、ソースパッド247上の配線構造を構成するめっき膜および端子ピンである。符号250,251は、保護膜(パッシベーション膜)である。
【0019】
従来の半導体装置として、エッジ終端領域に、p型ベース領域を貫通してn型ドリフト領域に達し、内部に絶縁材料が充填された複数の終端トレンチおよび最外周の1つの分断トレンチが形成され、これらのトレンチの各底面をそれぞれ囲むp型拡散領域を有する装置が提案されている(例えば、下記特許文献1参照。)。下記特許文献1では、複数の終端トレンチを、MOSFETのオフ時に活性領域から外側に向かって延びる空乏層がつながる間隔で配置することで高耐圧を維持し、最も外側の終端トレンチと分断トレンチとの間隔を当該空乏層がつながらない間隔とすることでリーク電流の発生を防止している。
【0020】
また、従来の炭化珪素半導体装置として、活性領域からエッジ終端領域にn-型ドリフト領域およびp型ベース領域となる各炭化珪素層を延在させて、p型ベース領域のエッジ終端領域の部分を、エッジ終端領域において半導体基板のおもて面に形成された段差により相対的に厚さを薄くして電界緩和層とした装置が提案されている(例えば、下記特許文献2参照。)。下記特許文献2では、p型ベース領域のエッジ終端領域に延在させた部分を電界緩和層とすることで、電界緩和層を、屈曲部がなく、かつn-型ドリフト領域との間に材質の不連続点が存在しない構造として、半導体装置の耐圧を向上させている。
【0021】
また、従来の別の炭化珪素半導体装置として、ゲートトレンチの深さと同じ深さのトレンチがエッジ終端領域に形成され、このトレンチの内壁に沿ったU字状の断面形状にエピタキシャル成長させたp型炭化珪素層からなるフローティングのp型領域でFLRを構成した装置が提案されている(例えば、下記特許文献3参照。)。下記特許文献3では、ドレイン電極にサージ電圧が印加されたときに、FLRから空乏層を広げて、活性領域にかかる電界を偏りなくエッジ終端領域へ延ばして、活性領域の端部での電界を緩和させることで、活性領域の耐圧を向上させている。
【0022】
また、従来の別の炭化珪素半導体装置として、イオン注入により形成された1つ以上のp型領域でFLRが構成され、半導体基板のおもて面を形成するn+型炭化珪素層と、深さ方向に当該n+型炭化珪素層に隣接するn-型炭化珪素層と、の境界が、FLRを構成するp型領域の裏面電極側端部よりも半導体基板のおもて面側に位置する装置が提案されている(例えば、下記特許文献4参照。)。下記特許文献4では、半導体基板のおもて面の表面領域にn+型炭化珪素層を設けることで、半導体基板のおもて面から消失する炭化珪素層の厚さに応じて生じる耐圧ばらつきを抑制している。
【0023】
また、従来の別の炭化珪素半導体装置として、FLRを構成する複数のp型領域それぞれを、半導体基板のおもて面付近の自身のピーク濃度位置を含む高濃度領域と、高濃度領域の直下および側面を囲む低濃度領域と、で構成し、ピーク濃度位置からn型ドリフト領域に近づくにしたがって低下するp型不純物濃度分布とした装置が提案されている(例えば、下記特許文献5参照。)。下記特許文献5では、FLRを構成する最も外側のp型領域において、高濃度領域の外周側面を囲む低濃度領域の幅を相対的に広くして、当該高濃度領域に電界がかかることを抑制して、リーク電流の発生を抑制している。
【0024】
また、従来の別の炭化珪素半導体装置として、ゲートトレンチの底面よりもドレイン電極側にn-型ドリフト領域とのpn接合を形成するp+型領域を、深さ方向にゲートトレンチの底面に対向する位置と、互いに隣り合うゲートトレンチ間と、にそれぞれ離れて配置した装置が提案されている(例えば、下記特許文献6参照。)。下記特許文献6では、ゲートトレンチの底面よりもドレイン電極側にn-型ドリフト領域とのpn接合を形成するp+型領域により、ゲートトレンチの底面のゲート絶縁膜にかかる電界を緩和することで、炭化珪素を半導体材料とした場合において高耐圧化を容易にしている。
【先行技術文献】
【特許文献】
【0025】
【文献】特許第5206248号公報
【文献】特許第5691259号公報
【文献】特開2005-340250号公報
【文献】特許第5628462号公報
【文献】特開2018-067690号公報
【文献】国際公開第2017/064949号
【発明の概要】
【発明が解決しようとする課題】
【0026】
しかしながら、上述したようにFLR220を空間変調型とする場合(図20参照)、イオン注入の重なりが複雑となり、p-型領域221およびp--型領域222の形成に用いるイオン注入用マスクの位置合わせ(アライメント)が難しい。p-型領域221およびp--型領域222とn-型ドリフト領域232とのpn接合で、半導体装置230のオフ時にエッジ終端領域202に横方向(半導体基板210のおもて面に平行な方向)にかかる高電圧を負担するため、イオン注入用マスクの位置合わせ精度が低いと、FLR220の完成度が低くなり、半導体装置230の信頼性が低下する。
【0027】
この発明は、上述した従来技術による課題を解消するため、作製(製造)が簡易であり、信頼性の高い半導体装置および半導体装置の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0028】
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、主電流が流れる活性領域と、前記活性領域の周囲を囲む終端領域と、を有する半導体装置であって、次の特徴を有する。シリコンよりもバンドギャップの広い半導体からなる半導体基板の内部に、第1導電型の第1半導体領域が設けられている。前記活性領域において前記半導体基板の第1主面と前記第1半導体領域との間に、第2導電型の第2半導体領域が設けられている。前記活性領域において前記第2半導体領域と前記第1半導体領域とのpn接合で所定の素子構造が形成されている。第1電極は、前記第2半導体領域に電気的に接続されている。第2電極は、前記半導体基板の第2主面に設けられている。
【0029】
前記終端領域において前記半導体基板の第1主面と前記第1半導体領域との間に、前記素子構造と離れて、前記活性領域の周囲を囲む同心状に互いに離れて複数の第2導電型耐圧領域が設けられている。前記半導体基板の第1主面は前記活性領域から前記終端領域にわたって平坦面である。前記半導体基板の第1主面を形成する第1導電型エピタキシャル層が設けられている。前記第2半導体領域および前記第2導電型耐圧領域は、それぞれ前記第1導電型エピタキシャル層の内部に選択的に設けられている。前記第1半導体領域は、前記第1導電型エピタキシャル層のうち前記第2半導体領域および前記第2導電型耐圧領域を除く部分であり、互いに隣り合う前記第2導電型耐圧領域の間において前記半導体基板の第1主面まで達する。複数の前記第2導電型耐圧領域は、それぞれ、深さ方向に隣接する複数の第2導電型領域を有する。前記終端領域には深さ方向に隣接して3つ以上の前記第2導電型領域が設けられている。深さ方向に隣接する3つ以上の前記第2導電型領域のうち、前記第2導電型耐圧領域の深さ方向の中央の前記第2導電型領域の不純物濃度が他の前記第2導電型領域の不純物濃度よりも低い。
【0030】
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、主電流が流れる活性領域と、前記活性領域の周囲を囲む終端領域と、を有する半導体装置であって、次の特徴を有する。シリコンよりもバンドギャップの広い半導体からなる半導体基板の内部に、第1導電型の第1半導体領域が設けられている。前記活性領域において前記半導体基板の第1主面と前記第1半導体領域との間に、第2導電型の第2半導体領域が設けられている。前記活性領域において前記第2半導体領域と前記第1半導体領域とのpn接合で所定の素子構造が形成されている。第1電極は、前記第2半導体領域に電気的に接続されている。第2電極は、前記半導体基板の第2主面に設けられている。前記終端領域において前記半導体基板の第1主面と前記第1半導体領域との間に、前記素子構造と離れて、前記活性領域の周囲を囲む同心状に互いに離れて複数の第2導電型耐圧領域が設けられている。前記半導体基板の第1主面は前記活性領域から前記終端領域にわたって平坦面である。前記半導体基板の第1主面を形成する第1導電型エピタキシャル層が設けられている。前記第2半導体領域および前記第2導電型耐圧領域は、それぞれ前記第1導電型エピタキシャル層の内部に選択的に設けられている。前記第1半導体領域は、前記第1導電型エピタキシャル層のうち前記第2半導体領域および前記第2導電型耐圧領域を除く部分であり、互いに隣り合う前記第2導電型耐圧領域の間において前記半導体基板の第1主面まで達する。複数の前記第2導電型耐圧領域は、それぞれ、深さ方向に隣接する複数の第2導電型領域を有する。前記素子構造は、第1導電型の第3半導体領域と、トレンチと、ゲート電極と、前記第2半導体領域よりも不純物濃度の高い第2導電型の第4半導体領域と、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域と、をさらに備える。前記第3半導体領域は、前記半導体基板の第1主面と前記第2半導体領域との間に選択的に設けられている。前記トレンチは、前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達する。前記ゲート電極は、前記トレンチの内部にゲート絶縁膜を介して設けられている。前記第4半導体領域は、前記半導体基板の第1主面と前記第2半導体領域との間において、前記第3半導体領域よりも前記トレンチから離れた位置に選択的に設けられている。前記第2導電型高濃度領域は、前記第1半導体領域の内部に選択的に設けられ、前記トレンチの底面よりも前記半導体基板の第2主面側に位置する。複数の前記第2導電型領域のいずれかは、前記第2半導体領域と同じ深さに位置し、前記第2半導体領域と同じ不純物濃度を有する。複数の前記第2導電型領域の残りの前記第2導電型領域は、前記第2半導体領域と異なる深さに位置し、前記第2半導体領域と異なる不純物濃度を有する。
【0031】
また、この発明にかかる半導体装置は、上述した発明において前記終端領域において、前記第1半導体領域の内部に設けられ、複数の前記第2導電型耐圧領域に接する、前記第1半導体領域より不純物濃度の高い第1導電型領域をさらに備える。
【0032】
また、この発明にかかる半導体装置は、上述した発明において、深さ方向に隣接する複数の前記第2導電型領域同士の法線方向の位置は互いに0.05μm以上0.3μm以下ずれていることを特徴とする。
【0033】
また、この発明にかかる半導体装置は、上述した発明において、深さ方向に隣接する複数の前記第2導電型領域のうち、少なくとも1つの前記第2導電型領域の法線方向の幅が他の前記第2導電型領域の法線方向の幅と異なることを特徴とする。
【0034】
また、この発明にかかる半導体装置は、上述した発明において、深さ方向に隣接する複数の前記第2導電型領域のうち、少なくとも1つの前記第2導電型領域の不純物濃度が他の前記第2導電型領域の不純物濃度と異なることを特徴とする。
【0035】
また、この発明にかかる半導体装置は、上述した発明において、前記終端領域には深さ方向に隣接して3つ以上の前記第2導電型領域が設けられている。深さ方向に隣接する3つ以上の前記第2導電型領域のうち、前記第2導電型耐圧領域の深さ方向の中央部分付近にあたる前記第2導電型領域の不純物濃度が他の前記第2導電型領域の不純物濃度よりも低いことを特徴とする。
【0036】
また、この発明にかかる半導体装置は、上述した発明において、前記素子構造は、第1導電型の第3半導体領域、トレンチ、ゲート電極、第2導電型の第4半導体領域および第2導電型高濃度領域をさらに備える。前記第3半導体領域は、前記半導体基板の第1主面と前記第2半導体領域との間に選択的に設けられている。前記トレンチは、前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達する。前記ゲート電極は、前記トレンチの内部にゲート絶縁膜を介して設けられている。前記第4半導体領域は、前記半導体基板の第1主面と前記第2半導体領域との間において、前記第3半導体領域よりも前記トレンチから離れた位置に選択的に設けられている。
【0037】
前記第4半導体領域は、前記第2半導体領域よりも不純物濃度が高い。前記第2導電型高濃度領域は、前記第1半導体領域の内部に選択的に設けられ、前記トレンチの底面よりも前記半導体基板の第2主面側に位置する。前記第2導電型高濃度領域は、前記第2半導体領域よりも不純物濃度が高い。前記終端領域には深さ方向に隣接して3つの前記第2導電型領域が設けられている。深さ方向に隣接する3つの前記第2導電型領域のうち、前記半導体基板の第1主面に最も近い前記第2導電型領域は、前記第4半導体領域と同じ不純物濃度を有する。前記半導体基板の第1主面から最も遠い前記第2導電型領域は、前記第2導電型高濃度領域と同じ不純物濃度を有する。残りの前記第2導電型領域は、前記第2半導体領域と同じ不純物濃度を有することを特徴とする。
【0039】
また、この発明にかかる半導体装置は、上述した発明において、前記素子構造は、第1導電型の第3半導体領域、トレンチ、ゲート電極および第2導電型高濃度領域をさらに備える。前記第3半導体領域は、前記半導体基板の第1主面と前記第2半導体領域との間に選択的に設けられている。前記トレンチは、前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達する。前記ゲート電極は、前記トレンチの内部にゲート絶縁膜を介して設けられている。前記第2導電型高濃度領域は、前記第1半導体領域の内部に選択的に設けられ、前記トレンチの底面よりも前記半導体基板の第2主面側に位置する。前記第2導電型高濃度領域は、前記第2半導体領域よりも不純物濃度が高い。前記第2導電型耐圧領域は、前記半導体基板の第1主面から、前記第2導電型高濃度領域よりも浅い位置で終端していることを特徴とする。
【0040】
また、この発明にかかる半導体装置は、上述した発明において、前記第2導電型高濃度領域は、深さ方向に前記トレンチの底面に対向する第1高濃度領域と、前記第1高濃度領域および前記トレンチと離れて、かつ前記第2半導体領域に接する第2高濃度領域と、を有することを特徴とする。
【0041】
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、シリコンよりもバンドギャップの広い半導体からなる半導体基板に、第1導電型の第1半導体領域と第2導電型の第2半導体領域とのpn接合で形成された所定の素子構造が設けられた活性領域と、前記活性領域の周囲を囲む終端領域と、を備えた半導体装置の製造方法であって、次の特徴を有する。前記半導体基板の第1主面を形成する第1導電型エピタキシャル層をエピタキシャル成長させる第1工程を行う。前記活性領域において前記第1導電型エピタキシャル層の表面領域に所定の不純物を導入して少なくとも前記第2半導体領域となる拡散領域を形成し、前記第2半導体領域と、前記活性領域における前記第1導電型エピタキシャル層の前記拡散領域を除く部分である前記第1半導体領域との前記pn接合を含む前記素子構造を形成する第2工程を行う。
【0042】
前記終端領域において前記第1導電型エピタキシャル層の表面領域に、前記素子構造と離れて、前記活性領域の周囲を囲む同心状に互いに離れて複数の第2導電型耐圧領域を形成し、互いに隣り合う前記第2導電型耐圧領域の間に前記第1半導体領域となる前記第1導電型エピタキシャル層を残す第3工程を行う。前記第1工程では、複数の前記第1導電型エピタキシャル層を多段に堆積した積層構造を形成して、前記半導体基板の第1主面を前記活性領域から前記終端領域にわたって平坦に形成する。前記第2工程では、前記素子構造として、複数の前記第1導電型エピタキシャル層のうちのいずれかの前記第1導電型エピタキシャル層に前記第2半導体領域を形成し、前記半導体基板の第1主面と前記第2半導体領域との間に第1導電型の第3半導体領域を選択的に形成し、前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達するトレンチを形成し、前記トレンチの内部にゲート絶縁膜を介してゲート電極を形成し、前記半導体基板の第1主面と前記第2半導体領域との間において、前記第3半導体領域よりも前記トレンチから離れた位置に、前記第2半導体領域よりも不純物濃度の高い第2導電型の第4半導体領域を選択的に形成し、前記第1半導体領域の内部において、前記トレンチの底面よりも深い位置に、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域を選択的に形成する。前記第3工程では、複数の前記第1導電型エピタキシャル層にそれぞれ第2導電型領域を形成し、複数の前記第2導電型領域を深さ方向に隣接させて前記第2導電型耐圧領域を形成し、複数の前記第2導電型領域のいずれかを、前記第2半導体領域と同じ深さ位置に、前記第2半導体領域と同じ不純物濃度で形成し、複数の前記第2導電型領域の残りの前記第2導電型領域を、前記第2半導体領域と異なる深さ位置に、前記第2半導体領域と異なる不純物濃度で形成する。
【0043】
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2工程では、複数の前記第1導電型エピタキシャル層のうちの1つの前記第1導電型エピタキシャル層に前記第2半導体領域を形成する。前記第3工程では、複数の前記第1導電型エピタキシャル層のうち、前記第2半導体領域が形成される前記第1導電型エピタキシャル層には、前記第2半導体領域と同時に、前記第2導電型領域を形成することを特徴とする。
【発明の効果】
【0044】
本発明にかかる半導体装置および半導体装置の製造方法によれば、第2導電型耐圧領域の不純物濃度や深さを容易に調整することができ、完成度の高い耐圧構造の形成が簡易であり、信頼性の高い半導体装置を提供することができるという効果を奏する。
【図面の簡単な説明】
【0045】
図1】実施の形態1にかかる半導体装置を半導体基板のおもて面側から見たレイアウトを示す平面図である。
図2図1の切断線A-A’における断面構造を示す断面図である。
図3図1の切断線A-A’における断面構造の別例を示す断面図である。
図4図1の切断線A-A’における断面構造の別例を示す断面図である。
図5】実施の形態1にかかる半導体装置の別例を示す断面図である。
図6】実施の形態1にかかる半導体装置の別例を示す断面図である。
図7】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図8】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図9】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図10】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図11】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図12】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図13】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図14】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図15】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図16】実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。
図17】実施の形態2にかかる半導体装置の耐圧構造の一例を示す断面図である。
図18】実施の形態2にかかる半導体装置の耐圧構造の一例を示す断面図である。
図19】実施の形態2にかかる半導体装置の耐圧構造の一例を示す断面図である。
図20】従来の炭化珪素半導体装置の構造を示す断面図である。
【発明を実施するための形態】
【0046】
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
【0047】
(実施の形態1)
実施の形態1にかかる半導体装置の構造について、トレンチゲート構造の縦型MOSFETを例に説明する。図1は、実施の形態1にかかる半導体装置を半導体基板のおもて面側から見たレイアウトを示す平面図である。図2は、図1の切断線A-A’における断面構造を示す断面図である。図3,4は、図1の切断線A-A’における断面構造の別例を示す断面図である。図5,6は、実施の形態1にかかる半導体装置の別例を示す断面図である。図5,6には、活性領域1a,1bのMOSFETの単位セルの別例を示す。
【0048】
図1,2に示す実施の形態1にかかる半導体装置30は、炭化珪素(SiC)からなる半導体基板(半導体チップ)10の活性領域1にトレンチゲート構造(素子構造)を備えた縦型MOSFETであり、活性領域1の周囲を囲むエッジ終端領域2に、耐圧構造としてフィールドリミッティングリング(FLR)20を備える。活性領域1は、MOSFETのオン時に主電流(ドリフト電流)が流れる領域である。活性領域1には、MOSFETの同一構造の複数の単位セル(素子の構成単位)が互いに隣接して配置される。
【0049】
活性領域1は、略矩形状の平面形状を有し、半導体基板10の略中央(チップ中央)に配置される。活性領域1は、最外周のコンタクトホール40bの外側(チップ端部側)の側壁(層間絶縁膜40の側面)よりも内側(チップ中央側)の領域である。活性領域1とエッジ終端領域2との間の中間領域3は、活性領域1に隣接して、活性領域1の周囲を囲む。中間領域3とエッジ終端領域2との境界は、後述する外周p型ベース領域34cおよび外周p+型領域62aの外側の端部と、n-型ドリフト領域(第1半導体領域)32と、の境界である。
【0050】
エッジ終端領域2は、活性領域1と半導体基板10の端部(チップ端部)との間の領域であり、中間領域3を介して活性領域1の周囲を囲み、半導体基板10のおもて面側の電界を緩和して耐圧を保持する機能を有する。エッジ終端領域2には、半導体基板10のおもて面側に、耐圧構造として、フィールドリミッティングリング(FLR)20が配置されている。耐圧とは、pn接合でアバランシェ降伏を起こし、ソース-ドレイン間の電流を増加してもそれ以上ソース-ドレイン間の電圧が増加しない限界の電圧である。
【0051】
半導体基板10は、炭化珪素からなるn+型出発基板71のおもて面上に第1,2n-型エピタキシャル層(第1導電型エピタキシャル層)72,73を順にエピタキシャル成長させてなる。半導体基板10の、第2n-型エピタキシャル層73側の主面(第2n-型エピタキシャル層73の表面)をおもて面とし、n+型出発基板71側の主面(n+型出発基板71の裏面)を裏面とする。n+型出発基板71は、n+型ドレイン領域31である。活性領域1において半導体基板10のおもて面側に、MOSゲートが設けられている。
【0052】
MOSゲートは、p型ベース領域(第2半導体領域)34、n+型ソース領域(第3半導体領域)35、p++型コンタクト領域(第4半導体領域)36、ゲートトレンチ37、ゲート絶縁膜38およびゲート電極39で構成される。最外周のゲートトレンチ37の外側(後述する外周p型ベース領域34cの部分)は、n+型ソース領域35を有していない構成としている。ゲートトレンチ37は、半導体基板10のおもて面から深さ方向Zに第2n-型エピタキシャル層73を貫通して第1n-型エピタキシャル層72の内部に達する。
【0053】
ゲートトレンチ37は、活性領域1において半導体基板10のおもて面に平行な第1方向Xにストライプ状に延在し、中間領域3に達する。ゲートトレンチ37の内部に、ゲート絶縁膜38を介してゲート電極39が設けられている。p型ベース領域34、n+型ソース領域35およびp++型コンタクト領域36(後述する外周p型ベース領域34cおよび外周p++型コンタクト領域36aを含む)は、第2n-型エピタキシャル層73の内部にイオン注入により選択的に形成された拡散領域である。
【0054】
p型ベース領域34は、深さ方向Zに第2n-型エピタキシャル層73と第1n-型エピタキシャル層72との界面に達する。p型ベース領域34は、半導体基板10のおもて面からゲートトレンチ37の底面よりも浅い位置で終端していればよく、第1n-型エピタキシャル層72の内部に達してもよい。p型ベース領域34は、活性領域1および中間領域3の全域に設けられている。p型ベース領域34の外周部分(以下、外周p型ベース領域とする)34cは、活性領域1の中央側の部分の周囲を略矩形状に囲む。
【0055】
外周p型ベース領域34cとは、p型ベース領域34のうち、第1方向X(ゲートトレンチ37の長手方向)にn+型ソース領域35よりも外側の部分であって、かつ半導体基板10のおもて面に平行でかつ第1方向Xと直交する第2方向Y(ゲートトレンチ37の短手方向)に最外周のゲートトレンチ37よりも外側の部分である。n+型ソース領域35およびp++型コンタクト領域36は、半導体基板10のおもて面とp型ベース領域34との間に、p型ベース領域34に接してそれぞれ選択的に設けられている。
【0056】
+型ソース領域35およびp++型コンタクト領域36は、半導体基板10のおもて面に露出される。ここで、半導体基板10のおもて面に露出とは、n+型ソース領域35およびp++型コンタクト領域36が後述する層間絶縁膜40のコンタクトホール40aで後述するNiSi膜41に接することである。n+型ソース領域35とp++型コンタクト領域36とは、互いに隣り合うゲートトレンチ37間において、ゲート電極39が延在する方向と同じ第1方向Xに交互に繰り返し配置される(不図示)。
【0057】
++型コンタクト領域36は、ゲートトレンチ37から離れて配置され、第1方向Xに点在する。n+型ソース領域35は、ゲートトレンチ37の側壁でゲート絶縁膜38に接する。n+型ソース領域35は、例えば、互いに隣り合うゲートトレンチ37間においてp++型コンタクト領域36の周囲を囲む梯子状の平面形状をなす。この場合、n+型ソース領域35は、ゲートトレンチ37の側壁に沿って第1方向Xに延在する部分と、第1方向Xに互いに隣り合うp++型コンタクト領域36間に挟まれた部分と、を有する。
【0058】
また、p++型コンタクト領域36(以下、外周p++型コンタクト領域36aとする)は、半導体基板10のおもて面と外周p型ベース領域34cとの間の全域に、外周p型ベース領域34cに接して設けられ、半導体基板10のおもて面に露出される。ここで、半導体基板10のおもて面に露出とは、外周p++型コンタクト領域36aが最外周のコンタクトホール40bでNiSi膜41に接することである。外周p++型コンタクト領域36aは、最外周のゲートトレンチ37の外側の側壁でゲート絶縁膜38に接する。
【0059】
++型コンタクト領域36および外周p++型コンタクト領域36aは設けられていなくてもよい。この場合、p++型コンタクト領域36および外周p++型コンタクト領域36aに代えて、それぞれp型ベース領域34および外周p型ベース領域34cが半導体基板10のおもて面に達して露出される。半導体基板10の内部において、p型ベース領域34および外周p型ベース領域34cとn+型ドレイン領域31(n+型出発基板71)との間に、これらの領域に接して、n-型ドリフト領域32が設けられている。
【0060】
p型ベース領域34および外周p型ベース領域34cとn-型ドリフト領域32との間に、これらの領域に接して、n型電流拡散領域33が設けられてもよい。n型電流拡散領域33は、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(Current Spreading Layer:CSL)である。n型電流拡散領域33は活性領域1からエッジ終端領域2へ略同じ厚さで延在し、その外周部分(第1導電型領域:以下、外周n型電流拡散領域とする)33aはFLR20と後述するn+型ストッパ領域25との間で終端する。
【0061】
また、半導体基板10の内部には、ゲートトレンチ37の底面よりもn+型ドレイン領域31に近い位置に、ゲートトレンチ37の底面にかかる電界を緩和させる第1,2p+型領域(第2導電型高濃度領域)61,62が設けられている。第1,2p+型領域61,62は、ゲートトレンチ37が延在する方向と同じ第1方向Xに、ゲートトレンチ37と略同じ長さで直線状に延在する。第1,2p+型領域61,62ともに深さ方向Zにn+型ドレイン領域31までの距離が略同じであればよく、その深さ位置は種々変更可能である。
【0062】
例えば、第1,2p+型領域61,62は、n型電流拡散領域33の内部で終端して、n型電流拡散領域33に周囲を囲まれていてもよいし(不図示)、n型電流拡散領域33とn-型ドリフト領域32との界面で終端して、n-型ドリフト領域32に接していてもよい(不図示)。または、第1,2p+型領域61,62は、深さ方向Zにn型電流拡散領域33よりもn+型ドレイン領域31に近い位置まで延在して、n-型ドリフト領域32の内部で終端していてもよい(図2参照)。
【0063】
第1p+型領域61(第1高濃度領域)は、p型ベース領域34と離れて設けられ、深さ方向Zにゲートトレンチ37の底面に対向する。第1p+型領域61は、ゲートトレンチ37よりも幅を広くして、ゲートトレンチ37の底面コーナー部に対向してもよい。第1p+型領域61は、ゲートトレンチ37の底面に達して、ゲートトレンチ37の底面で(もしくは底面から底面コーナー部にわたって)ゲート絶縁膜38に接していてもよい。ゲートトレンチ37の底面コーナー部とは、ゲートトレンチ37の底面と側壁とをつなぐ部分である。
【0064】
第1p+型領域61は、フローティング電位(図2)であってもよいが、第2p+型領域62に所定箇所で電気的に接続して、ソース電極(第1電極)の電位に固定されてもよい。図示省略するが、第1p+型領域61をソース電極の電位に固定する場合、第1,2p+型領域61,62間の所定箇所に他のp+型領域(不図示)を配置するか、または、他のp+型領域に代えて第1p+型領域61の一部を第2p+型領域62側へ延在させるか、によって第1p+型領域61を第2p+型領域(第2高濃度領域)62に部分的に連結すればよい。
【0065】
第1p+型領域61をソース電極の電位に固定にすることで、第1p+型領域61と、n型電流拡散領域33もしくはn-型ドリフト領域32(またはその両方)と、のpn接合でアバランシェ降伏が起こった時にn-型ドリフト領域32中に発生するホール(正孔)を効率よくソース電極に吐き出すことができる。これにより、MOSFETのオフ時にゲートトレンチ37の底面においてゲート絶縁膜38にかかる電界を確実に緩和させて、半導体装置30の信頼性を向上させることができる。
【0066】
第2p+型領域62は、互いに隣り合うゲートトレンチ37間に、第1p+型領域61およびゲートトレンチ37と離れて設けられ、かつ深さ方向Zにp型ベース領域34に隣接する。また、第2p+型領域62(以下、外周p+型領域62aとする)は、最外周のゲートトレンチ37の外側に、第1p+型領域61および最外周のゲートトレンチ37と離れて設けられ、かつ深さ方向Zに外周p型ベース領域34cに隣接する。外周p+型領域62aは、活性領域1から外側へ延在し、中間領域3の全域に設けられている。
【0067】
外周p+型領域62aは、活性領域1の中央側の部分の周囲を略矩形状に囲み、すべての第1,2p+型領域61,62の端部に連結されている。なお、図2では、活性領域1において第2p+型領域62が深さ方向Zにn型電流拡散領域33を貫通していることで、中間領域3において外周p+型領域62aが深さ方向Zに外周n型電流拡散領域33aを貫通する構成となっているが、外周p+型領域62aが深さ方向Zに外周n型電流拡散領域33aの内部で終端していてもよい。
【0068】
n型電流拡散領域33、外周n型電流拡散領域33a、第1,2p+型領域61,62および外周p+型領域62aは、活性領域1および中間領域3において第1n-型エピタキシャル層72の内部にイオン注入により形成された拡散領域である。活性領域1および中間領域3において第1n-型エピタキシャル層72の、これらイオン注入による拡散領域を除く部分がn-型ドリフト領域32である。n-型ドリフト領域32は、活性領域1からチップ端部まで延在している。
【0069】
層間絶縁膜40は、半導体基板10のおもて面のほぼ全面に設けられ、MOSFETのすべての単位セルのゲート電極39を覆う。活性領域1には、深さ方向Zに層間絶縁膜40を貫通するコンタクトホール40a,40bが設けられている。コンタクトホール40aは、例えば互いに隣り合うゲートトレンチ37間に、ゲートトレンチ37が延在する方向と同じ第1方向Xに直線状に設けられている。コンタクトホール40aには、n+型ソース領域35およびp++型コンタクト領域36が露出される。
【0070】
コンタクトホール40bは、例えば、活性領域1の中央側の部分の周囲を囲む略矩形状に設けられている。コンタクトホール40bには、外周p++型コンタクト領域36aが露出される。ニッケルシリサイド(NixSiy、ここでx,yは整数である:以下、まとめてNiSiとする)膜41は、コンタクトホール40a,40bの内部において半導体基板10にオーミック接触し、n+型ソース領域35、p++型コンタクト領域36および外周p++型コンタクト領域36aに電気的に接続される。
【0071】
++型コンタクト領域36および外周p++型コンタクト領域36aが設けられていない場合、p++型コンタクト領域36および外周p++型コンタクト領域36aに代えて、p型ベース領域34および外周p型ベース領域34cがそれぞれコンタクトホール40a,40bに露出され、NiSi膜41に電気的に接続される。活性領域1における層間絶縁膜40およびNiSi膜41の表面全体に、層間絶縁膜40およびNiSi膜41の表面に沿ってバリアメタル46が設けられている。
【0072】
バリアメタル46は、バリアメタル46の各金属膜間またはバリアメタル46を挟んで対向する領域間での相互反応を防止する機能を有する。バリアメタル46は、例えば、第1窒化チタン(TiN)膜42、第1Ti膜43、第2TiN膜44および第2Ti膜45を順に積層した積層構造を有していてもよい。第1TiN膜42は、活性領域1における層間絶縁膜40の表面全体を覆う。第1Ti膜43は、第1TiN膜42およびNiSi膜41の表面全体に設けられている。
【0073】
第2TiN膜44は、第1Ti膜43の表面全体に設けられている。第2Ti膜45は、第2TiN膜44の表面全体に設けられている。第2Ti膜45の表面全体にAl電極膜47が設けられている。アルミニウム(Al)電極膜47は、バリアメタル46およびNiSi膜41を介してn+型ソース領域35、p++型コンタクト領域36および外周p++型コンタクト領域36aに電気的に接続される。Al電極膜47およびバリアメタル46は、中間領域3の後述するゲート金属配線層83よりも内側で終端している。
【0074】
Al電極膜47は、例えば、5μm程度の厚さのAl膜、アルミニウム-シリコン(Al-Si)膜またはアルミニウム-シリコン-銅(Al-Si-Cu)膜であってもよい。Al電極膜47、バリアメタル46およびNiSi膜41は、ソース電極として機能する。Al電極膜47の上には、めっき膜48およびはんだ層(不図示)を介して、端子ピン49の一方の端部が接合される。端子ピン49の他方の端部は、半導体基板10のおもて面に対向して配置された金属バー(不図示)に接合される。
【0075】
また、端子ピン49の他方の端部は、半導体基板10を実装したケース(不図示)の外側に露出し、外部装置(不図示)と電気的に接続される。端子ピン49は、半導体基板10のおもて面に対して略垂直に立てた状態でめっき膜48にはんだ接合される。端子ピン49は、MOSFETの電流能力に応じた所定直径を有する丸棒状(円柱状)の配線部材であり、外部の接地電位(最低電位)に接続される。端子ピン49は、Al電極膜47の電位を外部に取り出す外部接続用端子である。
【0076】
第1,2保護膜50、51は例えばポリイミド(polyimide)膜である。第1保護膜50は、Al電極膜47の表面のめっき膜48以外の部分を覆う。第1保護膜50は、Al電極膜47、層間絶縁膜40およびゲート金属配線層83を覆うようにチップ端部まで延在し、パッシベーション膜として機能する。Al電極膜47の、第1保護膜50の開口部に露出する部分はソースパッドとなる。第2保護膜51は、めっき膜48と第1保護膜50との境界を覆う。
【0077】
半導体基板10のおもて面は、活性領域1からチップ端部まで連続する平坦面であり、エッジ終端領域2に従来構造のような段差291(図20参照)は形成されていない。すなわち、半導体基板10のおもて面の全面が第2n-型エピタキシャル層73で形成されている。中間領域3において半導体基板10のおもて面の表面領域には、第2n-型エピタキシャル層73の内部にイオン注入により形成された外周p型ベース領域34cおよび外周p++型コンタクト領域36aがそれぞれ選択的に設けられている。
【0078】
外周p型ベース領域34cはソース電極の電位に固定され、半導体基板10のおもて面の面内で電界を均一にして耐圧を向上させる機能を有する。外周p++型コンタクト領域36aは、MOSFETのオフ時に、中間領域3およびエッジ終端領域2のn-型ドリフト領域32からソース電極へホールを引き抜くための引き抜き領域である。また、中間領域3には、上述したように第1n-型エピタキシャル層72の内部にイオン注入により形成された外周n型電流拡散領域33aおよび外周p+型領域62aが設けられている。
【0079】
中間領域3およびエッジ終端領域2において半導体基板10のおもて面の上に、フィールド酸化膜81および層間絶縁膜40を順に積層した絶縁層が設けられている。この絶縁層は中間領域3から外側へチップ端部まで延在し、中間領域3およびエッジ終端領域2において半導体基板10のおもて面の全面を覆う。中間領域3においてフィールド酸化膜81と層間絶縁膜40との間に、深さ方向Zに外周p++型コンタクト領域36aに対向して、ゲートポリシリコン配線層82が設けられている。
【0080】
ゲート金属配線層83は、層間絶縁膜40に開口されたコンタクトホール40cを介してゲートポリシリコン配線層82に接する。ゲートポリシリコン配線層82およびゲート金属配線層83は、活性領域1の中央側の部分の周囲を略矩形状に囲むゲートランナーである。ゲート金属配線層83は、深さ方向Zにゲートトレンチ37の端部に対向する。ゲート金属配線層83は、ゲートトレンチ37の端部においてゲート電極39に接し、活性領域1のすべてのゲート電極39とゲートパッド(不図示)とを電気的に接続する。
【0081】
中間領域3において半導体基板10のおもて面には、活性領域1から延在する外周p++型コンタクト領域36aが露出される。エッジ終端領域2において半導体基板10のおもて面には、FLR20を構成する最上層の後述する部分FLR(第3領域23)と、n-型ドリフト領域32と、が露出される。中間領域3およびエッジ終端領域2において半導体基板10のおもて面に露出とは、中間領域3およびエッジ終端領域2において半導体基板10のおもて面の表面領域に設けられ、フィールド酸化膜81に接することである。
【0082】
エッジ終端領域2には、耐圧構造としてFLR20が設けられている。FLR20は、中間領域3を介して活性領域1の周囲を同心状に囲むフローティングの同一構成の複数のp型領域(以下、p型FLR領域(第2導電型耐圧領域)とする)24を互いに離して配置した環状(リング状)の接合構造である。p型FLR領域24とn-型ドリフト領域32とのpn接合で、MOSFET(半導体装置30)のオフ時にエッジ終端領域2に横方向(半導体基板10のおもて面に平行な方向)にかかる高電圧が負担され、エッジ終端領域2の所定耐圧が確保される。
【0083】
p型FLR領域24は、後述するように第1,2n-型エピタキシャル層72(72a),73(73a,73b)をそれぞれ所定厚さでエピタキシャル成長させるごとにp型不純物のイオン注入を行って形成され深さ方向Zに隣接する略同じ幅(法線方向の幅)の複数のp型領域(以下、部分FLR(第2導電型領域)とする)で構成され、深さ方向Zに段階的に変化する不純物濃度分布を有する。法線方向とは、p型FLR領域24が環状に延在する方向と直交する方向(チップ中央側からチップ端部へ向かう方向)である。p型FLR領域24を構成する複数の部分FLRそれぞれの不純物濃度および深さ位置を調整することで、エッジ終端領域2の所定耐圧が確保される。
【0084】
深さ方向Zに隣接する1組の複数の部分FLR(例えば図2では第1~3領域21~23の3層構造)の総不純物濃度が、これら複数の部分FLRで構成される1つのp型FLR領域24の所定不純物濃度を満たせばよい。1つのp型FLR領域24を構成する複数の部分FLRは、後述するように所定厚さで順に堆積される第1,2n-型エピタキシャル層72(72a),73(73a,73b)にそれぞれイオン注入により形成される活性領域1のMOSFETを構成するp型領域と同時に形成されてもよい。
【0085】
例えば、深さ方向Zに隣接して1つのp型FLR領域24を構成する第1~3領域(部分FLR)21~23は、それぞれ活性領域1の第2p+型領域62、p型ベース領域34およびp++型コンタクト領域36と同時に形成されてもよい(図2参照)。また、深さ方向Zに隣接して1つのp型FLR領域24を構成する複数の部分FLRは、活性領域1のMOSFETを構成するp型領域の形成と異なるタイミングで形成されてもよい。p型FLR領域24は、外周n型電流拡散領域33aの内部で終端してもよい(不図示)。
【0086】
p型FLR領域24の深さは、p型FLR領域24を構成する部分FLRの積層数で調整可能である。例えば、上層の第2,3領域22,23の2層構造のp型FLR領域24aで構成されたFLR20aとしてもよいし(図3)、最上層の第3領域23のみの単層構造のp型FLR領域24bで構成されたFLR20bとしてもよい(図4)。p型FLR領域24が半導体基板10のおもて面から活性領域1の第1,2p+型領域61,62の深さよりも浅い位置で終端していることで、過負荷がかかったときに活性領域1に電界を集中させることができる。
【0087】
例えば、p型FLR領域24を構成する第1領域21~23のうち、深さ方向Zの中央の第2領域22の不純物濃度を他の第1,3領域21,23の不純物濃度よりも低くした場合(図2参照)、エッジ終端領域2において半導体基板10のおもて面上のポリイミド膜(第1保護膜50)に蓄積される電荷の悪影響を受けにくい。このため、第1保護膜50に蓄積された電荷に引っ張られて外側へ延びたり、内側へ縮んだりすることが抑制され、FLR20の耐圧特性を安定させることができる。
【0088】
第1保護膜50中の電荷による悪影響とは、例えば、第1保護膜50が正(プラス)に帯電したときに、第1保護膜50中の正電荷により、エッジ終端領域2におけるn-型ドリフト領域32内の空乏層の広がりが抑制されることである。また、第1保護膜50が負(マイナス)に帯電したときに、エッジ終端領域2におけるn-型ドリフト領域32内の電位が第1保護膜50中の負電荷により外側へ引っ張られて、n+型ストッパ領域25付近まで延びやすいことである。
【0089】
上述したように半導体基板10のおもて面に従来構造のような段差291(図20参照)が形成されないため、半導体基板10のおもて面からのFLR20の深さ(p型FLR領域24の深さ)を、同一の耐圧クラスで比較した場合の従来構造の半導体基板210のおもて面の第2面210bからのFLR220の深さ(p-型領域221およびp--型領域222の深さ)よりも深くすることができる。このため、従来構造と比べて、エッジ終端領域2の長さ(法線方向の幅)を狭くすることができる。
【0090】
また、従来構造では、耐圧10kV以上とすると、電荷の影響をさらに受けやすくなり、FLRに接するフローティングの金属電極であるフィールドプレート(FP:Field Plate)が必要となるため、エッジ終端領域202の長さがさらに長くなる。一方、実施の形態1においては、p型FLR領域24でFLR20を構成することで、耐圧10kV以上とした場合であってもFPを設ける必要がなくなるため、従来構造よりもエッジ終端領域2の長さを短くすることができ、電荷に対して安定した耐圧構造となる。
【0091】
半導体基板10のおもて面の表面領域において、FLR20よりも外側には、FLR20と離れて、n+型ストッパ領域25が選択的に設けられている。n+型ストッパ領域25は、イオン注入により第2n-型エピタキシャル層73の内部に形成され、半導体基板10のおもて面および端部に露出されている。エッジ終端領域2において第1,2n-型エピタキシャル層72,73の、p型FLR領域24およびn+型ストッパ領域25を除く部分がn-型ドリフト領域32である。
【0092】
互いに隣り合うp型FLR領域24間と、最外周のp型FLR領域24とn+型ストッパ領域25との間には、第1,2n-型エピタキシャル層72,73からなるn-型ドリフト領域32が半導体基板10のおもて面に達して露出される。このように、n+型出発基板71の上にn-型エピタキシャル層(第1,2n-型エピタキシャル層72,73)のみをエピタキシャル成長させることで、当該n-型エピタキシャル層へのp型不純物のイオン注入のみでFLR20を形成することができる。
【0093】
図5,6の別例にそれぞれ示すように活性領域1a,1bのp型ベース領域34の不純物濃度や厚さを種々調整して、p型FLR領域24の第2領域22の不純物濃度や厚さを調整してもよい。この場合、エッジ終端領域2におけるp型FLR領域24の深さ方向Zの構成は、図5,6のp++型コンタクト領域36部分の深さ方向Zの構成と同じとなる。例えば図5の場合、図2において第2領域22の構成を第2n-型エピタキシャル層73a部分のp型ベース領域34の構成と同じにしたものである。また、図6の場合、図2において第2領域22のない構成となる。中間領域3の構成は、図2の中間領域3と同じであってもよいし、図2において外周p型ベース領域34cの構成を図5,6のp型ベース領域34の構成と同じにしたものであってもよい。
【0094】
第2n-型エピタキシャル層73へのイオン注入によりp型ベース領域34を形成するにあたって、例えば、p型ベース領域34が深さ方向Zに貫通する所定厚さで、第2n-型エピタキシャル層73を1段堆積する構成としてもよい(例えば図6参照)。もしくは、第2n-型エピタキシャル層73が所定厚さt3になるまで複数段(ここでは2段:符号73a,73b)に分けて堆積するごとにイオン注入により形成したp型ベース領域34a,34bを深さ方向Zに連結させてp型ベース領域34とする構成としてもよい(図12,13参照)。
【0095】
第2n-型エピタキシャル層73(73a,73b)を複数段に分けて堆積する場合、第2n-型エピタキシャル層73a,73bそれぞれに形成したp型不純物濃度の異なるp-型ベース領域34dおよびp型ベース領域34bを深さ方向Zに連結させてp型ベース領域34としてもよい(図5)。この場合、p型ベース領域34の、n-型ドリフト領域32側のp-型ベース領域34dのp型不純物濃度(例えばp型不純物濃度を相対的に低くする等)により、ゲート閾値電圧を制御することができる。
【0096】
第2n-型エピタキシャル層73を1段で堆積する場合、例えば、第2n-型エピタキシャル層73aの堆積を省略して、第2n-型エピタキシャル層73bのみを堆積する(図6)。この場合、第2n-型エピタキシャル層73bの厚さは、イオン注入によるp型ベース領域34が深さ方向Zに貫通する厚さにする。例えば、第2n-型エピタキシャル層73bの厚さをp++型コンタクト領域36の深さと同じにして、深さ方向Zにp++型コンタクト領域36と第2p+型領域62とを接触させてもよい。
【0097】
ドレイン電極(第2電極)52は、半導体基板10の裏面(n+型出発基板71の裏面)全面にオーミック接触している。ドレイン電極52上には、例えば、Ti膜、ニッケル(Ni)膜および金(Au)膜を順に積層した積層構造でドレインパッド(電極パッド:不図示)が設けられている。ドレインパッドは、絶縁基板の例えば銅(Cu)箔等で形成された金属ベース板(不図示)にはんだ接合され、当該金属ベース板を介して冷却フィン(不図示)のベース部に少なくとも一部が接触している。
【0098】
上述したように半導体基板10のおもて面のAl電極膜47に端子ピン49を接合し、かつ裏面のドレインパッドを絶縁基板の金属ベース板に接合することで、半導体基板10は両主面それぞれに冷却構造を備えた両面冷却構造となっている。半導体基板10で発生した熱は、半導体基板10の裏面のドレインパッドに接合された金属ベース板を介して冷却フィンのフィン部から放熱され、かつ半導体基板10のおもて面の端子ピン49を接合した金属バーから放熱される。
【0099】
実施の形態1にかかる半導体装置30の動作について説明する。ソース電極(Al電極膜47)に対して正の電圧(順方向電圧)がドレイン電極52に印加された状態で、ゲート電極39にゲート閾値電圧以上の電圧が印加されると、p型ベース領域34のゲートトレンチ37に沿った部分にチャネル(n型の反転層)が形成される。それによって、n+型ドレイン領域31からチャネルを通ってn+型ソース領域35へ向かう電流が流れ、MOSFET(半導体装置30)がオンする。
【0100】
一方、ソース・ドレイン間に順方向電圧が印加された状態で、ゲート電極39にゲート閾値電圧未満の電圧が印加されたときに、活性領域1において、第1,2p+型領域61,62およびp型ベース領域34と、n型電流拡散領域33およびn-型ドリフト領域32と、のpn接合が逆バイアスされることで、MOSFETはオフ状態を維持する。このとき、当該pn接合から空乏層が広がり、当該pn接合よりもソース電極側に位置するゲートトレンチ37の底面にかかる電界が緩和される。
【0101】
さらに、MOSFETのオフ時、活性領域1の上記pn接合から広がった空乏層は、活性領域1の周囲を囲むように形成されたp型FLR領域24とn-型ドリフト領域32とのpn接合によって、エッジ終端領域2を横方向に外側(チップ端部側)へ向かって延びる。エッジ終端領域2を外側へ向かって空乏層が延びた分だけ、炭化珪素の絶縁破壊電界強度および空乏層幅(活性領域1からチップ端部へ向かう方向(環状のp型FLR領域24の法線方向)の幅)に基づく所定耐圧を確保することができる。
【0102】
また、MOSFETのオフ時に、ソース電極(Al電極膜47)に対して負の電圧をドレイン電極52に印加することで、第1,2p+型領域61,62およびp型ベース領域34と、n型電流拡散領域33およびn-型ドリフト領域32と、のpn接合で形成される寄生のダイオードに順方向に電流を流すことができる。例えば、MOSFETがインバータ用デバイスである場合、MOSFET自身を保護するための還流ダイオードとして、この半導体基板10の内部に内蔵される寄生のダイオードを使用可能である。
【0103】
次に、実施の形態1にかかる半導体装置30の製造方法について説明する。図7~16は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。図7~15には、活性領域1(図2参照)を示す。図16には、FLR20(図2参照)を構成するp型FLR領域24を1つのみ示すが、上述したようにFLR20は同一構成の複数のp型FLR領域24で構成される。図1,2のエッジ終端領域2および中間領域3の各部は、活性領域1に形成される各部と同じ不純物濃度および深さの各部と同時に形成される。
【0104】
まず、図7に示すように、炭化珪素からなるn+型出発基板(半導体ウエハ)71として、例えば窒素(N)ドープの炭化珪素単結晶基板を用意する。次に、n+型出発基板71のおもて面に、n+型出発基板71よりも低濃度に窒素がドープされた第1n-型エピタキシャル層72をエピタキシャル成長させる。第1n-型エピタキシャル層72の厚さt1は、耐圧3300Vクラスである場合に例えば30μm程度であり、耐圧1200Vクラスである場合に例えば10μm程度である。
【0105】
次に、図8に示すように、フォトリソグラフィおよび例えばAl等のp型不純物のイオン注入により、活性領域1において第1n-型エピタキシャル層72の表面領域に、第1p+型領域61と、第2p+型領域62の一部となるp+型領域91と、を形成する。このとき、第1n-型エピタキシャル層72の表面領域に、第1p+型領域61と同時に、中間領域3の外周p+型領域62a、および、エッジ終端領域2のFLR20を構成する複数のp型FLR領域24の各第1領域21、の一部となる各p+型領域91を形成する。
【0106】
次に、フォトリソグラフィおよび例えば窒素等のn型不純物のイオン注入により、活性領域1において第1n-型エピタキシャル層72の表面領域に、n型電流拡散領域33の一部となるn型領域92を形成する。このとき、中間領域3およびエッジ終端領域2において第1n-型エピタキシャル層72の表面領域に、n型電流拡散領域33の一部となるn型領域92と同時に、外周n型電流拡散領域33aの一部となるn型領域92を形成する。n型領域92と、p+型領域61,91と、の形成順序を入れ替えてもよい。
【0107】
エッジ終端領域2において互いに隣り合う第1領域21間には、外周n型電流拡散領域33aの一部となるn型領域92が形成される。活性領域1において互いに隣り合うp+型領域61,91間の距離d2は例えば1.5μm程度である。p+型領域61,91は、例えば深さd1および不純物濃度がそれぞれ0.5μm程度および3.0×1018/cm3以上7.0×1018/cm3以下程度である。n型領域92の深さd3および不純物濃度は、例えば、それぞれ0.4μm程度および5.0×1016/cm3以上1.0×1017/cm3以下程度である。
【0108】
第1n-型エピタキシャル層72のうちのイオン注入されていない部分がn-型ドリフト領域32となる。エッジ終端領域2において、外周n型電流拡散領域33aの一部となるn型領域92の外側(チップ端部側)の端部と、チップ領域(半導体ウエハのダイシング後に半導体チップとなる領域)の端部と、の間にn-型ドリフト領域32(第1n-型エピタキシャル層72のイオン注入されていない部分)が残り、第1n-型エピタキシャル層72の表面に露出される。
【0109】
次に、図9に示すように、第1n-型エピタキシャル層72上にさらに例えば窒素等のn型不純物をドープしたn-型エピタキシャル層を例えば0.5μm程度の厚さt2でエピタキシャル成長させて、第1n-型エピタキシャル層72を所定厚さにする。第1n-型エピタキシャル層72の厚さを増した部分72aの不純物濃度は例えば3×1015/cm3であってもよい。エッジ終端領域2のn-型ドリフト領域32は、深さ方向Zに対向する部分で第1n-型エピタキシャル層72の厚さを増した部分72aに連結される。
【0110】
次に、図10に示すように、フォトリソグラフィおよびAl等のp型不純物のイオン注入により、活性領域1において第1n-型エピタキシャル層72の厚さを増した部分72aに、第2p+型領域62の一部となるp+型領域93を形成する。このとき、第1n-型エピタキシャル層72の厚さを増した部分72aに、当該p+型領域93と同時に、中間領域3の外周p+型領域62a、および、エッジ終端領域2のFLR20を構成する複数のp型FLR領域24の各第1領域21、の一部となる各p+型領域93を形成する。
【0111】
次に、フォトリソグラフィおよび例えば窒素などのn型不純物のイオン注入により、活性領域1において第1n-型エピタキシャル層72の厚さを増した部分72aに、n型電流拡散領域33の一部となるn型領域94を形成する。このとき、中間領域3およびエッジ終端領域2において第1n-型エピタキシャル層72の厚さを増した部分72aに、n型電流拡散領域33の一部となるn型領域94と同時に、外周n型電流拡散領域33aの一部となるn型領域94を形成する。
【0112】
第1n-型エピタキシャル層72の厚さを増した部分72aのうちのイオン注入されていない部分がn-型ドリフト領域32となる。エッジ終端領域2において、外周n型電流拡散領域33aの一部となるn型領域94の外側(チップ端部側)の端部と、チップ領域の端部と、の間にn-型ドリフト領域32(第1n-型エピタキシャル層72の厚さを増した部分72aのイオン注入されていない部分)が残り、第1n-型エピタキシャル層72の厚さを増した部分72aの表面に露出される。
【0113】
深さ方向Zに隣接するp+型領域91,93同士が連結されて、第2p+型領域62と、外周p+型領域62aと、複数のp型FLR領域24の各第1領域21と、が形成される。深さ方向Zに隣接するn型領域92,94同士が連結されて、n型電流拡散領域33および外周n型電流拡散領域33aが形成される。p+型領域93およびn型領域94の不純物濃度等の条件は、例えばそれぞれp+型領域91およびn型領域92と同様である。p+型領域93とn型領域94との形成順序を入れ替えてもよい。
【0114】
次に、図11に示すように、第1n-型エピタキシャル層72上に、例えば窒素等のn型不純物をドープした第2n-型エピタキシャル層73(73a)をエピタキシャル成長させる。次に、図12に示すように、フォトリソグラフィおよびAl等のp型不純物のイオン注入により、活性領域1において第2n-型エピタキシャル層73aに、深さ方向Zに第2n-型エピタキシャル層73aを貫通するように、p型ベース領域34の一部(p型ベース領域34a)となるp型領域95を形成する。p型領域95の不純物濃度は、例えば1.0×1017/cm3以上8.0×1018/cm3以下程度である。
【0115】
このとき、第2n-型エピタキシャル層73(73a)に、p型ベース領域34aとなるp型領域95と同時に、中間領域3の外周p型ベース領域34c、および、エッジ終端領域2のFLR20を構成する複数のp型FLR領域24の各第2領域22、の一部となる各p型領域95を形成する。次に、第2n-型エピタキシャル層73aにさらに例えば窒素等のn型不純物をドープした第2n-型エピタキシャル層73bをエピタキシャル成長させて、第2n-型エピタキシャル層73(73a,73b)を所定厚さt3にする。
【0116】
次に、フォトリソグラフィおよびAl等のp型不純物のイオン注入により、活性領域1において第2n-型エピタキシャル層73(73b)に、p型ベース領域34の一部(p型ベース領域34b)となるp型領域96を形成する。このとき、第2n-型エピタキシャル層73bに、p型ベース領域34bとなるp型領域96と同時に、中間領域3の外周p型ベース領域34c、および、エッジ終端領域2のFLR20を構成する複数のp型FLR領域24の各第2領域22、の一部となる各p型領域96を形成する。
【0117】
第2n-型エピタキシャル層73a,73bの不純物濃度はともに、例えば、4.0×1017/cm3程度である。第2n-型エピタキシャル層73a,73bが積層されて所定厚さt3の第2n-型エピタキシャル層73が形成される。第2n-型エピタキシャル層73の厚さt3は、例えば1.1μm以下程度である。深さ方向Zに隣接するp型領域95,96同士が連結されて、p型ベース領域34と、外周p型ベース領域34cと、複数のp型FLR領域24の各第2領域22と、が形成される。
【0118】
第2n-型エピタキシャル層73a,73bそれぞれの厚さは、第2n-型エピタキシャル層73a,73bにそれぞれイオン注入により形成されるp型領域95,96が深さ方向Zに貫通する厚さである。第2n-型エピタキシャル層73の所定厚さt3がイオン注入により形成されるp型ベース領域34を貫通させる厚さである場合、第2n-型エピタキシャル層73を、第2n-型エピタキシャル層73a,73bの2段に分けて堆積(エピタキシャル成長)させずに、1段で所定厚さt3に堆積してもよい。
【0119】
その理由は、次のとおりである。従来構造で(図20参照)は、p型ベース領域234となるp型エピタキシャル層273をエピタキシャル成長させた時点で、p型ベース領域234と、n-型エピタキシャル層272の内部にイオン注入により形成した第2p+型領域262と、が深さ方向Zに接触した状態となる。一方、実施の形態1においては、例えば仮に、1段で堆積した第2n-型エピタキシャル層73の厚さt3、もしくは2段に分けて堆積した第2n-型エピタキシャル層73a,73bの各厚さが厚すぎるとする。
【0120】
この場合、1段で堆積した第2n-型エピタキシャル層73の内部にイオン注入により形成するp型ベース領域34と、外周p型ベース領域34cと、複数のp型FLR領域24の各第2領域22と、が第2n-型エピタキシャル層73を貫通する深さにならない。もしくは、2段に分けて堆積した第2n-型エピタキシャル層73a,73bの内部にそれぞれイオン注入により形成されるp型領域95,96がそれぞれ第2n-型エピタキシャル層73a,73bを貫通する深さにならない。
【0121】
p型ベース領域34と、第1n-型エピタキシャル層72の内部の第2p+型領域62と、の間に残るn-型領域(n-型ドリフト領域32)により、p型ベース領域34と第2p+型領域62とが断線されてしまう。このため、第2n-型エピタキシャル層73を1段で堆積する場合、その厚さt3は、イオン注入によるp型ベース領域34が第2n-型エピタキシャル層73を貫通する程度に薄くし、好ましくはチャネル(n型の反転層)に必要な厚さ(例えば0.5μm程度)以上0.8μm以下程度とすることがよい。
【0122】
したがって、1段で堆積した第2n-型エピタキシャル層73の厚さt3、もしくは2段に分けて堆積した第2n-型エピタキシャル層73a,73bの各厚さは、例えば従来構造のp型ベース領域234となるp型エピタキシャル層273の厚さt201(図20参照)と比べて薄くなる。ここまでの工程により、n+型出発基板71上にn-型エピタキシャル層(第1,2n-型エピタキシャル層72,73)のみを順に積層したn型の半導体基板10(半導体ウエハ)が作製される。
【0123】
エッジ終端領域2のn-型ドリフト領域32は、深さ方向Zに対向する部分で第2n-型エピタキシャル層73に連結される。第2n-型エピタキシャル層73のうちのイオン注入されていない部分がn-型ドリフト領域32となる。エッジ終端領域2において、外周p型ベース領域34cと最内周の第2領域22との間と、互いに隣り合う第2領域22間と、最外周の第2領域22とチップ端部との間と、にn-型ドリフト領域32が残り、第2n-型エピタキシャル層73の表面に露出される。
【0124】
次に、図13に示すように、フォトリソグラフィおよびイオン注入を1組とする工程を異なる条件で繰り返し行う。これにより、活性領域1において第2n-型エピタキシャル層73の表面領域に、n+型ソース領域35およびp++型コンタクト領域36を形成する。エッジ終端領域2において第2n-型エピタキシャル層73の表面領域に、n+型ストッパ領域25を形成する。n+型ソース領域35、p++型コンタクト領域36およびn+型ストッパ領域25の形成順序は入れ替え可能である。
【0125】
このとき、第2n-型エピタキシャル層73の表面領域に、p++型コンタクト領域36と同時に、中間領域3の外周p++型コンタクト領域36a、および、エッジ終端領域2のFLR20を構成する複数のp型FLR領域24の各第3領域23、となる各p+型領域(不図示)を形成する。第3領域23の不純物濃度は、例えば1.0×1017/cm3以上5.0×1020/cm3以下程度である。上述したように第1,2n-型エピタキシャル層72(72a),73(73a,73b)にそれぞれ形成され深さ方向Zに隣接する第1~3領域21~23がすべて連結されて各p型FLR領域24が形成される。
【0126】
深さ方向Zに隣接する第1~3領域21~23同士には、第1~3領域21~23の形成に用いたイオン注入用マスクの位置合わせ(アライメント)精度により法線方向(図16の横方向)に互いに0.1μm程度の位置ずれが必然的に生じる。これにより、互いに隣り合うp型FLR領域24の間隔を実質的に短くすることができる。深さ方向Zに隣接する第1~3領域21~23同士の位置ずれの大きさは、例えば0.05μm以上0.3μm以下程度である。第1~3領域21~23の幅(環状のp型FLR領域24の法線方向の幅)は略同じである。略同じ幅とは、プロセスのばらつきによる許容誤差を含む範囲で同じ幅であることを意味する。
【0127】
図16には、第1n-型エピタキシャル層72の、最初に堆積した部分(図8参照)へのイオン注入と、厚さを増した部分72a(図9参照)へのイオン注入と、により2回に分けて形成された第1領域21間(p+型領域91,93間)の法線方向の位置ずれを図示省略する。第2n-型エピタキシャル層73a,73b(図12,13参照)それぞれへのイオン注入により2回に分けて形成された第2領域22間(p型領域95,96間)の法線方向の位置ずれを図示省略する。
【0128】
深さ方向Zに隣接する部分FLR(第1~3領域21~23)間に法線方向の位置ずれが生じていると、当該位置ずれの箇所で局所的に電界が高くなる。このため、例えば、シリコンを半導体材料とした半導体装置に実施の形態1のFLR20を適用した場合、法線方向の位置ずれが生じている箇所の部分FLRとn-型ドリフト領域とのpn接合でアバランシェ降伏し、アバランシェ降伏の発生箇所からソース電極へ向かって流れ込む電子電流(以下、アバランシェ電流とする)で破壊しやすい。
【0129】
アバランシェ電流による破壊の要因の一つは、シリコンのpn接合面のビルトイン電圧が0.6Vと小さいことで、寄生動作が生じやすいからである。シリコンを半導体材料とした半導体装置がMOSFETである場合、MOSFETの寄生ダイオードの順方向電流としてアバランシェ電流が流れ、寄生ダイオード動作による経年劣化により破壊しやすい。シリコンを半導体材料とした半導体装置がIGBTである場合、IGBTの寄生サイリスタがアバランシェ電流によりオンすることで破壊しやすい。
【0130】
また、シリコンを半導体材料とした半導体装置に実施の形態1のFLR20を適用した場合、高温(例えば200℃以上)動作時に、深さ方向Zに隣接する部分FLR間に法線方向の位置ずれが生じている箇所でリーク電流による悪影響が大きくなり、より破壊しやすくなる。具体的には、200℃での高温動作でリーク電流が10mA以上に増加し、即破壊に至る。一方、上述したように炭化珪素はシリコンよりもバンドギャップが広いため、炭化珪素を半導体材料とする半導体装置は高温動作時であってもリーク電流が小さい。
【0131】
実施の形態1においては、深さ方向Zに隣接する部分FLR間の法線方向の位置ずれにより局所的に電界が高い箇所があったとしても、炭化珪素のバンドギャップが広いことで、リーク電流の増加がない。これに加えて、炭化珪素のpn接合面のビルトイン電圧が3V~5V程度と高いため、寄生動作が起きにくく、破壊しにくい。したがって、深さ方向Zに隣接する部分FLR間の法線方向の位置のずれ量を考慮して、p型FLR領域24を構成する部分FLRの不純物濃度や積層数を設定すればよい。
【0132】
例えば、p型FLR領域24を構成する部分FLRの積層数を増やすことで、p型FLR領域24が深くなるため、電荷による悪影響を受けにくくなり、深さ方向Zに隣接する部分FLR間に法線方向の位置ずれが生じていたとしても破壊しにくい。また、電荷による悪影響を受けにくいことで、エッジ終端領域2において、第1保護膜50の厚さを5μm程度に薄くすることや(従来構造のエッジ終端領域202の保護膜250の厚さは10μm程度)、第1保護膜50に代えて窒化膜(SiN膜)を設けることも可能である。
【0133】
p型FLR領域24を構成する部分FLRの不純物濃度は、例えば1×1016/cm3以上程度であればよく、活性領域1のMOSFETのいずれかのp型領域と同時に形成して当該p型領域と略同じ不純物濃度であってもよいし、FLR20用に設定されてもよい。p型FLR領域24を構成する複数の部分FLRの不純物濃度はすべて略同じでもよいし、それぞれ異なってもよい。略同じ不純物濃度とは、プロセスのばらつきによる許容誤差を含む範囲で同じ不純物濃度であることを意味する。
【0134】
例えば、上述したようにp型FLR領域24の第1~3領域21~23をそれぞれ第2p+型領域62、p型ベース領域34およびp++型コンタクト領域36と同時に形成した場合、第1~3領域21~23の不純物濃度は、例えば、それぞれ5×1018cm/3程度、4×1017cm/3程度および3×1020cm/3程度となる。第1~3領域21~23の厚さは略同じであってもよい。略同じ厚さとは、プロセスのばらつきによる許容誤差を含む範囲で同じ厚さであることを意味する。
【0135】
さらに厚さを薄くして多段に堆積した複数のn-型エピタキシャル層にそれぞれイオン注入により部分FLRを形成して、p型FLR領域24を構成する部分FLRの積層数を増やしてもよい。部分FLRを形成するn-型エピタキシャル層の厚さを薄くするほど、n-型エピタキシャル層にイオン注入により形成される部分FLRの深さ方向Zのp型不純物濃度が一様(BOXプロファイル)にすることができる。不純物濃度が一様とは、プロセスのばらつきによる許容誤差を含む範囲で略同じ不純物濃度であることを意味する。
【0136】
次に、イオン注入で形成したすべての拡散領域(第1,2p+型領域61,62、n型電流拡散領域33、p型ベース領域34、n+型ソース領域35、p++型コンタクト領域36、外周n型電流拡散領域33a、外周p型ベース領域34c、外周p++型コンタクト領域36a、p型FLR領域24およびn+型ストッパ領域25)について、例えば1700℃程度の温度で2分間程度の熱処理により不純物活性化を行う。すべての拡散領域の不純物活性化をまとめて1回の熱処理で行ってもよいし、イオン注入ごとに熱処理を行ってもよい。
【0137】
次に、図14に示すように、フォトリソグラフィおよびエッチングにより、半導体基板10のおもて面からn+型ソース領域35、p型ベース領域34およびn型電流拡散領域33を貫通して、第1p+型領域61に達するゲートトレンチ37を形成する。次に、図15に示すように、半導体基板10のおもて面(n+型ソース領域35、p++型コンタクト領域36および外周p++型コンタクト領域36aの表面)およびゲートトレンチ37の内壁(側壁および底面)に沿ってゲート絶縁膜38を形成する。
【0138】
ゲート絶縁膜38は、例えば、酸素(O2)雰囲気中において1000℃程度の温度で半導体表面を熱酸化することで形成した熱酸化膜であってもよいし、高温酸化(HTO:High Temperature Oxide)による堆積膜であってもよい。次に、ゲートトレンチ37の内部に埋め込むように、半導体基板10のおもて面に例えばリン(P)ドープのポリシリコン層を堆積(形成)して選択的に除去し、ゲート電極39となる部分のみをゲートトレンチ37の内部に残す。
【0139】
また、上記ポリシリコン層の一部をゲート電極39として残すと同時に、当該ポリシリコン層の一部をゲートポリシリコン配線層82として残してもよい。この場合、ゲート絶縁膜38の形成後、リンドープのポリシリコン層の堆積前に、中間領域3およびエッジ終端領域2において半導体基板10のおもて面上にフィールド酸化膜81を形成する。図2には図示省略するが、半導体基板10のおもて面とフィールド酸化膜81との間にゲート絶縁膜38が残っていてもよい。
【0140】
次に、半導体基板10のおもて面全面に、ゲート電極39およびゲートポリシリコン配線層82を覆う例えばBPSG(Boro Phospho Silicate Glass)等やPSG等の層間絶縁膜40を例えば1μmの厚さで形成する。次に、フォトリソグラフィおよびエッチングにより、活性領域1において深さ方向Zに層間絶縁膜40およびゲート絶縁膜38を貫通するコンタクトホール40a,40bを形成する。中間領域3において深さ方向Zに層間絶縁膜40を貫通するコンタクトホール40cを形成する。
【0141】
コンタクトホール40aに、活性領域1のn+型ソース領域35およびp++型コンタクト領域36を露出させる。コンタクトホール40bに、外周p++型コンタクト領域36aを露出させる。コンタクトホール40cに、ゲートポリシリコン配線層82を露出させる。次に、熱処理により層間絶縁膜40を平坦化(リフロー)する。次に、活性領域1における層間絶縁膜40のみを覆う第1TiN膜42を形成する。次に、半導体基板10のおもて面の、コンタクトホール40aに露出される部分にNiSi膜41を形成する。また、半導体基板10の裏面にオーミック接触するドレイン電極52として、NiSi膜を形成する。
【0142】
次に、NiSi膜41および第1TiN膜42を覆うように、第1Ti膜43、第2TiN膜44および第2Ti膜45を順に積層して、活性領域1のほぼ全面を覆うようにバリアメタル46を形成する。次に、第2Ti膜45上にAl電極膜47を堆積する。Al電極膜47と同時に、Al電極膜47と離して層間絶縁膜40上にゲートパッド(不図示)を形成し、コンタクトホール40cの内部においてゲートポリシリコン配線層82上にゲート金属配線層83を形成する。
【0143】
次に、ドレイン電極52の表面に、例えばTi膜、Ni膜および金(Au)膜を順に積層してドレインパッド(不図示)を形成する。次に、半導体基板10のおもて面全面にポリイミドからなる第1保護膜50形成し、第1保護膜50によりAl電極膜47、ゲートパッドおよびゲート金属配線層83を覆う。
【0144】
次に、第1保護膜50を選択的に除去して、第1保護膜50の異なる開口部にAl電極膜47およびゲートパッドをそれぞれ露出させる。次に、一般的なめっき前処理の後、一般的なめっき処理により、Al電極膜47の、第1保護膜50の開口部に露出する部分(ソースパッド)にめっき膜48を形成する。次に、熱処理(ベーク)によりめっき膜48を乾燥させる。次に、ポリイミドからなる第2保護膜51を形成し、めっき膜48と第1保護膜50との境界を覆う。
【0145】
次に、熱処理(キュア)によりポリイミド膜(第1,2保護膜50,51)の強度を向上させる。次に、めっき膜48上に、それぞれはんだ層により端子ピン49を接合する。ゲートパッドの上にも、Al電極膜47上の配線構造と同時に、第1保護膜、めっき膜および第2保護膜を順に形成し、はんだ層により端子ピンを接合した配線構造を形成する。その後、半導体基板10(半導体ウエハ)をダイシング(切断)して個々のチップ領域を個片化することで、図1,2に示すMOSFET(半導体装置30)が完成する。
【0146】
以上、説明したように、実施の形態1によれば、半導体基板をn-型エピタキシャル層のみを堆積して作製することで、活性領域のMOSFETの主要な部分(チャネル付近)がn-型エピタキシャル層で構成される。これによって、結晶性がよく、かつ不純物濃度の低いチャネルを形成することができるため、ゲートトレンチの底面にかかる電界を緩和させる第1,2p+型領域間のJFET抵抗(Junction FET)抵抗が低減され、導通損失を低減させることができる。
【0147】
また、実施の形態1によれば、半導体基板をn-型エピタキシャル層のみを堆積して作製することで、多段に堆積されたn-型エピタキシャル層にイオン注入により形成されたp型FLR領域を、活性領域の周囲を囲む同心状に複数配置してFLRを形成することができる。このため、従来構造(図20参照)のようにエッジ終端領域において半導体基板のおもて面にn-型エピタキシャル層を露出するための段差を形成する必要がなく、半導体基板のおもて面全面が活性領域からチップ端部まで連続する平坦面となる。
【0148】
また、従来構造では、FLR220を空間変調型とする場合、上述したようにFLR220を構成するp-型領域221およびp--型領域222を形成するためのイオン注入の重なりが複雑となり、イオン注入用マスクの位置合わせが難しい。一方、実施の形態1によれば、多段にn-型エピタキシャル層を堆積するごとに異なる不純物濃度の部分FLRを形成し、当該部分FLRを深さ方向に複数隣接させてp型FLR領域を形成することで、p型FLR領域の深さ方向の不純物濃度分布を容易に調整することができる。
【0149】
また、実施の形態1によれば、p型FLR領域を構成する部分FLRの積層数の増減が容易であり、p型FLR領域を構成する部分FLRの積層数の増減により、半導体基板のおもて面からのp型FLR領域の深さを容易に調整することができる。例えば、p型FLR領域を構成する部分FLRの積層数を増やして、半導体基板のおもて面からのp型FLR領域の深さを深くするほど、耐圧を維持した状態でエッジ終端領域の長さ(法線方向の幅)を狭くすることができる。
【0150】
一方、p型FLR領域を構成する部分FLRの積層数を少なくして、p型FLR領域を、半導体基板のおもて面から、活性領域においてゲートトレンチの底面にかかる電界を緩和させる第1,2p+型領域よりも浅い位置で終端させることで、半導体素子に過負荷がかかったときに活性領域に電界を集中させることができる。これにより、半導体素子の安全動作領域(RBSOA:Reverse Bias Safe Operating Area)を確保することができる。
【0151】
このように、実施の形態1によれば、p型FLR領域の不純物濃度や深さを容易に調整することができ、完成度の高い耐圧構造(FLR)を簡易に形成することができる。耐圧構造の完成度が高いことで、半導体装置の信頼性を向上させることができる。また、従来構造のように半導体基板のおもて面に段差を形成するためのエッチング工程や、当該エッチングにより廃棄される材料(p型ベース領域となるp型エピタキシャル層の一部)が生じないため、経済的に優れ安定した耐圧構造を確保することができる。
【0152】
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図17~19は、実施の形態2にかかる半導体装置の耐圧構造の一例を示す断面図である。図17~19には、実施の形態2にかかる半導体装置100a~100cのエッジ終端領域のFLR101a~101cを構成するp型FLR領域102a~102cをそれぞれ1つずつ示すが、実施の形態2のFLR101a~101cも、実施の形態1のFLR20(図2参照)と同様に、活性領域の周囲を同心状に囲む同一構成の複数のp型FLR領域102a~102cで構成される。
【0153】
図17~19に示す実施の形態2にかかる半導体装置100a~100cが実施の形態1にかかる半導体装置30(図2,16)と異なる点は、深さ方向Zに隣接してp型FLR領域を構成する複数の部分FLR(p型領域)の少なくとも1つの幅(法線方向の幅)が相対的に広い点である。例えば、半導体基板10のおもて面から深い位置に配置されるほど幅の広い第1~3領域(部分FLR)21a~23aが深さ方向Zに隣接する3層構造のp型FLR領域102aを、活性領域の周囲を囲む同心状に複数配置してFLR101aが構成されてもよい(図17)。
【0154】
また、半導体基板10のおもて面から深い位置に配置されるほど幅の狭い第1~3領域(部分FLR)21b~23bが深さ方向Zに隣接する3層構造のp型FLR領域102bを、活性領域の周囲を囲む同心状に複数配置してFLR101bが構成されてもよい(図18)。半導体基板10のおもて面から深さ方向Zに中央の第2領域(部分FLR)22cよりも深い位置および浅い位置に配置されるほどそれぞれ幅の広い第1,3領域(部分FLR)21c,23cが隣接する3層構造のp型FLR領域102cを、活性領域の周囲を囲む同心状に複数配置してFLR101cが構成されてもよい(図19)。
【0155】
複数の部分FLRの幅を種々変更することで、p型FLR領域102a~102cの不純物濃度の調整がさらに容易になる。上述した実施の形態2におけるFLR101a~101cでは、活性領域1からエッジ終端構造2に至る半導体基板10の面内方向において、最も幅の広い部分FLRが、両端ともに他の部分FLRよりも突き出ている構成となっている。この場合、最も幅の広い部分FLRが隣り合うp型FLR領域102a~102cの間隔を決めるため、部分FLRの各層のアライメントがずれても安定して高耐圧を得ることができる。
【0156】
深さ方向Zに隣接する部分FLR間の法線方向の位置(図17~19の横方向)については、最も幅の広い部分FLRを、法線方向に内側および外側にそれぞれ少なくとも0.05μm以上、他の部分FLRより突き出すように形成することが好ましい。深さ方向Zに隣接する部分FLR間の法線方向の位置の差分は、要求耐圧により種々変更される。また、図19のように最も幅の広い部分FLRを複数設ける場合、第1,3領域(部分FLR)21c,23cにおいて実施の形態1と同様の効果を得られるとともに、第2領域(部分FLR)22cでは実施の形態2で示された効果が得られる。
【0157】
以上、説明したように、実施の形態2によれば、深さ方向に隣接して1つのp型FLR領域を構成する複数の部分FLRの少なくとも1つの部分FLRの幅を相対的に広くする。これにより、深さ方向に隣接して1つのp型FLR領域を構成する複数の部分FLRのうちの1つ以上がp型FLR領域の法線方向に所定位置からずれて形成されたとしても、相対的に幅の広い部分FLRにより、すべての部分FLRを深さ方向に確実に隣接させることができる。これによって、FLRの完成度がさらに高くなるため、実施の形態1と同様の効果をさらに得ることができる。
【0158】
以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、炭化珪素を半導体材料にすることに代えて、炭化珪素以外のワイドバンドギャップ半導体とした場合においても本発明を適用可能である。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
【産業上の利用可能性】
【0159】
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、高電圧や大電流を制御するパワー半導体装置に有用である。
【符号の説明】
【0160】
1,1a,1b 活性領域
2 エッジ終端領域
3 中間領域
10 半導体基板
20,20a,20b,101a~101c FLR
21 p型FLR領域の最下層の第1領域
22 p型FLR領域の中央の第2領域
23 p型FLR領域の最上層の第3領域
24,24a,24b,102a~102c p型FLR領域
25 n+型ストッパ領域
30,100a~100c 半導体装置
31 n+型ドレイン領域
32 n-型ドリフト領域
33 n型電流拡散領域
33a 外周n型電流拡散領域
34,34a,34b p型ベース領域
34c 外周p型ベース領域
34d p-型ベース領域
35 n+型ソース領域
36 p++型コンタクト領域
36a 外周p++型コンタクト領域
37 ゲートトレンチ
38 ゲート絶縁膜
39 ゲート電極
40 層間絶縁膜
40a~40c コンタクトホール
41 NiSi膜
42 第1TiN膜
43 第1Ti膜
44 第2TiN膜
45 第2Ti膜
46 バリアメタル
47 Al電極膜
48 めっき膜
49 端子ピン
50 第1保護膜
51 第2保護膜
52 ドレイン電極
61,62,91,93 p+型領域
62a 外周p+型領域
71 n+型出発基板
72 第1n-型エピタキシャル層
72a 第1n-型エピタキシャル層の厚さを増した部分
73,73a,73b 第2n-型エピタキシャル層
81 フィールド酸化膜
82 ゲートポリシリコン配線層
83 ゲート金属配線層
92,94 n型領域
95,96 p型領域
d1 p+型領域の深さ
d2 互いに隣り合うp+型領域間の距離
d3 n型領域の深さ
t1 n-型エピタキシャル層の、n+型出発基板上に最初に積層する厚さ
t2 n-型エピタキシャル層の、厚さを増した部分の厚さ
t3 p型エピタキシャル層の厚さ
X 半導体基板のおもて面に平行な第1方向
Y 半導体基板のおもて面に平行でかつ第1方向と直交する第2方向
Z 深さ方向
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20