(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-19
(45)【発行日】2025-02-28
(54)【発明の名称】光ファイバの製造方法
(51)【国際特許分類】
C03C 25/6226 20180101AFI20250220BHJP
C03C 25/475 20180101ALI20250220BHJP
G02B 6/44 20060101ALI20250220BHJP
【FI】
C03C25/6226
C03C25/475
G02B6/44 301B
(21)【出願番号】P 2021107092
(22)【出願日】2021-06-28
【審査請求日】2024-02-13
(73)【特許権者】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】100143764
【氏名又は名称】森村 靖男
(72)【発明者】
【氏名】竹内 那都子
【審査官】若土 雅之
(56)【参考文献】
【文献】特開2006-084752(JP,A)
【文献】特開2000-147336(JP,A)
【文献】特開2018-177630(JP,A)
【文献】特開2010-117527(JP,A)
【文献】国際公開第1998/031641(WO,A1)
【文献】特開2010-117530(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 71/04
C03C 25/00-25/70
C08J 7/00-7/02
7/12-7/18
G02B 6/02-6/10
6/44
(57)【特許請求の範囲】
【請求項1】
コア及び前記コアの外周面を囲むクラッドを有する光ファイバ素線と、顔料及び紫外線硬化樹脂を含む着色樹脂から成り前記光ファイバ素線の外周面を被覆する着色層と、を有する光ファイバの製造方法であって、
前記光ファイバ素線の外周面に前記着色樹脂を塗布し、塗布された前記着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて前記着色層を形成する被覆工程を備え、
前記被覆工程では、硬化した前記着色樹脂の前記光の吸光度に基づいて予め定められる所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする光ファイバの製造方法。
【請求項2】
前記所定照射量は、前記着色樹脂における前記光のピーク波長での吸光度、及び、他の色の前記着色樹脂における前記光のピーク波長での吸光度と前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められる
ことを特徴とする請求項1に記載の光ファイバの製造方法。
【請求項3】
前記所定照射量は、前記光のスペクトルと前記着色樹脂の吸収スペクトルとの重なり積分、及び、前記光のスペクトルと他の色の前記着色樹脂の吸収スペクトルとの重なり積分と、前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められる
ことを特徴とする請求項2に記載の光ファイバの製造方法。
【請求項4】
前記被覆工程では、前記光の強度を調節して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項1から3のいずれか1項に記載の光ファイバの製造方法。
【請求項5】
前記被覆工程では、前記光の前記着色樹脂への照射時間を調節して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項1から4のいずれか1項に記載の光ファイバの製造方法。
【請求項6】
前記紫外線LEDは複数であり、
少なくとも2つの前記紫外線LEDからの光のピーク波長は互いに異なり、
前記被覆工程では、複数の前記紫外線LEDのうち、ピーク波長が前記紫外線硬化樹脂の光重合開始剤における光の吸収量が最大となる波長に最も近い特定の前記紫外線LEDからの光の前記着色樹脂への照射量を調整して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項1から5のいずれか1項に記載の光ファイバの製造方法。
【請求項7】
前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を調整せずに一定にする
ことを特徴とする請求項6に記載の光ファイバの製造方法。
【請求項8】
前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を更に調整して、前記所定照射量の前記光を前記着色樹脂に照射する
ことを特徴とする請求項6に記載の光ファイバの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバの製造方法に関する。
【背景技術】
【0002】
コアの外周面を囲うクラッドを有する光ファイバ素線の外周面が顔料及び紫外線硬化樹脂を含む着色樹脂から成る着色層によって被覆される光ファイバが知られている。光ファイバテープ芯線では、光ファイバ同士を見分けるために各光ファイバの着色層が互いに異なる色とされることがある。このため、上記の光ファイバが光ファイバテープ芯線に用いられることがある。下記特許文献1には、このような着色層を有する光ファイバの製造方法が開示されている。
【0003】
下記特許文献1では、顔料及び紫外線硬化樹脂を含む着色樹脂を光ファイバ素線の外周面に塗布し、塗布した着色樹脂に紫外線を照射することで当該着色樹脂を硬化させて、光ファイバ素線の外周面を被覆する着色層を形成している。また、下記特許文献1には、着色樹脂に照射する紫外線として紫外線LED(Light Emitting Diode)からの光を用いることができることが開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、着色層の色は、当該着色層となる着色樹脂に含まれる顔料の種類や量を変えることで変更される。この際、紫外線LEDからの光の照射条件が同じ場合、着色樹脂の色の違いによって当該着色樹脂の硬化性に違いが生じることがあり、着色層が所望の硬化度とならない場合があった。紫外線LEDからの光の一部は着色樹脂に含まれる顔料で吸収及び反射されるが、顔料で吸収及び反射される光の量は当該顔料の種類及び濃度によって異なる傾向にある。このため、着色樹脂の色の違いによって着色樹脂における紫外線硬化樹脂に含まれる光重合開始剤に吸収される光の量が異なり、当該着色樹脂の硬化性に違いが生じるためだと考えられる。
【0006】
そこで、本発明は、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る光ファイバの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的の達成のため、本発明は、コア及び前記コアの外周面を囲むクラッドを有する光ファイバ素線と、顔料及び紫外線硬化樹脂を含む着色樹脂から成り前記光ファイバ素線の外周面を被覆する着色層と、を有する光ファイバの製造方法であって、前記光ファイバ素線の外周面に前記着色樹脂を塗布し、塗布された前記着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて前記着色層を形成する被覆工程を備え、前記被覆工程では、硬化した前記着色樹脂の前記光の吸光度に基づいて予め定められる所定照射量の前記光を前記着色樹脂に照射することを特徴とするものである。
【0008】
この光ファイバの製造方法では、上記のように、着色樹脂に照射する紫外線LEDからの光の所定照射量は、硬化した着色樹脂の紫外線LEDからの光の吸光度に基づいて予め定められる。吸光度は対象物を光が透過する際に当該光の強度がどの程度弱まるかを示す無次元量であり、吸光度には対象物における光の吸収及び反射の影響が含まれる。このため、この着色樹脂の紫外線LEDからの光の吸光度は、顔料で吸収及び反射される光の量が多い場合には高くなり、少ない場合には低くなる。また、この吸光度は硬化した着色樹脂の吸光度である。このため、未硬化状態の着色樹脂の吸光度と比べて、着色樹脂における紫外線硬化樹脂に含まれる光重合開始剤に吸収される光による吸光度への影響は少なく、顔料で吸収及び反射される光の量の違いを適切に把握し得る。このため、顔料で吸収及び反射する光の量が多い場合には、着色樹脂が十分に硬化するように、紫外線LEDからの光の着色樹脂への照射量を多くし得る。また、顔料で吸収及び反射する光の量が少ない場合には、着色樹脂が十分に硬化する範囲で、紫外線LEDからの光の着色樹脂への照射量を少なくし得る。従って、この光ファイバの製造方法によれば、顔料の種類及び濃度の変化に応じて紫外線LEDからの光の照射量が変化しない場合と比べて、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る。
【0009】
前記所定照射量は、前記着色樹脂における前記光のピーク波長での吸光度、及び、他の色の前記着色樹脂における前記光のピーク波長での吸光度と前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められることとしてもよい。
【0010】
本発明者は、上記の吸光度と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる光の照射量が予め求められていない着色樹脂であっても、当該着色樹脂における紫外線LEDからの光のピーク波長での吸光度を求めることで、所望の硬化度となる光の照射量が分かり得る。従って、所望の硬化度となる光の照射量を実験等で求める場合と比べて、着色層が所望の硬化度となるようにし易くし得る。
【0011】
或いは、前記所定照射量は、前記光のスペクトルと前記着色樹脂の吸収スペクトルとの重なり積分、及び、前記光のスペクトルと他の色の前記着色樹脂の吸収スペクトルとの重なり積分と、前記他の色の着色樹脂から成る前記着色層が所望の硬化度となる前記光の照射量との相関関係に基づいて定められることとしてもよい。
【0012】
波長と当該波長に対する吸光度との関係を示す吸収スペクトルには、吸光度と同様に、対象物における光の吸収及び反射の影響が含まれる。そして、本発明者は、上記の重なり積分と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる光の照射量が予め求められていない着色樹脂であっても、紫外線LEDからの光のスペクトルとこの着色樹脂の吸収スペクトルとの重なり積分を求めることで、所望の硬化度となる光の照射量が分かり得る。従って、この光ファイバの製造方法によれば、所望の硬化度となる光の照射量を実験等で求める場合と比べて、着色層が所望の硬化度となるようにし易くし得る。
【0013】
前記被覆工程では、前記光の強度を調節して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。
【0014】
この場合、着色層の色に応じて製造にかかる時間が変化することを抑制し得る。
【0015】
また、前記光の前記着色樹脂への照射時間を調節して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。
【0016】
前記紫外線LEDは複数であり、少なくとも2つの前記紫外線LEDからの光のピーク波長は互いに異なり、前記被覆工程では、複数の前記紫外線LEDのうち、ピーク波長が前記紫外線硬化樹脂の光重合開始剤における光の吸収量が最大となる波長に最も近い特定の前記紫外線LEDからの光の前記着色樹脂への照射量を調整して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。
【0017】
一般的に、光重合開始剤における光の吸収量は、当該吸収量が最大となる波長から遠い波長の光ほど小さくなる傾向にある。このため、この光ファイバの製造方法によれば、複数の紫外線LEDのうち、上記の特定の紫外線LED以外の紫外線LEDからの光の着色樹脂への照射量を調整する場合と比べて、着色層を所望の硬化度にし易い。
【0018】
この場合、前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を調整せずに一定にすることとしてもよい。或いは、前記被覆工程では、前記特定の紫外線LED以外の少なくとも1つの前記紫外線LEDからの光の前記着色樹脂への照射量を更に調整して、前記所定照射量の前記光を前記着色樹脂に照射することとしてもよい。
【発明の効果】
【0019】
以上のように、本発明によれば、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る光ファイバの製造方法が提供される。
【図面の簡単な説明】
【0020】
【
図1】本発明の実施形態に係る光ファイバの長手方向に垂直な断面の様子を概略的に示す図である。
【
図2】本発明の実施形態に係る光ファイバの製造方法の工程を示すフローチャートである。
【
図3】顔料の種類が互いに異なる着色樹脂から成るいくつかの樹脂サンプルにおける測定された吸収スペクトルの例を示す図である。
【
図4】本発明の実施形態に係る被覆工程の様子を概略的に示す図である。
【
図5】実験例における模擬評価方法を説明するめの図である。
【
図6】実験例における模擬評価方法を説明するめの別の図である。
【発明を実施するための形態】
【0021】
以下、本発明に係る光ファイバの製造方法を実施するための形態が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。また、本明細書では、理解を容易にするために、各部材の寸法が誇張して示されている場合がある。
【0022】
図1は、本発明の実施形態に係る光ファイバの長手方向に垂直な断面の様子を概略的に示す図である。
図1に示すように、本実施形態の光ファイバ1は、光ファイバ素線1Nと、光ファイバ素線1Nの外周面を被覆する着色層15と、を主な構成として備える。本実施形態の光ファイバ素線1Nは、コア10、当該コア10の外周面を囲むクラッド11、及び当該クラッド11の外周面を被覆する保護樹脂層12から成る。光ファイバ素線1Nの直径は、特に制限されないが、例えば、240μmである。
【0023】
コア10の屈折率はクラッド11の屈折率よりも高くされる。本実施形態では、コア10はゲルマニウム(Ge)等の屈折率が高くなるドーパントが添加されたシリカガラスからなり、クラッド11は何ら添加物の無いシリカガラスからなる。なお、コア10が何ら添加物の無いシリカガラスからなり、クラッド11がフッ素(F)等の屈折率が低くなるドーパントが添加されたシリカガラスからなっていてもよい。また、コア10が屈折率を高くするドーパントが添加されたシリカガラスからなり、クラッド11が屈折率を低くするドーパントが添加されたシリカガラスからなっていてもよい。また、屈折率を高くするドーパント及び屈折率を低くするドーパントは特に制限されるものではない。
【0024】
保護樹脂層12を構成する樹脂として、例えば、熱硬化樹脂、及び紫外線硬化樹脂が挙げられる。保護樹脂層12は、クラッド11を被覆する1つの樹脂の層からなる単層構造とされてもよく、複数の樹脂の層からなる多層構造とされてもよい。
【0025】
着色層15は、顔料及び紫外線硬化樹脂を含む着色樹脂から成る。着色層15の色は特に制限されるものではない。また、着色層15の厚さは、特に制限されないが、例えば、3μm~10μmである。顔料として、例えば、天然鉱物顔料、合成無機顔料、有機顔料等が挙げられる。紫外線硬化樹脂として、例えば、ラジカル重合型の紫外線硬化樹脂とカチオン重合型の紫外線硬化樹脂とが挙げられる。ラジカル重合型の紫外線硬化樹脂として、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート等のアクリル系化合物と光重合開始剤とを含む樹脂等が挙げられ、この場合の光重合開始剤として、例えば、ベンゾフェノン系、アルキルフェノン系の光重合開始剤が挙げられる。カチオン重合型の紫外線硬化樹脂として、例えば、エポキシ、オキセタン等の環状エーテル化合物と光重合開始剤とを含む樹脂等が挙げられ、この場合の光重合開始剤として、例えば、スルホニウム塩系、ヨードニウム塩系の光重合開始剤が挙げられる。
【0026】
次に、光ファイバ1を製造する方法について説明する。
【0027】
図2は、本実施形態に係る光ファイバ1の製造方法の工程を示すフローチャートである。
図2に示すように、本実施形態の光ファイバ1の製造方法は、測定工程P1と、決定工程P2と、光ファイバ素線製造工程P3と、被覆工程P4と、を含んでいる。
【0028】
(測定工程P1)
本工程は、硬化した着色樹脂における紫外線LEDから出射する光の吸光度を測定する工程であり、紫外線LEDは後述する被覆工程P4において着色樹脂を硬化させるために用いられるものである。本工程の準備段階として、まず、硬化した着色樹脂から成る所定の厚さの樹脂サンプルを作製する。本実施形態では、アクリル板の一方の面上に未硬化状態の着色樹脂を所定の厚さとなるように塗布する。この着色樹脂に紫外線を照射して着色樹脂を硬化させ、硬化した着色樹脂をアクリル板から剥がすことで、所定の厚さの板状の樹脂サンプルを作製する。着色樹脂に照射する紫外線の量は、着色樹脂の紫外線硬化樹脂に含まれる光重合開始剤が十分に反応して着色樹脂が十分に硬化する量とされる。着色樹脂に照射する紫外線として、紫外線LEDからの光であってもよく、紫外線ランプからの光であってもよい。所定の厚さは、着色層15の厚さと概ね同じとされるが、着色層15の厚さと異なっていてもよい。なお、サンプル樹脂の作製方法は特に制限されるものではない。また、樹脂サンプルは、例えば、光透過性の板状部材の一方の面上に形成されるものでもよく、板状部材として、例えば、ガラス板、アクリル板等が挙げられる。
【0029】
次に、硬化した着色樹脂における紫外線LEDからの光の吸光度として、作製した樹脂サンプルにおけるこの光の吸光度を測定する。本実施形態では、分光光度計を用いて樹脂サンプルの吸収スペクトルを測定し、紫外線LEDからの光のピーク波長での吸光度を求める。なお、上記のように、樹脂サンプルが光透過性の板状部材の一方の面上に形成される場合には、樹脂サンプルの吸収スペクトルとして、樹脂サンプル及び光透過性の板状部材からなる部材の吸収スペクトルを測定する。
【0030】
顔料の種類が互いに異なる着色樹脂から成るいくつかの樹脂サンプルにおける測定された吸収スペクトルの例を
図3に示す。
図3では、7つの樹脂サンプルSA1~SA7の吸収スペクトルとともに紫外線LEDからの光のスペクトルが示されている。また、
図3では、横軸は波長(nm)であり、右側の縦軸が紫外線LEDからの光の相対放射強度であり、左側の縦軸が樹脂サンプルの吸光度(Abs)である。
図3に示すように、着色樹脂における顔料の種類の違いよって吸収スペクトルが異なる。樹脂サンプルSA1~SA7の色は、青色、黄色、赤色、紫色、白色、桃色、水色であり、樹脂サンプルSA1~SA7を構成する着色樹脂には、この色となる顔料がそれぞれ含まれている。また、これら樹脂サンプルSA1~SA7を構成する着色樹脂における紫外線硬化樹脂は、互いに同じであり、これら樹脂サンプルSA1~SA7の厚さも互いに同じである。また、青色の樹脂サンプルSA1における紫外線LEDからの光のピーク波長での吸光度は、0.93Absであり、黄色の樹脂サンプルSA2のこの吸光度は、1.54Absであり、赤色の樹脂サンプルSA3のこの吸光度は、1.23Absであり、紫色の樹脂サンプルSA4のこの吸光度は、2.58Absであり、白色の樹脂サンプルSA5のこの吸光度は、2.52Absであり、桃色の樹脂サンプルSA6のこの吸光度は、2.19Absであり、水色の樹脂サンプルSA7のこの吸光度は、1.40Absである。
【0031】
(決定工程P2)
本工程は、測定工程P1で測定した着色樹脂の紫外線LEDからの光の吸光度に基づいて、後述する被覆工程P4において光ファイバ素線1Nの外周面に塗布された未硬化の着色樹脂に照射する紫外線LEDからの光の所定照射量を決定する工程である。吸光度は対象物を光が透過する際に当該光の強度がどの程度弱まるかを示す無次元量であり、吸光度には対象物における光の吸収及び反射の影響が含まれる。このため、この着色樹脂の吸光度は、顔料で吸収及び反射される光の量が多い場合には高くなり、少ない場合には低くなる。このため、所定照射量は、顔料で吸収及び反射する光の量が多い場合、つまり、着色樹脂の吸光度が高い場合には、着色樹脂が十分に硬化するように、多い量に決定される。また、所定照射量は、顔料で吸収及び反射する光の量が少ない場合、つまり、着色樹脂の吸光度が低い場合には、着色樹脂が十分に硬化する範囲で、少ない量に決定される。
【0032】
本実施形態では、所定照射量を、測定工程P1で測定した着色樹脂の吸光度、及び、この着色樹脂の色と異なる他の色の着色樹脂における吸光度とこの他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LEDからの光の照射量との相関関係に基づいて定める。なお、この吸光度は紫外線LEDからの光のピーク波長での吸光度である。本発明者は、着色層の厚さ及び紫外線硬化樹脂が変わらない場合には、この吸光度と照射量との相関関係が概ね比例関係であることを見出した。本実施形態では、この相関関係が実験によって予め求められている。具体的には、製造する光ファイバ1の着色層15の色と異なる他の色の着色樹脂におけるこの吸光度とこの他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LEDからの光の照射量との組を、実験によって予め二つ以上得る。得られた二つ以上の吸光度と照射量との組に基づいて、吸光度と照射量との比例関係を得る。比例関係を得る方法は特に限定されるものではなく、例えば、最小二乗法を用いて比例関係を求めてもよい。
【0033】
(光ファイバ素線製造工程P3)
本工程は、光ファイバ素線1Nを製造する工程である。本実施形態では、本工程の準備段階として、まず、コア10となるロッド状のコアガラス体とロッド状のコアガラス体の外周面を囲いクラッド11となるクラッドガラス体とから成る概ね円柱状の光ファイバ用母材を準備する。この光ファイバ用母材を紡糸炉によって加熱して線引きすることで、コア10と当該コア10の外周面を囲うクラッド11とから構成されるガラス線を得る。次に、このガラス線の外周面に保護樹脂層12となる樹脂を塗布して当該樹脂を硬化することで、クラッド11の外周面を被覆する保護樹脂層12を形成し、
図1に示す光ファイバ素線1Nを得る。このようにして得られる光ファイバ素線1Nをボビンに巻き取る。
【0034】
(被覆工程P4)
本工程は、光ファイバ素線製造工程P3で製造した光ファイバ素線1Nの外周面に着色樹脂を塗布し、塗布した着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて着色層15を形成する工程である。
【0035】
図4は、本実施形態に係る本工程の様子を概略的に示す図である。
図4に示すように、本実施形態では、被覆装置100を用いて本工程を行う。この被覆装置100は、送り出し部30と、塗布部40と、硬化部50と、巻取り部60と、を主な構成として備える。
【0036】
まず、光ファイバ素線製造工程P3によって製造された光ファイバ素線1Nが巻き付けられたボビン31を送り出し部30に取り付け、当該送り出し部30によって光ファイバ素線1Nをボビン31から送り出す。送り出される光ファイバ素線1Nの方向をターンプーリ35によって変換し、光ファイバ素線1Nがターンプーリ35の下方に配置される塗布部40を通過するようにする。塗布部40には、着色層15となる未硬化状態の着色樹脂が貯留されており、光ファイバ素線1Nが塗布部40を通過することで、光ファイバ素線1Nの外周面に着色樹脂が塗布される。塗布部40の下方に配置される硬化部50によって、塗布された着色樹脂に紫外線LEDからの光を照射して当該着色樹脂を硬化させて着色層15を形成する。
【0037】
本実施形態の硬化部50は、上下方向に並んで配置される4つの硬化ユニット51を有する。着色樹脂が塗布された光ファイバ素線1Nは、これら硬化ユニット51を順番に通過する。それぞれの硬化ユニット51は、筐体52と、筐体52の内部空間に配置される紫外線LED55とを有し、紫外線LED55から出射する光の強度を調節可能に構成される。筐体52の内側面は、紫外線LED55からの光を反射する反射面とされる。このような硬化ユニット51は、通過する光ファイバ素線1Nの着色樹脂に紫外線LED55からの光を照射する。これら4つの硬化ユニット51は同じ構成とされ、紫外線LED55からの光の強度が最大となるピーク波長は概ね385nmであり、当該光のスペクトルが
図3に示されている。本実施形態では、着色樹脂に照射される硬化部50の紫外線LED55からの光の照射量が決定工程P2で定められた所定照射量となるように、全ての硬化ユニット51の紫外線LED55からの光の強度を同じように調節する。このため、調節後の全ての紫外線LED55からの光の強度は互いに同じである。
【0038】
なお、硬化部50の構成は特に制限されるものではない。また、硬化部50が有する硬化ユニット51の数は、特に制限されるものではなく、硬化部50は、1つの硬化ユニット51から構成されてもよい。また、それぞれの硬化ユニット51が有する紫外線LED55の数は特に制限されるものではない。
【0039】
このようにして着色層15が形成され光ファイバ素線1Nの外周面が着色層15によって被覆され、光ファイバ素線1Nが光ファイバ1となる。硬化部50の下方には、ターンプーリ65が配置されており、光ファイバ1はターンプーリ65により方向が変換され、巻取り部60によってボビン61に巻き取られる。本実施形態では、送り出し部30による光ファイバ素線1Nの送り出し速度と巻取り部60による光ファイバ1の巻取り速度とを調節することで、硬化部50を通過する光ファイバ素線1Nの速度を調節することができる。
【0040】
以上説明したように、本実施形態の光ファイバの製造方法は、被覆工程P4を備える。被覆工程P4では、硬化した着色樹脂の紫外線LED55からの光の吸光度に基づいて予め定められる所定照射量の紫外線LED55からの光を着色樹脂に照射する。前述のように、吸光度には対象物における光の吸収及び反射の影響が含まれるため、着色樹脂における紫外線LED55からの光の吸光度は、顔料で吸収及び反射される光の量が多い場合には高くなり、少ない場合には低くなる。また、この吸光度は硬化した着色樹脂の吸光度である。このため、未硬化状態の着色樹脂の吸光度と比べて、着色樹脂における紫外線硬化樹脂に含まれる光重合開始剤に吸収される光によるこの吸光度への影響は少なく、顔料で吸収及び反射される光の量の違いを適切に把握し得る。このため、顔料で吸収及び反射する紫外線LED55からの光の量が多い場合には、着色樹脂が十分に硬化するように、紫外線LED55からの光の着色樹脂への照射量を多くし得る。また、顔料で吸収及び反射する紫外線LED55からの光の量が少ない場合には、着色樹脂が十分に硬化する範囲で、紫外線LED55からの光の着色樹脂への照射量を少なくし得る。従って、本実施形態の光ファイバの製造方法によれば、顔料の種類及び濃度の変化に応じて紫外線LED55からの光の照射量が変化しない場合と比べて、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る。
【0041】
また、本実施形態の光ファイバの製造方法では、所定照射量は、着色樹脂における紫外線LED55からの光のピーク波長での吸光度、及び、他の色の着色樹脂における紫外線LED55からの光のピーク波長での吸光度と当該他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LED55からの光の照射量との相関関係に基づいて定められる。本発明者は、この吸光度と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる紫外線LEDからの光の照射量が予め求められていない着色樹脂であっても、当該着色樹脂における紫外線LED55からの光のピーク波長での吸光度を求めることで、所望の硬化度となる照射量が分かり得る。従って、所望の硬化度となる紫外線LED55からの光の照射量を実験等で求める場合と比べて、着色層15が所望の硬化度となるようにし易くし得る。
【0042】
また、本実施形態の被覆工程P4では、紫外線LED55からの光の強度を調節して、所定照射量の光を着色樹脂に照射する。このため、着色層15の色に応じて製造にかかる時間が変化することを抑制し得る。
【0043】
以上、本発明について上記実施形態を例に説明したが、本発明はこれに限定されるものではない。
【0044】
例えば、上記実施形態では、所定照射量が、着色樹脂における紫外線LED55からの光のピーク波長での吸光度、及び、吸光度と照射量との相関関係に基づいて定められる決定工程P2を例に説明した。しかし、所定照射量は、硬化した着色樹脂における紫外線LED55からの光の吸光度に基づいて定められればよい。例えば、所定照射量は、紫外線LED55からの光のスペクトルと着色樹脂の吸収スペクトルとの重なり積分、及び、紫外線LED55からの光のスペクトルと他の色の着色樹脂の吸収スペクトルとの重なり積分と、他の色の着色樹脂から成る着色層15が所望の硬化度となる紫外線LED55からの光の照射量との相関関係に基づいて定められてもよい。本発明者は、着色層の厚さ及び紫外線硬化樹脂が変わらない場合には、この重なり積分と照射量との相関関係が概ね比例関係であることを見出した。このため、所望の硬化度となる紫外線LEDからの光の照射量が予め求められていない着色樹脂であっても、紫外線LED55からの光のスペクトルとこの着色樹脂の吸収スペクトルとの重なり積分を求めることで、所望の硬化度となる照射量が分かり得る。従って、このように所定照射量を定めることによって、所望の硬化度となる紫外線LED55からの光の照射量を実験等で求める場合と比べて、着色層15が所望の硬化度となるようにし易くし得る。なお、重なり積分と照射量との相関関係は、実験によって予め求める。具体的には、紫外線LEDからの光の照射量と、紫外線LEDからの光のスペクトルと製造する光ファイバ1の着色層15の色と異なる他の色の着色樹脂との重なり積分との組を、実験によって予め二つ以上得る。得られた二つ以上の重なり積分と照射量との組に基づいて、重なり積分と照射量との比例関係を得る。比例関係を得る方法は特に限定されるものではなく、例えば、最小二乗法を用いて比例関係を求めてもよい。
【0045】
また、上記実施形態では、ボビン31から送り出される光ファイバ素線1Nの外周面に着色樹脂を塗布し、塗布した着色樹脂に紫外線LED55からの光を照射して当該着色樹脂を硬化させて着色層15を形成する被覆工程P4を例に説明した。しかし、被覆工程P4は、光ファイバ素線製造工程P3中に行われてもよい。この場合、例えば、ガラス線の外周面に塗布された保護樹脂層12となる樹脂を硬化する硬化部の下方に、被覆装置100の塗布部40が配置され、当該塗布部40の下方に硬化部50が配置される。また、この場合、保護樹脂層12となる樹脂を硬化する硬化部がなくてもよく、硬化部50によって、ガラス線の外周面に塗布された保護樹脂層12となる樹脂と当該樹脂の外周面に塗布された着色樹脂との両方を硬化させてもよい。
【0046】
また、上記実施形態では、保護樹脂層12を有する光ファイバ素線1Nを例に説明した。しかし、光ファイバ素線1Nは、コア10と当該コア10の外周面を囲むクラッド11とを有していればよい。例えば、光ファイバ素線1Nは、保護樹脂層12を有していなくてもよく、この場合、着色層15がクラッド11の外周面を被覆し、当該着色層15が保護樹脂層12を兼ねる。
【0047】
また、上記実施形態では、光ファイバ素線製造工程P3によって製造された光ファイバ素線1Nに着色層15を形成する被覆工程P4を例に説明した。しかし、被覆工程P4では、購入等によって準備した光ファイバ素線1Nに着色層15を形成してもよい。
【0048】
また、上記実施形態では、硬化部50が備える全ての紫外線LED55からの光の強度を同じように調節するとこで、決定工程P2で定めた所定照射量の紫外線LED55からの光を着色樹脂に照射する被覆工程P4を例に説明した。しかし、紫外線LED55からの光の照射量が決定工程P2で定めた所定照射量となればよい。紫外線LED55からの光の強度を調節する硬化ユニット51の数は特に制限されるものではなく、例えば、少なくとも1つの硬化ユニット51の紫外線LED55からの光の照射量は、着色樹脂によらずに一定であってもよい。また、紫外線LED55からの光の着色樹脂への照射時間を調節して、照射量が所定照射量となるようにしてもよい。この場合、例えば、送り出し部30及び巻取り部60によって硬化部50を通過する光ファイバ素線1Nの速度を調節する。また、紫外線LED55からの光の強度及び硬化部50を通過する光ファイバ素線1Nの速度を調節して、紫外線LED55からの光の照射量が所定照射量となるようにしてもよい。このような構成によれば、着色樹脂に光を照射する紫外線LEDの数を調節する場合と比べて、紫外線LEDの数を少なくし得、被覆装置100の大型化を抑制し得る。なお、上記実施形態のように、紫外線LED55からの光の強度を調節するとこで、所定照射量の紫外線LED55からの光を着色樹脂に照射する場合には、着色層の色に応じて製造にかかる時間が変化することを抑制し得る。
【0049】
上記実施形態では、複数の紫外線LED55を備え、それぞれの紫外線LEDからの光のピーク波長が同じである硬化部50を例に説明した。しかし、少なくとも2つの紫外線LED55のピーク波長が互いに異なっていてもよい。この場合、被覆工程P4では、複数の紫外線LED55のうち、ピーク波長が紫外線硬化樹脂の光重合開始剤における光の吸収量が最大となる波長に最も近い特定の紫外線LED55からの光の着色樹脂への照射量を調整して、所定照射量の光を硬化部50によって着色樹脂に照射してもよい。一般的に、光重合開始剤における光の吸収量は、当該吸収量が最大となる波長から遠い波長の光ほど小さくなる傾向にある。このため、このようにすることで、複数の紫外線LED55のうち、上記の特定の紫外線LED55以外の紫外線LED55からの光の着色樹脂への照射量を調整する場合と比べて、着色層を所望の硬化度にし易い。また、この場合、被覆工程P4では、上記の特定の紫外線LED55以外の少なくとも1つの紫外線LED55からの光の着色樹脂への照射量を調整せずに一定にすることとしてもよい。或いは、上記の特定の紫外線LED55以外の少なくとも1つの紫外線LED55からの光の着色樹脂への照射量を更に調整して、所定照射量の光を硬化部50によって着色樹脂に照射することとしてもよい。この場合において上記のように重なり積分と光の照射量との相関関係に基づいて所定照射量が定められる際には、上記の特定の紫外線LED55以外の紫外線LED55の全部の照射量が一定である場合と比べて、光の照射時の着色樹脂の温度を調節し易くし得る。このため、例えば、着色樹脂の色の違いによる温度の違いを低減し易くし得る。
【0050】
以下、本発明を、実験例を挙げて更に詳細に説明するが、本発明はこれらに制限されるものではない。
【0051】
図2に示す光ファイバ素線製造工程P3によって
図1に示す光ファイバ素線1Nを製造した。光ファイバ素線1Nの直径は239μmであり、保護樹脂層12はウレタンアクリレートから成り、保護樹脂層12の厚さは57μmであった。また、青色、黄色、赤色、紫色、白色、桃色、及び水色の着色樹脂をそれぞれ準備した。これら着色樹脂は、吸収スペクトルが
図3に示された樹脂サンプルSA1~SA7を形成する際に用いた着色樹脂と同じであり、当該着色樹脂における紫外線硬化樹脂はエポキシアクリレートとベンゾフェノン系の光重合開始剤とを含んでいた。
図4に示す被覆装置100を用いて、上記実施形態と同様に、光ファイバ素線1Nに準備した青色の着色樹脂を塗布し、当該着色樹脂を硬化させて青色の着色層15を形成し、
図1に示す光ファイバ1を複数製造した。それぞれの光ファイバ1を製造する際、紫外線LED55からの光の照射時間は変化させずに紫外線LED55の発光出力を50%~100%で変化させて紫外線LED55からの光の強度を変化させた。また、青色の着色樹脂の場合と同様に、準備した紫色の着色樹脂を光ファイバ素線1Nに塗布し、当該着色樹脂を硬化させて紫色の着色層15を形成し、
図1に示す光ファイバ1を複数製造した。それぞれの光ファイバ1を製造する際、紫外線LED55の発光出力を50%~100%で変化させて紫外線LED55からの光の強度を変化させた。
【0052】
得られた青色の着色層15を有する複数の光ファイバ1、及び紫色の着色層15を有する複数の光ファイバ1のそれぞれに対して、着色層15の硬化性を以下に説明する模擬評価によって評価した。
図5及び
図6に示すように、アクリルから成る平板状の8個の基台70のそれぞれの上面に未硬化の紫外線硬化樹脂71を厚さが80μmとなるように塗布した。それぞれの基台70の紫外線硬化樹脂71上に、光ファイバ1を切断して得られる10本のサンプル75を配置した。なお、
図5は、実験例における模擬評価の方法を説明するための図であり、サンプル75が配置された1つの基台70を上方側から見る図である。また、
図6は、実験例における模擬評価の方法を説明するための別の図であり、サンプル75が配置された1つの基台70をサンプル75の長手方向に沿って当該サンプル75の一端部側から見る図である。
図5及び
図6では、1つのサンプル75にのみ符号が付されている。サンプル75の長さは概ね10cmであり、着色層15の外周の1/4以上が紫外線硬化樹脂71と接触しており、サンプル75の一端部は基台70の縁から外にはみ出ていた。次に、それぞれの基台70の紫外線硬化樹脂71に、紫外線ランプからの光を照射して、紫外線硬化樹脂71を硬化させ、紫外線硬化樹脂71と着色層15とを接着させた。紫外線ランプからの光の照射量は、紫外線硬化樹脂71に含まれる光重合開始剤が十分に反応する量であった。次に、サンプル75の一端部を基台70の上方に向けて引っ張り、サンプル75を移動させた。移動の際にサンプル75が基台70から離れる速度は2cm/秒以下であった。次に、移動後のサンプル75の状態を観察し、着色層15の光ファイバ素線1Nからの剥がれがない場合を合格とし、この剥がれがある場合を不良とするときの不良率を算出した。不良率が概ね10%~20%となるような着色層15の硬化性を所望の硬化度に設定した。この所望の硬化度となる青色の着色層15を有するサンプル75は、紫外線LED55の発光出力が60%とされた際に製造されたものであった。また、この所望の硬化度となる紫色の着色層15を有するサンプル75は、紫外線LED55の発光出力が80%とされた際に製造されたものであった。なお、不良率を得るための基台70及びサンプル75の数は特に制限されるものではなく、求める精度によって適宜変更しても良い。
【0053】
また、前述のように、青色の樹脂サンプルSA1における紫外線LED55からの光のピーク波長での吸光度は0.93Absであり、紫色の樹脂サンプルSA4のこの吸光度は2.58Absである。ここで、不良率と紫外線LED55の発光出力とが概ね比例関係になることは、他の実験から分かっていた。このため、吸光度と着色層15が設定した所望の硬化度となる紫外線LED55の発光出力とが比例関係となると予想し、これらの吸光度とこの模擬評価の結果から、当該相関関係を比例関係として求めた。前述のように、黄色の樹脂サンプルSA2のこの吸光度は1.54Absであり、赤色の樹脂サンプルSA3のこの吸光度は1.23Absであり、白色の樹脂サンプルSA5のこの吸光度は2.52Absであり、桃色の樹脂サンプルSA6のこの吸光度は2.19Absであり、水色の樹脂サンプルSA7のこの吸光度は1.40Absである。これらの吸光度と求めた相関関係とに基づいて、黄色、赤色、白色、桃色、及び水色の着色樹脂のそれぞれに対して、紫外線LED55の発光出力を算出した。次に、黄色、赤色、白色、桃色、及び水色の着色樹脂のそれぞれについても、青色の着色樹脂の場合と同様に、着色樹脂を光ファイバ素線1Nに塗布し、当該着色樹脂を硬化させて着色層15を形成し、
図1に示す光ファイバ1を製造した。この際、紫外線LED55の発光出力は、算出した発光出力であり、得られた光ファイバ1のそれぞれに対して、上記の模擬評価を行った。その結果を表1に示す。
【0054】
表1に示されるように、黄色、赤色、白色、桃色、及び水色の着色樹脂においても、概ね不良率が10%~20%となっていることが分かった。紫外線LED55からの光の照射時間は同じであるため、紫外線LED55の発光出力は紫外線LED55からの光の照射量に比例する。従って、硬化した着色樹脂としての樹脂サンプルSA1~SA7における紫外線LEDからの光のピーク波長での吸光度と着色層15が所望の硬化度となる紫外線LED55からの光の照射量とが概ね比例関係であることが分かった。
【産業上の利用可能性】
【0055】
本発明によれば、着色樹脂の色の違いによる着色層の硬化度の違いを低減し得る光ファイバの製造方法が提供され、光ファイバに関連する種々の分野において利用可能である。
【符号の説明】
【0056】
1・・・光ファイバ
1N・・・光ファイバ素線
15・・・着色層
40・・・塗布部
50・・・硬化部
51・・・硬化ユニット
55・・・紫外線LED
P1・・・測定工程
P2・・・決定工程
P3・・・光ファイバ素線製造工程
P4・・・被覆工程
100・・・被覆装置