(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-26
(45)【発行日】2025-03-06
(54)【発明の名称】冷却システムを備えた宇宙ビークル
(51)【国際特許分類】
B64G 1/50 20060101AFI20250227BHJP
【FI】
B64G1/50 Z
【外国語出願】
(21)【出願番号】P 2021032771
(22)【出願日】2021-03-02
【審査請求日】2024-02-28
(32)【優先日】2020-03-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】キム, グレゴリー
(72)【発明者】
【氏名】ルスト, トーマス, ザ サード
【審査官】長谷井 雅昭
(56)【参考文献】
【文献】特開平09-250892(JP,A)
【文献】米国特許第05815370(US,A)
【文献】特開平01-109798(JP,A)
【文献】特表2019-514741(JP,A)
【文献】特開2020-025087(JP,A)
【文献】米国特許出願公開第2009/0219693(US,A1)
【文献】米国特許第03180270(US,A)
【文献】実開平04-026199(JP,U)
【文献】特開2015-055380(JP,A)
【文献】米国特許出願公開第2016/0363381(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B64G 1/50
(57)【特許請求の範囲】
【請求項1】
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)と、
前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)であって、
閉ループを画定する冷却剤通路(303)
であって、プラットフォーム冷却剤通路部分(302)及びペイロード冷却剤通路部分(301)を含む冷却剤通路(303)、
前記冷却剤通路(303)内に位置する冷却剤であって、平方インチ当たり100ポンド以下の静圧を有し、前記冷却剤通路(303)を通じて単一の液相にある冷却剤、
前記冷却剤通路(303)を通じて前記冷却剤を移動させるように構成された一以上のポンプ(334)、
前記冷却剤通路(303)に沿って配置された第1の熱交換構成要素(306)であって、前記熱発生構成要素(102)から前記冷却剤へ熱を移送するように構成された第1の熱交換構成要素(306)、
前記プラットフォーム冷却剤通路部分(302)を前記ペイロード冷却剤通路部分(301)に連結する迅速切断フィッティング(320)、及び
前記冷却剤通路(303)に沿って配置された第2の熱交換構成要素(342)であって、前記冷却剤から熱を除去するように構成された第2の熱交換構成要素(342)
を備えた、閉ループ冷却システム(300)と
を備えてい
て、
前記一以上の熱発生構成要素(102)は、第1の熱発生構成要素及び第2の熱発生構成要素を含み、
前記迅速切断フィッティング(320)は、
前記第1の熱発生構成要素から前記冷却剤に熱を移送する前記第1の熱交換構成要素(306)の第1のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第1のQDフィッティングと、
前記第1のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第2のQDフィッティングと、
前記第2の熱発生構成要素から前記冷却剤に熱を移送する前記第1の熱交換構成要素(306)の第2のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第3のQDフィッティングと、
前記第2のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第4のQDフィッティングと、を含む、宇宙ビークル(100)。
【請求項2】
前記一以上のポンプ(334)が、並列する冷却剤通路セグメント(328、330)に沿って並列に配置された第1のポンプ(334A)及び第2のポンプ(334B)を備えている、請求項1に記載の宇宙ビークル(100)。
【請求項3】
前記第1の熱交換構成要素(306)及び前記第2の熱交換構成要素(342)のうちの一以上が、付加製造された構造(400)又は他の層状構造(404)を含む、請求項1又は2に記載の宇宙ビークル(100)。
【請求項4】
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)と、
前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)であって、
閉ループを画定する冷却剤通路(303)
であって、プラットフォーム冷却剤通路部分(302)及びペイロード冷却剤通路部分(301)を含む冷却剤通路(303)、
前記冷却剤通路(303)内に位置する炭化水素冷却剤であって、前記冷却剤通路(303)を通じて単一の液相にある炭化水素冷却剤、
前記冷却剤通路(303)を通じて前記炭化水素冷却剤を移動させるように構成された一以上のポンプ(334)、
前記冷却剤通路(303)に沿って配置された第1の熱交換構成要素(306)であって、ペイロード(102)の前記熱発生構成要素(102)から前記炭化水素冷却剤へ熱を移送するように構成された第1の熱交換構成要素(306)、
前記プラットフォーム冷却剤通路部分(302)を前記ペイロード冷却剤通路部分(301)に連結する迅速切断フィッティング(320)、及び
前記冷却剤通路(303)に沿って配置された第2の熱交換構成要素(342)であって、前記炭化水素冷却剤から熱を除去するように構成された第2の熱交換構成要素(342)
を備えた、閉ループ冷却システム(300)と
を備えてい
て、
前記一以上の熱発生構成要素(102)は、第1の熱発生構成要素及び第2の熱発生構成要素を含み、
前記迅速切断フィッティング(320)は、
前記第1の熱発生構成要素から前記炭化水素冷却剤に熱を移送する前記第1の熱交換構成要素(306)の第1のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第1のQDフィッティングと、
前記第1のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第2のQDフィッティングと、
前記第2の熱発生構成要素から前記炭化水素冷却剤に熱を移送する前記第1の熱交換構成要素(306)の第2のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第3のQDフィッティングと、
前記第2のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第4のQDフィッティングと、を含む、宇宙ビークル(100)。
【請求項5】
前記一以上のポンプ(334)の各ポンプ(334A、334B)が一以上のベアリングを備え、前記炭化水素冷却剤が前記一以上のベアリングのための潤滑剤である、請求項4に記載の宇宙ビークル(100)。
【請求項6】
前記一以上のポンプ(334)が、並列する冷却剤通路セグメント(328、330)に沿って並列に配置された第1のポンプ(334A)及び第2のポンプ(334B)を備えていて、
前記第1のポンプ(334A)の下流にあり、且つ並列する冷却剤通路セグメント(328、330)が交わる接合点(338)の上流にある第1の逆止め弁(336A)と、前記第2のポンプ(334B)の下流にあり、前記接合点(338)の上流にある第2の逆止め弁(336B)とをさらに備えている、請求項4又は5に記載の宇宙ビークル(100)。
【請求項7】
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)を含むペイロード(102)と、
前記ペイロード(102)の前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)を備えたビークルプラットフォームであって、前記閉ループ冷却システム(300)が、
閉ループを画定する冷却剤通路(303)であって、プラットフォーム冷却剤通路部分(302)及びペイロード冷却剤通路部分(301)を含む冷却剤通路(303)、
前記冷却剤通路(303)内に位置する冷却剤、
前記冷却剤通路(303)を通じて前記冷却剤を移動させるように構成された一以上のポンプ(334)、
前記ペイロード冷却剤通路部分(301)に沿って配置された第1の熱交換構成要素(306)であって、前記ペイロード(102)の前記熱発生構成要素(102)から前記冷却剤へ熱を移送するように構成された第1の熱交換構成要素(306)、
前記プラットフォーム冷却剤通路部分(302)を前記ペイロード冷却剤通路部分(301)に連結する迅速切断フィッティング(320)、及び
前記プラットフォーム冷却剤通路部分(302)に沿って配置された第2の熱交換構成要素(342)であって、前記冷却剤から熱を除去するように構成された第2の熱交換構成要素(342)
を備えた、ビークルプラットフォームと
を備えてい
て、
前記一以上の熱発生構成要素(102)は、第1の熱発生構成要素及び第2の熱発生構成要素を含み、
前記迅速切断フィッティング(320)は、
前記第1の熱発生構成要素から前記冷却剤に熱を移送する前記第1の熱交換構成要素(306)の第1のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第1のQDフィッティングと、
前記第1のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第2のQDフィッティングと、
前記第2の熱発生構成要素から前記冷却剤に熱を移送する前記第1の熱交換構成要素(306)の第2のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第3のQDフィッティングと、
前記第2のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第4のQDフィッティングと、を含む、宇宙ビークル(100)。
【請求項8】
前記宇宙ビークル(100)が、人工衛星(100)を含み、第1のペイロード熱源が、第1のペイロード冷却剤通路セグメント(309)によって冷却されるように構成され、第2のペイロード熱源が、第2のペイロード冷却剤通路セグメント(309)によって冷却されるように構成されている、請求項7に記載の宇宙ビークル(100)。
【請求項9】
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)を含むペイロード(102)と、
前記ペイロード(102)の前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)であって、
閉ループを画定する冷却剤通路(303)
であって、プラットフォーム冷却剤通路部分(302)及びペイロード冷却剤通路部分(301)を含む冷却剤通路(303)、
前記冷却剤通路(303)内に位置する冷却剤、
前記冷却剤通路(303)を通じて前記冷却剤を移動させるように構成された一以上のポンプ(334)
、
前記冷却剤通路に沿って位置する一以上の付加製造された熱交換構成要素(306)
、及び
前記プラットフォーム冷却剤通路部分(302)を前記ペイロード冷却剤通路部分(301)に連結する迅速切断フィッティング(320)
を備えた、閉ループ冷却システム(300)と
を備えてい
て、
前記一以上の熱発生構成要素(102)は、第1の熱発生構成要素及び第2の熱発生構成要素を含み、
前記迅速切断フィッティング(320)は、
前記第1の熱発生構成要素から前記冷却剤に熱を移送する前記熱交換構成要素(306)の第1のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第1のQDフィッティングと、
前記第1のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第2のQDフィッティングと、
前記第2の熱発生構成要素から前記冷却剤に熱を移送する前記熱交換構成要素(306)の第2のグループのインレットを前記プラットフォーム冷却剤通路部分(302)に連結する第3のQDフィッティングと、
前記第2のグループのアウトレットを前記プラットフォーム冷却剤通路部分(302)に連結する第4のQDフィッティングと、を含む、宇宙ビークル(100)。
【請求項10】
前記冷却剤が前記閉ループ冷却システム(300)を通じて単一の液相にある、請求項9に記載の宇宙ビークル(100)。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、宇宙ビークルに関し、より具体的には、閉ループ冷却システムを備えた宇宙ビークルに関する。
【背景技術】
【0002】
宇宙ビークルは、熱を発生させる様々な構成要素を含む。例えば、人工衛星は、動作中、熱を発生させるイメージングシステム又はアンテナアレイなどのペイロードを含み得る。構成要素を所望の運転温度範囲内に維持するために、宇宙ビークルは、熱発生構成要素によって発生した熱を除去する冷却システムを含み得る。宇宙ビークル向けの冷却システムの中には、熱を消散させる受動機構(例えば、熱パイプ及び熱スプレッダ)を採用するものもある。しかし、受動冷却システムは熱消散に上限を設け、ペイロードの出力、ひいては宇宙ビークルのデザインを制約する。例えば、幾つかの受動冷却システムは、ペイロードの構成要素の電力を20Watts未満に制限し、出力密度を40Watt/in2未満に制限し得る。
【0003】
宇宙ビークル向けの冷却システムの中には、冷却剤としてアンモニアを採用するものもある。しかし、アンモニアは有毒で、他の材料との適合性の問題を生み出し得る。例えば、水又は水酸化物の存在下で、アンモニアはアルミニウムを腐食させる可能性がある。アルミニウムは通常宇宙ビークルの構成要素に使用される。さらに、アンモニアは幾つかの冷却システムにおいて高圧処理(例えば400psi)される。高圧は漏出の高リスクを引き起こすことがあり、それは冷却性能、ひいては構成要素の性能を低下させることがあり、幾つかのシナリオでは、ポンプ流体冷却システムの重篤な障害を引き起こし得る。アンモニアベースの冷却システムはまた、80℃を上回る温度で著しい性能の低下を示すこともある。これらの問題と他の問題が組み合わさると、宇宙ビークルでのアンモニアベースの冷却剤の保管、分配、及び使用が、厄介で有害なものとなり、宇宙ビークルのデザインを制限してしまう。
【0004】
したがって、上記を考慮して、宇宙ビークル構成要素を冷却することにおける課題が存在する。
【発明の概要】
【0005】
上記の問題に対処するため、本開示の1つの態様にしたがって、宇宙ビークルが提供される。この態様では、宇宙ビークルは、一以上の熱発生構成要素、及び該一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムを備えている。閉ループ冷却システムは、閉ループを画定する冷却剤通路、冷却剤通路内に位置する冷却剤であって、平方インチ当たり100ポンド以下の静圧を有し、該冷却剤通路を通じて単一の液相にある冷却剤、及び冷却剤通路を通じて該冷却剤を移動させるように構成された一以上のポンプを備えている。閉ループ冷却システムは、冷却剤通路に沿って配置された第1の熱交換構成要素であって、熱発生構成要素から冷却剤へ熱を移送するように構成された第1の熱交換構成要素、及び冷却剤通路に沿って配置された第2の熱交換構成要素であって、冷却剤から熱を除去するように構成された第2の熱交換構成要素をさらに備えている。
【0006】
本開示の別の態様は、一以上の熱発生構成要素、及び該一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムを備えている宇宙ビークルに関する。この態様では、閉ループ冷却システムは、閉ループを画定する冷却剤通路、冷却剤通路内に位置する炭化水素冷却剤であって、冷却剤通路を通じて単一の液相にある炭化水素冷却剤、及び冷却剤通路を通じて炭化水素冷却剤を移動させるように構成された一以上のポンプを備えている。閉ループ冷却システムは、冷却剤通路に沿って配置された第1の熱交換構成要素であって、ペイロードの熱発生構成要素から炭化水素冷却剤へ熱を移送するように構成された第1の熱交換構成要素、及び冷却剤通路に沿って配置された第2の熱交換構成要素であって、炭化水素冷却剤から熱を除去するように構成された第2の熱交換構成要素をさらに備えている。
【0007】
本開示のさらに別の態様は、一以上の熱発生構成要素を含むペイロード、及びペイロードの一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムを備えたビークルプラットフォームを備えている宇宙ビークルに関する。この態様では、閉ループ冷却システムは、閉ループを画定する冷却剤通路であって、プラットフォーム冷却剤通路部分及びペイロード冷却剤通路部分を含む冷却剤通路、冷却剤通路内に位置する冷却剤、及び冷却剤通路を通じて冷却剤を移動させるように構成された一以上のポンプ備えている。閉ループ冷却システムは、ペイロード冷却剤通路部分に沿って配置された第1の熱交換構成要素であって、ペイロードの熱発生構成要素から冷却剤へ熱を移送するように構成された第1の熱交換構成要素、プラットフォーム冷却剤通路部分をペイロード通路部分に連結する迅速切断フィッティング、及びプラットフォーム冷却剤通路部分に沿って配置された第2の熱交換構成要素であって、冷却剤から熱を除去するように構成された第2の熱交換構成要素をさらに備えている。
【0008】
本開示のさらに別の態様は、一以上の熱発生構成要素を含むペイロード、及びペイロードの一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムを備えている宇宙ビークルに関する。この態様では、閉ループ冷却システムは、閉ループを画定する冷却剤通路、冷却剤通路内に位置する冷却剤、冷却剤通路を通じて冷却剤を移動させるように構成された一以上のポンプ、及び冷却剤通路に沿って位置する一以上の付加製造された熱交換構成要素を備えている。
【0009】
前述の特徴、機能、及び利点は、様々な実施例において個別に実現可能であるか、又は、さらに他の実施例において組み合わされ得る。下記の説明及び図面を参照することで、これらの特徴、機能、及び利点のさらなる詳細が理解され得る。
【図面の簡単な説明】
【0010】
【
図1】本開示の一実施例に係る、冷却システムを備えた例示的な宇宙ビークルを示す。
【
図2】本開示の別の実施例に係る、冷却システムを備えた例示的な宇宙ビークルを示す。
【
図3】本開示の一実施例に係る、宇宙ビークル向けの例示的な冷却システムを概略図に示す。
【
図4】本開示の一実施例に係る、例示的な付加製造された熱交換構成要素を示す。
【発明を実施するための形態】
【0011】
上述の検討を考慮して、閉ループ冷却システムを備えた宇宙ビークルに関する実施例が開示される。簡潔に説明すると、1つの例示的な冷却システムは、閉ループを画定する冷却剤通路、冷却剤通路内に位置する単相液体の冷却剤、及び冷却剤通路を通じて冷却剤を移動させるように構成された一以上のポンプを含む。冷却剤通路に沿って配置された第1の熱交換構成要素は、熱発生構成要素(例えば、宇宙ビークルペイロードの構成要素)から冷却剤へ熱を移送し、冷却剤通路に沿って配置された第2の熱交換構成要素は、冷却剤から熱を除去し、それにより宇宙ビークルから熱を排出する。幾つかの実施例では、単相液体の冷却剤は、100ポンド/平方インチ絶対(psia)の静圧を有する(例えば、幾つかの実施例では最低4psia)。この状態における圧力は、高圧冷却システムと比較すると、冷却剤漏出のリスクを削減するのに役立つことがあり、環境気圧での冷却システムの製造及び充填を容易にし得る。幾つかの実施例では、迅速切断フィッティングが冷却システムのプラットフォームとペイロード部分を接続するのに使用され、さらに、製造、統合、及びテストの簡略化に役立つ。幾つかの実施例では、ペイロード構成要素電力を20Watts未満に制限し、出力密度を40Watt/in2未満に制限し得る受動冷却構造に対し、本明細書に開示の冷却システムは、幾つかの実施例では、熱管理能力を増大させて、ペイロード構成要素電力を最大150Wattsに、出力密度を200Watts/in2以上に、及び様々な条件下での動作温度を150℃まで可能にすることがある。
【0012】
幾つかの実施例では、冷却剤は炭化水素ベースの液体を含み、かかる液体は一以上のC8-C15のアルカン、アルケン、アルキン、及び/又は芳香族化合物を含む。より具体的な実施例では、冷却剤は、冷却剤が運転温度及び圧力範囲を通じて単一の液相に残るように選択された氷点及び沸点を有するC8-C15のイソアルカンの混合物を含む。かかる冷却剤は、また、十分に高い熱伝導率(例えば0.08から0.2W/m-K)及び十分に高い比熱(例えば1.5から3.0kJ/kg-K)を有するようにも選択されることがあり、冷却システムが所望の用途に対する好適に高い密度で比較的大量の熱を消散させるのを可能にし、より高い電力及びより複雑なペイロードを支持する。幾つかの実施例では、冷却剤は100℃まで、他の実施例では150℃までの温度でポンプで吸い上げられつつ比較的大量の熱を消散させ得る。それに対して、アンモニアベースの冷却剤は、80℃を超える温度で著しい性能の低下を示し得る。さらに、炭化水素冷却剤は酸化させないので、かかる冷却剤は、アンモニア及び水などの冷却剤を使用するのと比較して、プラットフォーム及びペイロード冷却システム構成要素に対する腐食の可能性を削減し得る。幾つかの実施例では、かかる冷却剤は、冷却剤を循環させるポンプのための適切な潤滑剤及び冷却剤として機能し得る。かかる冷却剤は、誘電体でもあるので、電子装置においてポンピングが可能である。さらに、かかる冷却剤は、宇宙で遭遇する放射線に類似した放射線に曝露されたときに、容認できるレベルの水素生成を示すことがある。
【0013】
図1は、本開示の実施例に係る冷却システムを備えた例示的な宇宙ビークルを示す。この実施例では、宇宙ビークルは、熱発生構成要素を含むペイロード102を運ぶ人工衛星100の形態を取る。幾つかの実施例では、ペイロード102は、通信のための送受信アンテナアレイを備え得る。さらに、幾つかの実施例では、ペイロード102は、イメージングシステム(例えば、レーダーイメージングシステム、光学イメージングシステム、マイクロ波イメージングシステム、及び/又は赤外線イメージングシステム)を備え得る。人工衛星及び/又はペイロードに組み入れられ得る熱発生構成要素の他の実施例は、(例えば、人工衛星100の運転態様を測定するための)センサシステム、及び(例えば、人工衛星100の動作を制御するための)コンピュータシステムを含む。本明細で使用される「宇宙ビークル」という用語は、能動的に駆動された宇宙ビークルと受動的に移動する宇宙ビークルの両方を指す。
【0014】
図2は、本開示の実施例に係る冷却システムを備えた宇宙ビークルの別の実施例を示す。例示的な宇宙ビークルは、地球外の天体の表面を探究するのに使用され得るローバ200の形態を取る。ローバ200は、画像感知及び分析構成要素、化学センサ及び分析構成要素、放射線探知器及び分析構成要素、機械的システム、光学及び無線周波数通信システム、並びに衛星間リンクを含むがそれらに限定されるわけではない、多種多様な熱発生構成要素のいずれかを含み得る。
図1及び
図2の宇宙ビークルは、例示のために提示され、本明細書に記載の例示的な冷却システムは、任意の適切な宇宙ビークルに実装されて、構成要素が宇宙ビークルのペイロード部分の一部であれプラットフォーム部分の一部であれ、任意の適切な熱発生構成要素を冷却し得る。さらに、宇宙ビークルの実施例は、乗組員を乗せた宇宙船及び乗組員を乗せない宇宙船を含む。
【0015】
図3は、上述の例示的な宇宙ビークルなどの宇宙ビークル向けの例示的な閉ループ冷却システム300を概略的に示す。示された冷却システム300は、熱発生構成要素を含むペイロードと統合したペイロード部分301、及びペイロード部分301に結合したプラットフォーム部分302を備え、プラットフォーム部分302は、冷却剤を循環させるポンプなどの冷却システム300の能動的構成要素を含む。
【0016】
冷却システム300は、冷却剤が流れる連続的な閉ループを形成する冷却剤通路303を備えている。通路303は、冷却剤が通路303に供給され、通路303から排出され得る充填/排出弁304を含む。ペイロードの熱発生構成要素から熱を除去するために、冷却システム300のペイロード部分301は、コールドプレート306などの複数の熱交換構成要素を含み、それらはペイロードの熱発生構成要素と熱的に連通している。コールドプレート306は、熱発生構成要素から、冷却システム300のペイロード部分301を通じて循環している液相冷却剤へ、熱を移送する。以下でより詳細に述べるように、冷却剤は通路303を通した循環を通じて液相に留まり、したがって、位相変化プロセス(例えば蒸発/凝縮プロセス)を通じて熱を除去する冷却剤と対照的に、単相液体冷却剤として本明細書では称される。
【0017】
コールドプレート306及び/又は他の熱交換構成要素は、任意の適切な数及び配置で冷却剤通路303に沿って提供され得る。示された実施例では、コールドプレート306は2つの並列するグループ゜に配置される。第1のグループ308では、並列する冷却剤通路セグメント309はそれぞれ2つ以上のコールドプレート306を含み、共通のインレット310A及び共通のアウトレット312Aを共有する。第2のグループ314では、並列する冷却剤通路セグメント309はそれぞれ2つ以上のコールドプレート306を含み、共通のインレット310B及び共通のアウトレット312Bを共有する。この実施例では、第1のグループ308のコールドプレート306は第1の熱発生構成要素から通路303の冷却剤へ熱を移送し、第2のグループ314のコールドプレート306は、第2の熱発生構成要素から通路の冷却剤へ熱を移送する。互いに並列に配置されたインレット310及びアウトレット312で、グループ308及びグループ314は、第1の熱発生構成要素及び第2の熱発生構成要素が互いに並列に冷却されるのを可能にする。さらに、グループ308及びグループ314の並列配置は、ペイロード部分301にわたる冷却剤の圧力の低下を削減し得る。他の実施例では、コールドプレートは、部分的に又は完全に並列というよりもむしろ、直列に配置され得る。さらに、複数のセグメントは、それぞれ一以上のコールドプレートが設けられてもよく、2つ以上のセグメントが共通のインレット及び/又はアウトレットを共有する。代替的に又は追加的に、複数のセグメントのうちの一以上のセグメントは、他のセグメントと共有しない専用のインレット及び/又はアウトレットを有してもよい。
【0018】
幾つかの実施例では、コールドプレート306は、アンテナアレイを含むペイロードによって発生した熱を除去する。かかる実施例では、第1のグループ308のコールドプレート306は、送信器アンテナアレイを冷却することができるが、第2のグループ314のコールドプレート306は、送受信器アレイを冷却することができる。他の実施例では、コールドプレート306は、宇宙ビークルペイロード又はプラットフォームの任意の他の適切な熱発生構成要素から熱を除去するように構成され得る。さらに、冷却システムは、示された実施例に示されたコールドプレート以外の任意の適切な配置及び数のコールドプレートを実装し得る。
【0019】
幾つかの実施例では、ペイロード部分301は、迅速切断(QD)フィッティング320を介してプラットフォーム部分302に連結されている。示された実施例では、4つのQDフィッティングがペイロード部分301とプラットフォーム部分302とを連結するのに使用される。第1のQDフィッティング320Aは、第1のグループ308のインレット310Aをプラットフォーム部分302に連結し、第2のQDフィッティング320Bは、第1のグループ308のアウトレット312Aをプラットフォーム部分302に連結し、第3のQDフィッティング320Cは、第2のグループ314のインレット310Bをプラットフォーム部分302に連結し、第4のQDフィッティング320Dは、第2のグループ314のアウトレット312Bをプラットフォーム部分302に連結する。他の実施例では、任意の他の適切な数のQDフィッティングは、冷却されるコールドプレート及び構成要素の数及び配置に基づいて、ペイロード並びにプラットフォーム部分301及びプラットフォーム部分302を連結するのに使用され得る。
【0020】
冷却システム300のペイロード部分301及びプラットフォーム部分302を結合するQDフィッティング320を使用することにより、冷却システム300の製造、テスト、及び展開における様々な利点が可能になり得る。例えば、QDフィッティング320により、ペイロード並びにプラットフォーム部分301及びプラットフォーム部分302を、個別にテストし、操作し、次いで、溶接又は他の恒久的連結プロセスを実行することなく、容易に互いに結合することが可能となる。これにより、諸部分を迅速に切断且つ接続することができない冷却システムに対して、製造及びテスト効率を向上させることができる。さらに、QDフィッティング320を介した迅速な接続/切断により、ペイロード並びにプラットフォーム部分301及びプラットフォーム部分302を、製造及び移送中に、別個に移動させることができる。
【0021】
コールドプレート306からの冷却剤の互いに平行な流れが、接合点322で結合する。接合点322から、流れはアキュムレータ324を通過する。アキュムレータ324は、冷却剤で部分的に充填され、通路303内における冷却剤の圧力を制御する。アキュムレータ324は、冷却剤の体積における変化(例えば、冷却剤の密度及び/又は温度における変化によるもの)、並びにシステム300からの冷却剤の漏出を補正し得る。アキュムレータ324は、任意の適切な形状(例えば、ベローズ型アキュムレータの形状)をとり得る。さらに、アキュムレータ324は、通路303に沿ったその構成に従って充填可能であり、又は一以上のガス(例えば、ヘリウム、アルゴン、及び/若しくは窒素)で予め充填することが可能である。通路303の冷却剤を説明するのに使用された「単相液体冷却剤」という用語は、アキュムレータ324及び/又は閉ループ内の他の場所の中の冷却剤のいくらかの蒸気圧を除外しないが、むしろ、熱移送の主要な機構としての冷却システム300が相変化プロセスを使用しないことを意味すると理解されよう。
【0022】
アキュムレータ324から、冷却剤は、通路303を通じて冷却剤を循環させるように構成されたポンプステージ325へ流れる。示されたポンプステージ325は、ブランチ326を備えている。ブランチ326では、冷却剤通路303が、第1のセグメント328と、第1のセグメント328と並列に配置された第2のセグメント330に分かれる。第1のセグメント328は、第1のフィルタ332A、第1のポンプ334A、及び第1の逆止め弁336Aを含む。同様に、第2のセグメント330は、第2のフィルタ332B、第2のポンプ334B、及び第2の逆止め弁336Bを含む。フィルタ332は、冷却剤から微粒子を分離して、それによりポンプ334にフィルタした冷却剤を提供する。微粒子は、冷却システム300の動作中に(例えば、ポンプ334の動作及び通路303の表面の浸食から)、及び例えば製造工程からも生じ得る。冷却剤から微粒子を分離することは、例えば、さらなる浸食を削減し、ポンプ334のベアリング(例えば流体力学のベアリング)を保護するのに役立ち得る。任意の適切なフィルタを使用してもよい。一例として、各フィルタ332は、最大1グラムのACダスト容量又はより高い容量を有する、10から25ミクロンの絶対フィルタ等級を含み得る。さらに、任意の適切なフィルタ配置を使用してもよい。別の実施例として、単一のフィルタがポンプ334の上流に設けられてもよい。
【0023】
冷却システム300のポンプは、様々な実施例で、単独で又は一緒に動作し得る。幾つかの実施例では、1度に1つのポンプが動作するように意図されており、動作中のポンプが性能の問題を抱えたときに、他のポンプがバックアップのポンプとして提供されている。ポンプ動作は、任意の適切な一又は複数のセンサを介してモニタされ得る。このセンサは、サーミスタ及び/又は圧力センサを含むが、それらに限定されるものではない。他の実施例では、冷却システムは任意の他の適切な数及び配置のポンプ、例えば、3つ以上のポンプ(重複してもよく、若しくは重複しなくてもよい)又は単一のポンプを含み得る。複数のポンプが採用される場合、ポンプは並列に(図示するように)又は直列に配置され得る。さらに、任意の適切な種類のポンプ(例えば、幾つかの実施例では遠心ポンプ)が、使用されてもよく、任意の適切な制御スキームを介して制御されてもよい。この制御スキームは、(例えば、一以上のホール効果センサからの出力に基づく)閉ループ回転速度制御を含むが、それに限定されるものではない。逆止め弁336は、下流方向に冷却剤の一方向の流れを可能にし、したがって、能動的でないポンプへの冷却剤の逆流を防止する。
【0024】
ポンプステージ325は、フィルタされた冷却剤の圧力を増大させる。1つの例示的な実施例として、ポンプステージ325は、約4から50psiに加圧された冷却剤を受け入れ、14から100psiの圧力で冷却剤を出力し得る。逆止め弁336の下流にある冷却剤の流れは、冷却剤通路303の第1のセグメント328と第2のセグメント330とが交わる接合点338に進む。
【0025】
接合点338から、冷却剤の流れは、それぞれ第1の排熱コールドプレート(HRCP)342A及び第2のHRCP342Bを通過する並列するセグメント340A及び340Bへと分かれる。幾つかの実施例では、HRCP342は、ろう付けされたアルミニウムコールドプレートを含む。他の実施例では、HRCP342は、任意の他の適切な形態(例えば付加製造形態)を取り得る。示された実施例では、各HRCP342は、HRCPから熱を移送するために、複数の熱パイプ(例えば熱パイプ344)に連結される。HRCP342及び熱パイプ344は、熱交換構成要素の一例を表し、他の実施態様は、任意の他の適切な熱交換構成要素を採用してもよく、それは他の熱放射器及びスプレッダを含むがそれらに限定されるものではない。さらに、システム300は任意の適切な数のHRCP342及び熱パイプ344を実装し得る。例えば、他の実施態様では、セグメント328及びセグメント330からの出力は結合して、単一のHRCP、直列に配置された複数のHRCP、又はそれぞれが一以上のHRCPを備えた3つ以上の並列するセグメントへと流れ得る。
【0026】
冷却剤がHRCP342を通過するとき、冷却剤に含まれた熱は、HRCP342及び熱パイプ344へ移送され、それによりシステム300から取り出される。このように、ペイロード部分301の熱発生構成要素によって発生した熱は、システム300から除去される。HRCP342を通過した後、流れは、各HRCP342の流出が結合する接合点346へと進む。ここで、冷却された冷却剤は、再びペイロード部分301の中のコールドプレート306に供給される。
【0027】
上述のように、冷却剤として使用された流体は、通路303を通じて単一の液相に残り、それにより、熱発生構成要素から熱を除去し、主要な熱移送プロセスとして相転移を利用することなく宇宙ビークルから熱を取り出す。幾つかの実施例では、冷却剤は-80℃から150℃の温度範囲内の液相にあるように構成される。上述のように、単相液体冷却剤は、(例えばアキュムレータにおいて)液相よりも高温の蒸気圧を含み得る。
【0028】
幾つかの実施例では、冷却剤は、100psi以下の圧力などの比較的低い圧力(例えば、幾つかの実施例では4psiの低さ)で循環する。かかる低い冷却剤の圧力の使用により、(例えば、通路303の密封及び継ぎ手における)通路303からの冷却剤の漏出の可能性を削減することができる。さらに、冷却剤は、気圧(例えば1気圧)及び室温(例えば25℃)において液体になり得る。これにより、他の状況では冷却剤のより高い圧力の達成及び維持に使用される機器がなくても、製造中の通路303の充填及びシステム300のテストを容易にすることができる。
【0029】
さらに、冷却剤の圧力が低いことにより、冷却剤を導く熱交換構成要素に課される材料及び/又は構造の要件を緩めることができる。例えば、冷却剤の低い圧力及び誘電体特性は、冷却剤が電子装置と接触して流れることを可能にすることができる。このように要件が緩和した結果の別の例としては、冷却剤の低い圧力により、システム300において付加製造された構成要素を使用することが可能になり得ることが挙げられる。
図4は、コールドプレート306又はHRCP342として使用され得る例示的な付加製造されたコールドプレート400を概略的に示す。
図4は、コールドプレート400の内部に形成された冷却剤通路402も概略的に示す。通路402は、コールドプレート400が、コールドプレート306又はHRCP342のうちの1つを表す実施例において
図3の通路303を表す。
【0030】
コールドプレート400は、複数の層を含む。404では、2つの例が示されているが、これらは連続的に堆積され、コールドプレート400を形成する。高圧の冷却剤を使用することにより、ろう付けされたアセンブリの層を分離する、又は付加製造されたコールドプレートを決壊する若しくは破裂させるリスクを引き起こし得る。それに対して、本明細書に開示の実施例で使用されている冷却剤のより低い圧力は、付加製造された部分又は他の層状構造の完全性を低下させるリスクがより低い場合がある。
【0031】
上述のように、開示された例示的な冷却システムは、単相炭化水素冷却剤を利用し得る。任意の適切な炭化水素冷却剤が使用されてもよい。幾つかの実施例では、冷却剤は、一以上のC8-C15のアルカン(n-アルカン又はイソアルカン)、アルケン、アルキン、及び/又は芳香族化合物の混合物を含む。より具体的な実施例では、冷却剤は、C8-C15のイソアルカンの混合物を含み得る。別のより具体的な実施例では、冷却剤は、一以上のC10-C13のイソアルカンを含む、一以上のC10-C13の炭化水素を含み得る。かかる炭化水素化合物は、他の冷却剤(例えばフッ化炭素冷却剤)と比較して、比較的安価であり得る。さらなる他の実施例では、任意の他の適切な炭化水素冷却剤が使用されてもよい。炭化水素冷却剤は、冷却剤通路を通じて液相に残るために、好適に低い氷点(例えば、通常の動作圧力で約-85℃)及び好適に高い沸点(例えば、通常の動作圧力で150℃)を有するように選択され得る。
【0032】
任意の適切な動作圧力が使用されてもよい。幾つかの実施例では、4から100psiの範囲内、又は20から75psiの範囲内の動作圧力が使用され得る。上述のように、比較的低い動作圧力を使用することにより、冷却剤漏出の可能性を削減することができ、冷却剤通路に沿った付加製造された構成要素の使用を可能にする。かかる炭化水素分子も、アンモニア分子又は冷却剤として使用される他のより軽い分子重量体の分子よりも大きい。このことは、任意の小さな開口部を通じた冷却剤漏出の速度を低減し得る。またさらに、炭化水素冷却剤は、ポンプ334の一以上のベアリングのための潤滑剤として機能し得る。代替的に又は追加的に、炭化水素冷却剤は、ポンプ334の中でモータ及び/又は他の構成要素を冷却するのに使用され得る。冷却剤を選択するのに使用され得る他の特性は、運転温度及び圧力範囲内で、熱伝導率、比熱、及び粘度(例えば0.2から30cP)を含む。
【0033】
幾つかの実施例では、ポンプ334は、ポンプ334からシステム300内の他の構成要素への振動の伝搬を軽減する一以上の構造を介して、隔離され得る。一例として、ポンプ334は、ポンプ334の動作から生じる振動を吸収する減衰構造を介して、冷却システム300の他の構造から隔離されている支持体に取り付けられ得る。
【0034】
システム300は、その中の構成要素の動作をモニタするための様々なセンサ装置を含み得る。幾つかの実施例では、例えば、宇宙ビークル実装システム300によって提供される遠隔測定法の一部として、センサ出力が別の場所に送信され得る。例として、システム300は、(例えば、アキュムレータ324内の流体の体積を感知するための)一又は複数の電位差計、(例えば、電流経由でポンプ334の動作をモニタするための)一又は複数の電流計、(例えば、ポンプ334の動作を制御するための)一又は複数のホール効果センサ、(例えば、ポンプ334のインレット、HRCP342のインレット、及び/若しくはHRCP342のアウトレットにおける)一又は複数の温度センサ、(例えば、冷却剤の圧力を感知するためのポンプ334のインレット及び/若しくはアウトレットにおける)一又は複数の圧力変換、一又は複数の流量センサ、並びに/又は一又は複数のサーミスタを含み得る。
【0035】
システム300内の冷却剤のポンプ流によって可能になる能動的な冷却は、ペイロードを受動的に冷却する冷却システムと比較して、ペイロードによって発生した熱の消散を増大させ得る。したがって、システム300は、より高い出力密度でより高い出力のペイロードの冷却を支持し、より複雑なペイロードの構造を使用できるようにする。さらに、構成要素の数、配置、及び種類における改変を支持することにより、システム300は、多種多様な宇宙ビークルの実施態様を支持する。
【0036】
別の実施例は、一以上の熱発生構成要素と、一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムであって、閉ループを画定する冷却剤通路、冷却剤通路内に位置する冷却剤であって、平方インチ当たり100ポンド以下の静圧を有し、冷却剤通路を通じて単一の液相にある冷却剤、冷却剤通路を通じて冷却剤を移動させるように構成された一以上のポンプ、冷却剤通路に沿って配置された第1の熱交換構成要素であって、熱発生構成要素から冷却剤へ熱を移送するように構成された第1の熱交換構成要素、及び冷却剤通路に沿って配置された第2の熱交換構成要素であって、冷却剤から熱を除去するように構成された第2の熱交換構成要素を備えた閉ループ冷却システムとを備えている宇宙ビークルを提供する。かかる実施例では、冷却剤は、代替的に又は追加的に、炭化水素を含み得る。かかる実施例では、冷却剤は、代替的に又は追加的に、一以上のC10-C13のイソアルカンを含んでもよく、冷却剤は、少なくとも平方インチ当たり4から100ポンドの圧力で、セ氏-80度からセ氏150度の液相にあるように構成され得る。かかる実施例では、宇宙ビークルは人工衛星を含み得る。かかる実施例では、人工衛星は熱発生構成要素を含むペイロードが連結されるプラットフォームを設け得る。冷却剤通路は、迅速切断フィッティングによって共に連結されたプラットフォーム部分及びペイロード部分を備え得る。かかる実施例では、一以上のポンプは、並列する冷却剤通路セグメントに沿って、並列に配置された第1のポンプ及び第2のポンプを備え得る。かかる実施例では、宇宙ビークルは、代替的に又は追加的に、第1のポンプの下流にあり、且つ並列する冷却剤通路セグメントが交わる接合点の上流にある第1の逆止め弁と、第2のポンプの下流にあり、接合点の上流にある第2の逆止め弁とを備え得る。かかる実施例では、宇宙ビークルは、代替的に又は追加的に、第1のポンプの上流に位置する第1のフィルタ、及び第2のポンプの上流に位置する第2のフィルタを備え得る。かかる実施例では、一以上のポンプの各ポンプは、代替的に又は追加的に、一以上のベアリングを備えてもよく、冷却剤は、一以上のベアリングのための潤滑剤であり得る。かかる実施例では、第1の熱交換構成要素及び第2の熱交換構成要素のうちの一以上が、付加製造構造又は他の層状構造を含み得る。
【0037】
別の実施例は、一以上の熱発生構成要素と、一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムであって、閉ループを画定する冷却剤通路、冷却剤通路内に位置する炭化水素冷却剤であって、冷却剤通路を通じて単一の液相にある炭化水素冷却剤、冷却剤通路を通じて炭化水素冷却剤を移動させるように構成された一以上のポンプ、冷却剤通路に沿って配置された第1の熱交換構成要素であって、ペイロードの熱発生構成要素から炭化水素冷却剤へ熱を移送するように構成された第1の熱交換構成要素、及び冷却剤通路に沿って配置された第2の熱交換構成要素であって、炭化水素冷却剤から熱を除去するように構成された第2の熱交換構成要素を備えた閉ループ冷却システムとを備えている宇宙ビークルを提供する。かかる実施例では、炭化水素冷却剤は、代替的に又は追加的に、一以上のC8-C15のイソアルカンを含み得る。かかる実施例では、一以上のポンプの各ポンプは、一以上のベアリングを備えてもよく、炭化水素冷却剤は、一以上のベアリングのための潤滑剤であり得る。かかる実施例では、宇宙ビークルは人工衛星を含み得る。かかる実施例では、人工衛星は熱発生構成要素を含むペイロードが連結されるプラットフォームを設け得る。冷却剤通路は、迅速切断フィッティングによって共に連結されたプラットフォーム部分及びペイロード部分を備え得る。かかる実施例では、第1の熱交換構成要素及び第2の熱交換構成要素のうちの一以上が、付加製造構造を有し得る。かかる実施例では、冷却剤は、代替的に又は追加的に、平方インチ当たり100ポンド以下の静圧を含み得る。かかる実施例では、一以上のポンプは、代替的に又は追加的に、並列する冷却剤通路セグメントに沿って、並列に配置された第1のポンプ及び第2のポンプを備え得る。かかる実施例では、宇宙ビークルは、代替的に又は追加的に、第1のポンプの下流にあり、且つ並列する冷却剤通路セグメントが交わる接合点の上流にある第1の逆止め弁と、第2のポンプの下流にあり、接合点の上流にある第2の逆止め弁とを備え得る。かかる実施例では、宇宙ビークルは、代替的に又は追加的に、第1のポンプの上流に位置する第1のフィルタ、及び第2のポンプの上流に位置する第2のフィルタを備え得る。
【0038】
別の実施例は、一以上の熱発生構成要素を含むペイロードと、ペイロードの一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムを備えたビークルプラットフォームであって、閉ループ冷却システムが、閉ループを画定する冷却剤通路、プラットフォーム冷却剤通路部分及びペイロード冷却剤通路部分を含む冷却剤通路、冷却剤通路内に位置する冷却剤、冷却剤通路を通じて冷却剤を移動させるように構成された一以上のポンプ、ペイロード冷却剤通路部分に沿って配置された第1の熱交換構成要素であって、ペイロードの熱発生構成要素から冷却剤へ熱を移送するように構成された第1の熱交換構成要素、プラットフォーム冷却剤通路部分をペイロード冷却剤通路部分に連結する迅速切断フィッティング、及びプラットフォーム冷却剤通路部分に沿って配置された第2の熱交換構成要素であって、冷却剤から熱を除去するように構成された第2の熱交換構成要素を備えたビークルプラットフォームとを備えている宇宙ビークルを提供する。かかる実施例では、冷却剤は、平方インチ当たり100ポンド以下の静圧を有し得る。かかる実施例では、ペイロード冷却剤通路部分は、並列に配置された複数のセグメントを備え得る。かかる実施例では、宇宙ビークルは、代替的に又は追加的に、人工衛星を含み得、第1のペイロード熱源が、第1のペイロード冷却剤通路セグメントによって冷却されるように構成されてもよく、第2のペイロード熱源が、第2のペイロード冷却剤通路セグメントによって冷却されるように構成されてもよい。かかる実施例では、第1の熱交換構成要素及び第2の熱交換構成要素のうちの一以上が、付加製造構造を含み得る。
【0039】
別の実施例は、一以上の熱発生構成要素を含むペイロードと、ペイロードの一以上の熱発生構成要素によって発生した熱を除去するように構成された閉ループ冷却システムであって、閉ループを画定する冷却剤通路、冷却剤通路内に位置する冷却剤、冷却剤通路を通じて冷却剤を移動させるように構成された一以上のポンプ、及び冷却剤通路に沿って位置する一以上の付加製造された熱交換構成要素を備えた、閉ループ冷却システムとを備えている、宇宙ビークルを提供する。かかる実施例では、冷却剤は、平方インチ当たり100ポンド以下の静圧を含み得る。かかる実施例では、冷却剤は、代替的に又は追加的に、閉ループ冷却システムを通じて単一の液相にあり得る。かかる実施例では、冷却剤は、代替的に又は追加的に、液相にあり得る。かかる実施例では、一以上の付加製造された熱交換構成要素は、アルミニウムコールドプレートを含み得る。
さらに、本開示は、以下の条項に係る実施例を含む。
【0040】
条項1
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)と、
前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)であって、
閉ループを画定する冷却剤通路(303)、
前記冷却剤通路(303)内に位置する冷却剤であって、平方インチ当たり100ポンド以下の静圧を有し、前記冷却剤通路(303)を通じて単一の液相にある冷却剤、
前記冷却剤通路(303)を通じて前記冷却剤を移動させるように構成された一以上のポンプ(334)、
前記冷却剤通路(303)に沿って配置された第1の熱交換構成要素(306)であって、前記熱発生構成要素(102)から前記冷却剤へ熱を移送するように構成された第1の熱交換構成要素(306)、及び
前記冷却剤通路(303)に沿って配置された第2の熱交換構成要素(342)であって、前記冷却剤から熱を除去するように構成された第2の熱交換構成要素(342)
を備えた、閉ループ冷却システム(300)と
を備えている、宇宙ビークル(100)。
【0041】
条項2
前記冷却剤が炭化水素を含む、条項1に記載の宇宙ビークル(100)。
【0042】
条項3
前記冷却剤が、一以上のC10-C13のイソアルカンを含み、少なくとも平方インチ当たり4から100ポンドの圧力で、セ氏-80度からセ氏150度の液相にあるように構成されている、条項2に記載の宇宙ビークル(100)。
【0043】
条項4
前記宇宙ビークル(100)が人工衛星(100)を含む、条項1から3のいずれか一項に記載の宇宙ビークル(100)。
【0044】
条項5
前記冷却剤通路(303)が、迅速切断フィッティング(320)によって共に連結された、プラットフォーム部分(302)及びペイロード部分(301)を備えている、条項1から4のいずれか一項に記載の宇宙ビークル(100)。
【0045】
条項6
前記一以上のポンプ(334)が、並列する冷却剤通路セグメント(328、330)に沿って並列に配置された第1のポンプ(334A)及び第2のポンプ(334B)を備えている、条項1から5のいずれか一項に記載の宇宙ビークル(100)。
【0046】
条項7
前記第1のポンプ(334A)の下流にあり、且つ並列する冷却剤通路セグメント(328、330)が交わる接合点(338)の上流にある第1の逆止め弁(336A)と、前記第2のポンプ(334B)の下流にあり、前記接合点(338)の上流にある第2の逆止め弁(336B)とをさらに備えている、条項6に記載の宇宙ビークル(100)。
【0047】
条項8
前記第1のポンプ(334A)の上流に位置する第1のフィルタ(332A)、及び前記第2のポンプ(334B)の上流に位置する第2のフィルタ(332B)をさらに備えている、条項6又は7に記載の宇宙ビークル(100)。
【0048】
条項9
前記一以上のポンプ(334)の各ポンプ(334A、334B)が一以上のベアリングを備え、前記冷却剤が前記一以上のベアリングのための潤滑剤である、条項1から8のいずれか一項に記載の宇宙ビークル(100)。
【0049】
条項10
前記第1の熱交換構成要素(306)及び前記第2の熱交換構成要素(342)のうちの一以上が、付加製造された構造(400)又は他の層状構造(404)を含む、条項1から9のいずれか一項に記載の宇宙ビークル(100)。
【0050】
条項11
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)と、
前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)であって、
閉ループを画定する冷却剤通路(303)、
前記冷却剤通路(303)内に位置する炭化水素冷却剤であって、前記冷却剤通路(303)を通じて単一の液相にある炭化水素冷却剤、
前記冷却剤通路(303)を通じて前記炭化水素冷却剤を移動させるように構成された一以上のポンプ(334)、
前記冷却剤通路(303)に沿って配置された第1の熱交換構成要素(306)であって、ペイロード(102)の前記熱発生構成要素(102)から前記炭化水素冷却剤へ熱を移送するように構成された第1の熱交換構成要素(306)、及び
前記冷却剤通路(303)に沿って配置された第2の熱交換構成要素(342)であって、前記炭化水素冷却剤から熱を除去するように構成された第2の熱交換構成要素(342)
を備えた、閉ループ冷却システム(300)と
を備えている、宇宙ビークル(100)。
【0051】
条項12
前記炭化水素冷却剤が、一以上のC8-C15のイソアルカンを含む、条項11に記載の宇宙ビークル(100)。
【0052】
条項13
前記一以上のポンプ(334)の各ポンプ(334A、334B)が一以上のベアリングを備え、前記炭化水素冷却剤が前記一以上のベアリングのための潤滑剤である、条項11又は12に記載の宇宙ビークル(100)。
【0053】
条項14. 前記宇宙ビークル(100)が人工衛星(100)を含む、条項11から13のいずれか一項に記載の宇宙ビークル(100)。
【0054】
条項15
前記冷却剤通路(303)が、迅速切断フィッティング(320)によって共に連結された、プラットフォーム部分(302)及びペイロード部分(301)を備えている、条項11から14のいずれか一項に記載の宇宙ビークル(100)。
【0055】
条項16
前記第1の熱交換構成要素(306)及び前記第2の熱交換構成要素(342)のうちの一以上が、付加製造構造(400)を含む、条項11から15のいずれか一項に記載の宇宙ビークル(100)。
【0056】
条項17
前記冷却剤が、平方インチ当たり100ポンド以下の静圧を有する、条項11から16のいずれか一項に記載の宇宙ビークル(100)。
【0057】
条項18
前記一以上のポンプ(334)が、並列する冷却剤通路セグメント(328、330)に沿って並列に配置された第1のポンプ(334A)及び第2のポンプ(334B)を備えている、条項11から17のいずれか一項に記載の宇宙ビークル(100)。
【0058】
条項19
前記第1のポンプ(334A)の下流にあり、且つ並列する冷却剤通路セグメント(328、330)が交わる接合点(338)の上流にある第1の逆止め弁(336A)と、前記第2のポンプ(334B)の下流にあり、前記接合点(338)の上流にある第2の逆止め弁(336B)とをさらに備えている、条項18に記載の宇宙ビークル(100)。
【0059】
条項20
前記第1のポンプ(334A)の上流に位置する第1のフィルタ(332A)、及び前記第2のポンプ(334B)の上流に位置する第2のフィルタ(332B)をさらに備えている、条項18又は19に記載の宇宙ビークル(100)。
【0060】
条項21
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)を含むペイロード(102)と、
前記ペイロード(102)の前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)を備えたビークルプラットフォームであって、前記閉ループ冷却システム(300)が、
閉ループを画定する冷却剤通路(303)であって、プラットフォーム冷却剤通路部分(302)及びペイロード冷却剤通路部分(301)を含む冷却剤通路(303)、
前記冷却剤通路(303)内に位置する冷却剤、
前記冷却剤通路(303)を通じて前記冷却剤を移動させるように構成された一以上のポンプ(334)、
前記ペイロード冷却剤通路部分(301)に沿って配置された第1の熱交換構成要素(306)であって、前記ペイロード(102)の前記熱発生構成要素(102)から前記冷却剤へ熱を移送するように構成された第1の熱交換構成要素(306)、
前記プラットフォーム冷却剤通路部分(302)を前記ペイロード冷却剤通路部分(301)に連結する迅速切断フィッティング(320)、及び
前記プラットフォーム冷却剤通路部分(302)に沿って配置された第2の熱交換構成要素(342)であって、前記冷却剤から熱を除去するように構成された第2の熱交換構成要素(342)
を備えた、ビークルプラットフォームと
を備えている、宇宙ビークル(100)。
【0061】
条項22
前記冷却剤が、平方インチ当たり100ポンド以下の静圧を有する、条項21に記載の宇宙ビークル(100)。
【0062】
条項23
前記ペイロード冷却剤通路部分(301)が、並列に配置された複数のセグメント(309)を備えている、条項21又は22に記載の宇宙ビークル(100)。
【0063】
条項24
前記宇宙ビークル(100)が、人工衛星(100)を含み、第1のペイロード熱源が、第1のペイロード冷却剤通路セグメント(309)によって冷却されるように構成され、第2のペイロード熱源が、第2のペイロード冷却剤通路セグメント(309)によって冷却されるように構成されている、条項21から23のいずれか一項に記載の宇宙ビークル(100)。
【0064】
条項25
前記第1の熱交換構成要素(306)及び前記第2の熱交換構成要素(342)のうちの一以上が、付加製造された構造(400)を含む、条項21から24のいずれか一項に記載の宇宙ビークル(100)。
【0065】
条項26
宇宙ビークル(100)であって、
一以上の熱発生構成要素(102)を含むペイロード(102)と、
前記ペイロード(102)の前記一以上の熱発生構成要素(102)によって発生した熱を除去するように構成された閉ループ冷却システム(300)であって、
閉ループを画定する冷却剤通路(303)、
前記冷却剤通路(303)内に位置する冷却剤、
前記冷却剤通路(303)を通じて前記冷却剤を移動させるように構成された一以上のポンプ(334)、及び
前記冷却剤通路に沿って位置する一以上の付加製造された熱交換構成要素(306)を備えた、閉ループ冷却システム(300)と
を備えている、宇宙ビークル(100)。
【0066】
条項27
前記冷却剤が、平方インチ当たり100ポンド以下の静圧を有する、条項26に記載の宇宙ビークル(100)。
【0067】
条項28
前記冷却剤が、前記閉ループ冷却システム(300)を通じて単一の液相にある、条項26又は27に記載の宇宙ビークル(100)。
【0068】
条項29
前記冷却剤が液相にある、条項26から28のいずれか一項に記載の宇宙ビークル(100)。
【0069】
条項30
前記一以上の付加製造された熱交換構成要素(306)がアルミニウムコールドプレート(306)を含む、条項26から29のいずれか一項に記載の宇宙ビークル(100)。
【0070】
本開示は、本明細書で開示されている様々な特徴及び技法の新規かつ進歩性のあるすべての組み合わせ及び部分的組み合わせを含む。本明細書で開示されている様々な特徴及び技法は、本開示のすべての実施例に必ずしも必要とされるわけではない。さらに、本明細書で開示されている様々な特徴及び技法は、開示される実施例とは別に特許性のある主題を定義してもよく、本明細書に明示的に開示されていない他の実施態様において有用性を見出すことができる。