(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-27
(45)【発行日】2025-03-07
(54)【発明の名称】長尺のガスバリア性積層体およびその製造方法
(51)【国際特許分類】
B32B 7/022 20190101AFI20250228BHJP
B05D 5/00 20060101ALI20250228BHJP
【FI】
B32B7/022
B05D5/00 B
(21)【出願番号】P 2021079138
(22)【出願日】2021-05-07
(62)【分割の表示】P 2020027801の分割
【原出願日】2015-03-27
【審査請求日】2021-05-18
【審判番号】
【審判請求日】2023-04-21
(31)【優先権主張番号】P 2014073106
(32)【優先日】2014-03-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000102980
【氏名又は名称】リンテック株式会社
(74)【代理人】
【識別番号】100108419
【氏名又は名称】大石 治仁
(72)【発明者】
【氏名】岩屋 渉
(72)【発明者】
【氏名】永元 公市
(72)【発明者】
【氏名】永縄 智史
(72)【発明者】
【氏名】鈴木 悠太
(72)【発明者】
【氏名】近藤 健
【合議体】
【審判長】岩谷 一臣
【審判官】稲葉 大紀
【審判官】木原 裕二
(56)【参考文献】
【文献】国際公開第2010/026852(WO,A1)
【文献】国際公開第2013/147090(WO,A1)
【文献】特開2007-52333(JP,A)
【文献】特開2009-29126(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00-43/00
B05D 1/00- 7/26
B65H 18/00-18/28
(57)【特許請求の範囲】
【請求項1】
基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、
機能層が、微粒子を含有する活性エネルギー線硬化型樹脂組成物から形成されたものであり、
機能層の基材側とは反対側の面の、算術平均粗さ(Ra)が5~14.7nm、粗さ曲線の最大断面高さ(Rt)が100~1000nmであり、
機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が、0.35~0.80であることを特徴とする、長尺のガスバリア性積層体。
【請求項2】
ガスバリア層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、請求項1に記載の長尺のガスバリア性積層体。
【請求項3】
前記機能層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるハードコート層である、請求項1に記載の長尺のガスバリア性積層体。
【請求項4】
前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるものである、請求項1に記載の長尺のガスバリア性積層体。
【請求項5】
前記ガスバリア層が、ポリシラザン系化合物を含む層を改質処理して得られる層である、請求項1に記載の長尺のガスバリア性積層体。
【請求項6】
基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体の製造方法であって、
基材用の樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-I)、
ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記平滑化層付樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの平滑化層とは反対側の表面に、
微粒子を含有する活性エネルギー線硬化型樹脂組成物により、樹脂フィルムとは反対側の面の、算術平均粗さ(Ra)が5~14.7nm、粗さ曲線の最大断面高さ(Rt)が100~1000nmである機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-II)、及び、
ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記機能層及び平滑化層付樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(a-III)、
を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
【請求項7】
基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体の製造方法であって、
基材用の樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に、
微粒子を含有する活性エネルギー線硬化型樹脂組成物により、樹脂フィルムとは反対側の面の、算術平均粗さ(Ra)が5~14.7nm、粗さ曲線の最大断面高さ(Rt)が100~1000nmである機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップ(b-I)、
ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記機能層付樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの機能層とは反対側の表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(b-II)、及び、
ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記機能層及び平滑化層付樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(b-III)、
を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
【請求項8】
前記機能層及び平滑化層付樹脂フィルムの、機能層表面と平滑化層表面の静摩擦係数が0.35~0.80である、請求項6又は7に記載の長尺のガスバリア性積層体の製造方法。
【請求項9】
前記機能層及び平滑化層付樹脂フィルムの、平滑化層表面の、算術平均粗さ(Ra)が5nm以下であり、粗さ曲線の最大断面高さ(Rt)が100nm以下である、請求項6又は7に記載の長尺のガスバリア性積層体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体と、その製造方法に関する。
【背景技術】
【0002】
近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、ガラス板に代えて、透明プラスチックフィルム上にガスバリア層が積層されてなる、いわゆるガスバリアフィルムが用いられている。
【0003】
ガスバリアフィルムにおいては、基材表面の凹凸を埋め、層間密着性を向上させるために、基材上に平滑化層を設けることが提案されている。
例えば、特許文献1には、透明プラスチック基材上に、少なくとも一層の表面平滑層と、少なくとも一層の無機バリア層とが積層されてなり、表面平滑層等の算術平均粗さを規定した透明ガスバリア性フィルムが記載されている。
【0004】
ガスバリアフィルムを工業的に生産する際は、通常、ロールtoロール方式が採用される。
例えば、特許文献2には、両面に平滑層(表面平滑化層)を有し、両側の平滑層表面の硬度を規定した樹脂フィルムをロール状に巻き取った後、該樹脂フィルムを繰り出しながらガスバリア層を設けることを特徴とするガスバリア性フィルムの製造方法が記載されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2003-154596号公報
【文献】国際公開2010/026852号
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のように、ガスバリアフィルムに平滑化層を設けることで、層間密着性が向上し、その結果、ガスバリアフィルムのガスバリア性等が向上することが知られている。
しかしながら、このようなガスバリアフィルムをロールtoロール方式により製造する場合、ロール状に巻き取る際やロールから繰り出す際に、ブロッキング(フィルム同士が貼り付く)やエア噛み(しわが拠る)等の問題が生じることがあった。
【0007】
本発明は、上記実情に鑑みてなされたものであり、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体と、その製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決すべく鋭意検討した結果、基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が、特定の範囲内にあるガスバリア性積層体は、ロール状に巻き取る際やロールから繰り出す際の作業性に優れるものであることを見出し、本発明を完成するに至った。
【0009】
かくして本発明によれば、下記(1)~(7)のガスバリア性積層体、及び(8)、(9)のガスバリア性積層体の製造方法が提供される。
(1)基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、
機能層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5~14.7nm、粗さ曲線の最大断面高さ(Rt)が100~1000nmであり、
機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が、0.35~0.80であることを特徴とする、長尺のガスバリア性積層体。
(2)ガスバリア層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、(1)に記載の長尺のガスバリア性積層体。
(3)前記機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数が0.35~0.80である、(1)に記載の長尺のガスバリア性積層体。
(4)前記平滑化層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、(1)に記載の長尺のガスバリア性積層体。
(5)前記機能層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるハードコート層である、(1)に記載の長尺のガスバリア性積層体。
(6)前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるものである、(1)に記載の長尺のガスバリア性積層体。
(7)前記ガスバリア層が、ポリシラザン系化合物を含む層を改質処理して得られる層である、(1)に記載の長尺のガスバリア性積層体。
(8)請求項1に記載の長尺のガスバリア性積層体の製造方法であって、
基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-I)、
ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、基材側とは反対側の面の、算術平均粗さ(Ra)が5~14.7nm、粗さ曲線の最大断面高さ(Rt)が100~1000nmである機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-II)、及び、
ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(a-III)、
を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
(9)前記(1)に記載の長尺のガスバリア性積層体の製造方法であって、
基材用樹脂フィルムを一定方向に搬送しながら、基材側とは反対側の面の、算術平均粗さ(Ra)が5~14.7nm、粗さ曲線の最大断面高さ(Rt)が100~1000nmである機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップ(b-I)、
ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(b-II)、及び、
ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(b-III)、
を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
【発明の効果】
【0010】
本発明によれば、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体とその製造方法が提供される。
【発明を実施するための形態】
【0011】
以下、本発明を、1)長尺のガスバリア性積層体、及び、2)長尺のガスバリア性積層体の製造方法、に項分けして詳細に説明する。
【0012】
1)長尺のガスバリア性積層体
本発明の長尺のガスバリア性積層体は、基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が0.35~0.80であることを特徴とする。
【0013】
(1)基材
本発明のガスバリア性積層体を構成する基材は、機能層、平滑化層及びガスバリア層を担持でき、長尺のシートまたはフィルム状のものであれば、特に限定されない。
本発明において、「長尺」とは、その形状が、幅方向に比べて、長手方向が長い(好ましくは10倍以上の長さ)帯状であることを意味する。また、以下の説明において、「長尺の」を省略することがある。
【0014】
基材の長さ(長手方向の長さ)は、特に限定されないが、通常、400~2000mである。基材の幅(幅方向の長さ)は、特に限定されないが、通常、450~1300mm、好ましくは530~1280mmである。基材の厚みは、特に限定されないが、通常、1~60μm、好ましくは5~50μm、より好ましくは10~30μmである。
【0015】
基材としては、樹脂フィルムが挙げられる。樹脂フィルムの樹脂成分としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
これらの樹脂成分は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
【0016】
これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド又はシクロオレフィン系ポリマーがより好ましく、ポリエステル又はシクロオレフィン系ポリマーがさらに好ましい。
【0017】
ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
【0018】
シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。
【0019】
本発明の効果を妨げない範囲において、樹脂フィルムは各種添加剤を含有していてもよい。添加剤としては、紫外線吸収剤、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、着色顔料等が挙げられる。これらの添加剤の含有量は、目的に合わせて適宜決定すればよい。
【0020】
樹脂フィルムは、所定の成分を含む樹脂組成物を調製し、これをフィルム状に成形することにより得ることができる。成形方法は特に限定されず、キャスト法や溶融押出法等の公知の方法を利用することができる。
【0021】
(2)機能層
本発明のガスバリア性積層体を構成する機能層は、例えば、ハードコート層、防眩性ハードコート層および帯電防止層等が挙げられ、それぞれ表面保護、防眩および表面保護、帯電防止および表面保護の機能を有する。また、機能層は、紫外線吸収層、赤外線吸収層、プライマー層等であってもよい。
上記ハードコート層の硬度は、鉛筆硬度でH以上であることが好ましい。鉛筆硬度でH以上であれば、十分な耐スクラッチ性を備えることができる。
また、上記帯電防止層の表面抵抗率は、1×104~1×1011Ω/□の範囲内の値とすることが好ましい。
また、機能層を設けることにより、機能層と平滑化層との間や、機能層とガスバリア層との間の摩擦が適度なものになるため、得られるガスバリア性積層体は、ロール状に巻き取る際や、ロールから繰り出す際の作業性に優れる。
【0022】
ハードコート層としては、例えば、活性エネルギー線硬化型樹脂組成物の硬化物からなる層が挙げられる。
活性エネルギー線硬化型樹脂組成物は、重合性化合物を含有し、活性エネルギー線の照射により硬化し得る組成物である。
重合性化合物としては、重合性プレポリマーや重合性モノマーが挙げられる。
重合性プレポリマーとしては、両末端に水酸基を有するポリエステルオリゴマーと、(メタ)アクリル酸との反応により得られるポリエステルアクリレート系プレポリマー、低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂と、(メタ)アクリル酸との反応により得られるエポキシアクリレート系プレポリマー、ポリウレタンオリゴマーと、(メタ)アクリル酸との反応により得られるウレタンアクリレート系プレポリマー、ポリエーテルポリオールと、(メタ)アクリル酸との反応により得られるポリオールアクリレート系プレポリマー等が挙げられる。
【0023】
重合性モノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート;エチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド変性ヒドロキノンジビニルエーテル、エチレンオキサイド変性ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、ジトリメチロールプロパンポリビニルエーテル等のビニル化合物:等が挙げられるが、必ずしもこれらに限定されるものではない。
これらの重合性化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
ここで、(メタ)アクリロイル基なる表記は、アクリロイル基及びメタクリロイル基の両方を含む意味である。
【0024】
また、前記活性エネルギー線硬化性樹脂組成物中に、それ自身は反応硬化性を有しないような高分子樹脂成分、例えばアクリル樹脂を含ませてもよい。高分子樹脂成分の添加により該組成物の粘度を調整することができる。
【0025】
活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等が挙げられる。これらの中でも、比較的簡便な装置を用いて発生させることができることから、活性エネルギー線としては、紫外線が好ましい。
【0026】
活性エネルギー線として紫外線を用いる場合、活性エネルギー線硬化型樹脂組成物(すなわち、紫外線硬化型樹脂組成物)は、光重合開始剤を含有することが好ましい。
【0027】
光重合開始剤は、紫外線の照射により重合反応を開始させるものであれば、特に限定されない。光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系重合開始剤;アセトフェノン、4’-ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン系重合開始剤;ベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン等のベンゾフェノン系重合開始剤;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン等のアントラキノン系重合開始剤;2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系重合開始剤;等が挙げられる。
光重合開始剤の含有量は、特に限定されないが、通常、前記重合性化合物に対して、0.2~30質量%、好ましくは0.5~20質量%である。
【0028】
活性エネルギー線硬化型樹脂組成物は、有機微粒子、無機微粒子等の微粒子を含有するものが好ましい。微粒子を含有する活性エネルギー線硬化型樹脂組成物を用いることで、ハードコート層の表面粗さおよび防眩性を効率よく制御することができる。
【0029】
有機微粒子としては、ポリスチレン系樹脂、スチレン-アクリル系共重合体樹脂、アクリル系樹脂、アミノ系樹脂、ジビニルベンゼン系樹脂、シリコーン系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素樹脂、フェノール系樹脂、ベンゾグアナミン系樹脂、キシレン系樹脂、ポリカーボネート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂などからなる微粒子が挙げられる。これらの中でも、シリコーン樹脂からなるシリコーン微粒子が好ましい。
【0030】
無機微粒子としては、シリカ粒子、金属酸化物粒子、アルキルシリケート粒子等が挙げられる。
シリカ粒子としては、コロイダルシリカ、中空シリカ等が挙げられる。
金属酸化物粒子としては、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化タンタル、酸化インジウム、酸化ハフニウム、酸化錫、酸化ニオブ等の粒子が挙げられる。
アルキルシリケート粒子としては、式:Ra-O〔-{Si(ORb)2}-O-〕n-Ra(式中、Ra及びRbは炭素数1~10のアルキル基を表し、nは1以上の整数を表す。)で示されるアルキルシリケートの粒子が挙げられる。
これらの中でも、硬化性成分との相溶性に優れ、かつ、光学調整層の屈折率を効率よく制御し得ることから、シリカ粒子又はアルキルシリケート粒子が好ましい。
これらの微粒子は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0031】
微粒子の形状は、特に制限なく、例えば、無定形状、真球状などの種々の形状の微粒子を用いることができる。
微粒子の平均粒径は、通常、0.001~10μm、好ましくは0.005~5μmである。微粒子の平均粒径は、レーザー回折/散乱法により測定することができる。
【0032】
活性エネルギー線硬化型樹脂組成物が微粒子を含有する場合、微粒子の含有量は、前記樹脂組成物の固形分中、0.1~170質量%が好ましく、1~50質量%がより好ましい。
【0033】
活性エネルギー線硬化型樹脂組成物は、レベリング剤を含有するものが好ましい。レベリング剤を含有する活性エネルギー線硬化型樹脂組成物を用いることで、ハードコート層の表面粗さを効率よく制御することができる。
レベリング剤としては、シロキサン系化合物が挙げられる。なかでも、ポリジメチルシロキサンおよびその誘導体等のジアルキルシロキサン骨格を有する化合物が好ましい。
活性エネルギー線硬化型樹脂組成物がレベリング剤を含有する場合、レベリング剤の含有量は、前記樹脂組成物の固形分中、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
【0034】
活性エネルギー線硬化型樹脂組成物は、本発明の効果を妨げない範囲で、その他の成分を含有してもよい。
その他の成分としては、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、着色顔料等が挙げられる。これらの含有量は、目的に合わせて適宜決定すればよい。
【0035】
ハードコート層を形成する方法は特に限定されない。例えば、活性エネルギー線硬化型樹脂組成物、及び必要に応じて溶媒を含有する塗工液を調製し、次いで、基材上に、この塗工液を公知の方法により塗工し、得られた塗膜を硬化させることにより、活性エネルギー線硬化型樹脂組成物の硬化物からなるハードコート層を形成することができる。また、必要に応じて、塗膜を硬化させる前に、乾燥処理を施してもよい。
【0036】
塗工液の調製に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0037】
塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
【0038】
塗膜を乾燥させる場合、その乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を採用できる。乾燥温度は、通常60~130℃の範囲である。乾燥時間は、通常数秒から数十分である。
【0039】
塗膜の硬化は、塗膜に活性エネルギー線を照射することにより行うことができる。
活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等が挙げられる。これらの中でも、比較的簡便な装置を用いて発生させることができることから、活性エネルギー線としては、電子線、紫外線が好ましく、紫外線がより好ましい。
活性エネルギー線として紫外線を用いる場合、紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、ブラックライトランプ、メタルハライドランプ等の光源を用いることができる。紫外線の光量には特に制限はないが、通常100mJ/cm2~1,000mJ/cm2である。照射時間は、通常数秒~数時間であり、照射温度は、通常室温~100℃である。
【0040】
ハードコート層の厚みは、通常、20μm以下、好ましくは0.5~20μm、より好ましくは1.0~10μmである。
【0041】
帯電防止層は、特に限定されないが、金属アルコキシド及び/又は金属アルコキシドの部分加水分解物の縮合重合体を含む帯電防止層形成用組成物からなるものであることが好ましい。この帯電防止層を設けることにより、ガスバリア性積層体に帯電防止性が付与される。
金属アルコキシドは一般にM(OR)nで表され、金属Mとしては特に限定されず、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム、バリウム等のアルカリ土類金属、スカンジウム、イットリウム等の周期表第3族元素;チタン、ジルコニウム、ハフニウム等の周期表第4族元素;バナジウム、ニオブ、タンタル等の周期表第5族元素;モリブデン、タングステン等の周期表第6族元素;鉄等
の周期表第8族元素;亜鉛等の周期表第12族元素;ホウ素、アルミニウム、ガリウム、インジウム等の周期表第13族元素;ケイ素、ゲルマニウム、スズ、鉛等の周期表第14族元素;リン、アンチモン、ビスマス等の周期表第15族元素;ランタン等のランタノイド等が挙げられる。これらのうち帯電防止性が高く、平滑化層との接着性が高いとの観点からケイ素が最も好ましい。すなわち、テトラアルコキシシランが最も好ましい。上記金属アルコキシドは単独で用いてもよく、また複数種の金属アルコキシドを混合して用いてもよい。
また、Rはアルキル基を示し、本発明では炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がさらに好ましい。ひとつの金属アルコキシドに複数のアルキル基が存在する場合には、それらは同一でも異なっていてもよい。nは金属Mの価数によって決定される整数であるが、通常1~5の範囲である。
これらの金属アルコキシドはあらかじめ部分的に加水分解されているものでもよく、ま
た金属アルコキシドと部分的に加水分解されている金属アルコキシドが混合されていても
よい。
【0042】
帯電防止層形成用組成物は、有機微粒子、無機微粒子等の微粒子を含有するものが好ましい。微粒子を含有する帯電防止層形成用組成物を用いることで、帯電防止層の表面粗さを効率よく制御することができる。このような微粒子としては、ハードコート層の説明で記載したものと同様のものが使用できる。
【0043】
帯電防止層の形成方法は特に限定されず、種々の方法が用いられるが、金属アルコキシド及び/又は金属アルコキシドの部分加水分解物を含む塗工液を塗工して形成することが好ましい。
また塗工液の塗工方法としては、通常慣用される方法を適宜用いることができる。例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法などが挙げられる。なお、塗工時には金属アルコキシド及び/又は金属アルコキシドの部分加水分解物を溶剤に溶解させて塗工することができ、特に有機系の溶剤を好適に用いることができる。使用し得る有機系の溶剤としては特に限定されず、例えばエタノール、イソプロパノール等のアルコール溶剤、メチルエチルケトン等のケトン溶剤を用いることができる。
上記金属アルコキシド及び/又は金属アルコキシドの部分加水分解物は、加水分解反応と重縮合反応によって縮合重合体をなし、帯電防止層を形成するものであり、加水分解反応を促進させるために塩酸や硝酸等の酸触媒を加えてもよい。
また、金属アルコキシド及び/又は金属アルコキシドの部分加水分解物を上記方法で塗工した後、乾燥や金属アルコキシド及び/又は金属アルコキシドの部分加水分解物の重縮合反応を促進することを目的に加熱処理することが好ましい。加熱条件としては上記目的を達成し得る範囲内で、特に限定されないが、通常40~120℃の範囲で、加熱時間20秒から5分程度行うことが好ましい。生産性と熱収縮しわの発生を防止するとの観点から、加熱温度は60~110℃の範囲、加熱時間30秒~2分程度行うことがさらに好ましい。
【0044】
帯電防止層の厚みは、通常、20μm以下、好ましくは0.05~10μm、より好ましくは0.08~3μmである。
【0045】
機能層表面(機能層の、基材側とは反対側の面)の算術平均粗さ(Ra)は、好ましくは5nm以上、より好ましくは5~20nm、さらに好ましくは5~10nmである。
機能層表面の粗さ曲線の最大断面高さ(Rt)は、好ましくは100nm以上、より好ましくは100~1000nm、さらに好ましくは100~800nmである。
機能層表面がこのような粗さであることで、後述する摩擦特性を有するガスバリア性積層体を効率よく得ることができる。
機能層表面やその他の層の表面の、算術平均粗さ(Ra)や、粗さ曲線の最大断面高さ(Rt)は、光干渉顕微鏡を用いて、500μm×500μmの領域について観察することにより求めることができる。
【0046】
(3)平滑化層
本発明のガスバリア性積層体を構成する平滑化層は、基材表面の凹凸を低減化し、ガスバリア性積層体の層間密着性を向上させるものである。
【0047】
平滑化層としては、例えば、活性エネルギー線硬化型樹脂組成物の硬化物からなる層が挙げられる。
活性エネルギー線硬化型樹脂組成物としては、ハードコート層形成用の活性エネルギー線硬化型樹脂組成物と同様のものが挙げられる。
ただし、平滑化層は、機能層よりも平滑性に優れるものが好ましいため、前記微粒子等の、平滑化層の表面を粗くする成分を含まないものが好ましい。
平滑化層は、ハードコート層の形成方法と同様の方法により形成することができる。
【0048】
平滑化層の厚みは、通常、20μm以下、好ましくは0.1~20μm、より好ましくは0.5~10μmである。
【0049】
平滑化層表面(平滑化層の、基材側とは反対側の面)の算術平均粗さ(Ra)は、好ましくは5nm以下、より好ましくは0.1~5nm、さらに好ましくは0.1~4nm、特に好ましくは1~4nmである。
平滑化層表面の粗さ曲線の最大断面高さ(Rt)は、好ましくは100nm以下、より好ましくは1~100nm、さらに好ましくは20~80nm、特に好ましくは30~65nmである。
平滑化層表面がこのような粗さであることで、ガスバリア性積層体の層間密着性が向上するとともに、後述する摩擦特性を有するガスバリア性積層体を効率よく得ることができる。
【0050】
(4)ガスバリア層
本発明のガスバリア性積層体を構成するガスバリア層は、酸素や水蒸気等のガスの透過を抑制する特性(ガスバリア性)を有する層である。
【0051】
ガスバリア層としては、例えば、無機蒸着膜や重合体を含む層(以下、「重合体層」ということがある。)に改質処理を施して得られたもの〔この場合、ガスバリア層とは、イオン注入処理等により改質された領域のみを意味するのではなく、「改質された領域を含む重合体層」を意味する。〕等が挙げられる。
【0052】
無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。
【0053】
無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。
【0054】
無機蒸着膜の厚さは、使用する無機化合物によっても異なるが、ガスバリア性と取り扱い性の観点から、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
【0055】
重合体層に改質処理を施して得られるガスバリア層において、用いる重合体としては、ケイ素含有重合体、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
これらの重合体は1種単独で、あるいは2種以上を組合せて用いることができる。
【0056】
これらの中でも、より優れたガスバリア性を有するガスバリア層を形成し得ることから、重合体としては、ケイ素含有重合体が好ましい。ケイ素含有重合体としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。なかでも、薄くても優れたガスバリア性を有するガスバリア層を形成できることから、ポリシラザン系化合物が好ましい。ポリシラザン系化合物を含む層に改質処理を施すことで、酸素、窒素、ケイ素を主構成原子として有する層(酸窒化珪素層)を形成することができる。
【0057】
ポリシラザン系化合物は、分子内に-Si-N-結合(シラザン結合)を含む繰り返し単位を有する重合体である。具体的には、式(1)
【0058】
【0059】
で表される繰り返し単位を有する化合物が好ましい。また、用いるポリシラザン系化合物の数平均分子量は、特に限定されないが、100~50,000であるのが好ましい。
【0060】
前記式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
【0061】
前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。
【0062】
無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。
【0063】
無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。
【0064】
前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
【0065】
無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。
【0066】
前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
【0067】
アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。
【0068】
これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1~6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。
【0069】
前記式(1)で表される繰り返し単位を有するポリシラザン系化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
また、本発明においては、ポリシラザン系化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、特開昭62-195024号公報、特開平2-84437号公報、特開昭63-81122号公報、特開平1-138108号公報等、特開平2-175726号公報、特開平5-238827号公報、特開平5-238827号公報、特開平6-122852号公報、特開平6-306329号公報、特開平6-299118号公報、特開平9-31333号公報、特開平5-345826号公報、特開平4-63833号公報等に記載されているものが挙げられる。
これらの中でも、ポリシラザン系化合物としては、入手容易性、及び優れたガスバリア性を有するイオン注入層を形成できる観点から、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。
また、ポリシラザン系化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0070】
重合体層は、上述した重合体の他に、本発明の目的を阻害しない範囲で他の成分を含有してもよい。他の成分としては、硬化剤、老化防止剤、光安定剤、難燃剤等が挙げられる。
重合体層中の重合体の含有量は、より優れたガスバリア性を有するガスバリア層が得られることから、50質量%以上が好ましく、70質量%以上がより好ましい。
【0071】
重合体層の厚みは、特に制限されないが、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
本発明においては、重合体層の厚みがナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
【0072】
重合体層を形成する方法は特に限定されない。例えば、重合体の少なくとも一種、所望により他の成分、及び溶剤等を含有する重合体層形成用溶液を調製し、次いで、この重合体層形成用溶液を、公知の方法により塗工し、得られた塗膜を乾燥することにより、重合体層を形成することができる。
【0073】
重合体層形成用溶液に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0074】
重合体層形成用溶液の塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
【0075】
形成された塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常60~130℃の範囲である。加熱時間は、通常数秒から数十分である。
【0076】
重合体層の改質処理としては、イオン注入処理、プラズマ処理、紫外線照射処理、熱処理等が挙げられる。
イオン注入処理は、後述するように、重合体層にイオンを注入して、重合体層を改質する方法である。
プラズマ処理は、重合体層をプラズマ中に晒して、重合体層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。
紫外線照射処理は、重合体層に紫外線を照射して重合体層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
これらの中でも、重合体層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
【0077】
重合体層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン等のシクロアルカン系ガス類のイオン;シクロペンテン等のシクロアルケン系ガス類のイオン;金属のイオン;有機ケイ素化合物のイオン;等が挙げられる。
これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
これらの中でも、より簡便にイオンを注入することができ、より優れたガスバリア性を有するガスバリア層が得られることから、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオンが好ましい。
【0078】
イオンの注入量は、ガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定することができる。
【0079】
イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便に目的のバリア層が得られることから、後者のプラズマイオンを注入する方法が好ましい。
【0080】
プラズマイオン注入は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、重合体層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、重合体層の表面部に注入して行うことができる。
【0081】
イオン注入により、イオンが注入される領域の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、重合体層の厚み、積層体の使用目的等に応じて決定すればよいが、通常、10~300nmである。
【0082】
(4)長尺のガスバリア性積層体
本発明の長尺のガスバリア性積層体は、前記基材の一方の面側に、前記機能層が積層されてなり、基材のもう一方の面側に、前記平滑化層及びガスバリア層がこの順に積層されてなり、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が0.35~0.80であることを特徴とする。
【0083】
機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数は、0.35~0.80であり、好ましくは0.40~0.75である。
機能層とガスバリア層との間の静摩擦係数が上記範囲内にあることで、本発明の長尺のガスバリア性積層体をロール状に巻き取る際やロールから繰り出す際に、ブロッキングやエア噛み等の問題が起きにくくなる。
【0084】
本発明の長尺のガスバリア性積層体は、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数が、好ましくは0.35~0.80であり、より好ましくは0.40~0.75である。
機能層と平滑化層との間の静摩擦係数が上記範囲内にあることで、本発明の長尺のガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムをロール状に巻き取る際やロールから繰り出す際に、ブロッキングやエア噛み等の問題が起きにくくなる。
機能層、平滑化層、ガスバリア層の静摩擦係数は、JIS K7125に準拠して測定することができる。
【0085】
本発明の長尺のガスバリア性積層体としては、機能層/基材/平滑化層/ガスバリア層、という層構成を有するものが挙げられる。
本発明の長尺のガスバリア性積層体は、機能層、基材、平滑化層、ガスバリア層以外の層を有するものであってもよい。
基材、平滑化層、ガスバリア層以外の層としては、導電体層、衝撃吸収層、粘着剤層、工程シート等が挙げられる。なお、工程シートは、積層体を保存、運搬等する際に、積層体を保護する役割を有し、積層体が使用される際には剥離されるものである。
本発明のガスバリア性積層体は、後述する方法により製造することができる。
【0086】
本発明のガスバリア性積層体の厚みは、特に限定されないが、好ましくは、5~100μm、より好ましくは、10~50μm、さらに好ましくは、20~40μmである。
【0087】
本発明のガスバリア性積層体の、温度40℃、相対湿度90%における水蒸気透過率は、好ましくは0.1g/(m2・day)以下、より好ましくは0.05g/(m2・day)以下、さらに好ましくは、0.03g/(m2・day)以下である。下限値は特になく、小さいほど好ましいが、通常は、0.001g/(m2・day)以上である。
水蒸気透過率は、実施例に記載の方法により測定することができる。
【0088】
本発明のガスバリア性積層体は、優れたガスバリア性を有しているので、電子デバイス用部材として好適に用いられる。
電子デバイスとしては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
【0089】
2)長尺のガスバリア性積層体の製造方法
本発明製造方法は、本発明の長尺のガスバリア性積層体の製造方法であって、以下のステップ(a-I)~(a-III)を有する製造方法(a)、又は、以下のステップ(b-I)~(b-III)を有する製造方法(b)である。
【0090】
〔製造方法(a)〕
基材用樹脂フィルムのロールから前記樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-I)
ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-II)
ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(a-III)
【0091】
ステップ(a-I)は、基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップである。
【0092】
用いる基材用樹脂フィルムや、平滑化層の形成方法としては、先に示したものと同様のものが挙げられる。
樹脂フィルムを搬送する方法、及び、平滑化層の形成後に平滑化層付樹脂フィルムを巻き取る方法としては、ロールtoロール方式による従来の積層フィルムの製造方法を利用することができる。
【0093】
ステップ(a-II)は、ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップである。
ステップ(a-II)において、平滑化層の、基材側とは反対側の面と、機能層の、基材側とは反対側の面との静摩擦係数は、好ましくは0.35~0.80であり、より好ましくは0.40~0.75である。機能層と平滑化層との間の静摩擦係数が上記範囲内にあることで、長尺のガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムをロール状に巻き取る際や、ロールから繰り出す際に、ブロッキングやエア噛み等の問題がより生じにくくなる。
【0094】
機能層の形成方法としては、先に示したものと同様のものが挙げられる。
ロールから平滑化層付樹脂フィルムを繰り出し、搬送する方法、及び、機能層の形成後に機能層及び平滑化層付樹脂フィルムを巻き取る方法としては、ロールtoロール方式による従来の積層フィルムの製造方法を利用することができる。
【0095】
ステップ(a-III)は、ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップである。
【0096】
平滑化層上に設けられたガスバリア層は通常平滑性に優れる。したがって、このようなガスバリア層を有するガスバリア性積層体もまた、これをロール状に巻き取る際や、ロールから繰り出す際に、ブロッキングやエア噛み等の問題が生じ易くなる。
本発明においては、機能層とガスバリア層との間の摩擦係数を制御することにより、これらの問題を解消することができる。
【0097】
ガスバリア層の形成方法としては、先に示したものと同様のものが挙げられる。
ロールから機能層及び平滑化層付樹脂フィルムを繰り出し、搬送する方法、及び、ガスバリア層の形成後にガスバリア性積層体を巻き取る方法としては、ロールtoロール方式による従来の積層フィルムの製造方法を利用することができる。
【0098】
〔製造方法(b)〕
基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップ(b-I)
ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(b-II)
ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(b-III)
【0099】
ステップ(b-I)は、基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップである。
ステップ(b-1)は、平滑化層の代わりに機能層を形成することを除き、ステップ(a-1)と同様のステップである。
【0100】
ステップ(b-II)は、ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップである。
ステップ(b-II)は、機能層の代わりに平滑化層を形成することを除き、ステップ(a-II)と同様のステップである。
ステップ(b-II)において、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数は、好ましくは0.35~0.80であり、より好ましくは0.40~0.75である。機能層と平滑化層との間の静摩擦係数が上記範囲内にあることで、長尺のガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムをロール状に巻き取る際や、ロールから繰り出す際に、ブロッキングやエア噛み等の問題がより生じにくくなる。
【0101】
ステップ(b-III)は、ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップである。
ステップ(b-III)は、ステップ(a-III)と同様のステップである。
【0102】
本発明の方法〔製造方法(a)又は製造方法(b)〕によれば、本発明の長尺のガスバリア性積層体を効率よく製造することができる。
【実施例】
【0103】
以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
各例中の部及び%は、特に断りのない限り、質量基準である。
【0104】
(ガスバリア性積層体の各層の厚みの測定)
実施例及び比較例で得られたガスバリア性積層体の各層の厚みは、触針式段差計(AMBIOS TECNOLOGY社製、XP-1)を用いて測定した。
【0105】
(各層の平滑性)
実施例及び比較例で得られたガスバリア性積層体又はその製造中間体における各層の平滑性は、光干渉顕微鏡(Veeco社製、「NT1100」)を用いて、250,000μm2(500μm×500μm)の領域について、各層を観察し、算術平均粗さ(Ra)、粗さ曲線の最大断面高さ(Rt)を求めた。
【0106】
(静摩擦係数)
実施例及び比較例で得られたガスバリア性積層体における、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数(表1中、静摩擦係数2と表記)、および、ガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムにおける、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数(表1中、静摩擦係数1と表記)は、それぞれ、2枚のガスバリア性積層体又はその製造中間体を用意し、所定の層が対向するように重ね合わせ、JIS K7125に準拠して測定した。
【0107】
(巻き取り性評価)
実施例1~3及び比較例1で得た長尺のガスバリア性積層体1~5をロール状に巻き取り、以下の基準により巻き取り性を評価した。評価結果を第1表に示す。
○:ブロッキング、エア噛みのどちらも発生しない。
×:少なくとも、ブロッキング又はエア噛みのいずれかが発生した。
【0108】
(鉛筆硬度)
実施例及び比較例で得られたガスバリア性積層体の機能層の表面について、鉛筆引掻塗膜硬さ試験機[東洋精機製作所社製、型式「NP」]を用いて、JIS K 5600-5-4に準拠して、鉛筆法により測定した。
【0109】
(表面抵抗率)
実施例及び比較例で得られたガスバリア性積層体の機能層側の表面抵抗率を、デジタルエレクトロメータ(アドバンテスト社製)に連結した平行電極を用いて測定した。
【0110】
(防眩性)
実施例及び比較例で得られたガスバリア性積層体を、黒色の板の上に、機能層が上になるように載置した。
次いで、機能層の上方で、3波長蛍光灯を点灯し、機能層によって反射させ、下記基準に沿って評価した。得られた結果を表2に示す。
○:機能層での反射により視認される蛍光灯の輪郭がぼやける
×:機能層での反射により視認される蛍光灯の輪郭がぼやけない
【0111】
〔製造例1〕
ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20部をメチルイソブチルケトン100部に溶解させた後、光重合開始剤(BASF社製、商品名:Irgacure127)3部を添加して、平滑化層形成用溶液を調製した。
【0112】
〔製造例2〕
ポリエチレンテレフタレートフィルム(帝人デュポン社製、商品名:PET25テトロンHPE、厚み:25μm、「樹脂フィルム(1)」という。以下にて同じ。)のロールから樹脂フィルム(1)を繰り出し、樹脂フィルム(1)を搬送しながら、樹脂フィルム(1)上に、製造例1で得た平滑化層形成用溶液をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm2、ピーク強度1.466W、パス回数2回)、厚み1μmの平滑化層を形成し、得られた平滑化層付樹脂フィルムをロール状に巻き取った。
【0113】
(製造例3)
光重合開始剤含有ウレタン系ハードコート剤(荒川化学工業社製、商品名:ビームセット575CB、固形分100%)100部に、真球状シリコーンビーズ微粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、商品名:トスパール130、平均粒径3.0μm、固形分100%)5部、エチルセロソルブ61.6部及びイソブタノール61.6部を均一に混合し、固形分46%のハードコート層形成用溶液(1)を調製した。
次いで、製造例2で得た平滑化層付樹脂フィルムのロールから前記樹脂フィルムを繰り出し、前記樹脂フィルムを搬送しながら、その樹脂フィルム面に、ハードコート層形成用溶液(1)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm2、ピーク強度1.466W、パス回数2回)、厚さ2μmのハードコート層Aを形成し、得られた、ハードコート層A/樹脂フィルム/平滑化層、の層構成を有するハードコート層A及び平滑化層付樹脂フィルム(1)をロール状に巻き取った。
【0114】
(製造例4)
テトラエトキシランの加水分解・脱水縮合化合物であるシリケートコーティング液(コルコート社製、製品名:コルコートN103-X、固形分2%100部に、真球状シリコーンビーズ微粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、商品名:トスパール130、平均粒径3.0μm、固形分100%)0.1部を均一に混合し、固形分2%の帯電防止層形成用溶液(2)を調整した。
次いで、製造例2で得た平滑化層付樹脂フィルムのロールから前記樹脂フィルムを繰り出し、前記樹脂フィルムを搬送しながら、その樹脂フィルム面に、帯電防止層形成用溶液(2)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥し厚さ100nmの帯電防止層Aを形成し、得られた、帯電防止層A/樹脂フィルム/平滑化層、の層構成を有する帯電防止層A及び平滑化層付樹脂フィルム(2)をロール状に巻き取った。
【0115】
(製造例5)
多官能(メタ)アクリレートとしてのジペンタエリスリトールヘキサアクリレート(新中村化学工業製,NKエステルA-DPH)100部、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製,イルガキュア184)3部、シリコーン樹脂微粒子(モメンティブ(株)製、トスパール 120、体積平均粒子径:2μm)5部と、シリカナノ粒子(日産化学(株)製、MIBK-ST,平均粒径:10nm)18部とを混合後、プロピレングリコールモノメチルエーテルで希釈し、固形分濃度30%の防眩性ハードコート層形成用溶液(3)を得た。
次いで、製造例2で得た平滑化層付樹脂フィルムのロールから前記樹脂フィルムを繰り出し、前記樹脂フィルムを搬送しながら、その樹脂フィルム面に、防眩性ハードコート層形成用溶液(3)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm2、ピーク強度1.466W、パス回数2回)、厚さ2μmの防眩性ハードコート層Aを形成し、得られた防眩性ハードコート層A/樹脂フィルム/平滑化層、の層構成を有する防眩層及び平滑化層付樹脂フィルム(3)をロール状に巻き取った。
【0116】
(製造例6)
製造例3において、ハードコート層形成用溶液(1)に代えて、平滑化層形成用溶液をそのままハードコート層形成用溶液として用いたことを除き、ハードコート層B/樹脂フィルム/平滑化層、の層構成を有するハードコート層B及び平滑化層付樹脂フィルム(4)をロール状に巻き取った。
【0117】
(製造例7)
製造例4において、真球状シリコーンビーズ微粒子を添加しないことを除き、実施例2と同様にして帯電防止層Bを作製し、帯電防止層B/樹脂フィルム/平滑化層の層構成を有する帯電防止層B及び平滑化層付樹脂フィルム(5)をロール状に巻き取った。
【0118】
〔実施例1〕
製造例3で得たハードコート層A及び平滑化層付樹脂フィルム(1)のロールから前記樹脂フィルム(1)を繰り出し、前記樹脂フィルム(1)を搬送しながら、その平滑化層表面に、ペルヒドロポリシラザン(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をバーコート法により塗布し、得られた塗膜を120℃で2分間加熱し、厚み150nmのペルヒドロポリシラザン層を形成した。その後、改質処理として、プラズマイオン注入装置を用いてペルヒドロポリシラザン層の表面に、アルゴン(Ar)をプラズマイオン注入し、ガスバリア層を形成し、ハードコート層A/基材(樹脂フィルム)/平滑化層/ガスバリア層、の層構成を有する長尺のガスバリア性積層体1を得た。
長尺のガスバリア性積層体1の各層の表面粗さ、静摩擦係数、並びに、巻き取り性、鉛筆硬度、表面抵抗率及び防眩性の評価結果を第1表に示す。
【0119】
ガスバリア層を形成するために用いたプラズマイオン注入装置及びプラズマイオン注入条件は以下の通りである。
(プラズマイオン注入装置)
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
(プラズマイオン注入条件)
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/分
【0120】
〔実施例2〕
実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例4で得た帯電防止層A及び平滑化層付樹脂フィルム(2)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体2を得た。
長尺のガスバリア性積層体2の各層の表面粗さ、静摩擦係数を第1表に示す。
【0121】
〔実施例3〕
実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例5で得た防眩層及び平滑化層付樹脂フィルム(3)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体3を得た。
長尺のガスバリア性積層体3の各層の表面粗さ、静摩擦係数を第1表に示す。
【0122】
〔比較例1〕
実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例6で得たハードコート層B及び平滑化層付樹脂フィルム(4)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体4を得た。
長尺のガスバリア性積層体4の各層の表面粗さ、静摩擦係数を第1表に示す。
【0123】
〔比較例2〕
実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例7で得た帯電防止層B及び平滑化層付樹脂フィルム(5)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体5を得た。
長尺のガスバリア性積層体5の各層の表面粗さ、静摩擦係数を第1表に示す。
【0124】
【0125】
第1表から、以下のことがわかる。
実施例1~3のガスバリア性積層体は、巻き取る際に、ブロッキングやエア噛みが発生せず、巻き取り性に優れている。
一方、比較例1、2のガスバリア性積層体は、巻き取る際に、ブロッキングやエア噛みが発生するため、巻き取り性に劣っている。