IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ハネウェル・インターナショナル・インコーポレーテッドの特許一覧

特許7642331液体吸着剤を使用する航空機の客室の汚染物質除去
<>
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図1
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図2
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図3
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図4
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図5A
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図5B
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図6A
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図6B
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図7
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図8A
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図8B
  • 特許-液体吸着剤を使用する航空機の客室の汚染物質除去 図8C
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-28
(45)【発行日】2025-03-10
(54)【発明の名称】液体吸着剤を使用する航空機の客室の汚染物質除去
(51)【国際特許分類】
   B64D 13/00 20060101AFI20250303BHJP
   B01D 53/18 20060101ALI20250303BHJP
【FI】
B64D13/00
B01D53/18
【請求項の数】 6
(21)【出願番号】P 2020126294
(22)【出願日】2020-07-27
(65)【公開番号】P2021031055
(43)【公開日】2021-03-01
【審査請求日】2023-07-19
(31)【優先権主張番号】16/551,368
(32)【優先日】2019-08-26
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】500575824
【氏名又は名称】ハネウェル・インターナショナル・インコーポレーテッド
【氏名又は名称原語表記】Honeywell International Inc.
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100162846
【弁理士】
【氏名又は名称】大牧 綾子
(72)【発明者】
【氏名】レベッカ・カミレ
(72)【発明者】
【氏名】フィービー・ヘンソン
(72)【発明者】
【氏名】ピーター・エム.・ミケラコス
(72)【発明者】
【氏名】ジャン・ルドヴィック
【審査官】塚本 英隆
(56)【参考文献】
【文献】米国特許出願公開第2018/0243682(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B64D 13/00
B01D 53/18
(57)【特許請求の範囲】
【請求項1】
航空機用汚染物質除去システムであって、
航空機の客室から客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出するように構成された、膜スクラバーセパレータと、
前記航空機により受け取られた外気流を前記液体吸着剤に供給して、前記液体吸着剤から前記汚染物質を脱着させ、汚染物質流に前記汚染物質を排出するように構成された、膜ストリッパーセパレータと、
前記航空機の1つ以上の水源を使用して、前記清浄な空気流の湿度又は前記液体吸着剤の水濃度を維持するように構成された、湿度管理システムと、
を含む、航空機用汚染物質除去システム。
【請求項2】
スクラビングモードでは、
航空機の客室から客室空気流を受け取り、
前記客室空気流から汚染物質を液体吸着剤に吸収させ、
清浄な空気流を排出し、
ストリッピングモードでは、
前記航空機の外気流を受け取り、
前記航空機により受け取られた前記外気流を前記液体吸着剤に供給して前記液体吸着剤から前記汚染物質を脱着させ、
汚染物質流に前記汚染物質を排出する
ように構成された、膜セパレータを含む、航空機用汚染物質除去システム。
【請求項3】
客室空気流を受け取り、
汚染物質を前記客室空気流から液体吸着剤に吸収させ、
清浄な空気流を排出するように構成された膜スクラバーセパレータと、
航空機により受け取られた外気流を前記液体吸着剤に供給して、前記液体吸着剤から前記汚染物質を脱着させ、
汚染物質流に前記汚染物質を排出するように構成された膜ストリッパーセパレータと、
航空機気流に流体連結された1つ以上の熱交換器を使用して、前記液体吸着剤の温度を維持するように構成された熱管理システムと、
を含む、航空機用汚染物質除去システム。
【請求項4】
航空機にラム空気流を受け取るように構成されたスイープガス入口を更に含み、前記外気流は前記ラム空気流である、請求項1から3のいずれか1項に記載の航空機用汚染物質除去システム。
【請求項5】
前記ラム空気流は、汚染物質の前記液体吸着剤からの脱着速度を増加させる、請求項4に記載の航空機用汚染物質除去システム。
【請求項6】
請求項1に記載の航空機用汚染物質除去システムであって、
前記湿度管理システムは、
前記汚染物質流から水を凝縮するように構成された凝縮器と、
凝縮した水を前記凝縮器から分離し、分離された水を水排出流に排出するように構成された水分離器と、
前記水排出流から水を受け取るように構成された水貯蔵部と、
前記水貯蔵部から液体吸着回路へ水を排出するように構成された水吸着再循環流と、
を備える、航空機用汚染物質除去システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、汚染物質除去システムを使用して空気から汚染物質を除去するためのシステム及び技術に関する。
【背景技術】
【0002】
航空機の環境制御システム(ECS)は、航空機の客室に加圧空気を供給することができる。この加圧空気の一部は、航空機のエンジンから供給される抽気、又は専用の客室空気圧縮機から供給される圧縮空気であり得、一方、加圧空気の残部は、航空機の客室からの再循環空気であり得る。エンジンへの負荷及び対応する燃料消費を低減するために、抽気又は圧縮空気からの加圧空気の部分を低減してよく、再循環される加圧空気の部分を増加させる。しかしながら、航空機の客室から再循環される加圧空気の部分は、再循環空気中の汚染物質の存在によって制限される場合がある。例えば、客室の空気は、比較的高濃度の二酸化炭素及び揮発性炭化水素を含んでいることがあり、これらは低濃度では乗員にとって不快であり、高濃度では乗員にとって毒性がある場合がある。その結果、客室の空気は、航空機の客室の圧力又は温度を維持するために必要であり得るよりも高い比率の、コストのかかる抽気又は圧縮空気で連続的に置換されることがある。
【発明の概要】
【0003】
本開示は、液体吸着剤を使用して航空機の客室から汚染物質を除去し、航空機から汚染物質を排出するためのシステム及び技術について記載する。汚染された加圧客室空気を航空機から直接排出するのではなく、汚染物質除去システムは、1つ以上の膜セパレータを使用して、汚染物質を含有する客室空気を処理して、客室の空気から汚染物質を液体吸着剤に吸収させ、液体吸着剤から汚染物質を汚染物質流に脱着させることができる。二酸化炭素などのいくつかの脱着した汚染物質は、航空機から排出してよく、一方、水などの他の成分は、汚染物質流から除去し、客室空気、液体吸着剤、又は航空機における別のシステムに戻してよい。場合によっては、航空機の他のシステム又は流体流を客室空気及び/又は液体吸着回路に組み込んで、汚染物質除去システムの有効性を更に高めること及び/又は環境制御システムに対する負荷を低減することもできる。このようにして、乗員の安全性も快適性も損なうことなく、抽気からの加圧空気の部分を低減することができる。
【0004】
いくつかの例では、本開示は、膜スクラバ-セパレータと、膜ストリッパ-セパレータと、湿度管理システムと、を備える、航空機用汚染物質除去システムについて記載する。膜スクラバ-セパレータは、航空機の客室から客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出するように構成されている。膜ストリッパ-セパレータは、液体吸着剤から汚染物質を脱着させ、汚染物質を汚染物質流に排出するように構成されている。湿度管理システムは、航空機の1つ以上の水源を使用して、清浄な空気流の湿度又は液体吸着剤の水濃度を維持するように構成されている。
【0005】
いくつかの例では、本開示は、スクラビングモード及びストリッピングモードで動作するように構成され、膜セパレータを備える、航空機用汚染物質除去システムについて記載する。スクラビングモードでは、膜セパレータは、航空機の客室から客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出するように構成されている。ストリッピングモードでは、膜セパレータは、外気流を受け取り、外気流を使用して液体吸着剤から汚染物質を脱着させ、汚染物質を汚染物質流に排出するように構成されている。
【0006】
いくつかの例では、本開示は、膜スクラバ-セパレータと、膜ストリッパ-セパレータと、熱管理システムと、を備える、航空機用汚染物質除去システムについて記載する。膜スクラバ-セパレータは、航空機の客室から客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出するように構成されている。膜ストリッパ-セパレータは、液体吸着剤から汚染物質を脱着させ、汚染物質を汚染物質流に排出するように構成されている。熱管理システムは、航空機気流に流体連結された1つ以上の熱交換器を使用して、液体吸着剤の温度を維持するように構成されている。
【0007】
いくつかの例では、本開示は、汚染物質除去システムから汚染物質についての汚染物質濃度測定値を受信するように構成された、航空機用汚染物質除去システムについて記載する。汚染物質除去システムは、航空機の客室から客室空気流を受け取り、液体吸着剤を使用して客室空気流から汚染物質を吸収させ、液体吸着剤から汚染物質を脱着させ、清浄な空気流を客室に排出し、汚染物質を含む汚染物質流を航空機から排出するように構成されている。コントローラは、更に、汚染物質濃度測定値が汚染物質濃度設定値を超えるかどうかを判定し、汚染物質濃度設定値を超える汚染物質濃度測定値に応答して、清浄な空気流中の汚染物質の濃度を減少させるために制御信号を送信するように構成されている。
【図面の簡単な説明】
【0008】
1つ以上の例の詳細を添付図面及び以下の明細書に記載する。他の特徴、目的、及び利点は、明細書、図面、及び特許請求の範囲から明らかとなるであろう。
【0009】
図1】液体吸着剤を使用して航空機の客室から汚染物質を除去し、航空機から汚染物質を排出するための汚染物質除去システムを備える例示的な環境制御システムを示す図である。
【0010】
図2】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して、航空機の客室から汚染物質を除去するための例示的な汚染物質除去システムを示す図である。
【0011】
図3】スクラビングモード又はストリッピングモードのいずれでも動作する単一の膜セパレータを使用して、航空機の客室から汚染物質を除去するための例示的な汚染物質除去システムを示す図である。
【0012】
図4】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、湿度管理システムを使用して航空機の客室内の湿度を維持するための例示的な汚染物質除去システムを示す図である。
【0013】
図5A】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、スイープガスを加湿するために水気化器を使用して航空機の客室内の湿度を維持するための例示的な汚染物質除去システムを示す図である。
【0014】
図5B】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、客室空気からの湿度を一定に保つために水気化器を使用して航空機の客室内の湿度を維持するための例示的な汚染物質除去システムを示す図である。
【0015】
図6A】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、客室空気から湿気を捕捉するために除湿器を使用して航空機の客室内の湿度を維持するための例示的な汚染物質除去システムを示す図である。
【0016】
図6B】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、スイープガスから湿気を捕捉するために除湿器を使用して航空機の客室内の湿度を維持するための例示的な汚染物質除去システムを示す図である。
【0017】
図7】膜スクラバ-セパレータ及び汚染物質用膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、水用膜ストリッパ-セパレータを使用して航空機の客室内の湿度を維持するための例示的な汚染物質除去システムを示す図である。
【0018】
図8A】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、航空機流体流を使用して液体吸着剤の温度を維持するための例示的な汚染物質除去システムを示す図である。
【0019】
図8B】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、スイープガスを冷却流体として使用して液体吸着剤の温度を維持するための例示的な汚染物質除去システムを示す図である。
【0020】
図8C】膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、スイープガスを加熱流体として使用して液体吸着剤の温度を維持するための例示的な汚染物質除去システムを示す図である。
【発明を実施するための形態】
【0021】
本明細書に記載の汚染物質除去システムは、航空機の環境制御システム(ECS)の一部として利用することができる。図1は、航空機の客室102の環境を維持するための例示的なECS100を示す図である。ECS100は、航空機の客室102、汚染物質除去システム104、及び空調システム(ACS)106を含む。ACS106は、調節された空気流114として、冷却された加圧空気を客室102に供給するように構成されている。例えば、ACS106は、航空機のエンジンから高温加圧抽気又は客室空気圧縮機から圧縮空気を受け取り、抽気又は圧縮空気を調節して、客室102内で使用するための低温加圧空気を生成することができる。ECS100は、汚染物質除去システム104の周囲の客室空気流108から客室空気の一部をバイパスするように構成された汚染物質除去システムバイパス流116を含んでいてよい。
【0022】
本明細書で論じる実施形態では、汚染物質除去システム104は、液体吸着剤を使用して客室空気から汚染物質を除去し、除去された汚染物質を航空機から排出するように構成されている。汚染物質除去システム104は、汚染された客室空気を客室102から客室空気流108として受け取り、清浄な空気を清浄な空気流110として排出し、汚染物質流112内の汚染物質を排出することができる。汚染物質除去システム104による処理の結果、清浄な空気流110からの清浄な空気は、客室空気流108からの客室空気よりも低い濃度の汚染物質を有し得る。汚染物質除去システム104の更なる動作について、図2図8に示される様々な実施形態によって説明する。
【0023】
いくつかの例では、ECS100は、調節された空気流114からの調節された空気、清浄な空気流110からの処理された清浄な空気、及び汚染物質除去システムバイパス流116を介した客室空気流108からの未処理の客室空気の組み合わせを調整することにより、客室102への清浄な客室空気の組成を制御するように構成され得る。例えば、調節された空気流114、清浄な空気流110、及び汚染物質除去システムバイパス流116はそれぞれ、異なる汚染物質の測定濃度、温度、及び圧力を有し得るが、客室102は、目標の汚染物質濃度、温度、及び圧力を有し得る。ACS106は、汚染物質除去システム104によって生成される清浄な空気流110と比較して、比較的高いエネルギーコストで、比較的低温の調節された加圧空気流114を生成することができ、一方、ECS100は、汚染物質除去システム104によって生成される清浄な空気流110と比較して、比較的低いエネルギーコストで、比較的高温の汚染された(しかし依然として加圧された)汚染物質除去バイパス流116を生成することができる。したがって、これらの流れを混合すると、調節された空気流114及び/又は清浄な空気流110によって全ての清浄な客室空気が供給された場合よりも少ないエネルギーを使用しながら、目標の汚染物質濃度、温度、及び圧力内の清浄な客室空気を生成することができる。
【0024】
いくつかの例では、ECS100は、冷却され、調節された加圧空気流114、清浄な空気流110、及び汚染物質除去バイパス流116を受け取り、調節された空気流114、清浄な空気流110、及び/又は汚染物質除去バイパス流116の流量を制御して、客室100の目標の汚染物質濃度、温度、及び圧力を達成する(例えば、閾値未満又は閾値範囲内に維持する)ように構成されたマニホールド(図示せず)を備えていてもよい。例えば、ECS100は、圧力及び温度の閾値を下回る圧力及び温度を維持するのに十分な流量で調節された空気流110を供給し、汚染物質の濃度の閾値を下回る汚染物質の濃度を維持するのに十分な流量で清浄な空気流110を供給し、そして、客室空気流から客室空気の残りを供給することができる。この方法で、ECS100は、調節された空気流114のみから、又は調節された空気流114及び清浄な空気流110の混合物のみから供給される空気と比較して低いエネルギーコストで、様々な動作条件のために適切に調節された空気を客室102に提供することができる。
【0025】
本明細書で論じる汚染物質除去システムのいくつかの実施形態では、少なくとも1つの膜スクラバ-セパレータ及び少なくとも1つの膜ストリッパ-セパレータを使用して、汚染物質を航空機の客室から除去し、航空機から排出することができる。例えば、直列に接続された2つの膜セパレータは、第1の膜セパレータ内において、客室空気から汚染物質を連続的にスクラビングして清浄な空気を生成し、第2の膜セパレータ内において、使用済みの液体吸着剤から汚染物質をストリッピングして汚染物質を排出することができる液体吸着回路を形成することができる。図2は、膜スクラバ-セパレータ204及び膜ストリッパ-セパレータ206と共に液体吸着剤を使用して、航空機の客室202から汚染物質を除去するための例示的な汚染物質除去システム200を示す図である。
【0026】
汚染物質除去システム200は、客室202、様々な伝熱部品のための冷却システム(図示せず)、及び航空機の外側の大気を含む、汚染物質除去システム200の外側のシステムへの接続を含む。汚染物質除去システム200は、客室202から客室空気流208を受け取るように構成された入口と、清浄な空気流210を客室202に排出するように構成された出口と、を備える。清浄な空気流210は、客室空気流208よりも低い汚染物質濃度を有する。清浄な空気流210は依然として汚染物質を含んでいる場合もあるが、汚染物質は、各汚染物質の閾値レベル未満である。汚染物質除去システム200は、航空機から汚染物質流212を排出するように構成された機外出口を備える。図2の例では、汚染物質除去システム200は、スイープガス流214を受け取るように構成されたスイープガス入口を備える。しかしながら、他の例、例えば、真空が汚染物質流212を引き離すことができる例などではスイープガス流214を省略してもよい。
【0027】
汚染物質除去システム200は、客室202とスクラバ-セパレータ204との間で客室空気を循環させるように構成された客室空気回路を備える。図2の例では、客室空気流208は、スクラバ-セパレータ204に入る前に客室空気流208から粒子を除去するように構成されたフィルタ218と、客室空気をスクラバ-セパレータ204に引き入れるように構成された送風機220と、を含む。図2の例では、清浄な空気流210は、客室202に入る前に任意の漏出した液体吸着剤を除去するように及び/又は清浄な空気流210から清浄な空気を更に濾過するように、構成されたフィルタ222を含む。清浄な空気流208は、客室空気流208中の汚染物質の濃度よりも約25%~約99%低い濃度の汚染物質を有し得る。いくつかの例では、客室空気流208は、約1000ppm~約5000ppmの二酸化炭素濃度及び/又は約1ppb~約100ppbの炭化水素濃度を有し得る。
【0028】
汚染物質除去システム200は、スクラバ-セパレータ204とストリッパ-セパレータ206との間で液体吸着剤を循環させるように構成された液体吸着回路216を備える。例えば、ポンプ232は、清浄な液体吸着剤を清浄な液体吸着剤貯蔵部230からスクラバ-セパレータ204に送り込むことができ、一方、ポンプ226は、使用済みの液体吸着剤をスクラバ-セパレータ204からストリッパ-セパレータ206に送り込むことができる。清浄な液体吸着剤は、汚染物質を含まない未使用の液体吸着剤、又は使用済みの液体吸着剤よりも低い濃度の汚染物質を有する再生液体吸着剤を含んでいてよい。いくつかの例では、清浄な液体吸着剤は、スクラバ-セパレータ204に入る前に冷却器234によって冷却されてもよい。いくつかの例では、使用済みの液体吸着剤は、ストリッパ-セパレータ206に入る前に熱交換器224によって予熱されてもよい。以下の図8A図8Cで論じるように、冷却器234及び/又は熱交換器224は、スイープガス流などの様々な航空機流体流又は他の航空機システムの加熱/冷却回路に連結されてもよい。
【0029】
汚染物質除去システム200は、スクラバ-セパレータ204を備える。気相側では、スクラバ-セパレータ204は、客室空気流208から客室空気を受け取るように構成されている。客室空気流208からの客室空気は、二酸化炭素、水、炭化水素揮発物、及び他のガス状物質などの、客室202からの汚染物質を含む。スクラバ-セパレータ204は、客室空気流208から客室内の1つ以上の汚染物質種を液体吸着剤に吸収させるように構成されている。スクラバ-セパレータ204は、それぞれの膜の気相側(例えば、シェル側)において客室空気流208からの客室空気を流し(例えば、提供し又は流れを方向づけ)、膜の液相側(例えば、チューブ側)において液体吸着剤を流すようにそれぞれ構成された1枚以上の分離膜を備える。二酸化炭素などの汚染物質及び水は、濃度勾配によって膜の繊維を横断して流れ、液体吸着剤によって吸収され得るが、一方、液体吸着剤は、実質的に、膜の繊維を横断して流れることはできない。その結果、スクラバ-セパレータ204から排出された清浄な空気は、スクラバ-セパレータ204が受け取った客室空気よりも低い濃度の汚染物質を有し得る。スクラバ-セパレータ204は、清浄な空気流210を客室202に排出するように構成されている。液相側では、スクラバ-セパレータ204は、清浄な液体吸着剤を受け取るように構成されている。清浄な液体吸着剤は、スクラバ-セパレータ204を通って流れ、スクラバ-セパレータ204の膜を通して客室空気流208の客室空気から汚染物質を吸収することができる。その結果、スクラバ-セパレータ204から排出された使用済みの液体吸着剤は、スクラバ-セパレータ204が受け取った清浄な液体吸着剤よりも高い濃度の汚染物質を有し得る。スクラバ-セパレータ204は、汚染物質を含有する使用済みの液体吸着剤をストリッパ-セパレータ206に排出することができる。
【0030】
汚染物質除去システム200は、ストリッパ-セパレータ206を備える。液相側では、ストリッパ-セパレータ206は、使用済みの液体吸着剤をスクラバ-セパレータ204から受け取り、使用済みの液体吸着剤から1つ以上の汚染物質を脱着するように構成されている。ストリッパ-セパレータ206は、膜の一方の側(例えば、チューブ側)において使用済みの液体吸着剤を、膜の反対側(例えば、シェル側)において汚染された空気を汚染物質流212に流すようにそれぞれ構成された1枚以上の膜を備える。汚染物質は、濃度勾配によって膜の繊維を横断して流れ得るが、一方、液体吸着剤は、実質的に、膜の繊維を横断して流れることはできない。その結果、ストリッパ-セパレータ206から排出された清浄な液体吸着剤は、ストリッパ-セパレータ206が受け取った使用済みの液体吸着剤よりも低い濃度の汚染物質を有し得る。気相側では、ストリッパ-セパレータ206は、汚染物質流212に汚染物質を排出するように構成されている。汚染物質流212は、使用済みの液体吸着剤から汚染物質流212への汚染物質の移動を支援するために、ストリッパ-セパレータ206から連続的に除去され得る。
【0031】
いくつかの例では、ストリッパ-セパレータ206は、ストリッパ-セパレータ206内の使用済みの液体吸着剤からの汚染物質の脱着を増加させるために、航空機の状態を利用するように構成され得る。例えば、気相側における汚染物質ガスの分圧を減少させて、汚染物質を使用済みの液体吸着剤から脱着させ、汚染物質流212に移動させるための駆動力を生み出すことによって、使用済みの液体吸着剤からの汚染物質の脱着を増加させることができる。汚染物質除去システム200は、真空又はスイープガスをストリッパ-セパレータ206に提供することによって、分圧を低下させることができる。例えば、スイープガスは、ストリッパ-セパレータ206の膜の気相側に分圧勾配を生じさせて、液体吸着剤から汚染物質流212への汚染物質の除去を駆動するために使用される不活性ガスであってもよい。図2の例では、ストリッパ-セパレータ206は、ストリッパ-セパレータ206にスイープガスを供給するように構成されたスイープガス流214に流体連結されている。いくつかの例では、ストリッパ-セパレータ206は、スイープガス流214としてラム空気流を使用して汚染物質を脱着させるように構成されている。例えば、航空機の外側からのラム空気は、脱着した汚染物質を膜から除去して、膜における汚染物質を低濃度で維持して、使用済みの液体吸着剤からの汚染物質の脱着速度を増加させることができる。別の例として、飛行中、航空機の外側の大気の圧力は低いので、スイープガス流なしに使用済みの液体吸着剤からの汚染物質の脱着速度を増加させるためにストリッパ-セパレータ206に真空を生じさせることができる。これらの様々な方法では、ラム空気のスイープガスとしての使用及び真空としての高度ベースの圧力差などの、航空機の運航に特有の状態及び流体流は、ストリッパ-セパレータ206からの汚染物質除去を支援することができる。
【0032】
スクラバ-セパレータ204及びストリッパ-セパレータ206などの本明細書で論じる膜セパレータは、第1の側に空気を、そして、第2の反対側に液体吸着剤を流すように構成された1つ以上の膜コンタクタを備えていてよい。例えば、膜セパレータは、複数の平行な膜コンタクタを備えていてよい。いくつかの例では、膜コンタクタは、平行又は織布中空多孔質繊維が充填された円筒形モジュールを備えていてよい。例えば、これらの中空繊維の寸法は約3mm未満であってよく、細孔寸法は約2マイクロメートル未満であってよい。中空繊維膜コンタクタの表面積が広いことによって、二酸化炭素などの客室空気流208からの汚染物質及び水を、比較的小さいシステム容積及び重量を使用して液体吸着剤へと大量に移動させることが可能になる。いくつかの例では、シェル側における流体の混合を改善するために、バッフル又は糸若しくは他の繊維などの他の構造体が、繊維と繊維との間、繊維と外側シェルとの間、又は繊維に対して垂直に存在してもよい。いくつかの例では、膜を横断する大量の移動を強化するために、膜モジュールに入る前にダクト屈曲を使用して、及び/又は流れ進入ベクトルをモジュールの方に角度をつけて、及び/又は案内羽根若しくは類似の構造体を使用して、シェル側における流れを旋回させるか又は乱流にしてよい。モジュールの末端のポートは、マニホールド(例えば、「チューブシート」)に接続することができ、それによって、ポートから各繊維の細孔を通って、ひいては反対側のポートへまで流体を流すことが可能になる。追加のポートは、モジュールの反対側の端部でシェル側にアクセスすることができ、それによって、モジュールを通して繊維の外側において流体を流すことが可能になる。中空繊維の材料は、液体吸着剤が細孔を濡らさないように、かつ細孔侵入を防止するために膜間圧が十分に低く保たれるように選択され得る。その結果、膜コンタクタは、液体吸着剤及びガス流が更なる分離を必要としないことを確実にすることができ、その結果、汚染物質除去システム200は、可動部を使用することなく、比較的重力独立的に作用することができる。繊維材料としては、ポリプロピレン、ポリフッ化ビニリデン、ポリスルホン、ポリイミド、ポリテトラフルオロエチレン(PTFE)などの疎水性材料を挙げることができるが、これらに限定されない。いくつかの例では、細孔を通る液体の流れを低減するためにコーティングを塗布してもよい。細孔を通る液体の流れを阻止するために使用することができるコーティングとしては、PTFE、架橋シロキサンなどが挙げられるが、これらに限定されない。図2では「チューブ」側を通って流れると記載されているが、液体吸着剤は、「チューブ」側又は「シェル」側のいずれを流れてもよく、一方、空気は反対側を流れる。
【0033】
いくつかの例では、液体吸着剤は、液体イオン吸着剤であってよい。このような液体イオン吸着剤は、一般にアニオン及び有機カチオンで構成される塩であってよい。これらの塩は、その使用温度において液体であってよく、蒸気圧が事実上ゼロであってよく、一般に無毒であってよく、及び/又は劣化に耐えるのに十分な安定性を有していてよい。いくつかの例では、液体吸着剤は、比較的大きな有機カチオン、及び様々なアニオンのいずれかを含有していてよいが、これらは、所望の特性を得るために調節することができる。液体吸着剤は、水溶性、吸湿性(すなわち、空気から水分を吸収することができる)であってよく、及び/又は温度を上昇させることによって若しくは水分圧を低下させることによって水を放出することができる。
【0034】
汚染物質除去システム200は、コントローラ252と1つ以上のセンサーセット236、238、240、242、244、246、248、250とを含むプロセス制御システムを備えていてよい。コントローラ252は、1つ以上のセンサーセット236、238、240、242、244、246、248、250及び汚染物質除去システム200の他のプロセス制御部品(図示せず)、例えば、客室空気流208、清浄な空気流210、スイープガス流214、汚染物質流212のための制御弁、並びに熱交換器224、加熱器228、液体吸着剤貯蔵部230、及び冷却器234、ポンプ226及び232、送風機220などへの入口/出口と通信可能に連結されてよく、これらから測定信号を受信するように構成されてよい。
【0035】
センサーセット236、238、240、242、244、246、248、250は、汚染物質除去システム200の液体流又はガス流の圧力、温度、流量、及び/又は汚染物質濃度(例えば、二酸化炭素濃度又は水濃度)のいずれかを検出するように構成された機器を含み得る。客室空気回路の場合、客室空気センサーセット236は、客室空気流208の状態を検出することができ、清浄な空気センサーセット238は、清浄な空気流210の状態を検出することができる。液体吸着回路216の場合、スクラバ-セパレータ出口センサーセット240は、スクラバ-セパレータ204の出口における使用済みの液体吸着剤の状態を検出することができ、ストリッパ-セパレータ入口センサーセット242は、ストリッパ-セパレータ206の入口における使用済みの液体吸着剤の状態を検出することができ、ストリッパ-セパレータ出口センサーセット244は、ストリッパ-セパレータ206の出口における清浄な液体吸着剤の状態を検出することができ、スクラバ-セパレータ入口センサーセット246は、スクラバ-セパレータ204の入口における清浄な液体吸着剤の状態を検出することができる。
【0036】
いくつかの例では、コントローラ252は、客室202の環境内の汚染物質濃度を制御するように構成されている。例えば、コントローラ252は、清浄な空気センサーセット238又は客室内の濃度センサ202などから汚染物質についての汚染物質濃度測定値を受信するように構成され得る。コントローラ252は、汚染物質濃度測定値が汚染物質濃度設定値を超えるかどうかを判定するように構成され得る。例えば、汚染物質濃度設定値は、閾値汚染物質濃度よりも低く客室202を維持するための清浄な空気流210の目標濃度であってよい。コントローラ252は、汚染物質濃度設定値を超える汚染物質濃度測定値に応答して、清浄な空気流210中の汚染物質の濃度を減少させるために制御信号を送信するように構成され得る。例えば、コントローラ252は、液体吸着剤の流量、スイープガス流214の流量、湿度、及び/若しくは温度、又は客室空気流208からの汚染物質の除去速度を増加させ得る任意の他の変数を増加させるために制御信号を送信することができる。
【0037】
本明細書で論じる汚染物質除去システムのいくつかの実施形態では、単一の膜セパレータを使用して、汚染物質を航空機の客室から除去し、航空機から排出することができる。例えば、膜セパレータは、客室空気から汚染物質を断続的にスクラビングして清浄な空気を生成し、使用済みの液体吸着剤から汚染物質を断続的にストリッピングして汚染物質を排出することができる液体吸着回路を形成することができる。図3は、スクラビングモード又はストリッピングモードのいずれでも動作する単一の膜セパレータ306を使用して、航空機の客室302から汚染物質を除去するための例示的な汚染物質除去システム300を示す図である。特に指示がない限り、汚染物質除去システム300の構成要素は、図2の汚染物質除去システム200の同様に命名及び/又は付番された構成要素と動作的に類似していてよい。例えば、客室302、客室空気流308、清浄な空気流310、汚染物質流213、フィルタ318、送風機320、フィルタ322、液体吸着剤貯蔵部330、ポンプ332、及び熱交換器334は、それぞれ、客室202、客室空気流208、清浄な空気流210、汚染物質流212、フィルタ218、送風機220、フィルタ222、液体吸着剤貯蔵部230、ポンプ232、及び冷却器234と機能的に類似していてよい。
【0038】
航空機用汚染物質除去システム300は、客室302から客室空気流308を受け取るように構成された入口と、清浄な空気流310を客室302に排出するように構成された客室出口と、を備え得る。いくつかの例では、汚染物質除去システム300は、外気流314を航空機内に受け取るように構成された機外入口と、航空機から汚染物質流312を排出するように構成された機外出口と、を備える。
【0039】
汚染物質除去システム300は、セパレータ306を備える。汚染物質除去システム300は、スクラビングモード及びストリッピングモードを有するが、セパレータ306の気相側を、それぞれ、客室回路と大気の供給及び排出との間で切り替えてよい。
【0040】
スクラビングモードでは、セパレータ306は、客室空気から汚染物質を吸収して清浄な空気を生成することができる。気相側では、セパレータ306は、膜除湿器304を介して客室302から客室空気流308を受け取るように構成されている。三方向入口弁336は、客室空気流308から客室空気を受け取り、客室空気をセパレータ306に排出するように選択され得る。セパレータ306は、客室空気流308からの汚染物質を液体吸着剤に吸収させることができる。三方向出口弁338は、セパレータ306から清浄な空気を受け取り、そして、客室302に戻すために清浄な空気を清浄な空気流310に排出するように選択され得る。液相側では、セパレータ306は、清浄な液体吸着剤を受け取り、より高い濃度の汚染物質を有する使用済みの液体吸着剤を排出するように構成されている。
【0041】
ストリッピングモードでは、セパレータ306は、液体吸着剤から汚染物質を除去することができる。気相側では、セパレータ306は、外気流314を受け取るように構成されている。三方向入口弁336は、ラム空気流などの外気流314からスイープガスを受け取るように選択され得る。セパレータ306は、外気流314を使用して、液体吸着剤から汚染物質を脱着させることができる。セパレータ306は、汚染物質流312に汚染物質を排出することができる。三方向出口弁338は、汚染物質を含有するスイープガスをセパレータ306から受け取り、そして、航空機から排出するために、汚染された空気を汚染物質流312に排出するように選択され得る。液相側では、セパレータ306は、使用済みの液体吸着剤を受け取り、より低い濃度の汚染物質を有する清浄な液体吸着剤を排出するように構成されている。
【0042】
図3の例では、航空機用汚染物質除去システム300は、セパレータ306に流体連結された膜除湿器304を備えるが、他の例は除湿器304を備えていなくてもよい。除湿器304は、より高い湿度を有するガス流からより低い湿度を有するガス流に水を移動させるように構成され得る。
【0043】
スクラビングモードでは、除湿器304は、清浄な空気流310で使用するために、客室空気流308から湿気を回収するように構成され得る。一方の側では、除湿器304は、客室空気流308から客室空気を供給ガスとして受け取り、より低い湿度を有する客室空気を排出するように構成され得る。反対側では、除湿器304は、セパレータ306から清浄な空気をスイープガスとして受け取り、より高い湿度を有する清浄な空気を清浄な空気流310に排出するように構成され得る。その結果、客室302からの湿度を保つことができる。
【0044】
ストリッピングモードでは、除湿器304は、外気流314で使用するために、汚染された空気から湿気を回収するように構成され得る。一方の側では、除湿器304は、外気流314をスイープガスとして受け取り、より低い湿度を有するスイープガスをセパレータ306に排出するように構成され得る。反対側では、除湿器304は、汚染された空気をセパレータ306からスイープガスとして受け取り、より高い湿度を有する汚染された空気を汚染物質流312に排出するように構成され得る。その結果、セパレータ306においてストリッピングに使用されるスイープガスは、より低い湿度を有するので、セパレータ306における使用済みの液体吸着剤からの汚染物質の脱着速度を増加させ、液体吸着剤における水の蓄積を回避することができる。
【0045】
図3は、航空機の機内での断続的なスクラビング及びストリッピング動作のために構成された膜セパレータに関して記載しているが、いくつかの例では、空気流から汚染物質を連続的にスクラビングし、その後、液体吸着回路に汚染物質を貯蔵するために、単一の膜セパレータを使用してもよい。例えば、膜セパレータは、機内の膜セパレータにおいて客室空気から汚染物質を連続的にスクラビングして清浄な空気を生成し、その後の機外でのストリッピングのために航空機から液体吸着剤を排出することができるまで、機内で使用済みの液体吸着剤を貯蔵することができる液体吸着回路を形成することができる。排出されると、液体吸着剤は、貯蔵され、清浄な液体吸着剤に置換されてもよく、又はスクラビングされ、再充填された液体吸着剤として航空機に回収されてもよい。
【0046】
いくつかの例では、コントローラ(図3には図示せず)は、客室302の環境内の汚染物質濃度を制御するように構成され得る。例えば、コントローラは、図2のコントローラ252に関して説明したように、スクラビング及びストリッピング動作を制御して、閾値汚染物質濃度よりも低く汚染物質濃度を維持するように構成され得る。更に、コントローラは、断続的なスクラビング及びストリッピング動作を協調させるように構成され得る。例えば、スクラビング動作中、コントローラは、液体吸着剤が閾値量の汚染物質を吸収した指標となる、清浄な空気流310又は液体吸着回路316などからの1つ以上の汚染物質濃度測定値を受信してよく、その結果、更なるスクラビングが適切に有効でない場合がある。これに応じて、コントローラは、例えば、三方向入口弁336を操作して、客室空気流308から外気流314への入口を切り替え、三方向出口バルブ338を操作して、清浄な空気流310から汚染物質流312への出口を切り替えることなどによって、スクラビング動作からストリッピング動作にシステム300の動作を切り替えることができる。反対に、ストリッピング動作中、コントローラは、液体吸着剤が閾値量の汚染物質を脱着した指標となる、1つ以上の汚染物質濃度測定値を受信してよく、その結果、更なるスクラビングを継続する場合がある。これに応じて、コントローラは、例えば、三方向入口弁336を操作して、外気流314から客室空気流308への入口を切り替え、三方向出口バルブ338を操作して、汚染物質流312から清浄な空気流310への出口を切り替えることなどによって、ストリッピング操作からスクラビング操作にシステム300の動作を切り替えることができる。
【0047】
本明細書で論じる汚染物質除去システムのいくつかの実施形態では、汚染物質除去システム内の様々な点で汚染物質の一部を除去し、航空機の客室又は汚染物質除去システムの構成要素に回収して戻すことができる。例えば、湿度管理システムは、汚染物質流から水を除去し、除去された水を汚染物質除去システムの1つ以上の構成要素で使用することができる。図4図7は、様々な汚染物質除去システムにおける湿度及び/又は水濃度を管理するための湿度管理システムを備える汚染物質除去システムの様々な構成を示す。湿度管理システムは、航空機の1つ以上の水源を使用して、清浄な空気流の湿度及び/又は液体吸着剤の水濃度を維持するように構成され得る。例えば、航空機の客室内の客室空気は、乗客の快適さのための目標湿度範囲、例えば、約5%~約35%の相対湿度を有し得る。この目標湿度範囲を達成するために、客室を出る客室空気の流量、並びに/又は客室に入る清浄な空気の流量及び/若しくは湿度を、客室の湿度を目標湿度範囲内で維持するように選択してよい。したがって、本明細書で論じる湿度管理システムは、航空機における1つ以上の水源から再循環空気流に水を加えて、及び/又は再循環空気流から航空機における1つ以上の水源へと水を除去して、客室に入る清浄な空気流の所望の湿度を達成することができる。更に又はあるいは、本明細書で論じる湿度管理システムは、航空機における1つ以上の水源からの液体吸着回路に水を加えて、液体吸着剤の所望の水濃度を達成することもできる。いくつかの例では、水源は、客室空気流、クラウン水回収システム、飲料水貯蔵システム、又は液体吸着剤のうちの少なくとも1つを含む。
【0048】
いくつかの例では、本明細書で論じる湿度管理システムは、汚染物質除去システムの汚染物質流から水を除去することができる。図4は、膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、湿度管理システム436を使用して航空機の客室内の湿度を維持するための例示的なシステムを示す図である。特に指示がない限り、汚染物質除去システム400の構成要素は、図2の汚染物質除去システム200の同様に命名及び/又は付番された構成要素と動作的に類似していてよい。例えば、客室402、スクラバ-セパレータ404、ストリッパ-セパレータ406、客室空気流408、清浄な空気流410、汚染物質流412、スイープガス流414、液体吸着回路416、フィルタ418、送風機420、フィルタ422、熱交換器424、ポンプ426、加熱器428、液体吸着剤貯蔵部430、ポンプ432、及び冷却器434は、それぞれ、客室202、スクラバ-セパレータ204、ストリッパ-セパレータ206、客室空気流208、清浄な空気流210、汚染物質流212、スイープガス流214、液体吸着回路216、フィルタ218、送風機220、フィルタ222、熱交換器224、ポンプ226、加熱器228、液体吸着剤貯蔵部230、ポンプ232、及び冷却器234に機能的に類似していてよい。
【0049】
汚染物質除去システム400は、湿度管理システム436を備える。湿度管理システム436は、汚染物質流412から水を除去するように構成されている。図4の例では、湿度管理システム436は、凝縮器438及び水分離器440を備える。凝縮器438は、汚染物質流412を冷却し、汚染物質流412から水を凝縮させるように構成されている。例えば、凝縮器438は、冷媒流、又は冷却媒体を循環させて汚染物質流412を冷却する他の冷却流体流に流体連結されてよい。シェル及びチューブ熱交換器、平板フィン、表面冷却器、ヒートパイプ、熱電装置、冷却ジャケットなどが挙げられるが、これらに限定されない様々な凝縮器を、凝縮器438に使用することができる。水分離器440は、凝縮した水を凝縮器438から分離し、分離された水を水排出流446に、そして、残りのガスを乾燥した汚染物質流442に排出するように構成されている。膜セパレータ、遠心分離/回転分離器などが挙げられるが、これらに限定されない様々な水分離器を、水分離器440に使用することができる。湿度管理システム436は、水貯蔵部444を備える。水貯蔵部444は、水排出流446から水を受け取るように構成されている。
【0050】
いくつかの例では、1つ以上の水源からの水の少なくとも一部は、液体吸着剤の水濃度を維持するために液体吸着剤に再循環される。スクラバ-セパレータ404及び/又はストリッパ-セパレータ406は、経時的に水を失うことがある。液体吸着剤の所望の水濃度を回復させるために、湿度管理システム436は、液体吸着回路416に水を加えることができる。例えば、汚染物質除去システム400は、水貯蔵部444から液体吸着回路416へと水を排出するように構成された水吸着再循環流448を備える。図示されていないが、水吸着再循環流448は、水を液体吸着回路416に排出するためのポンプ及び制御弁を含んでいてよい。
【0051】
図4の例では、汚染物質流412は圧力制御弁450を含む。圧力制御弁450は、ストリッパ-セパレータ406の気相側の真空を制御するように構成され得る。例えば、真空は、スイープガス流を使用せずに又はより小さなスイープガス流を使用して、使用済みの液体吸着剤からの汚染物質の脱着速度を増加させることができる。
【0052】
いくつかの例では、コントローラ(図4には図示せず)は、客室402の環境内の湿度を制御するように構成され得る。例えば、コントローラは、図2のコントローラ252に関して説明したように、スクラビング及びストリッピング動作を制御して、閾値汚染物質濃度よりも低く汚染物質濃度を維持するように構成され得る。更に、コントローラは、客室空気流408から除去された水を回収し、回収した水をシステム400の1つ以上のシステムで使用するように構成され得る。例えば、汚染物質流412から水を回収するために、コントローラは、清浄な空気流410の湿度濃度を受信し、水濃度が閾値を下回るとの判定に応答して、例えば、凝縮器438への冷却流体の流量を増加させること及び/又は水分離器440の機械的分離装置(遠心分離)の速度を増加させることなどによって、汚染物質流412からの水の凝縮及び/又は分離を増加させることができる。別の例として、回収された水を汚染物質流412から再循環させるために、コントローラは、液体吸着回路416の水濃度を受信し、閾値水濃度を下回ると測定された水濃度に応答して、流れ制御弁を制御して、除去された水を水貯蔵部444から水吸着再循環流448を通じて液体吸着回路416へと排出することができる。別の例として、ストリッパ-セパレータ406の真空を制御するために、コントローラは、ストリッパ-セパレータ406から圧力測定値を受信し、目標圧力範囲外であると測定された圧力測定値に応答して、圧力制御弁450を制御してストリッパ-セパレータ406の圧力を増加又は減少させることができる。
【0053】
いくつかの例では、本明細書で論じる湿度管理システムは、汚染物質流又は航空機の他の水源から除去された水を気化させることができる。図5A及び図5Bは、それぞれ、汚染物質除去システム500A及び500Bにおける湿度管理システムの一部としての水気化器548の様々な構成を示す。特に指示がない限り、汚染物質除去システム500A及び500Bの構成要素は、図4の汚染物質除去システム400の同様に命名及び/又は付番された構成要素と動作的に類似していてよい。例えば、客室502、スクラバ-セパレータ504、ストリッパ-セパレータ506、客室空気流508、清浄な空気流510、汚染物質流512、スイープガス流514A、スイープガス流514B、液体吸着回路516、フィルタ518、送風機520、フィルタ522、熱交換器524、ポンプ526、加熱器528、液体吸着剤貯蔵部530、ポンプ532、冷却器534、凝縮器538、水分離器540、乾燥した汚染物質流542、水貯蔵部544、及び水排出流546は、それぞれ、客室402、スクラバ-セパレータ404、ストリッパ-セパレータ406、客室空気流408、清浄な空気流410、汚染物質流412、スイープガス流414、液体吸着回路416、フィルタ418、送風機420、フィルタ422、熱交換器424、ポンプ426、加熱器428、液体吸着貯蔵部430、ポンプ432、冷却器434、凝縮器438、水分離器440、乾燥した汚染物質流442、水貯蔵部444、及び水排出流446に機能的に類似していてよい。
【0054】
いくつかの例では、水気化器548は、スイープガスにおいて使用するために水を気化させて、スイープガスの湿度を上昇させ、液体吸着剤の水濃度を維持することができる。図5Aは、膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、スイープガスを加湿するために水気化器を使用して航空機の客室内の湿度を維持するための例示的なシステム500Aを示す図である。ストリッパ-セパレータ506は、スイープガス流514中の水濃度が低いことから、液体吸着剤から水を失わせることがある。図5Aの例では、水気化器548は、水貯蔵部544からストリッパ-セパレータ506のスイープガス流514Aに水を加えるように構成されている。水貯蔵部544は、水気化器入口流552Aを通って水気化器548に水を送り込むことができる。水気化器548は、乾燥スイープガス流550Aを受け取り、水貯蔵部544からの水を使用して乾燥スイープガス流550Aに湿気を加え、乾燥スイープガス流550Aよりも高い湿度を有するスイープガス流514Aをストリッパ-セパレータ506に排出することができる。他の例では、水気化器548は、飲料水などの1つ以上の水源からの水を加えるように構成され得る。スイープガス流514Aの湿度を上昇させることにより、ストリッパ-セパレータ506は、汚染物質の脱着についてより高い効率で動作することができる。
【0055】
いくつかの例では、水気化器548は、水を気化させて、航空機の客室に戻される清浄な空気の湿度を上昇させることができる。図5Bは、膜スクラバ-セパレータ504及び膜ストリッパ-セパレータ506と共に液体吸着剤を使用して航空機の客室502から汚染物質を除去し、客室空気内の湿度を一定に保つために水気化器548を使用して航空機の客室内の湿度を維持するための例示的なシステム500Bを示す図である。客室空気流508からの客室空気は、液体吸着剤、客室放出、又は別の機構などに湿度が失われる場合がある。図5Bの例では、水気化器548は、水貯蔵部544から清浄な空気流510に水を加えるように構成されている。水貯蔵部544は、水気化器入口流552Bを通って水気化器548に水を送り込むことができる。水気化器548は、乾燥した清浄な空気流550Bを受け取り、水貯蔵部544からの水を使用して乾燥した清浄な空気流550Bに湿気を加え、より高い湿度を有する清浄な空気流510に清浄な空気を排出することができる。他の例では、水気化器548は、飲料水などの1つ以上の水源からの水を加えるように構成され得る。航空機の客室502への清浄な空気流510の湿度を上昇させることにより、空調システムによって加えられる水をより少なくすることができる。
【0056】
いくつかの例では、コントローラ(図5A及び図5Bには図示せず)は、客室502の環境内の湿度を制御するように構成され得る。例えば、コントローラは、図2のコントローラ252に関して説明したように、スクラビング及びストリッピング動作を制御して、閾値汚染物質濃度よりも低く汚染物質濃度を維持するように構成され得る。更に、コントローラは、水気化器548を制御することによって、図5Aのスイープガス流514A及び/又は図5Bの清浄な空気流510の湿度を上昇させるように構成され得る。例えば、コントローラは、ストリッパ-セパレータ506及び/若しくは乾燥スイープガス流550A(図5Aの場合)の湿度測定値、又は清浄な空気流510及び/若しくは乾燥スイープガス流550B(図5Bの場合)の湿度測定値を受信し、湿度測定値が目標湿度範囲外であるとの判定に応答して、スイープガス流514A又は清浄な空気流510の湿度を上昇させるために、それぞれ、乾燥スイープガス流550A及び550Bに加えられる水の量を制御することができる。
【0057】
いくつかの例では、本明細書で論じる湿度管理システムは、膜除湿器を使用して、客室空気流、汚染物質流、又は航空機の他の流れから湿度を除去することができる。図6A及び図6Bは、それぞれ、汚染物質除去システム600A及び600Bにおける湿度管理システムの一部としての膜除湿器648の様々な構成を示す。特に指示がない限り、汚染物質除去システム600A及び600Bの構成要素は、図4の汚染物質除去システム400の同様に命名及び/又は付番された構成要素と動作的に類似していてよい。例えば、客室602、スクラバ-セパレータ604、ストリッパ-セパレータ606、客室空気流608、清浄な空気流610、汚染物質流612A、汚染物質流612B、スイープガス流614、液体吸着回路616、フィルタ618、送風機620、フィルタ622、熱交換器624、ポンプ626、加熱器628、液体吸着剤貯蔵部630、ポンプ632、冷却器634、凝縮器638、水分離器640、乾燥した汚染物質流642、水貯蔵部644、及び水排出流646は、客室402、スクラバ-セパレータ404、ストリッパ-セパレータ406、客室空気流流408、清浄な空気流410、汚染物質流412、スイープガス流414、液体吸着回路416、フィルタ418、送風機420、フィルタ422、熱交換器424、ポンプ426、加熱器428、液体吸着貯蔵部430、ポンプ432、冷却器434、凝縮器438、水分離器440、乾燥した汚染物質流442、水貯蔵部444、及び水排出流446と機能的に類似していてよい。
【0058】
いくつかの例では、除湿器648は、客室空気から湿気を捕捉して、清浄な空気の湿度を上昇させることができる。図6Aは、膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、客室空気から湿気を捕捉するために除湿器を使用して航空機の客室内の湿度を維持するための例示的なシステムを示す図である。汚染物質の除去中、スクラバ-セパレータ604によって客室空気流608から汚染物質として水を除去することができ、その結果、スクラバ-セパレータ604から清浄な空気流610に排出された清浄な空気は、所望よりも低い湿度を有し得る。図6Aの例では、除湿器648は、客室空気流608から清浄な空気流610に湿気を戻すように構成されている。一方の側では、除湿器648は、客室空気流608を供給ガス流として受け取り、より低い湿度を有する、乾燥した客室空気流650Aにおける客室空気をスクラバ-セパレータ604に排出するように構成されている。反対側では、除湿器648は、スクラバ-セパレータ604から乾燥した清浄な空気流652Aを受け取り、より高い湿度を有する清浄な空気を清浄な空気流610に排出するように構成されている。客室空気流608からの客室空気がスクラバ-セパレータ604に入る前に客室空気から湿気を捕捉することにより、より多量の湿気を保つことができる。例えば、スクラバ-セパレータ604を通過する前に水を除去した結果、液体吸着剤に吸収される過剰な水を少なくすることができる。この水除去により、スクラバ-セパレータ604及び/若しくはストリッパ-セパレータ606のサイズを小さくすることができ、並びに/又は加熱器628及びポンプ426と432に対する負荷を小さくすることができる。また、この水の除去の結果、液体に吸収される水が少なくなり、対応して、除去される水がより少なくなり得、その結果、スイープガス流614、チラー638、及びセパレータ640の冷却の必要性を低減することができ、それに対応して、サイズ及び重量を減少させることができる。
【0059】
いくつかの例では、除湿器648は、汚染された空気から湿気を捕捉して、清浄な空気の湿度を上昇させることができる。図6Bは、膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、スイープガスから湿気を捕捉するために除湿器を使用して航空機の客室内の湿度を維持するための例示的なシステムを示す図である。汚染物質流612Bは、比較的多量の水を含んでいてよい。図6Bの例では、除湿器648は、汚染物質流612Bから清浄な空気流610に湿度を戻すように構成されている。一方の側では、除湿器648は、汚染物質流612Bを供給ガス流として受け取り、更に水を除去するために乾燥した汚染物質流652Bを凝縮器638に排出するように構成されている。反対側では、除湿器648は、スクラバ-セパレータ604から乾燥した清浄な空気流650Bを受け取り、より高い湿度を有する清浄な空気を清浄な空気流610に排出するように構成されている。汚染物質流612Bから湿気を捕捉することにより、より多量の水を保つことができる。例えば、液体吸着剤に湿気が吸収された結果、ストリッパ-セパレータ606において湿気が脱着され得る。606におけるこの湿気の脱着によって、スイープガス流614の容積が増加し得、その結果、スイープガス流614の容積、ストリッパ-セパレータ606のサイズ、並びに/又はチラー638及び/若しくはセパレータ640の負荷を減少させることができる。
【0060】
いくつかの例では、コントローラ(図6A及び図6Bには図示せず)は、客室602の環境内の湿度を制御するように構成され得る。例えば、コントローラは、図2のコントローラ252に関して説明したように、スクラビング及びストリッピング動作を制御して、閾値汚染物質濃度よりも低く汚染物質濃度を維持するように構成され得る。更に、コントローラは、システム600A及び600Bを制御して、除湿器648を使用して清浄な空気流610の湿度を上昇させるように構成され得る。
【0061】
いくつかの例では、本明細書で論じる湿度管理システムは、第1のストリッパ-セパレータを使用して液体吸着剤から汚染物質を、そして、第2のストリッパ-セパレータを使用して湿度を除去することができる。図7は、膜スクラバ-セパレータ704及び汚染物質用膜ストリッパ-セパレータ706Aと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、水用膜ストリッパ-セパレータ706Bを使用して航空機の客室内の湿度を維持するための例示的なシステムを示す図である。特に指示がない限り、汚染物質除去システム700の構成要素は、図4の汚染物質除去システム400の同様に命名及び/又は付番された構成要素と動作的に類似していてよい。例えば、客室702、スクラバ-セパレータ704、客室空気流708、清浄な空気流710、汚染物質流712、スイープガス流714、液体吸着回路716、フィルタ718、送風機720、フィルタ722、熱交換器724、ポンプ726、加熱器728、液体吸着剤貯蔵部730、ポンプ732、冷却器734、凝縮器738、水分離器740、乾燥した汚染物質流742、水貯蔵部744、及び水排出流746は、それぞれ、客室402、スクラバ-セパレータ404、客室空気流408、清浄な空気流410、汚染物質流412、スイープガス流414、液体吸着回路416、フィルタ418、送風機420、フィルタ422、熱交換器424、ポンプ426、加熱器428、液体吸着貯蔵部430、ポンプ432、冷却器434、凝縮器438、水分離器440、乾燥した汚染物質流442、水貯蔵部444、及び水排出流446に機能的に類似していてよい。
【0062】
汚染物質用ストリッパ-セパレータ706Aは、液体吸着剤から汚染物質を除去し、更に水を除去するために汚染物質を汚染物質流712に排出するように構成されている。液相側では、汚染物質用ストリッパ-セパレータ706Aは、スクラバ-セパレータ704から使用済みの液体吸着剤を受け取り、清浄な液体吸着剤を水用ストリッパ-セパレータ706Bに排出するように構成され得る。気相側では、汚染物質用ストリッパ-セパレータ706Aは、スイープガス流714を受け取り、汚染物質流712を排出するように構成されている。
【0063】
水用ストリッパ-セパレータ706Bは、液体吸着剤から水を除去し、除去された水を使用して清浄な空気流710の湿度を上昇させるように構成されている。液相側では、水用ストリッパ-セパレータ706Bは、汚染物質用ストリッパ-セパレータ706Aから清浄な液体吸着剤を受け取り、より低濃度の水を有する清浄な液体吸着剤をスクラバ-セパレータ704に排出するように構成されている。気相側では、水用ストリッパ-セパレータ706Bは、スイープガス流としてスクラバ-セパレータ704から清浄な空気を受け取り、より高い湿度を有する清浄な空気を清浄な空気流710に排出するように構成されている。
【0064】
いくつかの例では、コントローラ(図7には図示せず)は、客室702の環境内の湿度を制御するように構成され得る。例えば、コントローラは、図2のコントローラ252に関して説明したように、スクラビング及びストリッピング動作を制御して、閾値汚染物質濃度よりも低く汚染物質濃度を維持するように構成され得る。更に、コントローラは、水用ストリッパ-セパレータ706Bからの水の回収を改善するために、汚染物質用ストリッパ-セパレータ706A及び水用ストリッパ-セパレータ706Bの状態を制御するように構成され得る。例えば、コントローラは、汚染物質用ストリッパ-セパレータ706A及び/若しくは水用ストリッパ-セパレータ706Bの温度、スイープガス流714の流量、並びに/又は液体吸着回路716を通る液体吸着剤の流量のいずれをも制御することができる。
【0065】
本明細書で論じる汚染物質除去システムのいくつかの実施形態では、航空機システムに関連する空気流を使用して、汚染物質除去システムの液体吸着回路及び/又は客室空気回路などの様々な流体流の温度を管理することができる。図8A図8Cは、様々な汚染物質除去システムにおける温度を管理するための熱管理システムを備える汚染物質除去システムの様々な構成を示す。特に指示がない限り、汚染物質除去システム800A、800B、及び800Cの構成要素は、図2の汚染物質除去システム200の同様に命名及び/又は付番された構成要素と動作的に類似していてよい。例えば、客室802、スクラバ-セパレータ804、ストリッパ-セパレータ806、客室空気流808、清浄な空気流810、汚染物質流812、スイープガス流814A、スイープガス流814B、スイープガス流814C、液体吸着回路816、フィルタ818、送風機820、フィルタ822、熱交換器824、ポンプ826、液体吸着剤貯蔵部830、及びポンプ832は、それぞれ、客室202、スクラバ-セパレータ204、ストリッパ-セパレータ206、客室空気流208、清浄な空気流210、汚染物質流212、スイープガス流214、液体吸着回路216、フィルタ218、送風機220、フィルタ222、熱交換器224、ポンプ226、液体吸着剤貯蔵部230、及びポンプ232に機能的に類似していてよい。
【0066】
図8A図8Cの熱管理システム844A、844B、844Cは、航空機気流に流体連結された1つ以上の熱交換器を使用して、液体吸着剤の温度を維持するように構成され得る。いくつかの例では、航空機空気流は、客室空気流808などの客室排出流、スイープガス流814Aなどのラム空気流、排気流、又は抽気流のうちの少なくとも1つを含む。
【0067】
いくつかの例では、ストリッパ-セパレータ加熱器及び/又はスクラバ-セパレータ冷却器は、航空機からそれぞれの高温又は低温の空気流を受け取るように構成され得る。図8Aは、膜スクラバ-セパレータ及び膜ストリッパ-セパレータと共に液体吸着剤を使用して航空機の客室から汚染物質を除去し、航空機空気流を使用して液体吸着剤の温度を維持するための例示的なシステムを示す図である。熱管理システム844Aは、入口冷却流836を受け取り、入口冷却流836からの航空機空気流を使用して液体吸着剤を冷却し、出口冷却流838を排出するように構成された、スクラバ-セパレータ予冷器834を備える。熱管理システム844Aは、入口加熱流840を受け取り、入口加熱流840からの航空機空気流を使用して液体吸着剤を加熱し、出口加熱流842を排出するように構成された熱交換器828を備える。
【0068】
いくつかの例では、熱交換器828は、航空機の推進システムからの抽気流を使用して、ストリッパ-セパレータ806に入る前に液体吸着剤を加熱するように構成され得る。例えば、1つ以上のエンジン又は補助電力ユニットからの抽気を、熱交換器828を通る別のルートに切り替えて、ストリッパ-セパレータ806に入る液体吸着剤を加熱することができる。その結果、液体吸着剤からの汚染物質の脱着の量又は速度を増加させることができる。いくつかの例では、冷却器834は、ラム空気流を使用して、スクラバ-セパレータ804に入る前に液体吸着剤を冷却するように構成され得る。例えば、ラム空気を、冷却器834を通る別のルートに切り替えて、スクラバ-セパレータ804に入る液体吸着剤を冷却することができる。その結果、液体吸着剤による汚染物質の吸収の量又は速度を増加させることができる。
【0069】
いくつかの例では、ストリッパ-セパレータ加熱器及び/又はスクラバ-セパレータ冷却器は、航空機からそれぞれの高温又は低温の空気流を受け取るように構成され得る。図8Bは、スイープガスを加熱流体として使用して液体吸着剤の温度を維持するための熱管理システム844Aを備える例示的な汚染物質除去システム800Bを示す図である。熱管理システム844Bは、スイープガス流814Bを受け取り、スイープガス流を使用して液体吸着剤を加熱し、スイープガス流をストリッパ-セパレータ806に排出するように構成された熱交換器828を備える。図8Cは、スイープガスを冷却流体として使用して液体吸着剤の温度を維持するための熱管理システム844Cを備える例示的な汚染物質除去システム800Cを示す図である。熱管理システム844Cは、スイープガス流814Cを受け取り、スイープガス流を使用して液体吸着剤を冷却し、スイープガス流をストリッパ-セパレータ806に排出するように構成された熱交換器828を備える。
【0070】
いくつかの例では、コントローラ(図8A図8Cには図示せず)は、客室802の環境内の湿度を制御するように構成され得る。例えば、コントローラは、図2のコントローラ252に関して説明したように、スクラビング及びストリッピング動作を制御して、閾値汚染物質濃度よりも低く汚染物質濃度を維持するように構成され得る。更に、コントローラは、ストリッパ-セパレータ806に入る液体吸着剤、スクラバーセパレータ804に入る液体吸着剤、及び/又はストリッパ-セパレータ806に入るスイープガス流814B若しくは814Cの温度を制御するために、熱交換器828及び/又は冷却器834への空気流をに制御するように構成され得る。例えば、コントローラは、ストリッパ-セパレータ806に入る前に又はスクラバ-セパレータ804に入る前に、液体吸着剤の温度測定値を受信し、温度測定値が目標範囲外であることに応答して、熱交換器828及び/又は冷却器834に入る空気流の流量を制御して、温度測定値を目標範囲内に増加又は減少させることができる。
【0071】
本開示に記載される技術は、少なくとも部分的に、ハードウェア、ソフトウェア、ファームウェア、又はこれらの任意の組み合わせで実行され得る。例えば、記載される技術の様々な態様は、1つ以上のマイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又は任意の他の等価な集積若しくは個別の論理回路、並びにこのような構成要素の任意の組み合わせを含む、1つ以上のプロセッサ内で実行され得る。用語「プロセッサ」又は「処理回路」は、一般に、前述の論理回路のうちのいずれかを単独で、又は他の論理回路と組み合わせて、又は任意の他の等価回路を指すことができる。ハードウェアを含む制御ユニットも、本開示の技術のうちの1つ以上を実施することができる。
【0072】
このようなハードウェア、ソフトウェア、及びファームウェアは、本開示に記載される様々な技術をサポートするために、同じデバイス内又は別個のデバイス内に実装されてもよい。加えて、記載されたユニット、モジュール、又は構成要素のいずれも、個別であるが相互運用可能な論理デバイスとして、一緒に又は別個に実装されてもよい。モジュール又はユニットとしての異なる特徴の描写は、異なる機能的態様を強調することを意図しており、そのようなモジュール又はユニットが別個のハードウェア、ファームウェア、又はソフトウェアの構成要素によって実現されなければならないことを必ずしも意味するものではない。むしろ、1つ以上のモジュール又はユニットと関連付けられた機能は、別個のハードウェア、ファームウェア、若しくはソフトウェアの構成要素によって実施されてもよく、又は共通の若しくは別個のハードウェア、ファームウェア、若しくはソフトウェアの構成要素内に統合されてもよい。
【0073】
本開示に記載の技術はまた、命令で符号化されたコンピュータ可読記憶媒体を含む製品において具現化又は符号化されてもよい。コンピュータ可読記憶媒体を含む製品に埋め込まれた又は符号化された命令は、例えば、コンピュータ可読記憶媒体に含まれるか又は符号化された命令が1つ以上のプロセッサによって実行されるときなどに、1つ以上のプログラム可能なプロセッサ又は他のプロセッサに、本明細書に記載の技術のうちの1つ以上を実行させることができる。コンピュータ可読記憶媒体としては、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、プログラム可能読み取り専用メモリ(PROM)、消去可能プログラム可能読み取り専用メモリ(EPROM)、電子的消去可能プログラム可能読み取り専用メモリ(EEPROM)、フラッシュメモリ、ハードディスク、コンパクトディスクROM(CD-ROM)、フロッピーディスク、カセット、磁気媒体、光学媒体、又は他のコンピュータ可読媒体を挙げることができる。いくつかの例では、製品は、1つ以上のコンピュータ可読記憶媒体を含み得る。
【0074】
いくつかの例では、コンピュータ可読記憶媒体は、非一時的媒体を含み得る。用語「非一時的」は、記憶媒体が搬送波又は伝播信号で具現化されていないことを示してもよい。いくつかの実施例では、非一時的記憶媒体は、経時的に(例えば、RAM又はキャッシュ内で)変化することができるデータを記憶してもよい。
【0075】
【実施例
【0076】
実施例1:一例では、航空機用汚染物質除去システムは、航空機の客室からの客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出するように構成された膜スクラバ-セパレータと、液体吸着剤から汚染物質を脱着させ、汚染物質を汚染物質流に排出するように構成された膜ストリッパ-セパレータと、航空機の1つ以上の水源を使用して、清浄な空気流の湿度又は液体吸着剤の水濃度を維持するように構成された湿度管理システムと、
を含む。
【0077】
実施例2:湿度管理システムが、汚染物質流から水を除去するように構成されている、実施例1に記載の航空機用汚染物質除去システム。
【0078】
実施例3:湿度管理システムが、汚染物質流からの水を凝縮させるように構成された凝縮器と、凝縮器から凝縮された水を分離するように構成された水分離器と、を含む、実施例2に記載の航空機用汚染物質除去システム。
【0079】
実施例4:1つ以上の水源からの水の少なくとも一部が、液体吸着剤に再循環される、実施例1に記載の航空機用汚染物質除去システム。
【0080】
実施例5:湿度管理システムが、1つ以上の水源から、清浄な空気流、又はストリッパ-セパレータのスイープガス流のうちの少なくとも1つに水を加えるように構成された水気化器を更に含む、実施例1に記載の航空機用汚染物質除去システム。
【0081】
実施例6:湿度管理システムが、スクラバ-セパレータからの清浄な空気流をスイープガス流として使用して、客室空気流から清浄な空気流に湿気を戻すように構成された除湿器を更に含む、実施例1の航空機用汚染物質除去システム。
【0082】
実施例7:除湿器は、客室空気流又は汚染物質流のうちの少なくとも1つを供給ガス流として受け取るように更に構成されている、実施例6の航空機用汚染物質除去システム。
【0083】
実施例8:ストリッパ-セパレータが、汚染物質用ストリッパ-セパレータであり、湿度管理システムが、汚染物質用ストリッパ-セパレータから液体吸着剤を受け取り、清浄な空気流をスイープガス流として受け取るように構成された水用ストリッパ-セパレータを更に含む、実施例1の航空機用汚染物質除去システム。
【0084】
実施例9:ストリッパ-セパレータが、ラム空気流をスイープガス流として使用して汚染物質を脱着させるように構成された、実施例1の航空機用汚染物質除去システム。
【0085】
実施例10:航空機の客室から客室空気流を受け取るように構成された入口と、清浄な空気流を客室に排出するように構成された出口と、航空機にラム空気流を受け取るように構成されたスイープガス入口と、航空機から汚染物質流を排出するように構成された機外出口と、を更に含む、実施例9の航空機用汚染物質除去システム。
【0086】
実施例11:水源が、客室空気流、クラウン水回収システム、飲料水貯蔵システム、及び液体吸着剤のうちの少なくとも1つを含む、実施例1の航空機用汚染物質除去システム。
【0087】
実施例12:空調システムから低温の調節された加圧空気流を受け取り、清浄な空気流を膜スクラバ-セパレータから受け取り、客室の目標の汚染物質濃度、温度、及び圧力を達成するために、調節された空気流及び清浄な空気流の流量を制御するように構成されたマニホールドを更に含む、実施例1の航空機用汚染物質除去システム。
【0088】
実施例13:スクラビングモードでは、航空機の客室から客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出し、ストリッピングモードでは、外気流を受け取り、外気流を使用して液体吸着剤から汚染物質を脱着させ、汚染物質流に汚染物質を排出するように構成された膜セパレータを含む、航空機用汚染物質除去システム。
【0089】
実施例14:航空機の客室から客室空気流を受け取るように構成された入口と、清浄な空気流を客室に排出するように構成された出口と、航空機に外気流を受け取るように構成された機外入口と、航空機から汚染物質流を排出するように構成された機外出口と、を更に含む、実施例13の航空機用汚染物質除去システム。
【0090】
実施例15:膜セパレータに流体連結され、そして、スクラビングモードでは、客室空気流を供給ガスとして受け取り、清浄な空気流をスイープガスとして受け取り、ストリッピングモードでは、外気流を供給ガスとして受け取り、スイープガスとして膜セパレータから汚染物質流を受け取るように構成された除湿器を更に含む、実施例13の航空機用汚染物質除去システム。
【0091】
実施例16:一例では、航空機汚染物質除去システムは、客室空気流を受け取り、客室空気流から汚染物質を液体吸着剤に吸収させ、清浄な空気流を排出するように構成された膜スクラバ-セパレータと、液体吸着剤から汚染物質を脱着させ、汚染物質を汚染物質流に排出するように構成された膜ストリッパ-セパレータと、航空機気流に流体連結された1つ以上の熱交換器を使用して、液体吸着剤の温度を維持するように構成された熱管理システムと、を含む。
【0092】
実施例17.熱管理システムが、航空機の推進システムからの抽気流を使用して液体吸着剤を加熱するように構成された加熱器を更に含む、実施例16に記載の航空機用汚染物質除去システム。
【0093】
実施例18:熱管理システムが、ラム空気流を使用して液体吸着剤を冷却するように構成された冷却器を更に含む、実施例16に記載の航空機用汚染物質除去システム。
【0094】
実施例19:航空機空気流が、客室排出流、ラム空気流、排気流、又は抽気流のうちの少なくとも1つを含む、実施例16の航空機用汚染物質除去システム。
【0095】
実施例20:汚染物質除去システムから汚染物質の汚染物質濃度測定値を受け取るように構成された航空機用汚染物質除去システムのためのコントローラであって、汚染物質除去システムが、航空機の客室から客室空気流を受け取り、液体吸着剤を使用して、客室空気流から汚染物質を吸収し、液体吸着剤から汚染物質を脱着させ、清浄な空気流を客室に排出し、汚染物質を含む汚染物質流を航空機から排出し、汚染物質濃度測定値が汚染物質濃度設定値を超えるかどうかを判定し、汚染物質濃度設定値を超える汚染物質濃度測定値に応答して、清浄な空気流中の汚染物質の濃度を減少させるために制御信号を送信するように構成された、コントローラ。
【0096】
様々な実施例が記載されている。これら及び他の実施例は、以下の特許請求の範囲の範疇内である。
図1
図2
図3
図4
図5A
図5B
図6A
図6B
図7
図8A
図8B
図8C