(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-28
(45)【発行日】2025-03-10
(54)【発明の名称】通信システム、マスタ装置、スレーブ装置および通信方法
(51)【国際特許分類】
H04L 12/28 20060101AFI20250303BHJP
H04L 12/43 20060101ALI20250303BHJP
【FI】
H04L12/28 400
H04L12/43
(21)【出願番号】P 2022075933
(22)【出願日】2022-05-02
【審査請求日】2024-03-27
【国等の委託研究の成果に係る記載事項】(出願人による申告)令和2年度、国立研究開発法人情報通信研究機構「高度通信・放送研究開発委託研究/高度自動運転に向けた大容量車載光ネットワーク基盤技術の研究開発 多機能光集積回路を利用した高信頼大容量車載光ネットワークの研究開発」、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】591128453
【氏名又は名称】株式会社メガチップス
(74)【代理人】
【識別番号】100108523
【氏名又は名称】中川 雅博
(74)【代理人】
【識別番号】100125704
【氏名又は名称】坂根 剛
(74)【代理人】
【識別番号】100187931
【氏名又は名称】澤村 英幸
(72)【発明者】
【氏名】高田 明寛
【審査官】羽岡 さやか
(56)【参考文献】
【文献】特開2012-080491(JP,A)
【文献】特開2018-098556(JP,A)
【文献】国際公開第2013/187474(WO,A1)
【文献】国際公開第2011/016105(WO,A1)
【文献】特開2013-046132(JP,A)
【文献】特開2020-027990(JP,A)
【文献】特開2001-045038(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 12/28
H04L 12/43
(57)【特許請求の範囲】
【請求項1】
マスタ装置とスレーブ装置との間でTDMAにより通信を行う通信システムであって、
前記マスタ装置と前記スレーブ装置との間を接続する制御信号送信用の制御ネットワークと、
前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、
を備え、
前記マスタ装置は、
マスタTDMA制御回路と、
前記制御ネットワークを用いて、前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信するマスタ制御送信回路と、
前記光ネットワークを用いて、前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第1データ信号を送信するマスタデータ送信回路と、
を含み、
前記スレーブ装置は、
前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定するスレーブTDMA制御回路と、
時刻T1(S)において、前記光ネットワークを用いて、時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を前記マスタ装置に対して送信するスレーブデータ送信回路と、
を含み、
前記マスタTDMA制御回路は、
前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T1(M)およびそのタイムスタンプTS1(M)を取得し、タイムスタンプTS1(M)からタイムスタンプTS0(M)を減算することで第2往復伝送遅延時間を算出し、
前記マスタデータ送信回路は、
前記マスタTDMA制御回路により割り当てられた時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信し、
前記スレーブ装置は、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする、通信システム。
【請求項2】
前記スレーブ装置は、
時刻T1(S)において、前記スレーブ装置をデータ送信可能状態に切り替えるための制御信号を送受切替スイッチに与えるスイッチ制御送信回路、
を含み、
前記スイッチ制御送信回路は、
時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態に切り替えるための制御信号を前記送受切替スイッチに与える、請求項1に記載の通信システム。
【請求項3】
マスタ装置とスレーブ装置との間でTDMAにより通信を行う通信システムであって、
前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続される制御信号送信用の制御ネットワークと、
前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、
を備え、
前記マスタ装置は、
マスタTDMA制御回路と、
前記制御ネットワークを用いて、前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信し、および、前記制御ネットワークを用いて、前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第2制御信号を送信するマスタ制御送信回路と、
前記第2制御信号を受信するマスタ制御受信回路と、
前記マスタ制御受信回路が前記第2制御信号を受信したことに応答して、前記光ネットワークを用いて、前記マスタ装置に対して時刻T1(M)のタイムスタンプTS1(M)を含む第1データ信号を送信するマスタデータ送信回路と、
を含み、
前記スレーブ装置は、
前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定するスレーブTDMA制御回路と、
時刻T1(S)において前記光ネットワークを用いて、時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を前記マスタ装置に対して送信するスレーブデータ送信回路と、
を含み、
前記マスタTDMA制御回路は、
前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T2(M)およびそのタイムスタンプTS2(M)を取得し、タイムスタンプTS2(M)からタイムスタンプTS1(M)を減算することで第2往復伝送遅延時間を算出し、
前記マスタデータ送信回路は、
前記マスタTDMA制御回路により割り当てられた時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信し、
前記スレーブ装置は、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする、通信システム。
【請求項4】
前記スレーブ装置は、
時刻T1(S)において、前記スレーブ装置をデータ送信可能状態に切り替えるための制御信号を送受切替スイッチに与えるスイッチ制御送信回路、
を含み、
前記スイッチ制御送信回路は、
時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態に切り替えるための制御信号を前記送受切替スイッチに与える、請求項3に記載の通信システム。
【請求項5】
前記スレーブ装置は、前記マスタTDMA制御回路により割り当てられた時刻TBから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ送信可能状態にする、請求項1または請求項3に記載の通信システム。
【請求項6】
前記スイッチ制御送信回路は、
前記スレーブTDMA制御回路により割り当てられた時刻TBから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ送信可能状態に切り替えるための制御信号を前記送受切替スイッチに与え、
前記スレーブデータ送信回路は、
時刻TBから前記第1往復伝送遅延時間を減算した時刻に、前記光ネットワークを用いて、データ信号を前記マスタ装置に対して送信する、請求項2または請求項4に記載の通信システム。
【請求項7】
請求項1または請求項3に記載の通信システムに用いられるマスタ装置。
【請求項8】
請求項1または請求項3に記載の通信システムに用いられるスレーブ装置。
【請求項9】
マスタ装置とスレーブ装置との間を接続する制御信号送信用の制御ネットワークと、前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、を備える通信システムにおいて、前記マスタ装置と前記スレーブ装置との間でTDMAにより通信を行う方法であって、
前記制御ネットワークを用いて、前記マスタ装置が前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信する工程と、
前記光ネットワークを用いて、前記マスタ装置が前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第1データ信号を送信する工程と、
前記スレーブ装置が前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定する工程と、
時刻T1(S)において、前記光ネットワークを用いて、前記スレーブ装置が前記マスタ装置に対して時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を送信する工程と、
前記マスタ装置が、前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T1(M)およびそのタイムスタンプTS1(M)を取得し、タイムスタンプTS1(M)からタイムスタンプTS0(M)を減算することで第2往復伝送遅延時間を算出する工程と、
前記マスタ装置において、前記スレーブ装置にデータ信号を送信するとき、前記スレーブ装置に時刻TAを割り当てる工程と、
前記マスタ装置が、時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信する工程と、
前記スレーブ装置が、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする工程と、を含む通信方法。
【請求項10】
マスタ装置からスレーブ装置を経由して再び前記マスタ装置に接続される制御信号送信用の制御ネットワークと、前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、を備える通信システムにおいて、前記マスタ装置と前記スレーブ装置との間でTDMAにより通信を行う方法であって、
前記制御ネットワークを用いて、前記マスタ装置が前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信する工程と、
前記制御ネットワークを用いて、前記マスタ装置が前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第2制御信号を送信する工程と、
前記マスタ装置が、前記第2制御信号を受信する工程と、
前記第2制御信号を受信したことに応答して、前記光ネットワークを用いて、前記マスタ装置が前記マスタ装置に対して時刻T1(M)のタイムスタンプTS1(M)を含む第1データ信号を送信する工程と、
前記スレーブ装置が前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定する工程と、
時刻T1(S)において、前記光ネットワークを用いて、前記スレーブ装置が前記マスタ装置に対して時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を送信する工程と、
前記マスタ装置が、前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T2(M)およびそのタイムスタンプTS2(M)を取得し、タイムスタンプTS2(M)からタイムスタンプTS1(M)を減算することで第2往復伝送遅延時間を算出する工程と、
前記マスタ装置において、前記スレーブ装置にデータ信号を送信するとき、前記スレーブ装置に時刻TAを割り当てる工程と、
前記マスタ装置が、時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信する工程と、
前記スレーブ装置が、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする、を含む通信方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ネットワークを利用した通信システム、その通信システムに用いられるマスタ装置およびスレーブ装置並びに通信方法に関する。
【背景技術】
【0002】
通信の高速化および大容量化への解決策の一つとして光ネットワークが用いられる。光ネットワークを用いて複数の通信装置が通信を行う場合、TDMA(時分割多元接続)によりそれら通信端末で光ファイバを共有することが可能である。このとき、光ネットワークにおいて信号の衝突・消失を回避するために、通信装置間で信号の送受信タイミングを精度よく切り替える必要がある。
【0003】
複数のONU(Optical Network Unit)が光ネットワークを共有するIEEE802.3av(10G-EPON)規格では、信号の衝突を避けるためにONUの送信タイミングを制御するプロトコル(Multi-Point Control Protocol:MPCP)が用いられている。MPCPでは、ONUからOLT(Optical Line Terminal)への上り信号については、送信側のONUでタイミングを合わせるように制御される。
【0004】
下記特許文献1においては、電気信号を送信するC-Planeと光信号を送信するD-Planeとを融合したネットワーク技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1においては、マスタ装置が各スレーブ装置に対して、C-Planeを用いて制御信号を送信することで、D-planeにおけるデータ信号の送受信をコントロールする技術が開示されている。マスタ装置およびスレーブ装置においては信号を処理する遅延時間が発生する。この遅延時間も考慮することで、送受信のコントロールをさらに精度よく行われることが望まれる。
【0007】
本発明の目的は、光ネットワークを用いた通信システムにおいて、信号の衝突・消失を回避するために送受信のコントロールを精度よく行うことである。
【課題を解決するための手段】
【0008】
本発明の一局面に従う通信システムは、マスタ装置とスレーブ装置との間でTDMAにより通信を行う通信システムであって、マスタ装置とスレーブ装置との間を接続する制御信号送信用の制御ネットワークと、マスタ装置からスレーブ装置を経由して再びマスタ装置に接続されるデータ信号送信用の光ネットワークとを備え、マスタ装置は、マスタTDMA制御回路と、制御ネットワークを用いて、スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信するマスタ制御送信回路と、光ネットワークを用いて、マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第1データ信号を送信するマスタデータ送信回路とを含み、スレーブ装置は、第1制御信号を受信したとき、スレーブ装置の時刻をT0(S)に設定するスレーブTDMA制御回路と、時刻T1(S)において、光ネットワークを用いて、時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号をマスタ装置に対して送信するスレーブデータ送信回路とを含み、マスタTDMA制御回路は、第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、第1データ信号を受信した時刻T1(M)およびそのタイムスタンプTS1(M)を取得し、タイムスタンプTS1(M)からタイムスタンプTS0(M)を減算することで第2往復伝送遅延時間を算出し、マスタデータ送信回路は、マスタTDMA制御回路により割り当てられた時刻TAから第2往復伝送遅延時間を減算した時刻に、スレーブ装置に対してデータ信号を送信し、前記スレーブ装置は、時刻TAから第1往復伝送遅延時間を減算した時刻に、スレーブ装置をデータ受信可能状態にする。
【0009】
本発明は、また、上記の通信システムで用いられるマスタ装置およびスレーブ装置に向けられている。さらに、本発明は、通信方法にも向けられている。
【発明の効果】
【0010】
本発明によれば、光ネットワークを用いた通信システムにおいて、信号の衝突・消失を回避するために送受信のコントロールを精度よく行うことができる。
【図面の簡単な説明】
【0011】
【
図1】第1の実施の形態に係る通信システムの全体図である。
【
図2】第1の実施の形態に係るマスタ装置およびスレーブ装置の機能構成を示すブロック図である。
【
図3】マスタ装置-スレーブ装置間の往復伝送遅延時間を示す図である。
【
図4】マスタ装置-スレーブ装置間の往復伝送遅延時間を示すタイムチャートである。
【
図5】マスタ装置-マスタ装置間の往復伝送遅延時間を示す図である。
【
図6】マスタ装置-マスタ装置間の往復伝送遅延時間を示すタイムチャートである。
【
図7】上り通信における送信タイミングを示すタイムチャートである。
【
図8】下り通信における送信タイミングを示すタイムチャートである。
【
図9】上り通信および下り通信が混在した送信タイミングを示すタイムチャートである。
【
図10】第2の実施の形態に係る通信システムの全体図である。
【
図11】第2の実施の形態に係るマスタ装置およびスレーブ装置の機能構成を示すブロック図である。
【
図12】マスタ装置-マスタ装置間の往復伝送遅延時間を示す図である。
【
図13】マスタ装置-マスタ装置間の往復伝送遅延時間を示すタイムチャートである。
【発明を実施するための形態】
【0012】
以下、添付の図面を参照しながら、本発明の実施の形態に係る通信システム、マスタ装置、スレーブ装置および通信方法について説明する。
【0013】
[1]第1の実施の形態
(1)通信システムの全体構成
図1は、第1の実施の形態に係る通信システム10の全体構成を示す。通信システム10は、マスタ装置1および複数のスレーブ装置3を備える。
図1の例では、通信システム10が、3つのスレーブ装置3A,3B,3Cを備える場合を例に説明する。スレーブ装置3A,3B,3Cには、それぞれ送受切替スイッチ4A,4B,4Cが接続される。スレーブ装置3Aおよび送受切替スイッチ4Aによりゲートウェイ5Aが、スレーブ装置3Bおよび送受切替スイッチ4Bによりゲートウェイ5Bが、スレーブ装置3Cおよび送受切替スイッチ4Cによりゲートウェイ5Cが構成される。以下の説明において、スレーブ装置3A~3C、送受切替スイッチ4A~4C,ゲートウェイ5A~5Cに共通の構成、動作を説明するときは、適宜、スレーブ装置3、送受切替スイッチ4、ゲートウェイ5として説明する。
【0014】
マスタ装置1とスレーブ装置3A~3Cは、制御信号送信用の制御ネットワーク6で接続される。本実施の形態においては、制御ネットワーク6は、電気信号を伝送するネットワークを用いるが、制御ネットワーク6として光信号を伝送する光ネットワークを用いてもよい。制御ネットワーク6は、複数の分岐点により分岐されて各スレーブ装置3A~3Cに接続される。このような構成により、マスタ装置1が制御ネットワーク6を介して送信した制御信号は、全てのスレーブ装置3A~3Cにおいて受信される。
【0015】
マスタ装置1と送受切替スイッチ4A~4Cは、データ信号送信用の光ネットワーク7で接続される。つまり、マスタ装置1と送受切替スイッチ4A~4Cとは光ファイバで接続される。このように、本実施の形態の通信システム10は、マスタ装置1および複数のスレーブ装置3A~3Cが1本の光ファイバを共有している。
【0016】
図1において、制御信号が伝送される制御ネットワーク6を細線で描き、データ信号が伝送される光ネットワーク7を太線で描いている。
【0017】
通信システム10は、例えば、自動車に搭載される車載ネットワークとして利用される。この場合、スレーブ装置3A~3Cは、自動車の各部品を制御する電子制御ユニット(ECU)として利用可能である。自動車の電子制御技術の発達に伴い、自動車には多数の電子制御ユニットが搭載されるようになっている。この場合、電子制御ユニットに対応する多数のスレーブ装置3が自動車に搭載され、それら多数のスレーブ装置3が、制御ネットワーク6および光ネットワーク7に接続される。
【0018】
(2)マスタ装置およびスレーブ装置の機能構成
図2は、第1の実施の形態に係るマスタ装置1およびスレーブ装置3の機能構成を示すブロック図である。マスタ装置1は、TDMA制御回路11、制御送信回路12、データ送信回路13およびデータ受信回路14を備える。
【0019】
TDMA制御回路11は、制御送信回路12、データ送信回路13およびデータ受信回路14を制御し、通信システム10においてTDMAを行うための制御を行う。制御送信回路12は、制御ネットワーク6を介して、スレーブ装置3に対して制御信号を送信する。データ送信回路13は、光ネットワーク7を介して、スレーブ装置3またはマスタ装置1に対してデータ信号を送信する。データ受信回路14は、光ネットワーク7を介して、スレーブ装置3またはマスタ装置1から送信されたデータ信号を受信する。
【0020】
スレーブ装置3は、TDMA制御回路31、制御受信回路32、スイッチ制御送信回路33,データ受信回路34およびデータ送信回路35を備える。
【0021】
TDMA制御回路31は、制御受信回路32、スイッチ制御送信回路33,データ受信回路34およびデータ送信回路35を制御し、通信システム10においてTDMAを行うための制御を行う。制御受信回路32は、制御ネットワーク6を介して、マスタ装置1が送信した制御信号を受信する。スイッチ制御送信回路33は、送受切替スイッチ4の切替制御を行う。データ受信回路34は、光ネットワーク7を介して、マスタ装置1が送信したデータ信号を受信する。データ送信回路35は、光ネットワーク7を介して、マスタ装置1に対してデータ信号を送信する。
【0022】
送受切替スイッチ4は、スイッチ制御送信回路33から与えられた切替信号に従い、データ送信可能状態(Talk)、データ受信可能状態(Listen)および通過状態(Thru)の3種類の状態切替を行う。送受切替スイッチ4が送信可能状態となったとき、データ送信回路35から与えられたデータ信号が、光信号として光ネットワーク7に書き込み可能となる。送受切替スイッチ4が受信可能状態となったとき、光ネットワーク7から読み出された光信号が、データ受信回路34に与えられる。送受切替スイッチ4が通過状態となったとき、送受切替スイッチ4は、光ネットワーク7を流れる光信号を通過させる。送受切替スイッチ4を通過した光信号は、次のスレーブ装置3の送受切替スイッチ4へ向かって送られる。
【0023】
(3)マスタ装置-スレーブ装置間の往復伝送遅延時間
次に、マスタ装置-スレーブ装置間の往復伝送遅延時間(以下、第1往復伝送遅延時間RTTsとする。)について説明する。
図3は、第1往復伝送遅延時間RTTsを説明する図である。第1往復伝送遅延時間RTTsは、マスタ装置1がスレーブ装置3に対してデータ信号の送信を指示してから、スレーブ装置3が送信したデータ信号をマスタ装置1が受信するまでの遅延時間である。
【0024】
図3に示すように、第1往復伝送遅延時間RTTsは、遅延時間Tc、TstxおよびTmrxの3つの要素を含む。遅延時間Tcは、マスタ装置1からスレーブ装置3に対して制御信号が伝送される間の遅延時間であり、制御送信回路12および制御受信回路32における処理時間が支配項となる。遅延時間Tstxは、スレーブ装置3から送受切替スイッチ4に対して切替信号が伝送される間の遅延時間であり、スイッチ制御送信回路33における処理時間が支配項となる。また、遅延時間Tmrx+Tstxは、データ信号がスレーブ装置3からマスタ装置1に伝送される間の遅延時間であり、データ送信回路35における処理時間Tstxおよびデータ受信回路14における処理時間Tmrxが支配項となる。本実施の形態においては、データ送信回路35における処理時間とスイッチ制御送信回路33における処理時間は同じ時間Tstxとして扱う。
【0025】
図4は、第1往復伝送遅延時間RTTsを示すタイムチャートである。時刻T0(S)において、マスタ装置1は、スレーブ装置3に対して制御信号を送信する。具体的には、TDMA制御回路11は、制御送信回路12に対して時刻T0(S)のタイムスタンプTS0(S)を含む制御信号の送信指示を与える。制御送信回路12は、タイムスタンプTS0(S)を含む制御信号のフレームを生成し、スレーブ装置3に対して制御信号を送信する。制御信号は、制御ネットワーク6に送出される。スレーブ装置3の制御受信回路32は、受信した制御信号をTDMA制御回路31に与える。TDMA制御回路31は、制御信号を受信したとき、スレーブ装置3のローカル時刻をTS0(S)に設定する。このとき、制御送信回路12および制御受信回路32の処理時間を合計した時間を、遅延時間Tcとする。つまり、スレーブ装置3のローカル時刻は、マスタ装置1の時刻よりTcだけ遅れている。
【0026】
続いて、TDMA制御回路31は、時刻T1(S)において、スイッチ制御送信回路33に対して、状態切替指示を与える。時刻T1(S)は、スレーブ装置3のローカル時刻である。この指示に応答して、スイッチ制御送信回路33は、送受切替スイッチ4を送信可能状態(Talk)に切り替えるための制御信号を送受切替スイッチ4に与える。時刻T0(S)から時刻T1(S)までの待機時間Twは、TDMA制御回路31における処理時間である。TDMA制御回路31は、また、時刻T1(S)において、データ送信回路35に対して、時刻T1(S)のタイムスタンプTS1(S)を含むデータ信号の送信指示を与える。データ送信回路35は、この指示に応答して、タイムスタンプTS1(S)を含むデータ信号のフレームを生成し、送受切替スイッチ4にデータ信号を与える。このとき、データ送信回路35の処理時間を、遅延時間Tstxとする。また、スイッチ制御送信回路33の処理時間も、遅延時間Tstxとする。
【0027】
送受切替スイッチ4は、スイッチ制御送信回路33からの指示に応答して、送受切替スイッチ4の状態を送信可能状態(Talk)に切り替える。そして、送受切替スイッチ4は、データ送信回路35から与えられたデータ信号を光ネットワーク7に送出する。
【0028】
マスタ装置1のデータ受信回路14は、データ送信回路35から送信されたデータ信号を受信する。データ受信回路14は受信したデータ信号をTDMA制御回路11に与える。TDMA制御回路11は、データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得する。このとき、データ受信回路14の処理時間を、遅延時間Tmrxとする。
【0029】
TDMA制御回路11は、以下の式の最終行の演算を実行することにより、第1往復伝送遅延時間RTTsを求める。
RTTs=Tc+Tstx+Tmrx
=TS2(S)-TS0(S)-Tw
=TS2(S)-TS0(S)-(TS1(S)-TS0(S))
=TS2(S)-TS1(S)
TDMA制御回路11は、求めた第1往復伝送遅延時間RTTsをマスタ装置1が備える記憶部に保存する。
【0030】
(4)マスタ装置-マスタ装置間の往復伝送遅延時間
次に、マスタ装置-マスタ装置間の往復伝送遅延時間(以下、第2往復伝送遅延時間RTTmとする。)について説明する。
図5は、第2往復伝送遅延時間RTTmを説明する図である。第2往復伝送遅延時間RTTmは、マスタ装置1がマスタ装置1自身に対してデータ信号を送信してから、マスタ装置1が送信したデータ信号を受信するまでの遅延時間である。第2往復伝送遅延時間RTTmを計測するために、全てのスレーブ装置3の送受切替スイッチ4は通過状態(Thru)に切り替えられる。これにより、マスタ装置1が送信したデータ信号は全てのゲートウェイ5の送受切替スイッチ4を通過して再びマスタ装置1へと戻る。
【0031】
図5に示すように、第2往復伝送遅延時間RTTmは、遅延時間TmtxおよびTmrxの2つの要素を含む。遅延時間Tmtxは、マスタ装置1がデータ信号の送信に要する遅延時間であり、データ送信回路13における処理時間が支配項となる。また、遅延時間Tmrxは、マスタ装置1がデータ信号の受信に要する遅延時間であり、データ受信回路14における処理時間が支配項となる。
【0032】
図6は、第2往復伝送遅延時間RTTmを示すタイムチャートである。時刻T0(M)において、マスタ装置1は、マスタ装置1自身に対してデータ信号を送信する。具体的には、TDMA制御回路11は、データ送信回路13に対して時刻T0(M)のタイムスタンプTS0(M)を含むデータ信号の送信指示を与える。データ送信回路13は、タイムスタンプTS0(M)を含むデータ信号のフレームを生成し、マスタ装置1に対してデータ信号を送信する。このとき、データ送信回路13の処理時間を、遅延時間Tmtxとする。
【0033】
データ送信回路13から送信されたデータ信号は、光ネットワーク7に送出される。データ信号は全ての送受切替スイッチ4を通過し、再び、マスタ装置1に戻る。マスタ装置1のデータ受信回路14は、受信したデータ信号をTDMA制御回路11に与える。TDMA制御回路11は、データ信号を受信したときの時刻T1(M)およびそのタイムスタンプTS1(M)を取得する。このとき、データ受信回路14の処理時間を、遅延時間Tmrxとする。
【0034】
TDMA制御回路11は、以下の演算を実行することにより、第2往復伝送遅延時間RTTmを求める。
RTTm=Tmtx+Tmrx
=TS1(M)-TS0(M)
TDMA制御回路11は、求めた第2往復伝送遅延時間RTTmをマスタ装置1が備える記憶部に保存する。
【0035】
(5)上り通信のコントロール手順
次に、スレーブ装置3からマスタ装置1に対してデータ信号を送信する上り通信のコントロール手順について説明する。
図7は、上り通信における送信タイミングを示すタイムチャートである。
図7において、符号SAは、スレーブ装置3Aが送信するデータ信号を示し、符号SBは、スレーブ装置3Bが送信するデータ信号を示す。
【0036】
まず、マスタ装置1のTDMA制御回路11が、各スレーブ装置3に対してデータ信号の送信を許可する時刻を割り当てる。
図7の例では、TDMA制御回路11は、スレーブ装置3Aに対して時刻t1~t2を割り当て、スレーブ装置3Bに対して時刻t2~t3を割り当てている。具体的には、TDMA制御回路11の指示に応じて、制御送信回路12が、スレーブ装置3Aに対して、送信許可時刻t1~t2を指定した制御信号を送信する。同様に、TDMA制御回路11の指示に応じて、制御送信回路12が、スレーブ装置3Bに対して、送信許可時刻t2~t3を指定した制御信号を送信する。
【0037】
次に、スレーブ装置3AのTDMA制御回路31は、時刻t1から自身の第1往復伝送遅延時間RTTsaを減算した時刻t1-RTTsaに、スイッチ制御送信回路33に対して、送信可能状態(Talk)への切替指示を与える。また、スレーブ装置3AのTDMA制御回路31は、時刻t1-RTTsaに、データ送信回路35に対して、データ信号の送信指示を与える。なお、時刻t1-RTTsaは、スレーブ装置3Aのローカル時刻である。同様に、スレーブ装置3BのTDMA制御回路31は、時刻t2から自身の第1往復伝送遅延時間RTTsbを減算した時刻t2-RTTsbに、スイッチ制御送信回路33に対して、送信可能状態(Talk)への切替指示を与える。また、スレーブ装置3BのTDMA制御回路31は、時刻t2-RTTsbに、データ送信回路35に対して、データ信号の送信指示を与える。なお、時刻t2-RTTsbは、スレーブ装置3Bのローカル時刻である。
【0038】
なお、上述した第1往復伝送遅延時間RTTsは、スレーブ装置3ごとに計測される。ここでは、スレーブ装置3A,3Bの第1往復伝送遅延時間RTTsを、それぞれRTTsa,RTTsbとする。マスタ装置1のTDMA制御回路11は、スレーブ装置3A,3Bに対して、送信許可時刻を通知する制御信号を送信するときに、合わせてそれぞれのスレーブ装置3A,3Bについて計測した第1往復伝送遅延時間RTTsa,RTTsbを通知してもよい。あるいは、TDMA制御回路11は、事前にスレーブ装置3A,3Bに対して第1往復伝送遅延時間RTTsa,RTTsbを送信しておいてもよい。あるいは、TDMA制御回路11は、スレーブ装置3A、3Bに対して第1往復伝送遅延時間RTTsa、RTTsbを減算した時刻t1-RTTsa、t2-RTTsbを送信許可時刻として通知してもよい。
【0039】
次に、スレーブ装置3Aのスイッチ制御送信回路33の切替指示に応答して、時刻t1-RTTsaから遅延時間Tstxaが経過した後、送受切替スイッチ4Aが、送信可能状態(Talk)に切り替えられる。また、スレーブ装置3Aのデータ送信回路35から送信されたデータ信号が、時刻t1-RTTsaから遅延時間Tstxaが経過した後、光ネットワーク7に送出される。ここで、遅延時間Tstxaは、スレーブ装置3Aのデータ送信回路35における遅延時間である。スレーブ装置3Aのスイッチ制御送信回路33における遅延時間も同様に遅延時間Tstxaである。
【0040】
同様に、スレーブ装置3Bのスイッチ制御送信回路33の切替指示に応答して、時刻t2-RTTsbから遅延時間Tstxbが経過した後、送受切替スイッチ4Bが、送信可能状態(Talk)に切り替えられる。また、スレーブ装置3Bのデータ送信回路35から送信されたデータ信号が、時刻t2-RTTsbから遅延時間Tstxbが経過した後、光ネットワーク7に送出される。ここで、遅延時間Tstxbは、スレーブ装置3Bのデータ送信回路35における遅延時間である。スレーブ装置3Bのスイッチ制御送信回路33における遅延時間も同様に遅延時間Tstxbである。
【0041】
次に、マスタ装置1のデータ受信回路14が、スレーブ装置3Aから送信されたデータ信号を受信する。続いて、マスタ装置1のデータ受信回路14が、スレーブ装置3Bから送信されたデータ信号を受信する。データ受信回路14の受信処理における遅延時間はいずれもTmrxである。これにより、マスタ装置1は、スレーブ装置3Aのローカル時刻t1-RTTsaから、Tstxa+Tmrx時間経過後にスレーブ装置3Aが送信したデータ信号を受信する。つまり、マスタ装置1における時刻で時刻t1-Tmrxに光ネットワーク7にデータ信号が送出され、マスタ装置1は、時刻t1において、スレーブ装置3Aが送信したデータ信号を受信する。また、マスタ装置1は、スレーブ装置3Bのローカル時刻t2-RTTsbから、Tstxb+Tmrx時間経過後にスレーブ装置3Bが送信したデータ信号を受信する。つまり、マスタ装置1における時刻で時刻t2-Tmrxに光ネットワーク7にデータ信号が送出され、マスタ装置1は、時刻t2において、スレーブ装置3Bが送信したデータ信号を受信する。スレーブ装置3Aは、データ送信可能な時間としてt1~t2が与えられているので、スレーブ装置3Aから送信されたデータ信号は、時刻t1-Tmrx~t2-Tmrxに光ネットワーク7に送出され、マスタ装置1において時刻t1~t2において受信される。スレーブ装置3Bは、データ送信可能な時間としてt2~t3が与えられているので、スレーブ装置3Bから送信されたデータ信号は、時刻t2-Tmrx~t3-Tmrxに光ネットワーク7に送出され、マスタ装置1において時刻t2~t3において受信される。これにより、マスタ装置1において衝突がないようにスケジューリングされることで、スレーブ装置3A,3Bから送信されたデータ信号が、光ネットワーク7で衝突することなくマスタ装置1において受信される。
【0042】
(6)下り通信のコントロール手順
次に、マスタ装置1からスレーブ装置3に対してデータ信号を送信する下り通信のコントロール手順について説明する。
図8は、下り通信における送信タイミングを示すタイムチャートである。まず、マスタ装置1のTDMA制御回路11が、各スレーブ装置3に対してデータ信号の受信時刻を割り当てる。
図8の例では、TDMA制御回路11は、スレーブ装置3に対して受信時刻t1を割り当てている。具体的には、TDMA制御回路11の指示に応じて、制御送信回路12が、スレーブ装置3に対して、受信時刻t1を指定した制御信号を送信する。
【0043】
次に、スレーブ装置3のTDMA制御回路31は、時刻t1から自身の第1往復伝送遅延時間RTTsを減算した時刻t1-RTTsに、スイッチ制御送信回路33に対して、受信可能状態(Listen)への切替指示を与える。なお、時刻t1-RTTsは、スレーブ装置3のローカル時刻である。この切替指示に応答して、スイッチ制御送信回路33が、送受切替スイッチ4を受信可能状態(Listen)に切り替える。スイッチ制御送信回路33における処理の遅延時間は、Tstxである。マスタ装置1のTDMA制御回路11は、スレーブ装置3に対して、受信時刻を通知する制御信号を送信するときに、合わせてスレーブ装置3について計測した第1往復伝送遅延時間RTTsを通知してもよい。あるいは、TDMA制御回路11は、事前にスレーブ装置3に対して第1往復伝送遅延時間RTTsを送信しておいてもよい。あるいは、TDMA制御回路11は、スレーブ装置3に対して第1往復伝送遅延時間RTTsを減算した時刻t1-RTTsを送信許可時刻として通知してもよい。
【0044】
また、マスタ装置1のTDMA制御回路11は、時刻t1から第2往復伝送遅延時間RTTmを減算した時刻t1-RTTmに、データ送信回路13に対して、データ信号の送信指示を与える。この送信指示に応答して、データ送信回路13が、スレーブ装置3に対してデータ信号を送信する。データ送信回路13における処理の遅延時間は、Tmtxである。
【0045】
送受切替スイッチ4が受信可能状態(Listen)に切り替わるのは、スレーブ装置3のローカル時刻t1-RTTsから時間Tstx経過後である。
図4および
図8からも分かるように、送受切替スイッチ4が受信可能状態(Listen)に切り替わるのは、マスタ装置1における時刻で時刻t1-Tmrxである。一方、マスタ装置1から送信されたデータ信号が送受切替スイッチ4に到達するのは、マスタ装置1における時刻で時刻t1-RTTmから時間Tmtx経過後である。
図6および
図8からも分かるように、データ信号が送受切替スイッチ4に到達するのは、マスタ装置1における時刻で時刻t1-Tmrxである。これにより、スレーブ装置3は、マスタ装置1が送信したデータ信号を受信可能である。
図8において、Tsrxは、スレーブ装置3のデータ受信回路34における処理時間である。
【0046】
(7)上り通信および下り通信が混在する場合のコントロール手順
図9は、上り通信および下り通信が混在した送信タイミングを示すタイムチャートである。
図9の例では、マスタ装置1のTDMA制御回路11は、スレーブ装置3Aに対して、時刻t1~t2を、データ送信可能時間として割り当てている。また、マスタ装置1のTDMA制御回路11は、スレーブ装置3Aに対してデータ信号を受信する時間として、時刻t2~t3を割り当てている。さらに、マスタ装置1のTDMA制御回路11は、スレーブ装置3Bに対して、時刻t3~t4を、データ送信可能時間として割り当てている。
図9において、符号SAは、スレーブ装置3Aがマスタ装置1に対して送信するデータ信号を示し、符号MAは、マスタ装置1がスレーブ装置3Aに対して送信するデータ信号を示し、符号SBは、スレーブ装置3Bがマスタ装置に対して送信するデータ信号を示す。
【0047】
図7を用いて説明したように、時刻t1~t2をスレーブ装置3Aに対して送信可能時間として許可した場合、スレーブ装置3Aから送信されたデータ信号が光ネットワーク7に送出される時間は、時刻t1-Tmrxから時刻t2-Tmrxまでの間である。同様に、時刻t3~t4をスレーブ装置3Bに対して送信可能時間として許可した場合、スレーブ装置3Bから送信されたデータ信号が光ネットワーク7に送出される時間は、時刻t3-Tmrxから時刻t4-Tmrxまでの間である。また、
図8を用いて説明したように、時刻t2~t3をスレーブ装置3Aに対してデータ信号を受信する時間として割り当てた場合、スレーブ装置3Aに送信されたデータ信号が光ネットワーク7に送出される時間は、時刻t2-Tmrxから時刻t3-Tmrxまでの間である。このように、上り通信と下り通信が混在する場合であっても、本実施の形態におけるコントロールを行うことで、データ信号が衝突することはない。
【0048】
[2]第2の実施の形態
次に、本発明の第2の実施の形態に係る通信システム10Aについて説明する。
図10は、第2の実施の形態に係る通信システム10Aの全体構成を示す。第1の実施の形態の通信システム10と異なり、通信システム10Aが備える制御ネットワーク6Aは、ループ状に構成され、各スレーブ装置3に接続された後、再びマスタ装置1に接続される。これにより、マスタ装置1Aは、自身が送信した制御信号を受信可能である。
【0049】
図11は、第2の実施の形態に係るマスタ装置1Aおよびスレーブ装置3の機能構成を示すブロック図である。第1の実施の形態と異なり、マスタ装置1Aが備えるTDMA制御回路11Aは、第1TDMA制御回路111および第2TDMA制御回路112を含む。また、第1の実施の形態と異なり、マスタ装置1Aは、制御受信回路15を備える。第1TDMA制御回路111は、マスタ装置としてのTDMA制御を実行する役割を備え、第2TDMA制御回路112は、スレーブ装置としてのTDMA制御を実行する役割を備える。制御受信回路15は、制御送信回路12が送信した制御信号を受信する。
【0050】
第2の実施の形態の通信システム10Aにおいても、マスタ装置-スレーブ装置間の第1往復伝送遅延時間RTTsの計測方法は、第1の実施の形態における「(3)マスタ装置-スレーブ装置間の往復伝送遅延時間」と同様である。第2の実施の形態においては、マスタ装置-マスタ装置間の第2往復伝送遅延時間RTTmの計測方法が異なる。
【0051】
次に、マスタ装置-マスタ装置間の第2往復伝送遅延時間RTTmについて説明する。
図12は、第2往復伝送遅延時間RTTmを説明する図である。第2往復伝送遅延時間RTTmは、マスタ装置1Aがマスタ装置1A自身に対してデータ信号の送信を指示してから、マスタ装置1Aが自身が送信したデータ信号を受信するまでの遅延時間である。第2往復伝送遅延時間RTTmを計測するために、全てのスレーブ装置3の送受切替スイッチ4は通過状態(Thru)に切り替えられる。
【0052】
図12に示すように、第2往復伝送遅延時間RTTmは、遅延時間Tc、TmtxおよびTmrxの3つの要素を含む。遅延時間Tcは、マスタ装置1Aから送信された制御信号がマスタ装置1Aで受信される間の遅延時間であり、制御送信回路12および制御受信回路15における処理時間が支配項となる。遅延時間Tmtxは、マスタ装置1Aがデータ信号の送信に要する遅延時間であり、データ送信回路13における処理時間が支配項となる。また、遅延時間Tmrxは、マスタ装置1Aがデータ信号の受信に要する遅延時間であり、データ受信回路14における処理時間が支配項となる。
【0053】
図13は、第2往復伝送遅延時間RTTmを示すタイムチャートである。時刻T0(M)において、マスタ装置1Aは、マスタ装置1Aに対して制御信号を送信する。具体的には、第1TDMA制御回路111は、制御送信回路12に対して時刻T0(M)のタイムスタンプTS0(M)を含む制御信号の送信指示を与える。制御送信回路12は、タイムスタンプTS0(M)を含む制御信号のフレームを生成し、マスタ装置1Aに対して制御信号を送信する。制御信号は、制御ネットワーク6Aに送出される。マスタ装置1Aの制御受信回路15は、受信した制御信号を第2TDMA制御回路112に与える。第2TDMA制御回路112は、制御信号を受信したとき、第2TDMA制御回路112におけるローカル時刻をTS0(M)に設定する。このとき、制御送信回路12および制御受信回路15の処理時間を合計した時間を、遅延時間Tcとする。つまり、第2TDMA制御回路112のローカル時刻は、マスタ装置1(第1TDMA制御回路111)の時刻よりTcだけ遅れている。
【0054】
続いて、第2TDMA制御回路112は、時刻T1(M)において、マスタ装置1A自身に対してデータ信号を送信する。時刻T1(M)は、第2TDMA制御回路112におけるローカル時刻である。具体的には、第2TDMA制御回路112は、データ送信回路13に対して時刻T1(M)のタイムスタンプTS1(M)を含むデータ信号の送信指示を与える。時刻T0(M)から時刻T1(M)までの待機時間Twは、第2TDMA制御回路112における処理時間である。データ送信回路13は、タイムスタンプTS1(M)を含むデータ信号のフレームを生成し、マスタ装置1Aに対してデータ信号を送信する。このとき、データ送信回路13の処理時間を、遅延時間Tmtxとする。
【0055】
データ送信回路13から送信されたデータ信号は、光ネットワーク7に送出される。データ信号は全ての送受切替スイッチ4を通過し、再び、マスタ装置1Aに戻る。マスタ装置1Aのデータ受信回路14は、受信したデータ信号を第1TDMA制御回路111に与える。第1TDMA制御回路111は、データ信号を受信したときの時刻T2(M)およびそのタイムスタンプTS2(M)を取得する。このとき、データ受信回路14の処理時間を、遅延時間Tmrxとする。
【0056】
第1TDMA制御回路111は、以下の式の最終行の演算を実行することにより、第2往復伝送遅延時間RTTmを求める。
RTTm=Tc+Tmtx+Tmrx
=TS2(M)-TS0(M)-Tw
=TS2(M)-TS0(M)-(TS1(M)-TS0(M))
=TS2(M)-TS1(M)
第1TDMA制御回路111は、求めた第2往復伝送遅延時間RTTmをマスタ装置1が備える記憶部に保存する。
【0057】
このように第2の実施の形態におけるマスタ装置1Aは、内部にスレーブ装置としての役割を有する第2TDMA制御回路112を持つことで、第2往復伝送遅延時間RTTmを計測することができる。第2の実施の形態においても、上り通信のコントロール手順は、第1の実施の形態の「(5)上り通信のコントロール手順」と同様である。スレーブ装置3のTDMA制御回路31は、送信可能時間として割り当てられた時刻から自身の第1往復伝送遅延時間RTTsを減算した時刻に、スイッチ制御送信回路33に対して、送信可能状態(Talk)への切替指示を与える。また、スレーブ装置3のTDMA制御回路31は、送信可能時間として割り当てられた時刻から自身の第1往復伝送遅延時間RTTsを減算した時刻に、データ送信回路35に対して、データ信号の送信指示を与える。これにより、第2の実施の形態の通信システム10Aにおいても、光信号の衝突が発生することなく、上り通信をコントロールすることができる。
【0058】
また、第2の実施の形態においても、下り通信のコントロール手順は、第1の実施の形態の「(6)下り通信のコントロール手順」と同様である。スレーブ装置3のTDMA制御回路31は、受信時刻として割り当てられた時刻から自身の第1往復伝送遅延時間RTTsを減算した時刻に、スイッチ制御送信回路33に対して、受信可能状態(Listen)への切替指示を与える。また、マスタ装置1Aの第2TDMA制御回路112は、受信時刻として割り当てた時刻から第2往復伝送遅延時間RTTmを減算した時刻に、データ送信回路13に対して、データ信号の送信指示を与える。これにより、第2の実施の形態の通信システム10Aにおいても、第1の実施の形態と同様に下り通信をコントロールすることができる。
【0059】
このように、第2の実施の形態においても、上り通信および下り通信において第1の実施の形態と同様のコントロールが可能である。したがって、上り通信および下り通信が混在する場合であっても、第1の実施の形態の「(7)上り通信および下り通信が混在する場合のコントロール手順」と同様のコントロールが可能である。
【0060】
[3]請求項の各構成要素と実施の形態の各要素との対応
以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。上記の実施の形態では、TDMA制御回路11およびTDMA制御回路11AがマスタTDMA制御回路の例であり、制御送信回路12がマスタ制御送信回路の例であり、データ送信回路13がマスタデータ送信回路の例である。また、上記の実施の形態では、TDMA制御回路31がスレーブTDMA制御回路の例であり、データ送信回路35がスレーブデータ送信回路の例である。また、上記の実施の形態では、制御受信回路15がマスタ制御受信回路の例である。
【0061】
請求項の各構成要素として、請求項に記載されている構成または機能を有する種々の要素を用いることもできる。
【0062】
ここに開示される要素の機能は、当該開示される要素を実行するように構成された、あるいは当該開示される機能を実行するようにプログラミングされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(「特定用途向け集積回路」)、従来の回路構成及び/またはそれらの組み合わせを含む回路構成あるいは処理回路構成が用いられて実装されてもよい。プロセッサは、それが、その中にトランジスタ及び他の回路構成を含むとき、処理回路構成あるいは回路構成として見なされる。本開示において、回路構成、ユニットあるいは手段は、挙げられた機能を実行するハードウェア、あるいは当該機能を実行するようにプログラミングされたハードウェアである。ハードウェアは、挙げられた機能を実行するようにプログラミングされた、あるいは当該機能を実行するように構成された、ここで開示されるいかなるハードウェアあるいは既知の他のものであってもよい。ハードウェアが、あるタイプの回路構成として見なされるかもしれないプロセッサであるとき、回路構成、手段あるいはユニットは、ハードウェアとソフトウェアの組み合わせ、ハードウェアを構成するために用いられるソフトウェア及び/またはプロセッサである。
【0063】
[4]変形例
上記実施の形態においては、ゲートウェイ5として、3台のゲートウェイ5A~5Cが接続される場合を例に説明したが、ゲートウェイ5の数はこれに限定されるものではない。ゲートウェイ5の数は4台以上であってもよいし、1台や2台であってもよい。
【0064】
上記実施の形態の「(7)上り通信および下り通信が混在する場合のコントロール手順」においては、
図9で示したように、各スレーブ装置3に割り当てる時間枠を隣接させている。これは一例であり、各スレーブ装置3に割り当てる時間枠の間にインターバルを設けてもよい。
【0065】
[5]本発明の態様
上記の実施の形態で説明した通信システム、マスタ装置、スレーブ装置および通信方法は、以下の特徴により明確となる。
(第1の態様)
第1の態様に係る通信システムは、
マスタ装置とスレーブ装置との間でTDMAにより通信を行う通信システムであって、
前記マスタ装置と前記スレーブ装置との間を接続する制御信号送信用の制御ネットワークと、
前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、
を備え、
前記マスタ装置は、
マスタTDMA制御回路と、
前記制御ネットワークを用いて、前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信するマスタ制御送信回路と、
前記光ネットワークを用いて、前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第1データ信号を送信するマスタデータ送信回路と、
を含み、
前記スレーブ装置は、
前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定するスレーブTDMA制御回路と、
時刻T1(S)において、前記光ネットワークを用いて、時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を前記マスタ装置に対して送信するスレーブデータ送信回路と、
を含み、
前記マスタTDMA制御回路は、
前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T1(M)およびそのタイムスタンプTS1(M)を取得し、タイムスタンプTS1(M)からタイムスタンプTS0(M)を減算することで第2往復伝送遅延時間を算出し、
前記マスタデータ送信回路は、
前記マスタTDMA制御回路により割り当てられた時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信し、
前記スレーブ装置は、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする。
【0066】
第1の態様の通信システムによれば、マスタ装置からスレーブ装置へデータ信号を送信する通信態様において、送信タイミングが精度よくコントロールされ、信号の衝突・消失を回避することが可能である。
【0067】
(第2の態様)
第1の態様の通信システムにおいて、
前記スレーブ装置は、
時刻T1(S)において、前記スレーブ装置をデータ送信可能状態に切り替えるための制御信号を送受切替スイッチに与えるスイッチ制御送信回路、
を含み、
前記スイッチ制御送信回路は、
時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態に切り替えるための制御信号を前記送受切替スイッチに与えてもよい。
【0068】
第1往復伝送遅延時間を利用して送受切替スイッチを受信可能状態に切り替えるので、スレーブ装置はデータ受信可能となる。
【0069】
(第3の態様)
第3の態様に係る通信システムは、
マスタ装置とスレーブ装置との間でTDMAにより通信を行う通信システムであって、
前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続される制御信号送信用の制御ネットワークと、
前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、
を備え、
前記マスタ装置は、
マスタTDMA制御回路と、
前記制御ネットワークを用いて、前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信し、および、前記制御ネットワークを用いて、前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第2制御信号を送信するマスタ制御送信回路と、
前記第2制御信号を受信するマスタ制御受信回路と、
前記マスタ制御受信回路が前記第2制御信号を受信したことに応答して、前記光ネットワークを用いて、前記マスタ装置に対して時刻T1(M)のタイムスタンプTS1(M)を含む第1データ信号を送信するマスタデータ送信回路と、
を含み、
前記スレーブ装置は、
前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定するスレーブTDMA制御回路と、
時刻T1(S)において前記光ネットワークを用いて、時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を前記マスタ装置に対して送信するスレーブデータ送信回路と、
を含み、
前記マスタTDMA制御回路は、
前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T2(M)およびそのタイムスタンプTS2(M)を取得し、タイムスタンプTS2(M)からタイムスタンプTS1(M)を減算することで第2往復伝送遅延時間を算出し、
前記マスタデータ送信回路は、
前記マスタTDMA制御回路により割り当てられた時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信し、
前記スレーブ装置は、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする。
【0070】
第3の態様の通信システムによれば、マスタ装置からスレーブ装置へデータ信号を送信する通信態様において、送信タイミングが精度よくコントロールされ、信号の衝突・消失を回避することが可能である。
【0071】
(第4の態様)
第3の態様の通信システムにおいて、
前記スレーブ装置は、
時刻T1(S)において、前記スレーブ装置をデータ送信可能状態に切り替えるための制御信号を送受切替スイッチに与えるスイッチ制御送信回路、
を含み、
前記スイッチ制御送信回路は、
時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態に切り替えるための制御信号を前記送受切替スイッチに与えてもよい。
【0072】
第1往復伝送遅延時間を利用して送受切替スイッチを受信可能状態に切り替えるので、スレーブ装置はデータ受信可能となる。
【0073】
(第5の態様)
第1または第3の態様の通信システムにおいて、
前記スレーブ装置は、前記マスタTDMA制御回路により割り当てられた時刻TBから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ送信可能状態にしてもよい。
【0074】
第5の態様の通信システムによれば、スレーブ装置からマスタ装置へデータ信号を送信する通信態様において、送信タイミングが精度よくコントロールされ、信号の衝突・消失を回避することが可能である。
【0075】
(第6の態様)
第2または第4の態様の通信システムにおいて、
前記スイッチ制御送信回路は、
前記スレーブTDMA制御回路により割り当てられた時刻TBから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ送信可能状態に切り替えるための制御信号を前記送受切替スイッチに与え、
前記スレーブデータ送信回路は、
時刻TBから前記第1往復伝送遅延時間を減算した時刻に、前記光ネットワークを用いて、データ信号を前記マスタ装置に対して送信してもよい。
【0076】
第6の態様の通信システムによれば、スレーブ装置からマスタ装置へデータ信号を送信する通信態様において、送信タイミングが精度よくコントロールされ、信号の衝突・消失を回避することが可能である。
【0077】
(第7の態様)
第1または第3に態様の通信システムに用いられるマスタ装置である。
【0078】
(第8の態様)
第1または第3に態様の通信システムに用いられるスレーブ装置である。
【0079】
(第9の態様)
第9の態様に係る通信方法は、
マスタ装置とスレーブ装置との間を接続する制御信号送信用の制御ネットワークと、前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、を備える通信システムにおいて、前記マスタ装置と前記スレーブ装置との間でTDMAにより通信を行う方法であって、
前記制御ネットワークを用いて、前記マスタ装置が前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信する工程と、
前記光ネットワークを用いて、前記マスタ装置が前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第1データ信号を送信する工程と、
前記スレーブ装置が前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定する工程と、
時刻T1(S)において、前記光ネットワークを用いて、前記スレーブ装置が前記マスタ装置に対して時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を送信する工程と、
前記マスタ装置が、前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T1(M)およびそのタイムスタンプTS1(M)を取得し、タイムスタンプTS1(M)からタイムスタンプTS0(M)を減算することで第2往復伝送遅延時間を算出する工程と、
前記マスタ装置において、前記スレーブ装置にデータ信号を送信するとき、前記スレーブ装置に時刻TAを割り当てる工程と、
前記マスタ装置が、時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信する工程と、
前記スレーブ装置が、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする工程と、を含む。
【0080】
第9の態様の通信方法によれば、マスタ装置からスレーブ装置へデータ信号を送信する通信態様において、送信タイミングが精度よくコントロールされ、信号の衝突・消失を回避することが可能である。
【0081】
(第10の態様)
第10の態様の通信方法は、
マスタ装置からスレーブ装置を経由して再び前記マスタ装置に接続される制御信号送信用の制御ネットワークと、前記マスタ装置から前記スレーブ装置を経由して再び前記マスタ装置に接続されるデータ信号送信用の光ネットワークと、を備える通信システムにおいて、前記マスタ装置と前記スレーブ装置との間でTDMAにより通信を行う方法であって、
前記制御ネットワークを用いて、前記マスタ装置が前記スレーブ装置に対して時刻T0(S)のタイムスタンプTS0(S)を含む第1制御信号を送信する工程と、
前記制御ネットワークを用いて、前記マスタ装置が前記マスタ装置に対して時刻T0(M)のタイムスタンプTS0(M)を含む第2制御信号を送信する工程と、
前記マスタ装置が、前記第2制御信号を受信する工程と、
前記第2制御信号を受信したことに応答して、前記光ネットワークを用いて、前記マスタ装置が前記マスタ装置に対して時刻T1(M)のタイムスタンプTS1(M)を含む第1データ信号を送信する工程と、
前記スレーブ装置が前記第1制御信号を受信したとき、前記スレーブ装置の時刻をT0(S)に設定する工程と、
時刻T1(S)において、前記光ネットワークを用いて、前記スレーブ装置が前記マスタ装置に対して時刻T1(S)のタイムスタンプTS1(S)を含む第2データ信号を送信する工程と、
前記マスタ装置が、前記第2データ信号を受信した時刻T2(S)およびそのタイムスタンプTS2(S)を取得し、タイムスタンプTS2(S)からタイムスタンプTS1(S)を減算することで第1往復伝送遅延時間を算出し、および、前記第1データ信号を受信した時刻T2(M)およびそのタイムスタンプTS2(M)を取得し、タイムスタンプTS2(M)からタイムスタンプTS1(M)を減算することで第2往復伝送遅延時間を算出する工程と、
前記マスタ装置において、前記スレーブ装置にデータ信号を送信するとき、前記スレーブ装置に時刻TAを割り当てる工程と、
前記マスタ装置が、時刻TAから前記第2往復伝送遅延時間を減算した時刻に、前記スレーブ装置に対してデータ信号を送信する工程と、
前記スレーブ装置が、時刻TAから前記第1往復伝送遅延時間を減算した時刻に、前記スレーブ装置をデータ受信可能状態にする工程と、を含む。
【0082】
第10の態様の通信方法によれば、マスタ装置からスレーブ装置へデータ信号を送信する通信態様において、送信タイミングが精度よくコントロールされ、信号の衝突・消失を回避することが可能である。
【符号の説明】
【0083】
1…マスタ装置,3(3A,3B,3C)…スレーブ装置,4(4A,4B,4C…送受切替スイッチ,5(5A,5A,5C)…ゲートウェイ,6…制御ネットワーク,7…光ネットワーク,11…TDMA制御回路,12…制御送信回路,13…データ送信回路,14…データ受信回路,31…TDMA制御回路,32…制御受信回路,33…スイッチ制御送信回路,34…データ受信回路,35…データ送信回路