IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コニカミノルタ株式会社の特許一覧

<>
  • 特許-画像形成装置 図1
  • 特許-画像形成装置 図2
  • 特許-画像形成装置 図3
  • 特許-画像形成装置 図4
  • 特許-画像形成装置 図5
  • 特許-画像形成装置 図6
  • 特許-画像形成装置 図7
  • 特許-画像形成装置 図8
  • 特許-画像形成装置 図9
  • 特許-画像形成装置 図10
  • 特許-画像形成装置 図11
  • 特許-画像形成装置 図12
  • 特許-画像形成装置 図13
  • 特許-画像形成装置 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-03-03
(45)【発行日】2025-03-11
(54)【発明の名称】画像形成装置
(51)【国際特許分類】
   B41J 29/00 20060101AFI20250304BHJP
   G03G 21/00 20060101ALI20250304BHJP
   G03G 21/14 20060101ALI20250304BHJP
   B41J 29/38 20060101ALI20250304BHJP
   B41J 29/46 20060101ALI20250304BHJP
   H04N 1/00 20060101ALI20250304BHJP
   G01R 29/08 20060101ALI20250304BHJP
   G01R 29/10 20060101ALI20250304BHJP
【FI】
B41J29/00 S
G03G21/00
G03G21/00 510
G03G21/14
B41J29/38 801
B41J29/46 Z
H04N1/00 002B
G01R29/08 D
G01R29/10 B
B41J29/38 301
【請求項の数】 11
(21)【出願番号】P 2020147965
(22)【出願日】2020-09-03
(65)【公開番号】P2022042548
(43)【公開日】2022-03-15
【審査請求日】2023-06-27
(73)【特許権者】
【識別番号】000001270
【氏名又は名称】コニカミノルタ株式会社
(74)【代理人】
【識別番号】110001900
【氏名又は名称】弁理士法人 ナカジマ知的財産綜合事務所
(72)【発明者】
【氏名】林 健一
(72)【発明者】
【氏名】木俣 明則
(72)【発明者】
【氏名】神保 典幸
(72)【発明者】
【氏名】梅田 史郎
(72)【発明者】
【氏名】井口 幸宣
(72)【発明者】
【氏名】佐々木 智
【審査官】大関 朋子
(56)【参考文献】
【文献】特開2009-078897(JP,A)
【文献】特開平06-102724(JP,A)
【文献】特開2016-109770(JP,A)
【文献】特開2006-069014(JP,A)
【文献】特開2002-229409(JP,A)
【文献】米国特許第10171684(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
B41J 29/00
G03G 21/00
G03G 21/14
B41J 29/38
B41J 29/46
H04N 1/00
G01R 29/08
G01R 29/10
(57)【特許請求の範囲】
【請求項1】
静電ノイズによって変動するセンサーまたは制御基板の出力信号の状態を監視する状態
監視手段と、
静電ノイズを検知する静電ノイズ検知手段と、
状態監視手段による前記出力信号の変化の検出結果と、静電ノイズ検知手段の検知結果とから、状態監視手段が静電ノイズによって前記出力信号の変化を誤検出したか否かを判定する誤検出判定手段と、
静電ノイズを発生させ得る複数の静電ノイズ発生源と、
静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段と、を備え、
前記静電ノイズ検知手段は、前記複数の静電ノイズ発生源に対応して、装置内において前記複数の静電ノイズ発生源のそれぞれの近傍に配置された複数の静電ノイズ検出部を有しており、
複数の静電ノイズ検出部は、互いに検出感度が異なり、それぞれが静電ノイズの強弱を認識でき
静電ノイズ発生源推定手段は、どの検出感度の静電ノイズ検出部が静電ノイズを検出したかによって、静電ノイズ発生源を特定する
ことを特徴とする画像形成装置。
【請求項2】
静電ノイズによって変動するセンサーまたは制御基板の出力信号の状態を監視する状態監視手段と、
静電ノイズを検知する静電ノイズ検知手段と、
状態監視手段による前記出力信号の変化の検出結果と、静電ノイズ検知手段の検知結果とから、状態監視手段が静電ノイズによって前記出力信号の変化を誤検出したか否かを判定する誤検出判定手段と、
静電ノイズを発生させ得る複数の静電ノイズ発生源と、を備え、
状態監視手段は、複数種類の前記出力信号の状態を監視し、
さらに、
静電ノイズ検知手段が静電ノイズを検知した場合に、状態監視手段が、複数種類の前記出力信号のうち、どの前記出力信号の変化を誤検出したと判定されたかに応じて、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段と、
静電ノイズを発生させることによって前記出力信号の変化を誤検出させる可能性の高さの順に静電ノイズ発生源を順位付けて記憶する記憶手段と、を備える
ことを特徴とする画像形成装置。
【請求項3】
静電ノイズによって変動するセンサーまたは制御基板の出力信号の状態を監視する状態監視手段と、
静電ノイズを検知する静電ノイズ検知手段と、
状態監視手段による前記出力信号の変化の検出結果と、静電ノイズ検知手段の検知結果とから、状態監視手段が静電ノイズによって前記出力信号の変化を誤検出したか否かを判定する誤検出判定手段と、
静電ノイズを発生させ得る複数の静電ノイズ発生源と、を備え、
状態監視手段は、複数種類の前記出力信号の状態を監視し、
さらに、
静電ノイズ検知手段が静電ノイズを検知した場合に、状態監視手段が、複数種類の前記出力信号のうち、どの前記出力信号の変化を誤検出したと判定されたかに応じて、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段と、
静電ノイズを発生させることによって前記出力信号の変化を誤検出させる可能性の有無を、前記出力信号と静電ノイズ発生源との組み合わせ毎に記憶する記憶手段と、を備え、
誤検出判定手段は、状態監視手段が前記出力信号の変化を検出したときに、記憶手段の記憶内容から、静電ノイズ発生源推定手段が推定した静電ノイズ発生源が、当該出力信号の変化を誤検出させる可能性がない場合は、当該出力信号の変化は正常に検出されたと判定する
ことを特徴とする画像形成装置。
【請求項4】
静電ノイズ検知手段が静電ノイズを検知したタイミングの履歴を記録する履歴記録手段を有する
ことを特徴とする請求項1からのいずれかに記載の画像形成装置。
【請求項5】
誤検出判定手段は、状態監視手段が前記出力信号の変化を検出したタイミングと、静電ノイズ検知手段が静電ノイズを検知したタイミングと、の比較の結果から、前記判定を行う
ことを特徴とする請求項1から4のいずれかに記載の画像形成装置。
【請求項6】
誤検出判定手段による判定結果を操作パネルに表示する
ことを特徴とする請求項1からのいずれかに記載の画像形成装置。
【請求項7】
誤検出判定手段による判定結果をデータセンターに通知する
ことを特徴とする請求項1からのいずれかに記載の画像形成装置。
【請求項8】
状態監視手段が監視する前記出力信号は、静電ノイズが重畳し得る配線を経由して通知される
ことを特徴とする請求項1からのいずれかに記載の画像形成装置。
【請求項9】
前記配線は、センサーの検出信号を伝達する配線と、通信配線と、の少なくとも一方を含む
ことを特徴とする請求項に記載の画像形成装置。
【請求項10】
静電ノイズ発生源は、接触不良によって静電ノイズを発生させ得る電気的接点と、異物によって静電ノイズを発生させ得るモーターとの少なくとも一方を含む
ことを特徴とする請求項1からのいずれかに記載の画像形成装置。
【請求項11】
前記状態監視手段は、前記センサーの出力信号の状態を監視し、
前記センサーは、複数であり、前記複数の静電ノイズ検出部のそれぞれに対応してその近傍に配置されている
ことを特徴とする請求項1に記載の画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、画像形成装置に関し、特に静電ノイズに起因する装置状態の誤検出を判別する技術に関する。
【背景技術】
【0002】
電子機器は、帯電した物体の接近や接触によって静電気放電(ESD: Electro-Static Discharge)が発生すると、高電圧パルスの静電ノイズが侵入することによって集積回路(IC: Integrated Circuit)の誤動作や破壊が引き起こされることがある。例えば、画像通信装置では、原稿から画像を読み取る際に、当該原稿をイメージセンサーに押圧しながら搬送する押圧ローラーが、記録シートとの摩擦によって帯電すると、押圧ローラーに蓄積した電荷が静電気放電されることによって、イメージセンサーが破壊されることがある。
【0003】
このような問題に対して、板バネ形状を有する放電部材を用いて押圧ローラーの四方周囲を囲うとともに、当該放電部材を押圧ローラーの導電性シャフトに押圧接触させることによって、押圧ローラーの外周面から静電気放電された電荷を一旦、放電部材で受け、放電部材から導電性シャフトを経由してグランドへ放電する技術が提案されている(例えば、特許文献1を参照)。この技術によれば、押圧ローラーからの静電気放電によってイメージセンサーが破壊されるのを防止することができる。
【0004】
しかしながら、摺擦によって導電性シャフトや放電部材が摩耗しないようにするために放電部材の導電性シャフトに対する当接力をあまり大きくすることはできないため、押圧ローラーが回転する際に振動等すると、放電部材と導電性シャフトとが離隔する場合がある。また、放電部材の表面材質が劣化する等して導電性が低下する場合もある。
【0005】
これらの場合、押圧ローラーの外周面から放電部材へ静電気放電された電荷を、放電部材から導電性シャフトへ逃がすことができなくなるので、放電部材に電荷が蓄積されて、放電部材の帯電量が増大してしまう。放電部材の帯電量が増大した結果、放電部材の帯電電荷が導電性シャフトへ静電気放電されると、静電ノイズが発生する。また、押圧ローラーの外周面上の帯電電荷が放電部材へ静電気放電される場合にも、静電ノイズが発生し得る。このため、静電ノイズの侵入による集積回路の誤動作や破壊が引き起こされる恐れがある。
【0006】
静電ノイズによって集積回路の誤動作が発生すると、集積回路そのものが故障したのか、それとも静電ノイズ等の外乱によって誤動作が発生したのかを判別することが難しくなる。静電ノイズが誤動作の原因である場合には、集積回路を交換しても、静電ノイズの発生を抑えることができなければ、誤動作が発生し続けてしまう。また、静電ノイズが誤動作の原因であると推定したとしても、静電ノイズの発生源を特定することができなければ、直ちには静電ノイズが発生しないように対策することができないため、集積回路の誤動作を解消するまでに時間がかかってしまう、という問題がある。
【0007】
このような問題に対して、例えば、画像形成装置の内部にループアンテナを設置して、静電ノイズのノイズ周波数やノイズレベルを検出することによって、受信した静電ノイズが画像形成装置を構成する各種のエレメントの故障を確実に発生させる故障レベルであるか、故障を発生させる可能性がある予知レベルであるか、或いは、故障が発生する恐れがない正常レベルであるかを判定して、警告表示を行う技術が提案されている(特許文献2を参照)。
【0008】
この従来技術によれば、静電ノイズが正常レベルである場合には、エレメントそのものが故障していると判断することができる。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2003-295347号公報
【文献】特開平6-102724号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、上記の従来技術では、静電ノイズが予知レベルや故障レベルである場合に、エレメントが故障しているのか、それとも静電ノイズに起因する誤動作であるのかを切り分けて特定することができず、従って、原因に応じた適切な処置をすることもできない、という問題がある。
【0011】
このような問題は、故障だけに止まらず、静電ノイズの影響によって誤動作し得る回路が検出した画像形成装置の状態変化について、静電ノイズに起因するものであるかどうかを切り分けることができず、当該装置状態の変化に応じた適切な処置をとることができていない。
【0012】
本開示は、上述のような問題に鑑みて為されたものであって、静電ノイズの影響によって画像形成装置の状態変化を誤検出したかどうかを判別することができる画像形成装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
上記目的を達成するため、本開示の一形態に係る画像形成装置は、静電ノイズによって変動するセンサーまたは制御基板の出力信号の状態を監視する状態監視手段と、静電ノイズを検知する静電ノイズ検知手段と、状態監視手段による前記出力信号の変化の検出結果と、静電ノイズ検知手段の検知結果とから、状態監視手段が静電ノイズによって前記出力信号の変化を誤検出したか否かを判定する誤検出判定手段と、静電ノイズを発生させ得る複数の静電ノイズ発生源と、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段と、を備え、前記静電ノイズ検知手段は、前記複数の静電ノイズ発生源に対応して、装置内において前記複数の静電ノイズ発生源のそれぞれの近傍に配置された複数の静電ノイズ検出部を有しており、複数の静電ノイズ検出部は、互いに検出感度が異なり、それぞれが静電ノイズの強弱を認識でき、静電ノイズ発生源推定手段は、どの検出感度の静電ノイズ検出部が静電ノイズを検出したかによって、静電ノイズ発生源を特定することを特徴とする。
【0014】
この場合において、誤検出判定手段は、状態監視手段が装置状態の変化を検出したタイミングと、静電ノイズ検知手段が静電ノイズを検知したタイミングと、の比較の結果から、前記判定を行ってもよい。
【0015】
また、本開示の別の形態に係る画像形成装置は、静電ノイズによって変動するセンサーまたは制御基板の出力信号の状態を監視する状態監視手段と、静電ノイズを検知する静電ノイズ検知手段と、状態監視手段による前記出力信号の変化の検出結果と、静電ノイズ検知手段の検知結果とから、状態監視手段が静電ノイズによって前記出力信号の変化を誤検出したか否かを判定する誤検出判定手段と、静電ノイズを発生させ得る複数の静電ノイズ発生源と、を備え、状態監視手段は、複数種類の前記出力信号の状態を監視し、さらに、静電ノイズ検知手段が静電ノイズを検知した場合に、状態監視手段が、複数種類の前記出力信号のうち、どの前記出力信号の変化を誤検出したと判定されたかに応じて、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段と、静電ノイズを発生させることによって前記出力信号の変化を誤検出させる可能性の高さの順に静電ノイズ発生源を順位付けて記憶する記憶手段と、を備えることを特徴とする。
本開示のさらに別の形態に係る画像形成装置は、静電ノイズによって変動するセンサーまたは制御基板の出力信号の状態を監視する状態監視手段と、静電ノイズを検知する静電ノイズ検知手段と、状態監視手段による前記出力信号の変化の検出結果と、静電ノイズ検知手段の検知結果とから、状態監視手段が静電ノイズによって前記出力信号の変化を誤検出したか否かを判定する誤検出判定手段と、静電ノイズを発生させ得る複数の静電ノイズ発生源と、を備え、状態監視手段は、複数種類の前記出力信号の状態を監視し、さらに、静電ノイズ検知手段が静電ノイズを検知した場合に、状態監視手段が、複数種類の前記出力信号のうち、どの前記出力信号の変化を誤検出したと判定されたかに応じて、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段と、静電ノイズを発生させることによって前記出力信号の変化を誤検出させる可能性の有無を、前記出力信号と静電ノイズ発生源との組み合わせ毎に記憶する記憶手段と、を備え、誤検出判定手段は、状態監視手段が前記出力信号の変化を検出したときに、記憶手段の記憶内容から、静電ノイズ発生源推定手段が推定した静電ノイズ発生源が、当該出力信号の変化を誤検出させる可能性がない場合は、当該出力信号の変化は正常に検出されたと判定することを特徴とする。
【0016】
また、静電ノイズを発生させる静電ノイズ発生源を複数備え、静電ノイズ検知手段は、複数の検知位置で静電ノイズを検知し、複数の検知位置のうち、どの位置で静電ノイズを検知したかに応じて、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段を備えてもよい。
【0017】
また、静電ノイズを発生させる静電ノイズ発生源を複数備え、静電ノイズ検知手段は、静電ノイズの強度を検知し、静電ノイズの強度に応じて、静電ノイズを発生させた静電ノイズ発生源を推定する静電ノイズ発生源推定手段を備えてもよい。
【0021】
また、静電ノイズ検知手段が静電ノイズを検知したタイミングの履歴を記録する履歴記録手段を有してもよい。
【0024】
また、誤検出判定手段による判定結果を操作パネルに表示してもよい。
【0025】
また、誤検出判定手段による判定結果をデータセンターに通知してもよい。
【0026】
また、状態監視手段が監視する装置状態は、静電ノイズが重畳し得る配線を経由して通知してもよく、前記配線は、センサーの検出信号を伝達する配線と、通信配線と、の少なくとも一方を含む。
【0027】
また、静電ノイズ発生源は、接触不良によって静電ノイズを発生させ得る電気的接点と、異物によって静電ノイズを発生させ得るモーターとの少なくとも一方を含む。
さらに、前記状態監視手段は、前記センサーの出力信号の状態を監視し、前記センサーは、複数であり、前記複数の静電ノイズ検出部のそれぞれに対応してその近傍に配置されている。
【発明の効果】
【0028】
このようにすれば、画像形成装置の装置状態の変化が実際に発生したのか、静電ノイズによって誤検出されたのかを判別することができるので、装置状態の変化が実際に発生していないにもかかわらず、当該装置状態の変化が発生したと誤ったユーザー通知を防止することができる。
【図面の簡単な説明】
【0029】
図1】本開示の実施の形態に係る画像形成装置の主要な構成を示す外観斜視図である。
図2】画像形成装置1が備えるシート搬送システムの構成を説明する図である。
図3】(a)は、板バネを用いて搬送ローラーを接地する構成を示す外観斜視図であり、(b)は、コイルバネを用いて搬送ローラーを接地する構成を示す外観斜視図である。
図4】制御部111の主要な構成を示すブロック図である。
図5】(a)は、静電ノイズ検出回路411の主要な構成を示すブロック図であり、(b)は、静電ノイズ検出回路411のアナログ受信回路502が出力するノイズ波形と、デジタル処理部503が出力するノイズ検知信号を例示する図である。
図6】制御部111が実行する処理のメインルーチンを説明するフローチャートである。
図7】制御部111が実行するエラー原因特定処理(S614)を説明するフローチャートである。
図8】1段目給紙センサー241a、タイミングセンサー243、排紙前センサー244および静電ノイズ検出回路411の出力信号を例示するタイミングチャートである。
図9】誤検出したと判定したセンサー毎に、誤検出の原因となった静電ノイズを発生させた静電ノイズ発生源の候補を記録した表である。
図10】(a)は、画像形成装置1本体とカバーユニットとの位置関係を説明する図であり、(b)は、(a)の破線部分1000の拡大図であって、カバーユニットを閉じた状態で、画像形成装置1本体とカバーユニットとに亘る接地回路を構成する扉開閉板バネの主要な構成を示している。
図11】(a)は、強弱2つのレベルの静電ノイズを検出するノイズ検出回路1101、1111を備えたマルチレベル検出回路の主要な構成を示すブロック図であり、(b)は、ノイズ検出回路1121の出力信号をマルチレベルのデジタル信号に変換するA/D変換回路を備えたCPU401を搭載した制御部111を示すブロック図である。
図12】静電ノイズの経時変化を画像形成枚数が10,000枚、100,000枚および1,000,000枚のときのノイズレベルを例示して説明する図である。
図13】本開示の変形例に係る制御部111の構成を説明するブロック図である。
図14】本開示の変形例に係るエラー原因特定処理を説明するフローチャートである。
【発明を実施するための形態】
【0030】
以下、本開示に係る画像形成装置の実施の形態について、図面を参照しながら説明する。
[1]画像形成装置の構成
まず、本実施の形態に係る画像形成装置の構成について説明する。
【0031】
図1に示すように、画像形成装置1は、いわゆるタンデム方式のカラー複合機(MFP: Multi-Function Peripheral)であって、画像読み取り部100、画像形成部110、給紙部120および操作パネル130を備えている。
【0032】
画像読み取り部100は、自動原稿搬送部101とスキャナー部102とを備えている。自動原稿搬送部101は、シートスルー方式で原稿を読み取る際に、原稿束から1枚ずつ原稿をスキャナー部102へ搬送する。スキャナー部102は、自動原稿搬送部101が搬送中の原稿を読み取ったり、プラテンセット方式で原稿を読み取る際には、不図示のプラテンガラス上に載置された原稿を読み取ったりして画像データを生成する。
【0033】
画像形成部110は、画像読み取り部100が生成した画像データや不図示の通信ネットワークを経由して受信した画像データ等を用いて画像を形成する。給紙部120は、画像形成部110が画像を形成するために使用する記録シートを供給する。画像を形成した記録シートは装置外へ排出される。画像形成部110は制御部111を備えている。
【0034】
制御部111は、画像形成装置1の各部の動作を制御する。特に、制御部111は、画像形成装置1の各部に設けられたセンサーの出力信号を監視する等して、画像形成装置1の動作状態(以下、「装置状態」という。)を検出する。これらのセンサーのうちには、後述する静電ノイズ検出回路411が含まれており、静電ノイズを検出することによって、装置状態の誤検出を防止したり、静電ノイズ発生源の状態を検出したりする。
【0035】
操作パネル130は、例えば、タッチパネルやハードキーを備えており、タッチパネルを構成する液晶ディスプレイ(LCD: Liquid Crystal Display)を用いて画像形成装置1のユーザーに情報を提示したり、タッチパネルやハードキーを用いたユーザーの指示入力を受け付けたりする。これによって、画像形成装置1は画像読み取りジョブや画像形成ジョブを受け付ける。画像形成装置1は、LAN(Local Area Network)やインターネットといった不図示の通信ネットワークを経由してジョブを受け付けてもよい。
[2]シート搬送システムの構成
画像形成装置1は、画像形成処理を実行する際に、画像形成に供する記録シートを搬送する。次に、この記録シートを搬送するシート搬送システムの構成について説明する。なお、ここでは、給紙部120が給紙トレイを2段備えている場合を例にとって説明するが、給紙トレイの段数は1段であってもよいし、3段以上であってもよい。
【0036】
例えば、1段目の給紙トレイから記録シートを給紙する場合には、図2に示すように、1段目ピックアップローラー201aを用いて、1段目の給紙トレイに収容されている記録シート束の最上位の記録シートを送り出し、1段目捌きローラー203aを用いて下位の記録シートの重送を防止しながら、1段目給紙ローラー202aを用いて最上位の記録シートをタイミングローラー206へ向かって搬送する。
【0037】
1段目給紙センサー241aおよびタイミングセンサー243はどちらも記録シートの先端を検出する。これによって、制御部111は、記録シートの先端が 1段目給紙センサー241aおよびタイミングセンサー243の各検出位置に到達したタイミングを特定する。なお、1段目ピックアップローラー201a、1段目給紙ローラー202aおよび1段目捌きローラー203aは1段目給紙モーター221aによって回転駆動される。
【0038】
2段目の給紙トレイから記録シートを給紙する場合も同様に、2段目ピックアップローラー201bを用いて、2段目の給紙トレイから記録シートを送り出し、2段目捌きローラー203bを用いて下位の記録シートの重送を防止しながら、2段目給紙ローラー202bを用いて最上位の記録シートを2段目縦搬送ローラー204へ向かって搬送する。2段目縦搬送ローラー204は記録シートをタイミングローラー206へ向かって搬送する。
【0039】
2段目給紙センサー241bおよび2段目縦搬送センサー242はどちらも記録シートの先端を検出する。これによって、制御部111は、記録シートの先端が 2段目給紙センサー241bおよび2段目縦搬送センサー242の各検出位置に到達したタイミングを特定する。なお、2段目ピックアップローラー201b、2段目給紙ローラー202bおよび2段目捌きローラー203bは2段目給紙モーター221bによって回転駆動される。また、2段目縦搬送ローラー204は2段目縦搬送モーター222によって回転駆動される。
【0040】
マルチ手差し給紙トレイから記録シートを給紙する場合には、マルチ手差し給紙モーター223によってマルチ手差し給紙ローラー205を回転駆動して、記録シートをタイミングローラー206に向かって搬送する。
【0041】
感光体ドラム211Y、211M、211Cおよび211Kは、その外周面上にイエロー(Y)、マゼンタ(M)、シアン(C)およびブラック(K)のトナー像を形成され、これらのトナー像は、中間転写ベルト210の外周面上で互いに重なり合ってカラートナー像になるように、感光体ドラム211Y、211M、211Cおよび211Kから中間転写ベルト210へ静電転写される(一次転写)。
【0042】
中間転写ベルト210は、駆動ローラー208と従動ローラー209とに掛け回されている。メインモーター225が駆動ローラー208を回転駆動すると、中間転写ベルト210が矢印A方向に回転走行する。駆動ローラー208には、中間転写ベルト210を挟んで二次転写ローラー207が圧接されている。これによって、二次転写ニップが形成される。カラートナー像は、中間転写ベルト210に担持され、二次転写ニップまで搬送される。
【0043】
記録シートは、タイミングローラー206が回転を停止している状態で、タイミングローラー206の搬送ニップに先端を突き当てる。記録シートは、先端をタイミングローラー206の搬送ニップに突き当てた状態で更に搬送され、ループを形成する。このループ形成によって、記録シートのスキューが補正される。その後、タイミングローラー206は、タイミングモーター224に回転駆動され、記録シートを二次転写ニップへ搬送する。
【0044】
二次転写ローラー207には、二次転写バイアスが印加されており、二次転写ニップにおいては、中間転写ベルト210から記録シートへトナー像が静電転写される。記録シートは定着ローラー212によってトナー像を熱定着された後、排紙前ローラー213によって更に搬送される。定着ローラー212および排紙前ローラー213は定着モーター226によって回転駆動される。
【0045】
排紙前センサー244は、記録シートの搬送方向における排紙前ローラー213の下流側で記録シートを検出する。これによって、定着ローラー212や排紙前ローラー213における紙詰まりを検出することができる。
【0046】
切り替え爪214は、ソレノイド・アクチュエーター231によって揺動駆動され、記録シートの搬送方向を切り替える。これによって、記録シートは、画像形成装置1の外部へ排出する場合には排紙経路251へ導かれ、裏面に画像を形成する場合には反転ローラー216へ導かれる。排紙ローラー215は、排紙モーター227によって回転駆動され、記録シートを排紙経路251から画像形成装置1の外部へ排出する。
【0047】
反転ローラー216は、まず、反転モーター228によって矢印B方向に回転駆動されることによって記録シートを受け入れる。次に、反転モーター228によって矢印C方向に回転駆動されることによって記録シートの搬送方向を反転し、用紙反転経路252へ搬送する。
【0048】
用紙反転経路252においては、ADU(Automatic Duplex Unit)搬送ローラー217、218が、ADU搬送モーター229によって回転駆動され、記録シートを搬送する。ADU搬送センサー245は、用紙反転経路252上のADU搬送ローラー217、218の間で記録シートの先端を検出する。ADU搬送センサー245が記録シートの先端を適切なタイミングで検出しなければ、紙詰まりが発生したと判定される。
【0049】
ADU搬送ローラー219、220は、ADU搬送モーター230によって回転駆動され、記録シートをタイミングローラー206へ向けて搬送する。ADU搬送センサー246は、用紙反転経路252上のADU搬送ローラー219、220の間で記録シートの先端を検出する。これによって、紙詰まりが検出される。このようにすれば、記録シートの裏面に画像が形成されるので、両面印刷が可能になる。
【0050】
1段目給紙センサー241a、2段目給紙センサー241b、タイミングセンサー243および排紙前センサー244の近傍にはそれぞれアンテナ261a、261b、262および263が配設されており、静電ノイズを受信する。アンテナ261a、261b、262および263以外のアンテナについては図示を省略する。
【0051】
なお、アンテナは、センサー毎に設ける必要がないことは言うまでもなく、静電ノイズの発生源ごとに設けてもよいし、センサーや静電ノイズ発生源の個数よりも多くても少なくてもよい。また、センサーの誤検出を引き起こし得る静電ノイズをすべて検出することができる程度に受信感度が高ければ、アンテナの個数は1個でもよい。
[3]搬送ローラーの電気的な接地構造
上述のように、画像形成装置1は、1段目ピックアップローラー201a、1段目給紙ローラー202a、1段目捌きローラー203a、2段目ピックアップローラー201b、2段目給紙ローラー202b、2段目捌きローラー203b、2段目縦搬送ローラー204、マルチ手差し給紙ローラー205、タイミングローラー206、二次転写ローラー207、駆動ローラー208、従動ローラー209、定着ローラー212、排紙前ローラー213、排紙ローラー215、反転ローラー216およびADU搬送ローラー217、218、219、220といった搬送ローラーを備えている。
【0052】
これらの搬送ローラーは、記録シートを搬送するときに、記録シートとの摩擦によって帯電したり、帯電している記録シートから電荷が移動して来たりする。上述のように、搬送ローラー表面の帯電電荷を除電するために、搬送ローラーに電気的接点を当接し、当該接点を接地する。この電気的接点として、例えば、板バネやコイルバネといった導電性の弾性部材を用いる場合には、弾性部材そのものの弾性復元力によって、搬送ローラーの外周面に圧接するように構成することができる。
【0053】
板バネを用いて搬送ローラー表面を接地する場合には、図3(a)に例示するように、搬送ローラー302は、ローラー部303と軸部304とからなっている。導電性の板バネ301は、板バネ301自体の弾性復元力によって、ローラー部303の外周面に当接するように、金属製のフレーム305に固定されている。フレーム305は接地されており、板バネ301を経由して、搬送ローラー302の帯電電荷を除電することができる。
【0054】
また、図3(b)に例示するように、コイルバネを用いて搬送ローラー表面を接地する場合には、ローラー部303および軸部304がどちらも導電性になっている搬送ローラー302に対して、腕部311とコイル部312とからなるコイルバネ310を用いて、コイル部312を軸部304に巻き付けた状態で、腕部311をフレーム305に当接させる。
【0055】
搬送ローラー302が矢印C方向に回転駆動され、軸部304とコイル部312とが摺擦すると、コイルバネ310もまた矢印C方向に回転するように付勢される。これによって、腕部311はフレーム305に押し付けられると、コイルバネ310の矢印C方向への回転が規制される。
【0056】
すると、矢印C方向に回転する軸部304と摺擦することによって、コイル部312が縮径し、軸部304に密接するので、軸部304とコイルバネ310とが確実に導通して、ローラー部303の外周面上の帯電電荷が軸部304、コイルバネ310およびフレーム305を経由して除電される。
【0057】
その他、搬送ローラー302から電荷をグランドに放電するための放電部材を、コイルバネを用いて、搬送ローラー302に向かって付勢して、搬送ローラー302に摺接させてもよい。
【0058】
板バネ301やコイルバネ310が汚損する等して、搬送ローラー302との間で導通性を失ったり、フレーム305との間で導通性を失ったりすると、搬送ローラー302の帯電電荷を除電することができなくなる。その結果、搬送ローラー302に電荷が蓄積され続けると、板バネ301やコイルバネ310と、搬送ローラー302やフレーム305との間の静電気放電によって、静電ノイズが発生する。
[4]制御部111の構成
次に、制御部111の構成について説明する。
【0059】
制御部111は、図4に示すように、CPU(Central Processing Unit)401やROM(Read Only Memory)402、RAM(Random Access Memory)403等を内部バス410で接続した構成を備えている。CPU401は、画像形成装置1に電源が投入される等してリセットされると、ROM402からブートプログラムを読み出して起動する。CPU401は、RAM403を作業用記憶領域として、HDD(Hard Disk Drive)404からOS(Operating System)や制御プログラムを読み出して実行する。
【0060】
NIC(Network Interface Card)405はLAN(Local Area Network)やインターネット等の通信ネットワークを経由して他の装置と通信するための処理を実行する。これによって、画像形成装置1は、他の装置から画像形成ジョブを受け付けたり、データセンターに対する通知を行ったりすることができる。
【0061】
ネットワークサポートは、画像形成装置1を利用するユーザーのうち、ネットワークサポートのサービス契約を結んでいるユーザーに対して、画像形成装置1のメンテナンスその他のサービスを提供する。このサービスを提供するために、データセンターは、画像形成装置1からさまざまな情報の提供を受け付ける。データセンターは、画像形成装置1から情報を受信するサーバー装置を備えていてもよいし、クラウドシステムを用いてもよい。タイマー406は、現在時刻を取得したり、経過時間を計時したりするために用いられる。
【0062】
静電ノイズ検出回路411は、画像形成装置1の内部で静電ノイズを検出する回路である。静電ノイズ検出回路411は、図5(a)に示すように、アナログ受信回路502とデジタル処理部503を備えている。本実施の形態においては、アナログ受信回路502にアンテナ501を接続しているが、アナログ受信回路502にアンテナを実装してもよく、静電ノイズを受信することができれば他の種類のアンテナを用いてもよい。
【0063】
アナログ受信回路502は、増幅回路を内蔵しており、アンテナ501を用いて受信した静電ノイズ信号を増幅して、デジタル処理部503に入力する。本実施の形態においては、ACカップリングによって静電ノイズ信号の直流成分を除去した後、トランジスター等を用いて静電ノイズ信号の交流成分のみを増幅する。このようにすれば、静電ノイズ信号が直流成分に対して微弱であっても精度よく検出することができる。
【0064】
図5(b)には、アナログ受信回路502がデジタル処理部503に入力する静電ノイズ信号の波形が例示されている。電気的な接点が離隔した状態で高電圧が印加され、静電気放電によって静電ノイズが発生した場合には、静電ノイズ信号の持続時間は極めて短くなる。具体的には、静電ノイズは、数10ナノ秒の短時間で発生することが多い。
【0065】
デジタル処理部503は、A/D(Analogue to Digital)変換回路を備えており、アナログ受信回路502から入力されたアナログ信号をデジタル信号に変換するとともに、所定の時間(例えば、1クロック。)だけオン状態を維持する。具体的には、アナログ受信回路502からの入力信号の振幅が閾値を超えた場合に、静電ノイズが発生したと判断して、デジタル化した静電ノイズ信号をラッチして、所定時間だけオン状態に維持する。当該ラッチ後、所定の時間を経過したらクリアしてオフ状態に復帰する。
【0066】
上述のように、静電ノイズ信号は持続時間が極めて短い場合があるため、高速なA/D変換回路を用いる必要がある。また、当然ながら、図5(b)に示すように、デジタル処理部503が生成したデジタル信号は静電ノイズ信号の持続時間よりも長くオン状態に維持される。
【0067】
デジタル処理部503は、このようなデジタル信号を制御部111に入力する。なお、デジタル処理部503は、静電ノイズ検出回路411に設ける代わりに、制御部111に設けてもよい。また、CPU401がA/D変換回路を内蔵している場合には、デジタル処理部503を設ける代わりに、CPU401が内蔵するA/D変換回路を用いて静電ノイズ信号をデジタル化してもよい。
【0068】
これらの場合には、アナログ受信回路502からデジタル処理部503やCPU401へ至る配線上で静電ノイズ信号の波形が歪む恐れがある。このため信号波形の歪みを防止するためには、アナログ受信回路502における静電ノイズ信号の増幅率を高くする対策が有効である。また、CPU401が内蔵するA/D変換回路も高速であるのが望ましい。
【0069】
制御部111は、1段目給紙センサー241a、2段目給紙センサー241b、2段目縦搬送センサー242、タイミングセンサー243、排紙前センサー244およびADU搬送センサー245、246が出力するセンサー信号を参照することによって、画像形成装置1の装置状態として、記録シートの搬送状態を判定する。
【0070】
これらのセンサーは、発光部と受光部とを備え、発光部の出射光が記録シートによって遮られたことを受光部にて検出することによって、記録シートの搬送状態を検出してもよい。また、更に記録シートの先端によって押し倒されるアーム部と、当該アーム部とともに揺動する遮光部とを備え、当該遮光部が発光部の出射光を遮っているかどうかを受光部にて検出することによって、記録シートの搬送状態を検出してもよい。更に、他の種類のセンサーを適用してもよい。
【0071】
静電ノイズが発生して、発光部に誘導電流が流れ、発光部の点灯状態が変動すると、記録シートが誤検出され得る。また、静電ノイズによって受光部に誘導電流が流れると、受光部の出力が変動して、誤検出が発生し得る。
【0072】
また、制御部111は、1段目給紙モーター221a、2段目給紙モーター221b、2段目縦搬送モーター222、マルチ手差し給紙モーター223、タイミングモーター224、メインモーター225、定着モーター226、排紙モーター227、反転モーター228、ADU搬送モーター229、230およびソレノイド・アクチュエーター231に対して、制御信号を出力することによって、これらのモーターやソレノイド・アクチュエーターの動作を制御する。
【0073】
これらのモーターは、経時的に損耗して、導電性を有する金属粉を発生させる。このような金属粉がモーターの内部に蓄積し、モーター内の通電部を短絡させると、静電ノイズが発生する場合がある。
[5]制御部111の動作
上述のように、静電ノイズが発生して、センサーの出力信号が変動すると、制御部111が画像形成装置1の状態を誤検出する恐れがある。このため、本実施の形態においては、静電ノイズを検出することによって、制御部111が装置状態を誤検出したかどうかを判定する。
【0074】
以下においては、記録シートの搬送経路上で記録シートを検出する1段目給紙センサー241aの出力信号が静電ノイズによって変動する場合を例にとって、制御部111の動作を説明する。なお、他のセンサーを用いて記録シートを検出する場合や、他の装置状態を検出する場合についても同様にして、制御部111が装置状態を誤検出したかどうかを判定できることは言うまでにない。
(5-1)メインルーチン
図6に示すように、制御部111は、1段目給紙トレイから記録シートを給紙する場合には(S601:YES)、1段目給紙モーター221aの駆動を開始する(S602)。これによって、1段目ピックアップローラー201a、1段目給紙ローラー202aおよび1段目捌きローラー203aが回転駆動されるので、記録シートの給紙が開始される。
【0075】
次に、制御部111は、タイマー406を参照して、給紙開始時刻T0として現在時刻を取得し(S603)、記録シートが給紙を開始してから1段目給紙センサー241aのシート検出位置に到達するまでの所要時間Trを給紙開始時刻T0に加算してシート検出予定時刻Teを算出する(S604)。なお、所要時間Trは、予めHDD404に記憶しておいてもよいし、1段目給紙トレイから1段目給紙センサー241aのシート検出位置までの記録シートの搬送距離を、記録シートの搬送速度(システム速度)で除算することによって、算出してもよい。
【0076】
次に、制御部111は、タイマー406を参照して、現在時刻T1を取得するとともに(S605)、静電ノイズ検出回路411の出力を参照する。この参照の結果、静電ノイズ検出回路411が静電ノイズを検出した場合には(S606:YES)、現在時刻T1をノイズ発生時刻Tsとして記録する(S607)。
【0077】
静電ノイズ検出回路411が静電ノイズを検出していない場合(S606:NO)およびステップS607の処理を完了した後、制御部111は、1段目給紙センサー241aの出力を参照して、記録シートの先端を検出していたら(S608:YES)、現在時刻T1とシート検出予定時刻Teとの時間差(時刻の差の絶対値)を算出する。当該時間差(|T1-Te|)が閾値Th1よりも大きければ(S613:YES)、1段目給紙センサー241aが記録シートの先端を検出する筈のシート検出予定時刻Teから大きく外れたタイミングで記録シートの先端を検出したことになる。
【0078】
したがって、紙詰まりが発生したか、紙詰まりを誤検出したかのどちらかである可能性があるので、これらのどちらが発生したかを特定するために、エラー原因特定処理を実行する(S614)。なお、1段目給紙センサー241aが記録シートを検出することは、換言すれば、画像形成装置1の装置状態の変化を検出したものと言える。制御部111は、1段目給紙センサー241aに限らず、様々なセンサーその他の手段を用いて、画像形成装置1の装置状態を監視し、当該装置状態の変化を検出する。そして、この装置状態の変化は静電ノイズによって誤検出される場合がある。
【0079】
また、閾値Th1は、例えば、1段目ピックアップローラー201a、1段目給紙ローラー202aおよび1段目捌きローラー203aと記録シートとの間の滑りによって発生する遅れ等によって、1段目給紙センサー241aが記録シートを検出する時刻が前後することを考慮して、1段目給紙センサー241aが記録シートを正常に検出する場合のシート検出予定時刻Teの変動幅を表したものである。
【0080】
一方、時間差(|T1-Te|)が閾値Th1よりも小さければ(S613:NO)、1段目給紙センサー241aがシート検出予定時刻Teに近いタイミングで記録シートの先端を検出したことになる。したがって、紙詰まり等の不具合が発生することなく、記録シートが正常に搬送されたことになるので、処理を終了する。
【0081】
1段目給紙センサー241aが記録シートを検出していなければ(S608:NO)、現在時刻T1からシート検出予定時刻Teを差し引いた超過時間(T1-Te)を算出する。超過時間(T1-Te)が閾値Th1よりも大きい場合には(S609:YES)、1段目給紙センサー241aが記録シートの先端を検出する筈のシート検出予定時刻Teからの経過時間が長くなっても、記録シートが1段目給紙センサー241aの記録シート検出位置に到達していないことになる。
【0082】
このため、紙詰まりが発生したと判定して(S610)、紙詰まりが発生したことを表すエラーコートを操作パネル130に表示する(S611)。更に、紙詰まりが発生したことをデータセンターに通知して(S612)、処理を終了する。超過時間(T1-Te)が閾値Th1以下ならば(S609:NO)、ステップS605へ進んで、上記の処理を繰り返す。
【0083】
なお、データセンターは、例えば、画像形成装置1のメンテナンス契約を締結しているユーザーに対して、画像形成装置1のメンテナンスサービスを提供するために、通信ネットワークを経由して画像形成装置1から装置状態に関するデータを受信して、メンテナンスサービスの要否および内容を判断する。
(5-2)エラー原因特定処理(S614)
エラー原因特定処理(S614)においては、図7に示すように、まず、メインルーチンのステップS607で記録しておいたノイズ発生時刻Tsを参照し(S701)、ノイズ発生時刻Tsと現在時刻T1との時間差(時刻の差の絶対値)△Tを算出する(S702)。時間差△Tが閾値Th2よりも小さい場合には(S703:YES)、1段目給紙センサー241aが記録シートと検出したタイミングと、静電ノイズが発生したタイミングとが近いので、1段目給紙センサー241aが静電ノイズの影響によって記録シートを誤検出したと判定する(S704)。
【0084】
一方、時間差△Tが閾値Th2以上である場合には(S703:NO)、1段目給紙センサー241aが記録シートと検出したタイミングと、静電ノイズが発生したタイミングとが離れているので、1段目給紙センサー241aが静電ノイズの影響によって記録シートを誤検出した可能性は低い。このため、1段目給紙センサー241aが記録シートを検出したのは、記録シートの挙動乱れなどによって、紙詰まりが発生したことが原因であると判定する(S705)。
【0085】
その後、判定結果に応じたエラーコードを操作パネル130に表示する(S706)。1段目給紙センサー241aが静電ノイズの影響によって記録シートを誤検出したと判定した場合には、その旨のエラーコードを操作パネル130に表示し、紙詰まりが発生したと判定した場合には、その旨のエラーコードを操作パネル130に表示する。更に、当該判定結果をデータセンターに通知した後(S707)、メインルーチンに復帰する。
【0086】
なお、1段目給紙センサー241aが静電ノイズの影響によって記録シートを誤検出したと判定しても、紙詰まりが発生していないのだから、画像形成装置1のユーザーには実行すべき作業が発生しないので、エラーコードを操作パネル130に表示しても、ユーザーにとって特にメリットはないと考える場合には、エラーコードを操作パネル130に表示しないようにするのも有効である。
【0087】
このようにすれば、1段目給紙センサー241aによる記録シートの検出タイミングと、静電ノイズの発生タイミングとの近さに応じて、1段目給紙センサー241aが記録シートを誤検出したかどうかを判断するので、実際に紙詰まりが発生したか、それとも静電ノイズに起因する誤検出なのかを判別することができる。
[6]静電ノイズの発生源を特定する方法について
上述した実施例においては、静電ノイズが発生した場合であっても、静電ノイズの強度や周波数によっては、1段目給紙センサー241aの動作に影響を与えず、誤検出も発生しない場合もあり得る。しかしながら、静電ノイズが発生している場合、静電ノイズの発生源(以下、「静電ノイズ発生源」という。)そのものに問題が発生している可能性がある。したがって、制御部111は、静電ノイズを監視することによって、静電ノイズ発生源におけるトラブルの予兆を把握することができる。
(6-1)誤検出したセンサーと静電ノイズ発生源との関係
例えば、1段目給紙トレイから記録シートを給紙する際に記録シートの重送が発生すると、当該記録シートの次に給紙を行う際に重送紙が給紙されることになるが、重送紙はその先端が給紙トレイの外部に出てしまっており、シート検出予定時刻Teよりも閾値Th1以上早く、1段目給紙センサー241aが重送紙の先端を検出してしまう。一方、図8に示すように、静電ノイズが発生した場合にも、同じタイミングで1段目給紙センサー241aが記録シートを誤検出する可能性がある。
【0088】
このような場合、1段目給紙センサー241aが記録シートを検出したタイミングと、静電ノイズ検出回路411が静電ノイズを検出したタイミングとの時間差△Tが閾値Th2未満である場合には、静電ノイズが原因で1段目給紙センサー241aが記録シートを誤検出したと判定することができる。
【0089】
図8の例では、同じタイミングでタイミングセンサー243や排紙前センサー244には静電ノイズの影響は見られない。このため、当該静電ノイズを発生させた静電ノイズ発生源は1段目給紙センサー241aに近い位置にあると考えられる。すなわち、静電ノイズ検出回路411によって静電ノイズを検出した場合、どのセンサーが記録シートを誤検出したかによって、どの静電ノイズ発生源から静電ノイズが発生したかを推定することができる。
【0090】
図9は、誤検出したと判定したセンサー毎に、誤検出の原因となった静電ノイズを発生させた静電ノイズ発生源の候補を記録した表である。このような表を用いれば、静電ノイズ発生源を特定するのに有効である。特に、同じ静電ノイズ発生源から繰り返し静電ノイズが発生したと考えられる場合には、当該静電ノイズ発生源から単発的に静電ノイズが発生した場合とは異なって、当該静電ノイズ発生源に何らかの問題がある可能性が高い。このため、当該静電ノイズ発生源を交換する等の対策が必要になると考えられる。
【0091】
図9の例では、1段目給紙ローラー202a、タイミングローラー206および排紙前ローラー213については、これらのローラーが記録シートとの摩擦などによって帯電した際に、その電荷をグランドへ放電するための放電部材をこれらのローラーに当接させるための付勢部材として板バネやコイルバネ等が用いられている。この付勢部材の付勢力が経時劣化などによって低下すると、ローラーから放電部材が離隔する。
【0092】
放電部材が離隔している状態でローラーの帯電量が増加すると、静電気放電によって静電ノイズが発生する。1段目給紙ローラー202a、タイミングローラー206および排紙前ローラー213は、それぞれ1段目給紙センサー241a、タイミングセンサー243および排紙前センサー244に近い位置に配設されているので、静電ノイズ発生源の第1候補になっている。
【0093】
搬送時に記録シートを案内するシート搬送ガイドもまた記録シートとの摩擦などによって帯電し得る。シート搬送ガイドは、画像形成装置1本体にビスで固定することによって、接地を行っているが、ビスとシート搬送ガイドとの接触不良、或いはビスと画像形成装置1本体との接触不良が発生すると、シート搬送ガイドがいわゆる浮き板金となり、シート搬送ガイドを除電することができなくなる。
【0094】
このような状態で、シート搬送ガイドの帯電電荷が増大し続けると、シート搬送ガイドと、画像形成装置1本体などのシート搬送ガイド以外の部材との間の電位差が拡大し、最終的には静電気放電が発生して、静電ノイズが発生する。1段目給紙センサー241aの近傍においてシート搬送ガイドがビス止めされている場合には、シート搬送ガイド接合ビスが第2候補になり得る。
【0095】
1段目給紙モーター221a、タイミングモーター224および定着モーター226は回転駆動によって摩耗し、金属粉を発生させる。また、記録シートから発生する紙粉もまた高湿時には導電性を有し得る。このような異物がモーター内部に存在すると短絡によってノイズが発生し得る。
【0096】
二次転写高圧接点は、二次転写ローラー207に二次転写バイアス電圧を印加するための接点であって、例えば、二次転写ローラー207の軸に摺擦する板バネである。二次転写バイアス電圧は高電圧であるので、板バネが経時劣化したり、振動が加わったりして、接点が離隔すると放電によってノイズが発生し得る。
【0097】
感光体ドラム211Y、211M、211Cおよび211Kから中間転写ベルト210へトナー像を静電転写する一次転写ローラー(図示省略)には一次転写バイアスを印加するための接点が設けられている。この一次転写高圧接点もまた高電圧であるので、板バネが経時劣化したり、振動が加わったりして、接点が離隔すると放電によってノイズが発生するノイズ発生源となり得る。このため、これらの接点とセンサーとの距離によっては、二次転写高圧接点や一次転写高圧接点もまた静電ノイズ発生源の候補となり得る。
【0098】
扉開閉板バネは、図10(a)、(b)に例示するように、二次転写高圧接点からグランドに至る回路に介在する接点を構成する。扉開閉板バネは、本体側フレーム1002に固定された板バネ1001と、カバーユニット側フレーム1012に固定された板バネ1011とからなっており、板バネ1001、1011が互いに当接することによって、接地回路を形成する。
【0099】
板バネ1001、1011が経時劣化や振動などによって離隔すると、放電によってノイズが発生し得る。扉開閉板バネがタイミングセンサー243の近傍に配設されている場合には、タイミングセンサー243が誤検出した場合の静電ノイズ発生源の候補になる。なお、カバーユニットは両面印刷を行う場合の両面搬送ユニットを兼ねていてもよい。
【0100】
排紙出口部除電布は、画像を形成した記録シートを装置外に排出するための排紙出口に配設されている除電布であって、画像形成中に帯電した記録シートを除電する。このため、排紙出口部除電布そのものも帯電し易く、帯電量が多くなると静電気放電によって静電ノイズを発生させる。特に、排紙前センサー244に近い位置にある場合には、排紙前センサー244の誤検出の原因となった静電ノイズ発生源の候補となり得る。
【0101】
制御部111は、静電ノイズによってセンサーが誤検出をしたと判定した場合には、静電ノイズ発生源の候補を操作パネル130に表示したり、データセンターに通知したりしてもよい。このようにすれば、静電ノイズ発生源に問題があるために静電ノイズが発生しているような場合、静電ノイズ発生源の問題を速やかに解消することができる。
(6-2)静電ノイズ検出回路411と静電ノイズ発生源
静電ノイズ検出回路411は、複数個所にアンテナ401を配設して、静電ノイズを検出してもよい。センサーの誤検出の原因を判別する目的上、複数のアンテナ401は画像形成装置1の内部に配設するのが望ましい。
【0102】
静電ノイズ発生源となり得る箇所にそれぞれアンテナ401を配設すれば、検出した静電ノイズの強度がもっとも高いアンテナ401に対応する箇所の静電ノイズ発生源を誤検出の原因となった静電ノイズ発生源と特定することができる。また、アンテナ401の個数が静電ノイズ発生源の個数よりも少ない場合であっても、アンテナ401毎に検出した静電ノイズの強度の組み合わせから静電ノイズ発生源を推定することもできる。
【0103】
例えば、画像形成装置1の内部に4つのアンテナを配設する。このとき、4つのアンテナは同一平面上に位置しないように配設される。電波は距離の自乗の逆数に比例して電力が減衰するので、アンテナから静電ノイズ発生源までの距離は、当該アンテナで受信した静電ノイズの電力の平方根の逆数に比例する。従って、2つのアンテナについては、各アンテナからの距離がそれぞれ受信した静電ノイズの電力の平方根の逆数の比になる平面上に静電ノイズ発生源が存在する。
【0104】
アンテナの個数が3つの場合には、各アンテナからの距離が受信電力の平方根の逆数の比になる直線上に静電ノイズ発生源が存在する。同様にして、アンテナの個数が4つの場合には、静電ノイズの受信電力の平方根の逆数の比から静電ノイズ発生源の位置を特定することができる。
【0105】
なお、画像形成装置1の内部では、静電ノイズの伝播の仕方が自由空間とは異なっているので、具体的な装置構成に応じてアンテナから静電ノイズ発生源までの距離の比を調整すれば、静電ノイズ発生源の位置を更に精度よく推定することができる。
【0106】
また、図11(a)に示すように、1つのアンテナ1100に複数のノイズ検出回路1101、1111を接続して、ノイズ検出回路1101、1111どうしで静電ノイズに対する感度の差を設ける。弱ノイズ検出回路1101は、アナログ受信回路1102とデジタル処理部1103とを備えており、アナログ受信回路1102の出力が10mV以上である場合に、デジタル処理部1103が静電ノイズを検知する。
【0107】
一方、強ノイズ検出回路1111は、アナログ受信回路1112とデジタル処理部1113とを備えており、アナログ受信回路1112の出力が50mV以上である場合に、デジタル処理部1113が静電ノイズを検知する。
【0108】
言うまでもなく、ノイズ検出回路の個数は強弱2段階である必要は無く、3段階以上設けて多段階にしてもよい。また、デジタル処理部1103、1113が静電ノイズを検知するアナログ受信回路1102、1112の出力を異ならせる代わりに、デジタル処理部1103、1113が静電ノイズを検出する出力は同じにして、アナログ受信回路1102、1112における増幅率を異ならせてもよい。
【0109】
図11(b)に示すように、ノイズ検出回路1121にはアンテナ1120から取得したノイズ信号を増幅するノイズ増幅回路1122のみを搭載するものとし、制御部111が備えるCPU401が備えるA/D変換回路1123を用いてマルチビットのデジタル信号に変換してもよい。また、CPU401とは別に制御部111にA/D変換回路を設けてノイズ検出回路1121のアナログ出力信号をマルチビットのデジタル信号に変換した後、CPU401に入力してもよい。
【0110】
このようなA/D変換回路として、ノイズ検出回路1121が出力したアナログ信号のレベルをそのまま入力してノイズの強弱を認識できるA/D変換回路を用いてもよい。なお、静電ノイズは持続時間が数10ナノ秒と極めて短時間なので、高速なA/D変換回路を用いるのが望ましい。
【0111】
以上のような静電ノイズ検出回路および制御部111を用いて、静電ノイズの強度を検出してもよい。
【0112】
このようにすれば、1段目給紙ローラー202a、タイミングローラー206および排紙前ローラー213の近傍にそれぞれアンテナを配設して、例えば、5段階レベルで静電ノイズの強度を検出し、1段目給紙ローラー202aの近傍では静電ノイズのレベルが1、タイミングローラー206の近傍では静電ノイズのレベルが4、排紙前ローラー213の近傍では静電ノイズのレベルが3と検出したとき、静電ノイズ発生源までの距離の遠近は、タイミングローラー206がもっとも遠く、排紙前ローラー213が中間であり、1段目給紙ローラー202aがもっとも近いと判定することができる。更に、アンテナの配置を考慮すれば、二次転写高圧接点が静電ノイズ発生源の第1候補となる。
[7]静電ノイズの発生履歴
上記においては、直近に静電ノイズを検出した時刻のみを記録したり、静電ノイズの強度から静電ノイズ発生源を判定したりする場合について説明したが、静電ノイズは、静電ノイズ発生源が経時劣化することによって、強度を変化させる場合があり、そのような場合には静電ノイズの強度の検出履歴を記録すれば、静電ノイズ発生源に関する経時劣化などの情報を得ることができるので有効である。
【0113】
このため、制御部111は、画像形成装置1の動作状態に関係なく静電ノイズ検出回路411の出力信号を参照して、静電ノイズが発生した日時と強度とを検出する処理を繰り返して、静電ノイズの検出履歴を記録する。
【0114】
その結果、例えば、図12に示すような検出履歴が得られたものとする。図12に例示する静電ノイズの強度は、画像形成装置1の画像形成枚数が10,000枚(10kp)、100,000枚(100kp)と増大するのに連れて上昇しており、画像形成枚数が1,000,000枚(1,000kp)になると所与の閾値を超えてメンテナンスが必要な状態になったと判定され、メンテナンス必要通知が画像形成装置1からデータセンターに送信される。
【0115】
このように、静電ノイズの強度を監視することによって、静電ノイズ発生源において静電ノイズが発生する以上のトラブルとなる予兆を掴んで、トラブルが発生する前に部品交換などの対策を採って、トラブルの発生を防止することができる。
【0116】
また、静電ノイズの強度の閾値を複数設けておき、静電ノイズが閾値を超えるたびに警告レベルを引き上げながら、操作パネルに警告メッセージを表示したり、データセンターに警告を通知したりしてもよい。
[8]変形例
以上、本開示を実施の形態に基づいて説明してきたが、本開示が上述の実施の形態に限定されないのは勿論であり、以下のような変形例を実施することができる。
(8-1)上記実施の形態においては、主に搬送ローラーを除電するために板バネを放電部材として用いる場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、これに代えて、或いはこれに加えて次のようにしてもよい。
【0117】
上述のように、画像形成装置1には各種のモーターが搭載されている。例えば、図13に示すように、モーター1332、1334には制御信号が入力され、この制御信号に応じて回転動作する。また、モーター1332、1334には回転状態をモニターするセンサーが付与されており、このセンサー出力からモーターの回転状態を取得することによって、モーター1332、1334のフィードバック制御がなされる。このフィードバック信号が変化したタイミングと、静電ノイズが検出されたタイミングとが近い場合には、当該モーター1332、1334の近傍にある静電ノイズ発生源から静電ノイズが発生したと推定することができる。
【0118】
また、制御部111は複数の回路基板からなっている場合がある。CPU401を実装した制御基板1301とは別に、ASIC(Application Specific Integrated Circuit)1312を実装した駆動制御基板1311が用いられる場合には、CPU401がASIC1312の動作を制御する必要上、2つの回路基板1301、1311の間で通信配線1321を経由した制御信号などのやり取りがなされる。このような基板1301、1311間の通信信号に静電ノイズが影響を与える場合がある。
【0119】
従って、基板1301、1311間で通信エラーが発生したタイミングと、静電ノイズを検出したタイミングが近い場合には、基板間の通信配線1321の近傍にある静電ノイズ発生源から静電ノイズが発生したと推定することができる。
【0120】
以上のようにしても、静電ノイズを発生させた静電ノイズ発生源を推定することができるので、静電ノイズ発生源の経時劣化などの異常を発見するの有効である。その結果、正常な動作を継続することが難しくなってきていると判断される静電ノイズ発生源を交換したり修理したりすれば、当該静電ノイズ発生源の正常な動作を継続させたり、静電ノイズの発生を防止したりすることによって、画像形成装置1の正常な動作を維持することができる。
(8-2)上記実施の形態においては、静電ノイズを検知したタイミングと、画像形成装置1の装置状態の変化を検出したタイミングとが時間的に近い場合に、装置状態の変化を誤検出したと判定する場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、これに加えて次のようにしてもよい。
【0121】
例えば、静電ノイズの発生源が複数あって、上述のように、どの静電ノイズ発生源から静電ノイズが発生したかを推定することができる場合、推定した静電ノイズ発生源が、図9に例示したように、装置状態の変化を検出したセンサーに誤検出を引き起こす可能性のある候補に含まれていなければ、静電ノイズを検知したタイミングと、装置状態の変化を検出したタイミングとが時間的に近くても、装置状態の変化を正常に検出したと判定してもよい。
【0122】
すなわち、図14に示すように、装置状態の変化を検出した現在時刻T1と、静電ノイズを検出したノイズ発生時刻Tsとの時間差△Tが閾値Th2よりも小さい場合(S1403:YES)、上述のようにして静電ノイズ発生源を推定する(S1404)。そして、推定した静電ノイズ発生源が、当該装置状態の変化を誤検出させ得る静電ノイズ発生源の候補に含まれている場合には(S1405:YES)、当該静電ノイズによって装置状態の変化を誤検出したと判定する(S1406)。
【0123】
なお、上では図9に例示したテーブルを装置状態の変化を誤検出させる可能性の有無を、装置状態と静電ノイズ発生源との組み合わせ毎に記憶したテーブルとして用いているが、図9に例示したように候補としての順位を記憶せずに、装置状態の変化を誤検出させる可能性がある静電ノイズ発生源を列挙したテーブルであってもよいし、逆に、装置状態の変化を誤検出させる可能性がない静電ノイズ発生源を列挙したテーブルであってもよい。
【0124】
一方、推定した静電ノイズ発生源が、当該装置状態の変化を誤検出させ得る静電ノイズ発生源の候補に含まれていない場合には(S1405:NO)、装置状態が変化したと判定する(S1407)。このようにすれば、静電ノイズと、装置状態の変化とが時間的に近いタイミングで検出されたものの、互いに独立した事象であって因果関係が無い場合に、装置状態が変化したと正しく判定することができる。
【0125】
なお、静電ノイズ発生源が、装置状態の変化を誤検出させる可能性のあるかどうかさえ確認することができれば、図9に例示した表のように、可能性の高さの順位が記憶されていなくてもよい。すなわち、装置状態ごとに当該装置状態の変化を誤検出させる可能性があるかどうかだけを記憶していてもよい。
(8-3)上記実施の形態においては、画像形成装置1の装置状態の変化の有無を検出する場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、装置状態の変化の大きさまで検出してもよい。
【0126】
特に、静電ノイズを検知したタイミングとその強度との履歴を記録している場合には、静電ノイズの強度のみ、または静電ノイズの強度と装置状態の変化の大きさとの組み合わせに応じて、当該装置状態の変化が誤検出される可能性(懸念レベル)を判定して、操作パネル130に表示したり、データセンターに通知したりしてもよい。
【0127】
このようにすれば、装置状態の変化を誤検出する前に、当該誤検出が発生する恐れが分かるので、実際に誤検出が発生する前に、制限ノイズ発生源を突き止めて静電ノイズが発生しないように手当てすることができる。したがって、装置状態の変化の誤検出を未然に防ぐことができるので、画像形成装置1の正常動作をより確実に担保することができる。
(8-4)上記実施の形態においては、静電ノイズ検出回路411がアナログ受信回路502と、デジタル処理部503とを1つずつ備える場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。例えば、静電ノイズ検出回路411が複数のアナログ受信回路502を備えて、複数のアナログ受信回路502がそれぞれ異なるアンテナに接続されており、デジタル処理部503は、アナログ受信回路502の個数以上のビット数のデジタルデータを制御部111へ出力する。
【0128】
デジタル処理部503は、静電ノイズを検出して、出力が閾値以上になっているアナログ受信回路502に対応するビットをセットし、静電ノイズを検出せず、出力が閾値未満になっているアナログ受信回路502に対応するビットをクリアしたデジタルデータを制御部111へ出力すれば、制御部111は、どのアンテナが静電ノイズを検出したかを確認することができる。
【0129】
また、アナログ受信回路502の出力値を、閾値を超えたかどうかを表す1ビットではなく、出力値の大小を表すマルチビットのデジタルデータにA/D変換して、制御部111へ出力してもよい。このようにすれば、制御部111は、アンテナ毎に検出した静電ノイズの強度を取得することができる。
(8-5)静電ノイズ検出回路411が検出することができる静電ノイズを発生させる静電ノイズ発生源が複数ある場合、静電ノイズ検出回路411が静電ノイズを検出しただけでは、その静電ノイズがどの静電ノイズ発生源から発生したかを特定することはできない。
【0130】
しかしながら、画像形成装置1の装置状態の変化のうち、当該変化を誤検出させる静電ノイズを発生させる静電ノイズ発生源が一つしかない変化については、当該変化を誤検出したことが分かれば、どの静電ノイズ発生源から静電ノイズが発生したかを特定することができる。
【0131】
また、複数の種類の変化を同時に誤検出させる静電ノイズを発生させる静電ノイズ発生源が一つしかない場合には、これら複数の周類の変化を同時に誤検出したことが分かれば、どの静電ノイズ発生源から静電ノイズが発生したかを特定することができる。
【0132】
このため、制御部111が、複数種類の装置状態の変化のうちどの変化を誤検出したかのパターンと、当該変化を誤検出させる静電ノイズを発生させる静電ノイズ発生源と、の組み合わせをあらかじめ記憶しておけば、誤検出のパターンから静電ノイズ発生源を特定することができる。上述のように、静電ノイズ発生源ごとの静電ノイズの発生状況を把握することができれば、静電ノイズ発生源ごとに経時劣化や寿命などを診断して、適切にメンテナンスを実行することができる。したがって、画像形成装置1の可用性や信頼性を向上させることができる。
(8-6)上記実施の形態においては、静電ノイズによって画像形成装置1の装置状態の変化を誤検出する場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、静電ノイズ以外の原因によって装置状態の変化を誤検出する場合についても、当該装置状態の変化を検出した際に、併せて当該誤検出原因の発生も検出した場合には、当該装置状態の変化を誤検出したと判定してもよい。
【0133】
また、誤検出原因が複数ある場合には、どの装置状態の変化を誤検出したかによって、どの発生源から当該誤検出原因が発生したかを推定することもできるので、発生源ごとに誤検出原因の発生状況を把握して、発生源の劣化状況などを診断することができる。
【0134】
例えば、機械部品の摩耗や変形などによって発生した振動が原因になって、機械式センサーによる装置状態の誤検出が発生するような場合には、静電ノイズと同様に本開示を適用することができる。
(8-7)上記実施の形態においては、画像形成装置1がタンデム方式のカラー複合機である場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、タンデム方式以外の方式のカラー複合機であってもよいし、モノクロ複合機であってもよい。また、プリンター装置や、スキャナーを備えたコピー装置、更にファクシミリ通信機能を備えたファクシミリ装置といった単機能機に本開示を適用しても同様の効果を得ることができる。
【産業上の利用可能性】
【0135】
本開示に係る画像形成装置は、静電ノイズに起因する装置状態の誤検出を判別することができる装置として有用である。
【符号の説明】
【0136】
1…………………………………画像形成装置
111……………………………制御部
130……………………………操作パネル
201a…………………………1段目ピックアップローラー
202a…………………………1段目給紙ローラー
203a…………………………1段目捌きローラー
206……………………………タイミングローラー
213……………………………排紙前ローラー
221a…………………………1段目給紙モーター
224……………………………タイミングモーター
226……………………………定着モーター
241a…………………………1段目給紙センサー
243……………………………タイミングセンサー
244……………………………排紙前センサー
261a、261b、262…アンテナ
263、501、1100……アンテナ
1120…………………………アンテナ
301、1001、1011…板バネ
310……………………………コイルバネ
411……………………………静電ノイズ検出回路
502、1102、1112…アナログ受信回路
503、1103、1113…デジタル処理部
1122…………………………ノイズ増幅回路
1123…………………………A/D変換回路
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14