IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

<>
  • 特許-プリプレグ 図1
  • 特許-プリプレグ 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-03-10
(45)【発行日】2025-03-18
(54)【発明の名称】プリプレグ
(51)【国際特許分類】
   C08J 5/24 20060101AFI20250311BHJP
【FI】
C08J5/24
【請求項の数】 12
(21)【出願番号】P 2020542929
(86)(22)【出願日】2020-05-15
(86)【国際出願番号】 JP2020019466
(87)【国際公開番号】W WO2020235484
(87)【国際公開日】2020-11-26
【審査請求日】2023-04-28
(31)【優先権主張番号】P 2019097030
(32)【優先日】2019-05-23
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019097033
(32)【優先日】2019-05-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】三角 潤
(72)【発明者】
【氏名】本間 雅登
(72)【発明者】
【氏名】篠原 響子
(72)【発明者】
【氏名】平野 啓之
【審査官】河内 浩志
(56)【参考文献】
【文献】特開2019-038939(JP,A)
【文献】特許第3906319(JP,B2)
【文献】特開平08-259713(JP,A)
【文献】特開2017-088652(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 5/04- 5/10
5/24
B29B11/16
15/08-15/14
B32B 1/00-43/00
(57)【特許請求の範囲】
【請求項1】
次の構成要素[A]、[B]及び[C]を含むプリプレグであって、
[B]は、硬化度が90%以上の状態でのガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が10MPa以上であり、
プリプレグの表面に[C]が存在しており、
[B]を含む樹脂領域と[C]を含む樹脂領域との境界面をまたいで両樹脂領域に含まれる[A]の強化繊維が存在し、前記[B]を含む樹脂領域と[C]を含む樹脂領域がそれぞれ層状をなして隣接することにより前記境界面を形成しており、強化繊維が連続繊維の形態であり、強化繊維質量含有率が30~90質量%であるプリプレグ。
[A]強化繊維
[B]熱硬化性樹脂
[C]熱可塑性樹脂
【請求項2】
前記プリプレグの平面視において、前記両樹脂領域に含まれる任意の[A]の繊維方向に対し45度異なる角度の方向から、前記[A]を含むプリプレグ平面に垂直な断面を得た場合に、前記断面において、両樹脂領域の密着する境界面が形成する断面曲線の、JIS B0601(2001)で定義される粗さ平均長さRSmが100μm以下であり、粗さ平均高さRcが3.5μm以上である、請求項1に記載のプリプレグ。
【請求項3】
構成要素[B]は、硬化度が90%以上の状態でのガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が12MPa以上である、請求項1または2に記載のプリプレグ。
【請求項4】
構成要素[B]は、硬化度が90%以上の状態でのガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が15MPa以上である、請求項1または2に記載のプリプレグ。
【請求項5】
構成要素[B]は、エポキシ樹脂を含み、
構成要素[B]に含まれる全エポキシ樹脂100質量部に対して3官能以上のグリシジルアミン型エポキシが40~100質量部含まれる、請求項1から4のいずれかに記載のプリプレグ。
【請求項6】
構成要素[B]を含む組成物は、芳香族アミンを含む、請求項1から5のいずれかに記載のプリプレグ。
【請求項7】
構成要素[B]を含む組成物は、リンを1.0質量%以下の原子濃度で含む、請求項1から6のいずれかに記載のプリプレグ。
【請求項8】
構成要素[B]は、硬化度が90%以上の状態での曲げ強度が150MPa以上である、請求項1から7のいずれかに記載のプリプレグ。
【請求項9】
前記粗さ平均高さRcが10μm以上である、請求項に記載のプリプレグ。
【請求項10】
構成要素[C]は、ガラス転移温度が80℃以上の結晶性の熱可塑性樹脂またはガラス転移温度が160℃以上の非晶性の熱可塑性樹脂から選ばれる1種または2種以上である、請求項1から9のいずれかに記載のプリプレグ。
【請求項11】
構成要素[C]は、ポリアリーレンエーテルケトン、ポリフェニレンスルフィドまたはポリエーテルイミドから選ばれる1種または2種以上である、請求項1から10のいずれかに記載のプリプレグ。
【請求項12】
構成要素[A]には、ストランド引張強度が5.5GPa以上の炭素繊維が含まれる、請求項1から11のいずれかに記載のプリプレグ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、強化繊維、熱硬化性樹脂及び熱可塑性樹脂を含むプリプレグ、強化繊維、熱可塑性樹脂及び熱硬化性樹脂硬化物を含む積層体および成形品に関する。
【背景技術】
【0002】
熱硬化性樹脂または熱可塑性樹脂をマトリックスとして用い、炭素繊維やガラス繊維などの強化繊維と組み合わせた繊維強化複合材料は、軽量でありながら、強度や剛性などの力学特性や耐熱性、また耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されてきた。しかしながら、これらの繊維強化複合材料は、複雑な形状を有する部品や構造体を単一の成形工程で製造するには不向きであり、上記用途においては、繊維強化複合材料からなる部材を作製し、次いで、同種または異種の部材と一体化することが必要である。強化繊維と熱硬化性樹脂からなる繊維強化複合材料と同種または異種の部材を一体化する手法として、ボルト、リベット、ビスなどの機械的接合方法や、接着剤を使用する接合方法が用いられている。機械的接合方法では、穴あけなど接合部分をあらかじめ加工する工程を必要とするため、製造工程の長時間化および製造コストの増加につながり、また、穴をあけるため、材料強度が低下するという問題があった。接着剤を使用する接合方法では、接着剤の準備や接着剤の塗布作業を含む接着工程および硬化工程を必要とするため、製造工程の長時間化につながり、接着強度においても、信頼性に十分な満足が得られないという課題があった。
【0003】
熱可塑性樹脂をマトリックスに用いた繊維強化複合材料は、上記の機械的接合方法および接着剤を用いた接合に加え、溶着により部材間を接合する方法を適用することができるため、部材間の接合に要する時間を短縮できる可能性がある。一方で、航空機用構造部材のように、高温での力学特性や優れた薬品への耐性が求められる場合は、熱硬化性樹脂と強化繊維からなる繊維強化複合材料に比べて、耐熱性、耐薬品性が十分ではないという課題があった。
【0004】
ここで、特許文献1には、熱硬化性樹脂と強化繊維からなる繊維強化複合材料を、接着剤を介して接合する方法が示されている。
【0005】
特許文献2には、熱可塑性樹脂で形成される部材と、熱硬化性樹脂からなる繊維強化複合材料で形成される部材を一体化する手法が示されている。すなわち、強化繊維と熱硬化性樹脂からなるプリプレグシートの表面に熱可塑性樹脂フィルムを積層し、加熱・加圧により、繊維強化複合材料を得る。その後、得られた繊維強化複合材料を金型に入れ、熱可塑性樹脂を射出成形し、射出成形により形成された熱可塑性樹脂部材と繊維強化複合材料を接合させる。
【0006】
また、特許文献3には、熱硬化性樹脂と強化繊維からなる複合材料の表面に、熱可塑性樹脂接着層を形成した積層体の製造方法が示されており、熱可塑性樹脂を介して他の部材との接着効果を示すことが述べられている。
特許文献4には、強化繊維と熱硬化性樹脂からなるプリプレグの表層に、熱可塑性樹脂からなる粒子、または繊維、またはフィルムが配置されてなるプリプレグおよびその繊維強化複合材料が示されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2018-161801号公報
【文献】特開平10-138354号公報
【文献】特許第3906319号公報
【文献】特開平8-259713号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、特許文献1に示される手法は、強化繊維と熱硬化性樹脂よりなる繊維強化複合材料を接着剤により互いに接合する方法であり、熱硬化性樹脂がマトリックス樹脂であるため、そのままでは繊維強化複合材料間の接合の方法として溶着を適用できない。接着剤の硬化に時間を要するため、接合工程に時間を要するという課題があり、さらに、発現する接合強度は十分ではなかった。
【0009】
特許文献2に記載の方法では、繊維強化複合材料中の熱硬化性樹脂と熱可塑性樹脂フィルムとの接合部における接合強度が十分ではなかった。
【0010】
特許文献3に係る繊維強化複合材料は、熱可塑性樹脂を介して溶着による一体化を行うことができ、室温では優れた接合強度を示すが、高温での接合強度は十分ではなかった。
【0011】
特許文献4では、熱可塑性樹脂からなる粒子、繊維またはフィルムにより、層間破壊靭性値が向上することが示されているが、この方法では、繊維強化複合材料中の熱硬化性樹脂と熱可塑性樹脂との境界部における接合強度が十分ではなかった。
【0012】
そこで、本発明の目的は、同種または異種の部材と溶着により接合可能かつ、優れた接合強度、特に高温環境下で優れた接合強度を発現し、更に圧縮強度および層間破壊靱性値にも優れ、構造材料として好適な積層体を与えるプリプレグ、積層体および一体化成形品を提供することにある。
【課題を解決するための手段】
【0013】
かかる課題を解決するために本発明のプリプレグは、次の構成を有する。
【0014】
すなわち、次の構成要素[A]、[B]及び[C]を含むプリプレグであって、[B]は、硬化度が90%以上の状態でのガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が10MPa以上であり、プリプレグの表面に[C]が存在しており、[B]を含む樹脂領域と[C]を含む樹脂領域との境界面をまたいで両樹脂領域に含まれる[A]の強化繊維が存在するプリプレグ。
[A]強化繊維
[B]熱硬化性樹脂
[C]熱可塑性樹脂。
【0015】
さらに、本発明の積層体は、次の構成を有する積層体である。
【0016】
すなわち、次の構成要素[A]、[C]及び[D]を含む層が含まれ、[D]はガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が10MPa以上であり、[C]を含む樹脂領域と[D]を含む樹脂領域との境界面をまたいで両樹脂領域に含まれる[A]の強化繊維が存在する積層体。
[A]強化繊維
[C]熱可塑性樹脂
[D]熱硬化性樹脂硬化物。
【発明の効果】
【0017】
本発明のプリプレグは、熱硬化性樹脂と熱可塑性樹脂を用いており、両者が強固に接合されている上、同種または異種の部材との良好な溶着が可能であるため、従来の熱硬化性樹脂と強化繊維からなる繊維強化複合材料に対し、接合工程に要する時間を短縮でき、構造部材の成形を高速化することが可能となる。さらに、所定温度におけるゴム状態弾性率に優れることで、優れた圧縮強度および高温環境下での接合強度を発現し、構造材料として優れた積層体が得られる。本発明の積層体は、航空機構造部材、風車の羽根、自動車構造部材およびICトレイやノートパソコンの筐体などのコンピューター用途等に適用することで、構造体としての優れた性能を示す上、本発明のプリプレグを用いれば、上記用途に係る製品の成形時間および成形コストを大きく低減させることが可能である。
【図面の簡単な説明】
【0018】
図1】本発明に係るプリプレグまたは積層体の模式図であり、図2に係るプリプレグ平面または積層体平面に垂直な断面を示すものである。
図2】本発明における、プリプレグ平面または積層体平面に垂直な断面の模式図であり、粗さ平均長さRSmおよび粗さ平均高さRcの測定方法の説明を助けるものである。
【発明を実施するための形態】
【0019】
本発明で用いる構成要素[A]の強化繊維としては、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維などがある。これらは、単独で用いてもよいし、適宜2種以上併用して用いてもよい。これらの強化繊維は、表面処理が施されているものであっても良い。表面処理としては、金属の被着処理、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。これらの強化繊維の中には、導電性を有する強化繊維も含まれている。強化繊維としては、炭素繊維が、比重が小さく、高強度、高弾性率であることから、好ましく使用される。
【0020】
炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T700S-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T1100G-24K(以上、東レ(株)製)などが挙げられる。
【0021】
強化繊維の形態や配列については、強化繊維が一方向に配列されているか、一方向に配列されたものの積層物か、または織物の形態等から適宜選択できるが、軽量で耐久性がより高い水準にある積層体を得るためには、各プリプレグにおいて、強化繊維が一方向に配列された長繊維(繊維束)または織物等連続繊維の形態であることが好ましい。
【0022】
強化繊維束は、同一の形態の複数本の繊維から構成されていても、あるいは、異なる形態の複数本の繊維から構成されていても良い。一つの強化繊維束を構成する強化繊維数は、通常、300~60,000であるが、基材の製造を考慮すると、好ましくは、300~48,000であり、より好ましくは、1,000~24,000である。上記の上限のいずれかと下限のいずれかとの組み合わせによる範囲であってもよい。
【0023】
構成要素[A]の強化繊維について、JIS R7608(2007)の樹脂含浸ストランド試験法に準拠して測定したストランド引張強度が5.5GPa以上であると、引張強度に加え、優れた接合強度を有する積層体が得られるため、好ましい。当該ストランド引張強度が5.8GPaであると、さらに好ましい。ここで言う接合強度とは、ISO4587:1995(JIS K6850(1994))に準拠して求められる、引張せん断接合強度を指す。
【0024】
本発明で用いる構成要素[B]は、硬化度が90%以上の状態でのガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が10MPa以上の熱硬化性樹脂である。構成要素[B]を硬化度90%以上の状態にするには、構成要素[B]の熱硬化性樹脂および硬化剤として特定された硬化前の熱硬化性樹脂組成物を、所定の条件で加熱硬化することで達成できる。所定の条件での加熱硬化とは、まず、135℃2時間または、180℃2時間の加熱を行い、硬化度が90%以上に至るまで、必要に応じて更なる加熱を加えることを指す。135℃2時間または、180℃2時間の加熱にて得られた熱硬化性樹脂硬化物の硬化度を測定し、硬化度が90%以上であれば、その熱硬化性樹脂硬化物を用いて、特性評価に用いることができる。135℃2時間または、180℃2時間の加熱温度・時間では硬化度が90%未満であった場合は、180℃2時間の後加熱を加えて硬化度を確認する。後加熱した状態で硬化度が90%未満であった場合は、硬化度が90%以上になるまで、200℃1時間、220℃1時間、240℃1時間と、硬化度が90%に至るまで、順に加熱を加える。240℃1時間の加熱でも、硬化度が90%に至らない場合は、硬化度が90%以上に至るまで、300℃以下の温度で加熱を加えることで、目的の熱硬化性樹脂硬化物を得て、特性評価に用いることができる。
【0025】
ここで硬化度は、構成要素[B]の熱硬化性樹脂および硬化剤として特定された硬化前の熱硬化性樹脂組成物、およびかかる熱硬化性樹脂の硬化物のそれぞれの発熱量を、不活性ガス雰囲気下、昇温速度10℃/分にて示差走査熱量分析を行った際に発熱反応として現れるそれぞれのピークの面積としてそれぞれ算出し、以下の式によって求められる値である。プリプレグに含まれる構成要素[B]とは別に、熱硬化性樹脂および硬化剤として特定されたものと同一構造の樹脂を準備して、測定に供することもできる。ここで、硬化剤を特定できない場合は、4,4’-ジアミノジフェニルスルホンを上記組成物における硬化剤として用いてよい。その他、上記組成物を構成し得る要素として硬化触媒、粘度調整剤など実施例に後述する化合物を好ましく用いることができるが、測定結果に影響しなければ、これらは特に限定されることはない。
硬化度(%)=((熱硬化性樹脂を含む組成物の硬化前の発熱量)-(熱硬化性樹脂の硬化物の発熱量))/(熱硬化性樹脂を含む組成物の硬化前の発熱量)×100。
【0026】
また、熱硬化性樹脂硬化物の動的粘弾性測定(ねじり測定)を貯蔵弾性率曲線より求めたガラス転移温度に50℃加えた温度での貯蔵弾性率を、JIS K7244-7(2007)に従って求め、本発明のゴム状態弾性率とする。かかる本発明のゴム状態弾性率が10MPaに満たないと、積層体の圧縮強度および、積層体と部材を接合して一体化した際の、高温での接合強度を十分に高くすることができない。当該ゴム状態弾性率が12MPa以上であるとさらに好ましく、より好ましくは15MPa以上である。ゴム状態弾性率の上限については特に限定されないが、通常の熱硬化性樹脂硬化物は50MPaが上限である。
【0027】
本発明における構成要素[D]の熱硬化性樹脂硬化物は、熱硬化性樹脂を、加熱硬化することにより得ることができる。積層体に含まれる構成要素[D]の硬化の判定について、積層体を不活性ガス雰囲気下、昇温速度10℃/分にて示差走査熱量分析を行った際に発熱反応として現れるピークの面積(残存発熱)が、50J/g以下であれば、実質的に硬化物であると判定することができる。もしくは、硬化前の熱硬化性樹脂組成物を特定できる場合は、上式により硬化度を求めて、90%以上であれば硬化物としてよい。本発明のプリプレグを用いる場合は、熱硬化性樹脂は構成要素[B]に対応する。本発明の積層体は、必ずしもプリプレグを経由したものではなく、後述するレジントランスファーモールディング法などで作成されてもよい。
【0028】
構成要素[B]に使用される熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリイミド樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、またはこれらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂がある。耐衝撃性向上のために、熱硬化性樹脂には、エラストマーもしくはゴム成分が添加されていても良い。中でも、エポキシ樹脂は、力学特性、耐熱性および強化繊維との接着性に優れ、好ましい。エポキシ樹脂の主剤としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、テトラブロモビスフェノールAジグリシジルエーテルなどの臭素化エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジンなどのグリシジルアミン型エポキシ樹脂、レゾルシンジグリシジルエーテル、トリグリシジルイソシアヌレートなどを挙げることができる。
【0029】
本発明の構成要素[B]:熱硬化性樹脂は、エポキシ樹脂を含むものが好ましく、熱硬化性樹脂に含まれる全エポキシ樹脂100質量部に対しグリシジル基を3個以上含むグリシジルアミン型エポキシ樹脂を40~100質量部含むことで、ゴム状態弾性率の高い硬化物が得られるため、より好ましい態様となる。グリシジル基を3個以上含むグリシジルアミン型エポキシ樹脂としては、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンなどを挙げることができる。
【0030】
エポキシ樹脂の硬化剤としては、例えば、ジシアンジアミド、芳香族アミン化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、テトラメチルグアニジン、チオ尿素付加アミン、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタンなどが挙げられる。
【0031】
なかでも、エポキシ樹脂の硬化剤として芳香族アミン硬化剤を用いることにより、耐熱性の良好なエポキシ樹脂が得られる。芳香族アミン化合物としては、例えば、3,3’-ジイソプロピル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジイソプロピル-5,5’-ジメチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-5,5’-ジメチル-4,4’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジイソプロピル-5,5’-ジエチル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-5,5’-ジエチル-4,4’-ジアミノジフェニルスルホン、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノジフェニルスルホン、3,3’-ジ-t-ブチル-5,5’-ジイソプロピル-4,4’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラ-t-ブチル-4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホンなどが挙げられる。
【0032】
さらに、構成要素[B]の熱硬化性樹脂は、熱硬化性樹脂に可溶な熱可塑性樹脂成分を粘度調整剤として溶解した状態で含むことが好ましい。かかる熱可塑性樹脂成分は、構成要素[C]とは異なる、別の熱可塑性樹脂成分である。ここで「熱硬化性樹脂に可溶」とは、熱可塑性樹脂成分を熱硬化性樹脂に混合したものを加熱、または加熱撹拌することによって、均一相をなす温度領域が存在することを指す。ここで、「均一相をなす」とは、目視で分離のない状態が得られることを指す。ここで、「溶解した状態」とは、熱可塑性樹脂成分を含む熱硬化性樹脂を、ある温度領域にし、均一相をなした状態を指す。一旦ある温度領域で均一相をなせば、その温度領域以外、例えば室温で分離が起こっても構わない。
【0033】
構成要素[B]の熱硬化性樹脂に可溶な熱可塑性樹脂成分としては、一般に、主鎖に炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれる結合を有する熱可塑性樹脂であることが好ましい。また、この熱可塑性樹脂成分は、部分的に架橋構造を有していても差し支えなく、結晶性を有していても非晶性であってもよい。特に、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリビニルホルマール、ポリビニルブチラール、フェノキシ樹脂、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれる少なくとも一つの樹脂が好適である。良好な耐熱性を得るためには、成形体として用いたときに熱変形を起こしにくいという観点から、150℃以上のガラス転移温度を有することが好ましく、より好ましくは170℃以上であり、ポリエーテルイミドやポリエーテルスルホンが好適な例として挙げられる。
【0034】
構成要素[B]の熱硬化性樹脂を含む組成物に、リン化合物が含まれることも、難燃性向上の点から好ましい態様の一つではある。しかしながら、リン量が多いと、熱硬化性樹脂硬化物の曲げ強度が低下することがある。このことから、かかる組成物中のリン原子濃度が0.1質量%以上1.0質量%以下であることで、優れた曲げ強度の熱硬化性樹脂硬化物が得られ好ましい。
【0035】
なお、リン化合物を含むか否かにかかわらず、本発明のプリプレグに含まれる構成要素[B]は、硬化度が90%以上の状態での曲げ強度が150MPa以上であることが好ましい。また、本発明の積層体に含まれる構成要素[D]は、曲げ強度が150MPa以上である。かかる硬化物が本発明の積層体に含まれると、積層体と部材を接合した際の接合強度が優れるため、好ましい。曲げ強度は、JIS K7171(1994)に基づいた3点曲げ試験により求めることができる。プリプレグまたは積層体に含まれる上記構成要素の曲げ強度を求める場合は、熱硬化性樹脂の種類を特定した上で、同種の樹脂であって未硬化のものについて、上記硬化度の測定と同様に組成物となし、曲げ強度の測定に供する。このとき、測定対象のプリプレグまたは積層体に含まれる熱硬化性樹脂とは別途、同一の構造であって未硬化の樹脂を準備して測定に供してもよい。また、曲げ強度の上限については特に限定されないが、通常の熱硬化性樹脂硬化物は500MPaが上限である。
【0036】
構成要素[C]を構成する熱可塑性樹脂としては特に制限はなく、例えば、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等)や、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、ポリブチレン等)、スチレン系樹脂、ウレタン樹脂、ポリオキシメチレン、ポリアミド系樹脂(ポリアミド6やポリアミド66等の脂肪族ポリアミド、半芳香族ポリアミド、脂環式ポリアミド等)、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、変性ポリスルホン、ポリエーテルスルホンや、ポリケトン、ポリアリーレンエーテルケトン(ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等)、ポリアリレート、ポリエーテルニトリル、フェノール系樹脂、フェノキシ樹脂などが挙げられる。また、これら熱可塑性樹脂は、上述の樹脂の共重合体や変性体、および/または2種類以上ブレンドした樹脂などであってもよい。
【0037】
これらの中でも、耐熱性の観点から、ガラス転移温度が80℃以上の結晶性の熱可塑性樹脂およびガラス転移温度が160℃以上の非晶性の熱可塑性樹脂から選ばれる1種または2種以上が構成要素[C]の熱可塑性樹脂中に60重量%以上含まれることが好ましい。また、ポリアリーレンエーテルケトン、ポリフェニレンスルフィドおよびポリエーテルイミドから選ばれる1種または2種以上が、構成要素[C]の熱可塑性樹脂中に60重量%以上含まれることが特に好ましい。
【0038】
耐衝撃性向上のために、エラストマーもしくはゴム成分が、熱硬化性樹脂または熱可塑性樹脂に添加されていても良い。さらに、用途等に応じ、本発明の目的を損なわない範囲で適宜、熱硬化性樹脂または熱可塑性樹脂は他の充填材や添加剤を含有しても良い。例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。
【0039】
本発明のプリプレグは、[B]を含む樹脂領域と[C]を含む樹脂領域との境界面をまたいで両樹脂領域に含まれる[A]の強化繊維が存在する。
【0040】
両樹脂領域の境界面をまたいで両樹脂領域に含まれる[A]の存在の確認は、平面方向に対し垂直にカットして得られる断面の観察によって確認することができる。一例を、図2を用いて示す。図2の観察画像9において、プリプレグの場合、構成要素[C]を含む樹脂領域7は構成要素[B]を含む樹脂領域8と密着しており、構成要素[C]を含む樹脂領域7と構成要素[B]を含む樹脂領域8が密着している面は境界面10として図示されている。また、境界面10上には複数の構成要素[A]6が存在している。境界面10上の構成要素[A]6は、構成要素[C]を含む樹脂領域7にも、構成要素[B]を含む樹脂領域8にも接している。このように強化繊維の周囲に構成要素[C]および構成要素[B]が接している状態は、強化繊維が「境界面をまたいで両樹脂領域に含まれる」状態といえる。
【0041】
さらに、本発明のプリプレグを平面視したとき、かかる両樹脂領域に含まれる任意の[A]の繊維方向に対し、時計回りか反時計回りかを問わず45度異なる角度の方向から、上記両樹脂領域をまたいで存在する[A]の繊維が含まれるプリプレグ平面に垂直な断面、すなわち、プリプレグ平面方向に対し垂直にカットして得られる断面において、両樹脂の境界面が形成する断面曲線の、JIS B0601(2001)で定義される粗さ平均長さRSmが100μm以下であり、粗さ平均高さRcが3.5μm以上であることが好ましい。
【0042】
また、前記[B]を含む樹脂領域と[C]を含む樹脂領域がそれぞれ層状をなして隣接することにより前記境界面を形成することが、好ましい。層状をなして隣接するとは、例として図2に示すような、連続した両樹脂領域が隣接して存在する状態であり、プリプレグ平面方向に対し垂直にカットして得られる断面の観察により確認することができる。
【0043】
構成要素[B]を含む樹脂領域と構成要素[C]を含む樹脂領域との境界面をまたいで両樹脂領域に含まれる[A]の強化繊維が存在することで、構成要素[C]を含む樹脂領域の強度が向上し、接合強度が向上する。境界面上に存在する構成要素[A]が構成要素[B]および構成要素[C]と化学的または/および物理的に結合することにより、構成要素[B]を含む樹脂領域と構成要素[C]を含む樹脂領域との密着力が向上する。境界面上に存在する構成要素[A]の本数は1本以上あれば良く、上限本数は、特に限定されないが、後述の観察範囲においては200本である。
【0044】
構成要素[B]を含む樹脂領域と構成要素[C]を含む樹脂領域との境界面は、プリプレグの平面視において、すなわちプリプレグ平面方向に対し垂直な視点において、前記両樹脂領域に含まれる[A]の任意の繊維方向に対し、時計回りか反時計回りかを問わず45度異なる角度の方向から、上記両樹脂領域をまたいで存在する[A]の繊維が含まれるプリプレグ平面に垂直な断面において観察される。かかる断面で、当該境界面における樹脂領域の態様を観察することで、繊維方向およびこれと直交する方向の密着力を同時に評価することが出来る。
【0045】
かかる断面観察において、当該境界面が形成する断面曲線の、JIS B0601(2001)で定義される粗さ平均長さRSmが100μm以下であると、化学的または/および物理的な結合力のみならず、交絡という機械的な結合力も加わり、構成要素[B]を含む樹脂領域と構成要素[C]を含む樹脂領域とが剥離しにくくなり、好ましい。下限値は、特に限定されないが、応力集中による機械的な結合力の低下を忌避するという観点から、好ましくは15μm以上である。また、断面曲線の粗さ平均高さRcが3.5μm以上であることにより、交絡による機械的な結合力の発現のみならず、境界面上に存在する構成要素[A]が構成要素[B]および構成要素[C]と化学的または/および物理的に結合し、構成要素[B]を含む樹脂領域と構成要素[C]を含む樹脂領域との密着力が向上するため、好ましい。断面曲線の粗さ平均高さRcのより好ましい範囲としては、構成要素[A]が両樹脂領域に含まれやすくなり密着力がより向上する10μm以上であり、特に好ましくは20μm以上である。上限値は、特に限定されないが、応力集中による機械的な結合力の低下を忌避するという観点から、好ましくは100μm以下である。
【0046】
ここで、断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmの測定方法としては、公知の手法を用いることが出来る。例えば、構成要素[B]を硬化させた後、X線CTを用いて取得した断面画像から測定する方法、エネルギー分散型X線分光器(EDS)による元素分析マッピング画像から測定する方法、あるいは光学顕微鏡あるいは走査電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による断面観察画像から測定する方法が挙げられる。観察において、構成要素[B]および/または構成要素[C]はコントラストを調整するために、染色されても良い。上記のいずれかの手法により得られる画像において、500μm四方の範囲において、断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmを測定する。
【0047】
断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmの測定方法の一例(断面曲線要素の測定方法1)を、図2を用いて示す。長方形型の観察画像9の構成要素[B]を含む樹脂領域側の端部11を基準線として、構成要素[B]を含む樹脂領域8から構成要素[C]を含む樹脂領域7に向かって5μm間隔で垂基線12を描く。基準線から描かれる垂基線が初めて構成要素[C]と交わる点をプロットし、プロットされた点を結んだ線を断面曲線13とする。得られた断面曲線13につき、JIS B0601(2001)に基づくフィルタリング処理を行い、断面曲線13の粗さ平均高さRcおよび粗さ平均長さRSmを算出する。
【0048】
また、前記[B]を含む樹脂領域と[C]を含む樹脂領域がそれぞれ層状をなして隣接することにより前記境界面を形成することが、優れた力学特性を発現する観点から好ましい。
【0049】
本発明のプリプレグにおける、構成要素[C]の熱可塑性樹脂の目付は、10g/m以上であると好ましい。10g/m以上であると、優れた接合強度を発現するための十分な厚みが得られ、好ましい。より好ましくは20g/mである。上限値は特に限定されないが、熱可塑性樹脂の量が強化繊維対比多くなりすぎず、比強度と比弾性率に優れる積層体が得られるため、好ましくは500g/m以下である。ここで目付とは、プリプレグ1mあたりに含まれる構成要素[C]の質量(g)を指す。
【0050】
本発明のプリプレグは、単位面積あたりの強化繊維量が30~2,000g/mであることが好ましい。かかる強化繊維量が30g/m以上であると、積層体成形の際に所定の厚みを得るための積層枚数を少なくすることができ、作業が簡便となりやすい。一方で、強化繊維量が2,000g/m以下であると、プリプレグのドレープ性が向上しやすくなる。
【0051】
本発明のプリプレグの強化繊維質量含有率は、好ましくは30~90質量%であり、より好ましくは35~85質量%であり、更に好ましくは40~80質量%である。上記の上限のいずれかと下限のいずれかとの組み合わせによる範囲であってもよい。強化繊維質量含有率が30質量%以上であると、樹脂の量が繊維対比多くなりすぎず、比強度と比弾性率に優れる積層体の利点が得られやすくなり、また、積層体の成形の際、硬化時の発熱量が過度に高くなりにくい。また、強化繊維質量含有率が90質量%以下であると、樹脂の含浸不良が生じにくく、得られる積層体のボイドが少なくなりやすい。
【0052】
本発明の積層体は、次の形態を満たす。構成要素[A]、[C]および[D]を含む層が含まれ、[D]はガラス転移温度に50℃を加えた温度におけるゴム状態弾性率が10MPa以上であり、[C]を含む樹脂領域と[D]を含む樹脂領域との境界面をまたいで両樹脂領域に含まれる[A]の強化繊維が存在する。
【0053】
両樹脂領域の境界面をまたいで両樹脂領域に含まれる[A]の存在の確認は、前述のプリプレグでの確認方法と同様に、積層体の平面方向に対し垂直にカットして得られる断面の観察によって確認することができる。
【0054】
一例を、図2を用いて示す。図2の観察画像9において、積層体の場合、構成要素[C]を含む樹脂領域7は構成要素[D]を含む樹脂領域8と密着しており、構成要素[C]を含む樹脂領域7と構成要素[D]を含む樹脂領域8が密着している面は境界面10として図示されている。また、境界面10上には複数の構成要素[A]6が存在している。境界面10上の構成要素[A]6は、構成要素[C]を含む樹脂領域7にも、構成要素[D]を含む樹脂領域8にも接している。このように強化繊維の周囲に構成要素[C]および構成要素[D]が接している状態は、強化繊維が「境界面をまたいで両樹脂領域に含まれる」状態といえる。
【0055】
さらに、本発明の積層体を平面視したとき、かかる両樹脂領域に含まれる任意の[A]の繊維方向に対し、時計回りか反時計回りかを問わず、積層体の平面方向に対し垂直な視点における45度の角度にて、上記両樹脂領域をまたいで存在する[A]が含まれる積層体の平面に垂直な断面、すなわち、積層体平面方向に対し垂直にカットして得られる観察断面において、両樹脂領域の密着する境界面が形成する断面曲線の、JIS B0601(2001)で定義される粗さ平均長さRSmが100μm以下であり、粗さ平均高さRcが3.5μm以上であることが好ましい。粗さ平均高さRcは10μm以上であることがより好ましい。RSmの下限値およびRcの上限値は特に限定されないが、応力集中による機械的な結合力の低下の懸念の観点から、RSmは好ましくは15μm以上であり、Rcは好ましくは100μm以下である。
【0056】
断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmの測定方法としては、本発明のプリプレグの測定方法と同様に、上記の手法により求めることができる。
【0057】
また、前記[C]を含む樹脂領域と[D]を含む樹脂領域がそれぞれ層状をなして隣接することにより前記境界面を形成することが、優れた力学特性を発現する観点から好ましい。層状をなして隣接するとは、例として図2に示すような、連続した両樹脂領域が隣接して存在する状態であり、積層体平面方向に対し垂直にカットして得られる断面の観察により確認することができる。
【0058】
本発明の積層体を成形するための方法として、例えばプレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法、レジン・インジェクション・モールディング法、レジン・トランスファー・モールディング法などの成形法によって作製することができる。
【0059】
本発明の積層体は、上述した本発明のプリプレグを、単独または他のプリプレグと共に積層し、少なくとも一部の層を構成するものとして、加圧・加熱して硬化させる方法により製造することができる。ここで、熱及び圧力を付与する方法には、例えば、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が採用される。
【0060】
本発明の積層体において、表面もしくは層間に構成要素[C]の熱可塑性樹脂が存在する。表面および層間の両方に構成要素[C]が存在することが好ましい。積層体の表面に構成要素[C]の熱可塑性樹脂が存在することで、本発明の積層体は、構成要素[C]を通して同種または異種の部材との接合を溶着で行うことができ、一方、積層体の層間に構成要素[C]の熱可塑性樹脂が存在すると、優れた層間破壊靱性値(GICおよびGIIC)が得られる。
【0061】
本発明の積層体は、なんらかの加熱手段によって、別の部材、すなわち積層体を構成する部材と同種および/または異種の部材(被着材)を、積層体の表面に存在する構成要素[C]に接合させて、構成要素[C]を通して積層体と一体化(溶着)することができる。異種の部材(被着材)として、熱可塑性樹脂からなる部材、金属材料からなる部材が挙げられる。熱可塑性樹脂からなる部材には、強化繊維やフィラー等が含まれていても良い。一体化手法は特に制限はなく、例えば、熱溶着、振動溶着、超音波溶着、レーザー溶着、抵抗溶着、誘導溶着、インサート射出成形、アウトサート射出成形などを挙げることができる。
【0062】
一体化した部材の接合部の強度は、ISO4587:1995(JIS K6850(1994))に基づいて評価できる。ISO4587:1995に基づき測定した引張せん断接合強度が、試験環境温度が23℃のとき、25MPa以上であれば好ましく、より好ましくは、28MPa以上である。一般的には、20MPa以上あれば、積層体は構造材料用の接合に用いるものとして利用でき、一般的な接着剤の試験環境温度が23℃のときの引張せん断接合強度(10MPa程度)と比べても高い強度である。高温環境下での力学特性が求められる用途では、試験環境温度が80℃のとき、ISO4587:1995に基づいた評価で13MPa以上の接合強度を示すことが好ましく、より好ましくは16MPa以上である。引張せん断接合強度は高いほど好ましく、上限については特に限定されないが、通常の積層体の一体化成形品では、23℃または80℃の試験環境温度での引張せん断接合強度は、200MPaが上限である。
【0063】
本発明の積層体は、航空機構造部材、風車羽根、自動車外板およびICトレイやノートパソコンの筐体などのコンピューター用途さらにはゴルフシャフトやテニスラケットなどスポーツ用途に好ましく用いられる。
【実施例
【0064】
以下、本発明を実施例により詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものではない。なお、組成比の単位「部」は、特に注釈のない限り質量部を意味する。また、各種特性の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。
【0065】
<実施例および比較例で用いた材料>
以下に示す構成要素[A]、[B]、[C]及び[D]を用いた。それぞれの実施例および比較例で用いた構成要素は、表1から3に示すとおりである。
【0066】
構成要素[A]:強化繊維
・T800:炭素繊維(“トレカ(登録商標)”T800S-24K、東レ(株)製、ストランド引張強度:5.9GPa)
・T1100:炭素繊維(“トレカ(登録商標)”T1100G-24K、東レ(株)製、ストランド引張強度:7.0GPa)
・T700:炭素繊維(“トレカ(登録商標)”T700S-24K、東レ(株)製、ストランド引張強度:4.9GPa)。
【0067】
構成要素[C]:熱可塑性樹脂
・PA6:ポリアミド6(“アミラン”(登録商標)CM1007(東レ(株)製、融点225℃、ガラス転移温度48℃))からなる目付120g/mのフィルム
・PPS:ポリフェニレンスルフィド(“トレリナ”(登録商標)A670T05(東レ(株)社製、融点278℃、ガラス転移温度90℃))からなる目付120g/mのフィルム
・PEKK1:ポリエーテルケトンケトン(“KEPSTAN”(登録商標)6002(アルケマ社製、融点300℃、ガラス転移温度160℃))からなる目付120g/mのフィルム
・PEKK2:ポリエーテルケトンケトン(“KEPSTAN”(登録商標)7002(アルケマ社製、融点331℃、ガラス転移温度162℃))からなる目付120g/mのフィルム
・PEEK:ポリエーテルエーテルケトン(PEEK 450G(Victrex社製、融点343℃、ガラス転移温度143℃))からなる目付120g/mのフィルム
・PEI:ポリエーテルイミド(“ULTEM”(登録商標)1010 SABIC社製、ガラス転移温度217℃)からなる目付120g/mのフィルム
・半芳香族PA:ポリアミド6T(融点320℃、ガラス転移温度125℃))からなる目付120g/mのフィルム。
【0068】
<熱可塑性樹脂の評価方法>
(1)熱可塑性樹脂の融点およびガラス転移温度の測定方法
熱可塑性樹脂の融点およびガラス転移温度は、JIS K7121(2012)に基づいて、示差走査熱量計(DSC)を用いて測定した。混合物などで融点またはガラス転移温度が複数観測される場合は、最も高い融点をその熱可塑性樹脂の融点として採用した。
【0069】
<熱硬化性樹脂組成物の作製方法および評価方法>
表1に記載の各具体例の熱硬化性樹脂組成物を、以下の化合物を用いて作製した。
【0070】
(1)構成要素[B]:熱硬化性樹脂(エポキシ樹脂)
・テトラグリシジルジアミノジフェニルメタン(“アラルダイト”(登録商標)MY721、ハンツマン・アドバンスト・マテリアルズ社製)エポキシ当量:113(g/eq.)、4官能のグリシジルアミン型エポキシ樹脂)
・ビスフェノールA型エポキシ樹脂(“jER”(登録商標)825、三菱ケミカル(株)製)エポキシ当量:175(g/eq.))
・フェノールノボラック型エポキシ樹脂(“jER”(登録商標)154、三菱ケミカル(株)製)エポキシ当量:178(g/eq.))
・ビスフェノールA型エポキシ樹脂(“jER”(登録商標)1001、三菱ケミカル(株)製)エポキシ当量:475(g/eq.))。
【0071】
(2)アミン化合物
・4,4’-ジアミノジフェニルスルホン(セイカキュアS、和歌山精化工業(株)製)
・ジシアンジアミド(DICY7、三菱ケミカル(株)製)。
【0072】
(3)硬化触媒
3-(3,4-ジクロロフェニル)1,1-ジメチルウレア(DCMU99、保土ヶ谷化学工業(株)製)。
【0073】
(4)粘度調整剤
・ポリエーテルスルホン(“スミカエクセル”(登録商標)PES5003P 住友化学(株)製)。
【0074】
(5)リン化合物
・赤リン系難燃剤(“ノーバレッド”(登録商標)120、燐化学工業(株)製、リン原子含有量85質量%)。
【0075】
(6)熱硬化性樹脂組成物の調製方法
混練装置中に、表1に記載のエポキシ樹脂および粘度調整剤を投入し、加熱混練を行い、粘度調整剤を溶解させた(ただし、粘度調整剤を加えない場合もある)。次いで、混練を続けたまま100℃以下の温度まで降温させ、表1に記載のアミン化合物、硬化触媒およびリン化合物から適宜選択されたもの(硬化触媒およびリン化合物は加えない場合もある)を加えて撹拌し、B-1~B-10までの熱硬化性樹脂組成物を得た。
【0076】
<熱硬化性樹脂硬化物の作製方法および評価方法>
上記の方法で調製した熱硬化性樹脂組成物をモールドに注入し、熱風乾燥機中で30℃から速度1.5℃/分で表1に記載の硬化温度まで昇温し、表1に記載の硬化時間加熱硬化した後、30℃まで速度2.5℃/分で降温して、厚さ2mmの板状の熱硬化性樹脂硬化物を作製した。構成要素[B]硬化性樹脂の硬化物であり、構成要素[D]熱硬化性樹脂硬化物である。得られた熱硬化性樹脂硬化物より、以下の方法にて、表1に記載の各具体例の評価を実施した。
【0077】
<熱硬化性樹脂硬化物のガラス転移温度およびゴム状態弾性率の測定方法>
上記の方法で作製した樹脂硬化物板から、幅12.7mm、長さ45mmの試験片を切り出し、試験片を60℃真空オーブン中で24時間乾燥させ、JIS K 7244-7(2007)に従い、動的粘弾性試験により貯蔵弾性率曲線を得て、かかる貯蔵弾性率曲線において、ガラス状態での接線と転移状態での接線との交点における温度の値をガラス転移温度とした。ここでは、昇温速度5℃/分、周波数1Hzで測定した。得られたガラス転移温度を50℃上回る温度での貯蔵弾性率を、ゴム状態弾性率とした。
【0078】
<熱硬化性樹脂硬化物の曲げ強度の測定方法>
上記の方法で作製した樹脂硬化物板から、長さ60mm、幅10mmの試験片を切り出し、試験片を60℃真空オーブン中で24時間乾燥させ、材料万能試験機(インストロン・ジャパン(株)製、“インストロン”(登録商標)5565型P8564)を用い、試験速度2.5mm/分、支点間距離32mmで3点曲げ試験を行い、JIS K7171(1994)に従い曲げ強度を求めた。
【0079】
<プリプレグの作製方法>
プリプレグは、以下の2種の方法により作製した。各例で使用した構成要素は表2,3記載のそれぞれのとおりである。
【0080】
プリプレグ[I]
構成要素[A]の強化繊維(目付193g/m)を、一方向に整列させた連続した状態の強化繊維シートを引き出し、一方向に走行させつつ、構成要素[C]からなる目付120g/mの樹脂シートを連続強化繊維シート上に配置して、IRヒータで加熱して構成要素[C]を溶融し、連続強化繊維シート片面全面に付着させ、表面温度が構成要素[C]の融点以下に保たれたニップロールで加圧して、強化繊維シートに含浸したものを冷却させて繊維強化樹脂中間体を得た。表2,3記載のとおり選定した構成要素[B]に係る熱硬化性樹脂組成物を、ナイフコーターを用いて樹脂目付100g/mで離型紙上にコーティングし、熱硬化性樹脂フィルムを作製した後、上記中間体における構成要素[C]を含浸させた反対の表面に上記熱硬化性樹脂フィルムを重ね、ヒートロールにより加熱加圧しながら熱硬化性樹脂組成物を中間体に含浸させ、プリプレグ[I]を得た。
【0081】
プリプレグ[II]
表2,3記載のとおり選定した構成要素[B]に係る熱硬化性樹脂組成物を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、一方向に引き揃えた構成要素[A]の強化繊維(目付193g/m)の両側に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂組成物を炭素繊維に含浸させ、プリプレグ[II]を得た。
【0082】
<積層体の作製方法および力学特性評価>
(1)引張せん断接合強度の測定方法
上記で作製したプリプレグ[I]および[II]を所定の大きさにカットし、プリプレグ[I]を2枚とプリプレグ[II]を6枚得た。強化繊維の軸方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プリフォームを作製した。このときプリフォームの両面それぞれの最外層の2枚はプリプレグ[I]となるように積層した。すなわち、プリプレグ[I]2枚がプリプレグ[II]6枚を挟み込むように積層した。プリフォームの両の表層が、構成要素[C]を含む熱可塑性樹脂層となるように配置した。すなわち、プリプレグ[I]の構成要素[C]を含浸させた面が外側になるように配置した。このプリフォームをプレス成形金型にセットし、必要に応じ、治具やスペーサーを使用して、この形状を維持させたまま、プレス機で0.6MPaの圧力をかけ、表2,3に記載の条件で加温することで、積層体を得た。構成要素[C]の存在位置は積層体の表面である。
【0083】
得られた積層体を、0°方向を試験片の長さ方向として、幅250mm、長さ92.5mmの形状に2枚カットし、真空オーブン中で24時間乾燥させた。その後、幅250mm、長さ92.5mmの形状にカットした2枚のパネルを、0°方向を長さ方向として、幅25mm×長さ12.5mmとして重ね合わせ、用いた構成要素[C]の熱可塑性樹脂の融点よりも20℃高い温度にて、3MPaの圧力をかけて、1分間保持することで、重ね合わせた面を溶着し、一体化成形品を得た。得られた一体化成形品に、ISO4587:1995(JIS K6850(1994))に準拠してタブを接着し、幅25mmでカットすることで、目的の試験片を得た。
【0084】
得られた試験片を、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に基づき、環境温度23℃および80℃のそれぞれにおける引張せん断接合強度を測定し、測定結果に基づいて以下のように評価した。結果を表に示す。
(a)23℃での引張せん断接合強度
28MPa以上:A
25MPa以上28MPa未満:B
20MPa以上25MPa未満:C
20MPa未満:D(不合格)
(b)80℃での引張せん断接合強度
16MPa以上:A
13MPa以上16MPa未満:B
10MPa以上13MPa未満:C
10MPa未満:D(不合格)。
【0085】
(2)圧縮強度の測定方法
上記で作製したプリプレグ[I]および[II]を所定の大きさにカットし、プリプレグ[I]を2枚とプリプレグ[II]を4枚得た。両面それぞれの最外層の2枚はプリプレグ[I]として、間に4枚のプリプレグ[II]を挟んで、全て同一の強化繊維方向となるよう、計6枚積層し、プリフォームを作製した。このとき、プリフォームの両の表層が構成要素[C]を含む熱可塑性樹脂層となるように配置した。このプリフォームをプレス成形金型にセットし、必要に応じ、治具やスペーサーを使用して、この形状を維持させたまま、プレス機で0.6MPaの圧力をかけ、表2,3に記載の条件で加温することで、積層体を得た。構成要素[C]の存在位置は積層体の表面である。
【0086】
得られた積層体に、SACMA-SRM 1R-94に準拠してタブを接着した後、強化繊維軸方向を試験片の長さ方向として、長さ80mm、幅15mmの矩形試験片を切り出した。得られた試験片を、60℃の真空オーブン中で24時間乾燥させ、SACMA-SRM 1R-94に準拠し、材料万能試験機(インストロン・ジャパン(株)製、“インストロン”(登録商標)5565型P8564)を用いて、23℃環境下において圧縮強度を測定し、測定結果に基づいて以下のように評価した。結果を表に示す。
1.6GPa以上:A
1.4GPa以上1.6GPa未満:B
1.2GPa以上1.4GPa未満:C
1.2GPa未満:D(不合格)。
【0087】
(3)層間破壊靱性値(GICおよびGIIC)の測定方法
上記で作製したプリプレグ[I]を所定の大きさにカットし、同一の強化繊維方向となるよう、全てのプリプレグを構成要素[C]が存在する面を上向きにして、計20枚積層した。このとき、中央の10枚目と11枚目の間の位置に予備亀裂導入のための離型フィルムを挟み込み、プリフォームを作製した。このプリフォームをプレス成形金型にセットし、必要に応じ、治具やスペーサーを使用して、この形状を維持させたまま、プレス機で0.6MPaの圧力をかけ、180℃で120分間加温することで、積層体を得た。構成要素[C]の存在位置は積層体の層間および片側の表面である。
【0088】
得られた積層体より、強化繊維軸を試験片の長さ方向として、長さ150mm、幅20mmの矩形試験片を切り出し、60℃の真空オーブン中で24時間乾燥させた。得られた試験片を、JIS K7086(1993)に従い、23℃環境下において、層間破壊靱性値(GICおよびGIIC)を評価した。
【0089】
<プリプレグまたは積層体における粗さ平均長さRSmおよび粗さ平均高さRcの測定>
上記で作製したプリプレグ[I]または積層体を用いる。図1で示す通り、プリプレグの場合においては、前記両樹脂領域に含まれる任意の[A]の繊維方向4に対し、プリプレグの平面視、すなわちプリプレグ平面方向に対し垂直な視点における45度の角度にて、プリプレグ平面方向に対し垂直にカットした観察断面5において、光学顕微鏡を用いて、1000倍の画像を撮影した。得られた画像中の任意の500μm四方の観察範囲において、前記断面曲線要素の測定方法1により得られる断面曲線要素のJIS B0601(2001)で定義される、粗さ平均長さRSmおよび粗さ平均高さRcを測定した。積層体の場合も同様である。
【0090】
<実施例1~16>
実施例1~16では、(1)引張せん断接合強度の測定方法に記載の方法、および(2)圧縮強度の測定方法に記載の方法で積層体を作成した。
【0091】
<実施例1~3>
表1に記載の通り、実施例1~3では、3官能以上のグリシジルアミン型エポキシ樹脂(テトラグリシジルジアミノジフェニルメタン)の配合量が増えるに従い、熱硬化性樹脂硬化物のゴム状態弾性率が向上する傾向を示した。表2に記載の通り、テトラグリシジルジアミノジフェニルメタンの配合量が増加するに従い、引張せん断接合強度および圧縮強度が向上し、好ましい傾向を示した。
【0092】
<実施例1および比較例1、2>
実施例1では、表2に記載の通り、構成要素[B]としてゴム状態弾性率の高い熱硬化性樹脂を用いることで、表3に記載の比較例1および2(熱硬化性樹脂のゴム状態弾性率が10MPa未満)と比べ、積層体として、引張せん断接合強度および圧縮強度が優れていることを示した。
【0093】
<実施例1および実施例4,5>
表1に記載の通り、実施例4および実施例5では、実施例1と異なる熱硬化性樹脂組成物を使用したところ、表2に記載の通り、実施例1と比較すると、80℃での引張せん断接合強度および圧縮強度が若干低下する傾向を示したが、いずれも優れた特性を示した。
【0094】
<実施例1および実施例6,7>
表1に記載の通り、実施例6および実施例7では、実施例1と比較すると、リン化合物配合量の増加に伴い、熱硬化性樹脂硬化物の曲げ強度が低下する傾向が見られ、表2に記載の通り、23℃での引張せん断接合強度および80℃での引張せん断接合強度が若干低下する傾向が見られたが、いずれも優れた特性を示した。
【0095】
<実施例1および実施例8>
表2に記載の通り、実施例8は粘度調整剤を用いないこと以外は、実施例1と同様に作製した。表2に記載の通り、実施例8は実施例1と同様に優れた特性を示した。
【0096】
<実施例1および実施例9,10>
表2に記載の通り、実施例9および10では、ストランド引張強度の異なる強化繊維を用いたところ、実施例1と比較すると、ストランド引張強度が高いほど、23℃での引張せん断接合強度および80℃での引張せん断接合強度が向上し、好ましい特性を示した。
【0097】
<実施例1および実施例11~16>
表2に記載の通り、実施例11~16では、実施例1に比べガラス転移温度の高い構成要素[C]を用いたところ、実施例1に比べ、80℃での引張せん断接合強度が向上し、好ましい特性を示した。
【0098】
<実施例1および比較例3>
一方向平面状に配列させた強化繊維シートの両面に、フィルム目付50g/mのポリアミド6(“アミラン”(登録商標)CM1007(東レ(株)製))のフィルムを貼り付け、250℃で加熱加圧して、強化炭素繊維目付193g/mのプリプレグを得た。得られたプリプレグを、所定のサイズにカットし、それぞれ、接合強度評価用および圧縮強度評価用に、[0°/90°]2sまたは同一方向に6枚積層した後、プレス機で3MPaの圧力をかけ、250℃で10分間加温することで、それぞれ積層体を得た。得られた積層体より、実施例に記載の方法で接合強度と圧縮強度を測定した。表3に示す通り、熱硬化性樹脂非含有であるため、実施例1に比べて80℃での引張せん断接合強度および圧縮強度が低く、構造材料として十分な特性を示さなかった。
【0099】
<実施例17および比較例4,5>
実施例17では、(3)層間破壊靱性値(GICおよびGIIC)の測定方法に記載の方法で積層体を作成した。上記プリプレグ[I]を所定の大きさにカットし、同一の強化繊維方向となるよう、全てのプリプレグを構成要素[C]が存在する面を上向きにして計20枚積層し、中央の10枚目と11枚目の間の位置に予備亀裂導入のための離型フィルムを挟み込み、プリフォームを作製した。比較例4では、プリプレグ[II](構成要素[C]非含有)を所定の大きさにカットし、実施例17と同じ方法で積層し、離型フィルムを挟み込み、プリフォームを得た。比較例5では、所定の大きさにカットしたプリプレグ[II](構成要素[C]非含有)の片側表面に、ポリアミド粒子(SP-500、東レ(株)製)を、プリプレグ単位面積あたりの粒子量が7g/mとなるよう均一に散布したのち、実施例17と同じ方法で積層し、離型フィルムを挟み込み、プリフォームを得た。実施例17、比較例4,5とも、得られたプリフォームを、プレス機で0.6MPaの圧力をかけ、180℃で120分間加温することで、積層体を得た後、上記実施例に記載の方法で、層間破壊靱性値(GICおよびGIIC)を評価した。表2および3に記載の通り、構成要素[C]を積層体の層間に含む実施例17は、構成要素[C]非含有の比較例4、および熱可塑性樹脂を異なる形態として含む比較例5に比べ、優れた層間破壊靱性値を示した。
【0100】
【表1】
【0101】
【表2-1】
【0102】
【表2-2】
【0103】
【表3】
【符号の説明】
【0104】
1:プリプレグまたは積層体を構成する一層
2:構成要素[A]
3:構成要素[C]および構成要素[B]または構成要素[C]および構成要素[D]
4:繊維方向
5:観察断面
6:構成要素[A]
7:構成要素[C]を含む樹脂領域
8:構成要素[B]を含む樹脂領域または構成要素[D]を含む樹脂領域
9:観察画像
10:境界面
11:基準線
12:垂基線
13:断面曲線
図1
図2