IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

特許7647101繊維強化複合材料の成形方法、およびそれに用いられるエポキシ樹脂組成物
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-03-10
(45)【発行日】2025-03-18
(54)【発明の名称】繊維強化複合材料の成形方法、およびそれに用いられるエポキシ樹脂組成物
(51)【国際特許分類】
   C08J 5/04 20060101AFI20250311BHJP
   C08G 18/58 20060101ALI20250311BHJP
   C08G 59/40 20060101ALI20250311BHJP
   C08K 5/29 20060101ALI20250311BHJP
   C08K 7/02 20060101ALI20250311BHJP
   C08L 63/00 20060101ALI20250311BHJP
【FI】
C08J5/04 CFC
C08G18/58 010
C08G59/40
C08K5/29
C08K7/02
C08L63/00 C
【請求項の数】 28
(21)【出願番号】P 2020564680
(86)(22)【出願日】2020-11-16
(86)【国際出願番号】 JP2020042584
(87)【国際公開番号】W WO2021100649
(87)【国際公開日】2021-05-27
【審査請求日】2023-11-10
(31)【優先権主張番号】P 2019207633
(32)【優先日】2019-11-18
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020096754
(32)【優先日】2020-06-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】松川 滉
(72)【発明者】
【氏名】平野 公則
(72)【発明者】
【氏名】永野 麻紀
(72)【発明者】
【氏名】富岡 伸之
【審査官】芦原 ゆりか
(56)【参考文献】
【文献】特開昭60-69121(JP,A)
【文献】特開昭60-20922(JP,A)
【文献】特表2018-501391(JP,A)
【文献】特表平4-506678(JP,A)
【文献】特表2019-521216(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 5/04-5/10,5/24
B29B 11/16,15/08-15/14
B29C 70/00-70/88
C08G 18/58
C08G 59/00-59/72
C08K
C08L
(57)【特許請求の範囲】
【請求項1】
少なくとも、強化繊維[A]およびエポキシ樹脂組成物[B]の硬化物からなる繊維強化複合材料の成形方法であって、エポキシ樹脂組成物[B]が次の構成要素[a]、[b]、[c]を含み水酸基量が0.09mol/kg以下であり、かつエポキシ樹脂組成物[B]を吸光度比Da/(Da+Db)が0.4~1の範囲となるように硬化して繊維強化複合材料を得る、繊維強化複合材料の成形方法。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
(ここで、前記の吸光度比は、FT-IR(ATR法)において、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比Da/(Da+Db)を算出することにより特定される。)
【請求項2】
エポキシ樹脂組成物[B]を硬化度15~25%の範囲内のある特定の硬化度における吸光度比Da/(Da+Db)が0.01~1の範囲となるように硬化する、請求項1に記載の繊維強化複合材料の成形方法。
(ここで、前記の硬化度は、昇温速度10℃/分でのDSCにより得られるエポキシ樹脂組成物の総発熱量QTと、その硬化物の残存発熱量QRから硬化度(%)=(QT-QR)/QT×100を算出することにより特定される。)
【請求項3】
エポキシ樹脂組成物[B]を吸光度比が0.7~1の範囲となるように硬化して繊維強化複合材料を得る、請求項1または2に記載の繊維強化複合材料の成形方法。
【請求項4】
少なくとも、強化繊維[A]およびエポキシ樹脂組成物[B]の硬化物からなる繊維強化複合材料の成形方法であって、エポキシ樹脂組成物[B]が次の構成要素[a]、[b]、[c]を含み水酸基量が0.09mol/kg以下であり、かつエポキシ樹脂組成物[B]をゴム状態弾性率(Gr)とガラス転移温度(Tg)の関係が式1を満たすように硬化して繊維強化複合材料を得る、繊維強化複合材料の成形方法。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
Tg≧10×Gr+120 (式1)
【請求項5】
さらにエポキシ樹脂組成物[B]を、式2を満たすように硬化して繊維強化複合材料を得る、請求項4記載の繊維強化複合材料の成形方法。
0.5≦Gr≦15 (式2)
【請求項6】
繊維強化複合材料を構成するエポキシ樹脂組成物[B]の硬化物は、質量減少率△Wrが10%以下の範囲となるものである、請求項1~5のいずれかに記載の繊維強化複合材料の成形方法。
(ここで、前記の質量減少率は、常圧の非酸化性雰囲気下で50℃から800℃の温度まで昇温速度10℃/分で熱重量分析を行った際に、70℃到達時点の質量W1と、320℃到達時の試料質量W2から質量減少率△Wr(%)=(W1-W2)/W1×100を算出することにより特定される。)
【請求項7】
エポキシ樹脂組成物[B]を、100~200℃に加熱した成形型内に配置した強化繊維[A]からなる基材に注入し、含浸させ、該成形型内で硬化する、請求項1~6のいずれかに記載の繊維強化複合材料の成形方法。
【請求項8】
30~80℃に加温したエポキシ樹脂組成物[B]を、120~180℃に加熱した成形型内に配置した強化繊維[A]からなる基材に注入し、含浸させ、該成形型内で硬化する、請求項1~7のいずれかに記載の繊維強化複合材料の成形方法。
【請求項9】
エポキシ樹脂組成物[B]を、成形型内に配置した強化繊維[A]からなる基材に注入するに際して、該樹脂を該成形型に設けられた複数の箇所から注入する、請求項7または8に記載の繊維強化複合材料の成形方法。
【請求項10】
次の構成要素[a]、[b]、[c]を含み水酸基量が0.09mol/kg以下であり、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおける吸光度比Da/(Da+Db)が0.4~1の範囲となるある特定の硬化度Xが85~95%の範囲に存在する、繊維強化複合材料用エポキシ樹脂組成物。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
(ここで、前記の吸光度比は、FT-IR(ATR法)において、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比Da/(Da+Db)を算出することにより特定される。また、前記の硬化度は、昇温速度10℃/分でのDSCにより得られるエポキシ樹脂組成物の総発熱量QTと、その硬化物の残存発熱量QRから硬化度(%)=(QT-QR)/QT×100を算出することにより特定される。)
【請求項11】
30℃から10℃/分で昇温しながら硬化した際に、硬化度Yにおける吸光度比Da/(Da+Db)が0.01~1の範囲となるある特定の硬化度Yが15~25%の範囲に存在する、請求項10に記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項12】
次の構成要素[a]、[b]、[c]を含み水酸基量が0.09mol/kg以下であり、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおけるゴム状態弾性率(Gr)とガラス転移温度(Tg)の関係が式1を満たすある特定の硬化度Xが85~95%の範囲に存在する、繊維強化複合材料用エポキシ樹脂組成物。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
Tg≧10×Gr+120 (式1)
【請求項13】
30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおけるゴム状態弾性率が0.5~15MPaの範囲となるある特定の硬化度Xが85~95%の範囲に存在する、請求項12に記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項14】
構成要素[a]として1種類以上のアミン型エポキシ樹脂を含む、請求項10~13のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項15】
構成要素[a]として1種類以上のビスフェノール型エポキシ樹脂を含む、請求項10~14のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項16】
エポキシ樹脂組成物に含まれる全エポキシ樹脂のオキシラン基のmol数に対する、構成要素[b]のイソシアネート基のmol数の比率が0.5~1.8である、請求項10~15のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項17】
構成要素[c]として、アセトニトリル中での塩基解離定数pKbが20以上のブレンステッド塩基とブレンステッド酸からなる塩を含む、請求項10~16のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項18】
ブレンステッド酸の水中での酸解離定数pKaが5以下である、請求項17に記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項19】
ブレンステッド塩基がアミン化合物およびイミダゾール化合物からなる群から選択される少なくとも1種類である、請求項17または18に記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項20】
ブレンステッド酸がカルボン酸、スルホン酸およびハロゲン化水素からなる群から選択される少なくとも1種類である、請求項17~19のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項21】
構成要素[c]として、アニオンがハロゲン化物イオンであるオニウム塩を含む、請求項10~16のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項22】
オニウム塩が四級アンモニウム塩および四級ホスホニウム塩からなる群から選択される少なくとも1種類である、請求項21に記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項23】
構成要素[c]が構成要素[a]の総量100質量部に対して1質量部以上10質量部以下である、請求項10~22のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項24】
構成要素[c]は、構成要素[a]に溶解し得る、請求項10~23のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項25】
30℃から10℃/分で昇温しながら硬化した際に、硬化度Zにおけるウレタン結合とオキシラン基の存在比率が0.10以下となるある特定の硬化度Zが5~15%の範囲に存在する、請求項10~24のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項26】
25℃における粘度が0.1~1.0Pa・sである、請求項10~25のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
【請求項27】
請求項10~26のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物の硬化物。
【請求項28】
請求項27に記載の硬化物と、強化繊維を含んでなる繊維強化複合材料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、航空宇宙用途、自動車用途に好適な繊維強化複合材料の成形方法、およびそれに用いられるエポキシ樹脂組成物に関するものである。
【背景技術】
【0002】
強化繊維とマトリックス樹脂とからなる繊維強化複合材料(FRP)は、強化繊維とマトリックス樹脂の利点を生かした材料設計ができるため、航空宇宙分野を始め、スポーツ分野および一般産業分野などに用途が拡大されている。
【0003】
強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維およびボロン繊維などが用いられる。また、マトリックス樹脂としては、熱硬化性樹脂および熱可塑性樹脂のいずれも用いられるが、耐熱性や生産性の観点から、熱硬化性樹脂が用いられることが多い。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ビスマレイミド樹脂およびシアネート樹脂などが用いられる。中でも樹脂と強化繊維との接着性や寸法安定性、および得られる複合材料の強度や剛性といった力学特性の観点からエポキシ樹脂が好適に用いられる。
【0004】
繊維強化複合材料の製造には、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法およびRTM(Resin Transfer Molding:樹脂注入成形)法、フィルムバッグ成形法、プレス成形法などの方法が適用される。特に、生産性が求められる場合には、生産性に優れるRTM法やフィルムバッグ成形法、プレス成形法が好ましく用いられる。
【0005】
上記のような、従来の繊維強化複合材料の成形方法に使用しているマトリックス樹脂は、強化繊維基材への含浸性を十分とするため、常温において液状や半固形、すなわち低分子の熱硬化性樹脂を使用している。かかる樹脂を適用した繊維強化複合材料は、熱硬化性樹脂の硬化物が熱可塑性樹脂などに比べて、靭性が一般的に低いため、繊維強化複合材料の耐衝撃性が相対的に低いものとなることが大きな課題であった。
【0006】
これに対し、近年では、層間に熱可塑性樹脂を配合したバインダーを配置したプリフォームや靭性を改良したマトリックス樹脂の開発が進み、炭素繊維強化複合材料(CFRP)の一次構造への適用も検討されるようになってきている。特に、低粘度かつ高靭性、高耐熱性を併せ持つマトリックス樹脂は、上記の成形技術を左右する重要な技術の一つであり、マトリックス樹脂自体の改質が期待されている。
【0007】
その中で、液状のイソシアネート硬化剤を配合したマトリックス樹脂を適用することで、低粘度でありながら靭性や耐熱性を向上させることが知られている(特許文献1、2)。
【0008】
特許文献1には、封止剤またはコーティング材用途を想定し、硬化剤として液状のイソシアネートを、触媒としてジアザビシクロウンデセンを0.001~1質量%用い、70~100℃の中温領域下で硬化させることで、耐熱性に優れたエポキシ樹脂組成物とする技術が開示されている。
【0009】
特許文献2には、硬化剤として過剰量のイソシアネートを用いたエポキシ樹脂組成物に、ポリオールを含有させることで、低温において短時間で硬化し、かつ耐熱性と靭性に優れるエポキシ樹脂組成物が得られる技術が開示されている。
【0010】
特許文献3には、エポキシに対してポリオールと予備反応させたイソシアネートを3当量から20当量の範囲で大過剰に配合し、ルイス酸塩基触媒を用いて、オキサゾリドン環化反応を進行させることにより、硬化物の耐熱性を改善できることが示されている。
【先行技術文献】
【特許文献】
【0011】
【文献】国際公開第2014/184082号
【文献】国際公開第2016/102358号
【文献】国際公開第2019/046382号
【発明の概要】
【発明が解決しようとする課題】
【0012】
特許文献1に記載のマトリックス樹脂は、中温硬化によりイソシアネートの自己重合を有利に進行させ、耐熱性に優れるイソシアヌレート環を主として形成させているが、かかる環は3つの結合点を有するため高架橋密度になりやすく、靭性に優れるものではなかった。
【0013】
特許文献2に記載のマトリックス樹脂は、ウレタン結合特有の加水分解などによる劣化や増粘を生じやすい傾向にあった。また、イソシアネートを過剰量含んでいることより、イソシアヌレート環を生成しやすく、この材料を使用して繊維強化複合材料としたときに非常に脆い部分が形成され、力学特性のバランスが低下してしまう場合があった。
【0014】
特許文献3に記載のマトリックス樹脂は、イソシアネートが大過剰であることから、イソシアヌレート環が多く生成するため、硬化物が脆いものとなり、靭性および耐熱性に優れる繊維強化複合材料が得られるものではなかった。
【0015】
本発明の目的は、かかる従来技術の欠点を改良し、靭性および耐熱性に優れる樹脂組成物、およびそれを用いた繊維強化複合材料を提供することにある。
【課題を解決するための手段】
【0016】
本発明は、上記目的を達成するために、繊維強化複合材料の成形方法についての第1の態様として、少なくとも、強化繊維[A]およびエポキシ樹脂組成物[B]の硬化物からなる繊維強化複合材料の成形方法であって、エポキシ樹脂組成物[B]が次の構成要素[a]、[b]、[c]を含み、かつエポキシ樹脂組成物[B]を吸光度比Da/(Da+Db)が0.4~1の範囲となるように硬化して繊維強化複合材料を得る、繊維強化複合材料の成形方法である。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
(ここで、前記の吸光度比は、FT-IR(ATR法)において、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比Da/(Da+Db)を算出することにより特定される。)
繊維強化複合材料の成形方法についての第2の態様として、少なくとも、強化繊維[A]およびエポキシ樹脂組成物[B]の硬化物からなる繊維強化複合材料の成形方法であって、エポキシ樹脂組成物[B]が次の構成要素[a]、[b]、[c]を含み、かつエポキシ樹脂組成物[B]をゴム状態弾性率(Gr)とガラス転移温度(Tg)の関係が式1を満たすように硬化して繊維強化複合材料を得る、繊維強化複合材料の成形方法である。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
Tg≧10×Gr+120 (式1)
繊維強化複合材料用エポキシ樹脂組成物についての第1の態様として、次の構成要素[a]、[b]、[c]を含み、30℃から10℃/分で昇温しながら硬化した際に、硬化度X%における吸光度比Da/(Da+Db)が0.4~1の範囲となるある特定の硬化度Xが85~95%の範囲に存在する、繊維強化複合材料用エポキシ樹脂組成物である。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
(ここで、前記の硬化度は、DSCにより得られるエポキシ樹脂組成物の総発熱量QTと、エポキシ樹脂組成物の硬化物の残存発熱量QRから硬化度(%)=(QT-QR)/QT×100で算出することにより特定される。)
繊維強化複合材料用エポキシ樹脂組成物についての第2の態様として、次の構成要素[a]、[b]、[c]を含み、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおけるゴム状態弾性率(Gr)とガラス転移温度(Tg)の関係が式1を満たすある特定の硬化度Xが85~95%の範囲に存在する、繊維強化複合材料用エポキシ樹脂組成物である。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[b]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[c]触媒
Tg≧10×Gr+120 (式1)
さらに、これらのエポキシ樹脂組成物の硬化物、およびそれを用いた繊維強化複合材料である。
【発明の効果】
【0017】
本発明によれば、特定の条件を満たして硬化する熱硬化性樹脂を用い、また、特定の条件で硬化する成形方法を用いることで、力学特性のバランスが低下することなく、靭性および耐熱性に優れる繊維強化複合材料が得られる。
【発明を実施するための形態】
【0018】
以下、本発明の繊維強化複合材料の成形方法、繊維強化複合材料用エポキシ樹脂組成物(以下、単に「エポキシ樹脂組成物」と称することもある。)について詳細に説明する。
【0019】
本発明の繊維強化複合材料の成形方法においては、第1の態様および第2の態様に共通して、エポキシ樹脂組成物[B]が用いられる。かかるエポキシ樹脂組成物は、構成要素[a]として分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂、構成要素[b]として分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤、構成要素[c]として触媒を含むことを必須とする。なお、以降の記載において、特に第1の態様または第2の態様を特定せず、繊維強化複合材料の成形方法と記した場合は、繊維強化複合材料の成形方法について第1の態様および第2の態様に共通する内容であることを意味する。(繊維強化複合材料用エポキシ樹脂組成物においても同様とする)。
【0020】
本発明の繊維強化複合材料の成形方法における構成要素[a]は、分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂である。かかる構造を有することにより、繊維強化複合材料の力学特性や成形性を得ることができる。中でも、低粘度で強化繊維への含浸性に優れ、また繊維強化複合材料とした際の耐熱性と弾性率等の力学物性に優れることから、構成要素[a]は、数平均分子量が200~800の範囲にあり、かつ骨格に芳香族を含むエポキシ樹脂が好ましく用いられる。なお、数平均分子量は、例えば、ポリスチレン標準サンプルを用いて、GPC(Gel Permeation Chromatography)により求められるが、エポキシ当量が既知である場合は、エポキシ当量とエポキシ官能基数の積から算出した数値を用いることもできる。
【0021】
本発明の繊維強化複合材料の成形方法で用いられる分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂としては、ビスフェノール型エポキシ樹脂、アミン型エポキシ樹脂などが挙げられる。
【0022】
本発明の繊維強化複合材料の成形方法で用いられるビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、もしくはこれらのハロゲン、アルキル置換体、水添品などが挙げられる。中でも、高弾性率と高靱性のバランスが優れている点で、ビスフェノールF型エポキシ樹脂が好ましく用いられる。かかるビスフェノール型エポキシ樹脂の具体例として以下のものが挙げられる。
【0023】
ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”825、“jER(登録商標)”827、“jER(登録商標)”828(以上、三菱ケミカル(株)製)、“EPICLON(登録商標)”840、“EPICLON(登録商標)”850(以上、DIC(株)製)、“エポトート(登録商標)”YD-128、“エポトート(登録商標)”YD-8125、“エポトート(登録商標)”YD-825GS(以上、日鉄ケミカル&マテリアル(株)製)、“DER(登録商標)”331、“DER(登録商標)”332(以上、ダウケミカル(株)製)などが挙げられる。
【0024】
ビスフェノールF型エポキシ樹脂の市販品としては、例えば、“jER(登録商標)”806、“jER(登録商標)”807、“jER(登録商標)”4004P(以上、三菱ケミカル(株)製)、“EPICLON(登録商標)”830(DIC(株)製)、“エポトート(登録商標)”YD-170、“エポトート(登録商標)”YDF-8170C、“エポトート(登録商標)”YDF-870GS(以上、日鉄ケミカル&マテリアル(株)製)などが挙げられる。
【0025】
ビスフェノールAD型エポキシ樹脂の市販品としては、例えば、EPOX-MK R710、EPOX-MK R1710(以上、プリンテック(株)製)などが挙げられる。
【0026】
本発明の繊維強化複合材料の成形方法で用いられるアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルキシリレンジアミン、もしくはこれらのハロゲン、アルキル置換体、水添品などが挙げられる。かかるエポキシ樹脂の具体例として以下のものが挙げられる。
【0027】
テトラグリシジルジアミノジフェニルメタンの市販品としては、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)、YH434L(日鉄ケミカル&マテリアル(株)製)、“jER(登録商標)”604(三菱ケミカル(株)製)、“アラルダイド(登録商標)”MY720、“アラルダイド(登録商標)”MY721(以上、ハンツマン・アドバンスド・マテリアルズ社製)などが挙げられる。
【0028】
テトラグリシジルジアミノジフェニルスルホンの市販品としては、TG3DAS(三井化学ファイン(株)製)などが挙げられる。
【0029】
トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールの市販品としては、“スミエポキシ(登録商標)”ELM100、“スミエポキシ(登録商標)”ELM120(以上、住友化学(株)製)、“アラルダイド(登録商標)”MY0500、“アラルダイド(登録商標)”MY0510、“アラルダイド(登録商標)”MY0600(以上、ハンツマン・アドバンスド・マテリアルズ社製)、“jER(登録商標)”630(三菱ケミカル(株)製)などが挙げられる。
【0030】
ジグリシジルアニリンの市販品としては、GAN(日本化薬(株)製)、PxGAN(東レ・ファインケミカル(株)製)などが挙げられる。
【0031】
ジグリシジルトルイジンの市販品としては、GOT(日本化薬(株)製)などが挙げられる。
【0032】
テトラグリシジルキシリレンジアミンおよびその水素添加品の市販品としては、“TETRAD(登録商標)”-X、“TETRAD(登録商標)”-C(以上、三菱ガス化学(株)製)などが挙げられる。中でも、高弾性率と高耐熱性を兼備している点で、テトラグリシジルジアミノジフェニルメタンとトリグリシジルジアミノフェノールが好ましく用いられる。
【0033】
構成要素[a]として、1種類以上のアミン型エポキシ樹脂、および/または、1種類以上のビスフェノール型エポキシ樹脂を含むことが好ましい。アミン型エポキシ樹脂とビスフェノール型エポキシ樹脂を併用することは、上記高弾性率、高耐熱性、および高靱性のバランスを向上できる観点から好ましい。
【0034】
本発明の繊維強化複合材料の成形方法における構成要素[b]は、分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤であり、イソシアネート基が、主に構成要素[a]のオキシラン基と反応することにより、オキサゾリドン環を形成し、これが剛直な骨格であるため高耐熱を発現できる。中でも、骨格中に芳香族を含む構成要素[b]は、より高耐熱性を与えることから好ましく用いられる。
【0035】
本発明の繊維強化複合材料の成形方法で用いられる分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤としては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、トリメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、2,3-ジメチルテトラメチレンジイソシアネート、ブチレン-1,2-ジイソシアネート、ブチレン-1,3-ジイソシアネート、1,4-ジイソシアネートヘキサン、シクロペンテン-1,3-ジイソシアネート、イソホロンジイソシアネート、1,2,3,4-テトライソシアネートブタン、ブタン-1,2,3-トリイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の脂肪族イソシアネート、p-フェニレンジイソシアネート、1-メチルフェニレン-2,4-ジイソシアネート、ナフタレン-1,4-ジイソシアネート、トリレンジイソシアネート、ジフェニル-4,4-ジイソシアネート、ベンゼン-1,2,4-トリイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)、ジフェニルプロパンジイソシアネート、テトラメチレンキシレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等の芳香族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環式イソシアネート、これらをメチレン基等で連結した構造を有するもの等が挙げられる。なお、これらのポリイソシアネート化合物等を単独あるいは2種以上混合して用いてもよい。
【0036】
脂肪族イソシアネートの市販品としては、HDI(以上、東ソー(株)製)、“デュラネート(登録商標)”D101、“デュラネート(登録商標)”D201(以上、旭化成(株)製)等が挙げられる。
【0037】
芳香族イソシアネートの市販品としては、“ルプラネート(登録商標)”MS、“ルプラネート(登録商標)”MI、“ルプラネート(登録商標)”M20S、“ルプラネート(登録商標)”M11S、“ルプラネート(登録商標)”M5S、“ルプラネート(登録商標)”T-80、“ルプラネート(登録商標)”MM-103、“ルプラネート(登録商標)”MM-102、“ルプラネート(登録商標)”MM-301(以上、BASF INOAC ポリウレタン(株)製)、“ミリオネート(登録商標)”MT、“ミリオネート(登録商標)”MT-F、“ミリオネート(登録商標)”MT-NBP、“ミリオネート(登録商標)”NM、“ミリオネート(登録商標)”MR-100、“ミリオネート(登録商標)”MR-200、“ミリオネート(登録商標)”MR-400、“コロネート(登録商標)”T-80、“コロネート(登録商標)”T-65、“コロネート(登録商標)”T-100(以上、東ソー(株)製)、“コスモネート(登録商標)”PH、“コスモネート(登録商標)”M-50、“コスモネート(登録商標)”T-80(以上、三井化学(株)製)等が挙げられる。
【0038】
脂環式イソシアネートの市販品としては、“タケネート(登録商標)”600(三井化学(株)製)、“フォルティモ(登録商標)”1,4-H6XDI(三井化学(株)製)等が挙げられる。
【0039】
エポキシ樹脂とエポキシ樹脂硬化剤を予備反応させた物をエポキシ樹脂組成物中に配合することもできる。この方法は、粘度調節や保存安定性向上に有効な場合がある。
【0040】
本発明の繊維強化複合材料の成形方法における構成要素[c]は、触媒であり、構成要素[a]に含まれるオキシラン基と構成要素[b]に含まれるイソシアネート基とのオキサゾリドン環化による硬化反応を促進し得る化合物である。かかる触媒を含むことにより、適正な条件で硬化反応が進行するとともに、イソシアヌレート環形成などの副反応より優先的に、オキサゾリドン環化反応が進行し、剛直かつ架橋密度の低い分子構造を形成することにより耐湿熱性と靱性に優れた成形品が得られるようになる。
【0041】
本発明の繊維強化複合材料の成形方法で用いられる触媒は特に限定されないが、好ましくは塩基性触媒あるいはブレンステッド酸と塩基からなる塩あるいはアニオンがハロゲン化物であるオニウム塩、より好ましくはアミン類もしくはその誘導体またはアンモニウム塩、イミダゾール類もしくはその誘導体またはイミダゾリウム塩が用いられる。これら触媒は単独で使用しても良いし、2種類以上併用しても良い。
【0042】
ここまで説明をしてきたエポキシ樹脂組成物[B]を用いることに加えて、本発明の繊維強化複合材料の成形方法についての第1の態様では、エポキシ樹脂組成物[B]を吸光度比Da/(Da+Db)が0.4~1の範囲となるように硬化して繊維強化複合材料を得ることを必須とする。
【0043】
吸光度比Da/(Da+Db)が0.4~1の範囲、好ましくは0.5~1の範囲で、より好ましくは0.7~1の範囲であることにより、耐熱性を維持しつつ、架橋密度が低い構造を形成し、高靭性な硬化物を得ることができる。吸光度比Da/(Da+Db)が0.4より低い場合、架橋密度が高くなりすぎ、得られる繊維強化複合材料の強度、靭性が低下する。なお、吸光度比Da/(Da+Db)が1に近いほど、低架橋密度でかつ耐熱性に優れる傾向にあり好ましい。
【0044】
ここで吸光度比とは、Attenuated Total Reflection(全反射測定法、以下、単に「ATR法」と言うこともある)のFT-IRを用い、エポキシ樹脂組成物の硬化物の、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比Da/(Da+Db)で算出した値を意味している。例えば、FT-IR(ATR法)により、分解能を4cm-1、積算回数を32回で測定した際に、1760cm-1付近の吸収の吸光度をDa、1710cm-1付近の吸収の吸光度をDbとすることから算出することができる。
【0045】
本発明の繊維強化複合材料の成形方法についての第1の態様は、エポキシ樹脂組成物[B]の硬化度15~25%の範囲内のある特定の硬化度における吸光度比Da/(Da+Db)が0.01~1の範囲となるように硬化することが好ましい。すなわち、本発明の繊維強化複合材料の成形方法についての第1の態様では、硬化度が15~25%の範囲内のいずれかの硬化度(例えば、硬化度20%)で吸光度比Da/(Da+Db)が0.01~1の範囲となるように硬化することが好ましい。
【0046】
エポキシ樹脂組成物[B]の硬化度15~25%の範囲内のある特定の硬化度における吸光度比Da/(Da+Db)が0.01~1の範囲、好ましくは0.05~1の範囲、より好ましくは0.1~1の範囲であることにより、イソシアヌレート環形成よりオキサゾリドン環形成が優先し、すなわち架橋密度が高くなりやすい反応を抑制することが可能となり、また、硬化初期における著しい増粘を避けることができる。エポキシ樹脂組成物[B]の硬化度15~25%の範囲内のある特定の硬化度における吸光度比Da/(Da+Db)が0.01より低い場合、耐熱性の高い構造が期待できるものの、得られる繊維強化複合材料は脆いものとなる。また、十分な粘度を有するものではなく、表面品位の悪化に繋がる。
【0047】
ここで説明される硬化度とは、示差走査熱量分析(DSC)により得られるエポキシ樹脂組成物[B]の総発熱量QTと、エポキシ樹脂組成物[B]の硬化物の残存発熱量QRから硬化度(%)=(QT-QR)/QT×100で算出することにより特定される値である。例えば、DSCにより、30℃から350℃の温度までの温度範囲を10℃/分の昇温速度で、エポキシ樹脂組成物[B]に対して測定して得られた総発熱量をQTとし、エポキシ樹脂組成物[B]の硬化物に対して測定して得られた残存発熱量をQRとすることから計測することができる。
【0048】
本発明の繊維強化複合材料の成形方法についての第2の態様では、第1の態様と同様のエポキシ樹脂組成物[B]を用い、このエポキシ樹脂組成物[B]を、ゴム状態弾性率(Gr)とガラス転移温度(Tg)の関係が式1を満たすように硬化して繊維強化複合材料を得ることを必須とする。
【0049】
上記の通り、硬化の際にオキサゾリドン環が優先的に生成することにより、剛直かつ架橋密度の低い分子構造が形成される結果、GrとTgの関係が式1を、好ましくは式1aを、より好ましくは式1bを満たすようになる。その結果、耐熱性が高くかつ靱性に優れる硬化物および繊維強化複合材料を得ることができる。GrとTgの関係が式1を満たさない場合、得られる繊維強化複合材料の耐熱性と靭性のバランスが良好なものとはならない。かかるGrとTgの関係は、併せて式1’も満たすことが好ましい。
Tg≧10×Gr+120 (式1)
Tg≧10×Gr+140 (式1a)
Tg≧10×Gr+160 (式1b)
Tg≦10×Gr+230 (式1’)
本発明の繊維強化複合材料の成形方法についての第2の態様では、エポキシ樹脂組成物[B]をゴム状態弾性率(Gr)が式2を満たすように硬化して繊維強化複合材料を得ることが好ましい。
【0050】
Grが式2を、より好ましくは式2aを、さらに好ましくは式2bを満たすことにより、架橋密度が低い構造を形成し、高靭性な硬化物を得ることができる。Grが式2を満たさない場合、得られる繊維強化複合材料の靭性が不足する場合がある。
0.5≦Gr≦15 (式2)
0.5≦Gr≦10 (式2a)
0.5≦Gr≦5 (式2b)
ここでガラス転移温度は、エポキシ樹脂硬化物を、示差走査熱量測定装置を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、JIS K7121:1987に基づいて求めた中間点温度である。
【0051】
ここでゴム状態弾性率は、次のように計測した値である。すなわち、エポキシ樹脂組成物を厚さ約2mmの板状に加熱硬化し、これを幅12±1mm、長さ30~40mmの試験片に加工した後、動的粘弾性測定装置で昇温速度5℃/分の条件で動的粘弾性を測定する。ゴム状態弾性率は、動的粘弾性測定で得られるガラス転移温度を50℃上回った温度における貯蔵弾性率とする。なお、動的粘弾性測定で得られるガラス転移温度は、温度-貯蔵弾性率曲線において、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度である。
【0052】
本発明の繊維強化複合材料の成形方法は、エポキシ樹脂組成物[B]をその熱質量分析(TGA)における質量減少率ΔWrが10%以下の範囲を満たすように硬化して繊維強化複合材料を得ることが好ましい。
【0053】
ここで質量減少率とは、常圧の非酸化性雰囲気下で50℃から800℃の温度まで昇温速度10℃/分で熱重量分析を行った際に、70℃到達時点の試料質量W1と、320℃到達時点の試料質量W2から質量減少率ΔWr(%)=(W1-W2)/W1×100で算出することにより求められる値である。△Wrは一般的な熱重量分析によって求めることが可能であるが、この分析における雰囲気は常圧の非酸化性雰囲気を用いる。非酸化性雰囲気とは、酸素を実質的に含有しない雰囲気、すなわち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを示す。△Wrが10を超える場合、たとえば、繊維強化複合材料の耐熱性および湿熱下圧縮強度を十分に確保できない場合がある。
【0054】
本発明の繊維強化複合材料の成形方法において用いられるエポキシ樹脂組成物[B]は、初期の粘度上昇が小さく、注入可能な時間が長く、かつ、短時間で硬化できるという特徴を有する。このため、注入から脱型に至るまでの型温を一定に保持するRTM法に最も適するが、樹脂注入後に昇温して硬化させるRTM法や、RTM法以外のハンドレイアップ、プルトルージョン、フィラメントワインディングなど、液状熱硬化性樹脂を用いるあらゆる成形法において適用可能であり、いずれの成形法においても成形時間の短縮、強化繊維への含浸性の向上に効果がある。
【0055】
本発明の繊維強化複合材料の成形方法を、前記したRTM法を例に挙げてさらに詳細に説明すると、前記エポキシ樹脂組成物[B]を、100~200℃に加熱した成形型内に配置した強化繊維[A]からなる基材に注入し、含浸させ、該成形型内で硬化することにより製造される。
【0056】
かかる成形方法において、注入前のエポキシ樹脂組成物[B]は、一定温度に加温されていることが好ましく、加温する温度は、強化繊維[A]からなる基材への含浸性の点から、エポキシ樹脂組成物[B]の初期粘度と粘度上昇の関係から決められ、30~80℃が好ましく、より好ましくは40~70℃である。
【0057】
なお、繊維強化複合材料の成形温度(エポキシ樹脂組成物[B]の加熱硬化温度)は、成形型を加熱することにより調節することができ、加熱した成形型の温度は100~200℃の範囲内にあることが好ましく、120~180℃の範囲内にあることがより好ましい。繊維強化複合材料の成形温度が前記の範囲内にあることにより、繊維強化複合材料のマトリックス樹脂であるエポキシ樹脂組成物[B]の硬化初期における著しい増粘を避けつつも、硬化に要する時間を短縮するのと同時に、繊維強化複合材料を脱型した後の熱収縮を緩和させることにより、表面品位の良好な繊維強化複合材料を得ることができる。また、エポキシ樹脂組成物[B]の硬化物の吸光度比Da/(Da+Db)が高くなり、かつ、△Wrが小さくなることから、靭性と耐熱性のバランスに優れた繊維強化複合材料を得ることができる。
【0058】
また、かかる繊維強化複合材料の成形方法においては、エポキシ樹脂組成物[B]を、成形型内に配置した強化繊維[A]からなる基材に注入するに際して、該樹脂を該成形型に設けられた複数の箇所から注入することが好ましい。具体的には、成形型に複数の注入口を有するものを用い、エポキシ樹脂組成物[B]を複数の注入口から同時に、または時間差を設けて順次注入するなど、得ようとする繊維強化複合材料に応じて適切な条件を選ぶことが、様々な形状や大きさの成形品に対応できる自由度を有するために好ましい。かかる注入口の数や形状に制限はないが、短時間での注入を可能にするために注入口は多い程良く、その配置は、成形品の形状に応じて樹脂の流動長を短くできる位置が好ましい。
【0059】
エポキシ樹脂組成物[B]を注入する際の注入圧力は、通常0.1~1.0MPaで、注入時間と設備の経済性の点から0.1~0.6MPaが好ましい。また、型内を真空吸引してエポキシ樹脂組成物[B]を注入するVaRTM(Vacuum-Assisted Resin Transfer Molding)法も用いることができる。加圧注入を行う場合でも、エポキシ樹脂組成物[B]を注入する前に型内を真空に吸引しておくと、ボイドの発生が抑えられ好ましい。
【0060】
本発明の繊維強化複合材料の成形方法において、強化繊維[A]としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維などが好適に用いられる。中でも、軽量でありながら、強度や、弾性率などの力学物性に優れる繊維強化複合材料が得られるという理由から、炭素繊維が好適に用いられる。
【0061】
炭素繊維としては、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性の点から高くとも400GPaの引張弾性率を有する炭素繊維であることが好ましい。また、強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が4.4GPa以上6.5GPa以下の炭素繊維であることが好ましい。また、引張伸度も重要な要素であり、1.7%以上2.3%以下の高強度高伸度炭素繊維であることが好ましい。従って、引張弾性率が少なくとも230GPaであり、引張強度が少なくとも4.4GPaであり、引張伸度が少なくとも1.7%であるという特性を兼ね備えた炭素繊維が特に適している。
【0062】
強化繊維[A]は、短繊維、連続繊維いずれであってもよく、両者を併用してもよい。高Vfの繊維強化複合材料を得るためには、連続繊維が好ましい。
【0063】
本発明の繊維強化複合材料の成形方法では、強化繊維[A]はストランドの形態で用いられることもあるが、強化繊維[A]をマット、織物、ニット、ブレイド、一方向シートなどの形態に加工した強化繊維[A]からなる基材が好適に用いられる。中でも、高Vfの繊維強化複合材料が得やすく、かつ取扱い性に優れた織物が好適に用いられる。
【0064】
織物の見かけ体積に対する、強化繊維[A]の正味の体積の比を織物の充填率とする。織物の充填率は、目付W(単位:g/m)、厚みt(単位:mm)、強化繊維の密度ρf(単位:g/cm)からW/(1000t・ρf)の式により求められる。織物の目付と厚みはJIS R7602:1995に準拠して求められる。織物の充填率が高い方が高Vfの繊維強化複合材料を得やすいため、織物の充填率は、0.10~0.85、好ましくは0.40~0.85、より好ましくは0.50~0.85の範囲内であることが好ましい。
【0065】
本発明の繊維強化複合材料の成形方法により得られる繊維強化複合材料が高い比強度、あるいは比弾性率をもつためには、その繊維体積含有率Vfが、40~85%、好ましくは45~85%の範囲内であることが好ましい。なお、ここで言う、繊維強化複合材料の繊維体積含有率Vfとは、ASTM D3171(1999)に準拠して、以下により定義され、測定される値であり、強化繊維[A]からなる基材に対して熱硬化性樹脂[B]を注入、硬化した後の状態でのものをいう。すなわち、繊維強化複合材料の繊維体積含有率Vfは、繊維強化複合材料の厚みh等から、下記式を用いて算出することができる。
Vf(%)=(Af×N)/(ρf×h)/10
Af:強化繊維[A]からなる基材1枚・1m当たりの質量(g/m
N:強化繊維[A]からなる基材の積層枚数(枚)
ρf:強化繊維[A]の密度(g/cm
h:繊維強化複合材料(試験片)の厚み(mm)。
【0066】
なお、繊維強化複合材料から、強化繊維[A]からなる基材1枚・1m当たりの質量Afや、強化繊維[A]からなる基材の積層枚数N、強化繊維[A]の密度ρfを特定するためには、JIS K7075:1991に基づく燃焼法もしくは硝酸分解法、硫酸分解法のいずれかにより、強化繊維[A]からなる基材を繊維強化複合材料から分離して取り出せばよい。この場合に用いる強化繊維[A]の密度は、JIS R7603:1999に基づき測定した値を用いる。
【0067】
繊維強化複合材料の厚みhは、JIS K7072:1991に記載されているように、JIS B7502:1994に規定のマイクロメーターまたはこれと同等以上の精度をもつもので測定することが好ましい。繊維強化複合材料が複雑な形状をしていて、測定することが困難な場合には、繊維強化複合材料からサンプル(測定用としてのある程度の形と大きさを有しているサンプル)を切り出して、測定してもよい。
【0068】
本発明の繊維強化複合材料の成形方法により得られる繊維強化複合材料の好ましい形態の一つとして、単板が挙げられる。また、別の好ましい形態として、単板状の繊維強化複合材料がコア材の両面に配置されたサンドイッチ構造体や単板状の構造体に周囲を覆われた中空構造体、単板状の繊維強化複合材料がコア材の片面に配置された、いわゆるカナッペ構造体などが挙げられる。
【0069】
サンドイッチ構造体、カナッペ構造体のコア材としては、アルミニウムやアラミドからなるハニカムコアや、ポリウレタン、ポリスチレン、ポリアミド、ポリイミド、ポリ塩化ビニル、フェノール樹脂、アクリル樹脂、エポキシ樹脂などを素材としたフォームコア、バルサなどの木材などが挙げられる。中でも、コア材としては、軽量の繊維強化複合材料が得られるという理由から、フォームコアが好適に用いられる。
【0070】
本発明の繊維強化複合材料用エポキシ樹脂組成物は、構成要素[a]として分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂、構成要素[b]として分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤、構成要素[c]として触媒を含むことを必須とする。
【0071】
本発明の繊維強化複合材料用エポキシ樹脂組成物における構成要素[a]は、分子内に少なくとも2つの結合したオキシラン基を有するエポキシ樹脂であり、本発明の繊維強化複合材料の成形方法において説明したものと同様のものが好ましく用いられる。
【0072】
本発明の繊維強化複合材料用エポキシ樹脂組成物における構成要素[b]は、分子内に少なくとも2つの結合したイソシアネート基を含み、かつ構成要素[a]のオキシラン基と反応し得る活性基を有する化合物からなるエポキシ樹脂硬化剤であり、本発明の繊維強化複合材料の成形方法において説明したものと同様のものが好ましく用いられる。
【0073】
本発明の繊維強化複合材料用エポキシ樹脂組成物は、エポキシ樹脂組成物に含まれる全エポキシ樹脂のオキシラン基のmol数に対する、構成要素[b]のイソシアネート基のmol数の比率が0.5~1.8になるよう含有されていることが好ましく、0.8~1.5になるよう含有されていることがより好ましく、0.8~1.1になるよう含有されていることがさらに好ましく、0.95~1.05になるよう含有されていることがさらに好ましい。かかるイソシアネート基のmol数の、本発明のエポキシ樹脂組成物に含まれる全エポキシ樹脂のオキシラン基のmol数に対する比率が0.5に満たない場合は、構成要素[a]のオキシラン基による自己重合が進行しやすくなり、耐熱性が不足する恐れがある。一方、かかる比率が1.8を超える場合は、高架橋密度になりやすく、樹脂伸度が不十分となる恐れがある。また、反応性の高いイソシアネート基が過剰になると副反応が進行しやすくなり、場合によってはエポキシ樹脂硬化物中に気泡を生じる恐れがある。
【0074】
本発明の繊維強化複合材料用エポキシ樹脂組成物における構成要素[c]は、触媒であり、構成要素[a]に含まれるオキシラン基と構成要素[b]に含まれるイソシアネート基との硬化反応を促進し得る化合物である。かかるエポキシ樹脂組成物における構成要素[c]は、本発明の繊維強化複合材料の成形方法において説明したものと同様のものが好ましく用いられる。
【0075】
かかる構成要素[c]は、アセトニトリル中での塩基解離定数pKbが20以上のブレンステッド塩基とブレンステッド酸からなる塩であることが好ましい。構成要素[c]は、pKbが24以上のブレンステッド塩基とブレンステッド酸からなる塩であることがより好ましく、pKbが25以上のブレンステッド塩基とブレンステッド酸からなる塩であることがさらに好ましく、pKbが26以上のブレンステッド塩基とブレンステッド酸からなる塩であることが特に好ましい。かかる構成要素[c]を含むことで、優れた反応性と反応選択性を発現する。ブレンステッド塩基とブレンステッド酸からなる塩においてブレンステッド塩基のpKbが20未満の場合、硬化時間が長くなり生産性の低下する場合がある。
【0076】
ここで説明される塩基解離定数とは、溶媒中の塩基の濃度c(B)、塩基の共役酸の濃度c(BH)、プロトン化された溶媒の濃度c(SH)から平衡定数Kb=c(SH)×c(B)/c(BH)を求め、塩基解離定数pKb=-log10Kbで算出することにより求められる値である。
【0077】
アセトニトリル中での塩基解離定数は、例えば、アセトニトリル中に塩基を溶解させ酸で滴定し、可視紫外分光測定によるスペクトルから算出することができる。
【0078】
かかるブレンステッド塩基は、酸との中和反応においてプロトンを受容しうる塩基であれば特に限定されないが、アミン化合物およびイミダゾール化合物からなる群から選択される少なくとも1種類であることが好ましい。
【0079】
かかるブレンステッド塩基としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンなどのアミン化合物、イミダゾール(融点89℃)、2-エチルイミダゾール(融点80℃)、2-ウンデシルイミダゾール(融点72℃)、2-ヘプタデシルイミダゾール(融点89℃)、1,2-ジメチルイミダゾール(常温で液状)、2-エチル-4-メチルイミダゾール(常温で液状)、1-ベンジル-2-フェニルイミダゾール(常温で液状)、1-ベンジル-2-メチルイミダゾール(常温で液状)、1-シアノエチル-2-メチルイミダゾール(常温で液状)、などのイミダゾール化合物などが挙げられる。
【0080】
アセトニトリル中での塩基解離定数pKbが20以上のブレンステッド塩基とブレンステッド酸からなる塩におけるブレンステッド酸は、塩基との中和反応においてプロトンを供出しうる酸であれば特に限定されないが、水中での酸解離定数pKaが5以下であることが好ましく、3以下であることがより好ましく、1.5以下であることがさらに好ましく、0以下であることが特に好ましい。5を超える場合、架橋密度が高くなりやすい反応が先行して生じやすくなり、得られる硬化物および繊維強化複合材料が脆いものとなる恐れがある。かかるブレンステッド酸としては、カルボン酸、スルホン酸およびハロゲン化水素からなる群から選択される少なくとも1種類であることが好ましい。
【0081】
ここで説明される酸解離定数とは、希薄水溶液中の酸Aの濃度c(AH)、酸Aの共役塩基の濃度c(A)、水素イオン濃度c(H)から平衡定数Ka=c(H)×c(A)/c(AH)を求め、酸解離定数pKa=-log10Kaで算出することにより求められる値である。
【0082】
かかる酸解離定数は、例えば、pHメーターを用いて水素イオン濃度を測定し、該当物質の濃度と水素イオン濃度から算出することができる。
【0083】
かかるカルボン酸としては、例えば、ギ酸、酢酸、ショウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸などが挙げられる。
【0084】
かかるスルホン酸としては、例えば、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸などが挙げられる。
【0085】
かかるハロゲン化水素としては、例えば、塩化水素、臭化水素、ヨウ化水素などが挙げられる。
【0086】
かかる構成要素[c]は、アニオンがハロゲン化物であるオニウム塩を含むことでも、優れた反応性と反応選択性を発現するので好ましい。かかるオニウム塩としては、四級アンモニウム塩、四級ホスホニウム塩が好適に用いられる。
【0087】
かかるハロゲン化四級アンモニウムとしては、例えば、トリメチルオクタデシルアンモニウムクロリド、トリメチルオクタデシルアンモニウムブロミド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、(2-メトキシエトキシメチル)トリエチルアンモニウムクロリド、(2-メトキシエトキシメチル)トリエチルアンモニウムブロミド、(2-アセトキシエチル)トリメチルアンモニウムクロリド、(2-アセトキシエチル)トリメチルアンモニウムブロミド、(2-ヒドロキシエチル)トリメチルアンモニウムクロリド、(2-ヒドロキシエチル)トリメチルアンモニウムブロミド、ビス(ポリオキシエチレン)ジメチルアンモニウムクロリド、ビス(ポリオキシエチレン)ジメチルアンモニウムブロミド、1-ヘキサデシルピリジニウムクロリド、1-ヘキサデシルピリジニウムブロミドなどが挙げられる。
【0088】
かかるハロゲン化四級ホスホニウムとしては、例えば、トリメチルオクタデシルホスホニウムクロリド、トリメチルオクタデシルホスホニウムブロミド、ベンジルトリメチルホスホニウムクロリド、ベンジルトリメチルホスホニウムブロミド、テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド、(2-メトキシエトキシメチル)トリエチルホスホニウムクロリド、(2-メトキシエトキシメチル)トリエチルホスホニウムブロミド、(2-アセトキシエチル)トリメチルホスホニウムクロリド、(2-アセトキシエチル)トリメチルホスホニウムブロミド、(2-ヒドロキシエチル)トリメチルホスホニウムクロリド、(2-ヒドロキシエチル)トリメチルホスホニウムブロミド、ビス(ポリオキシエチレン)ジメチルホスホニウムクロリド、ビス(ポリオキシエチレン)ジメチルホスホニウムブロミド、テトラフェニルホスホニウムブロミド、アセトニルトリフェニルホスホニウムクロリド、(4-カルボキシブチル)トリフェニルホスホニウムブロミド、(4-カルボキシプロピル)トリフェニルホスホニウムブロミド、(2,4-ジクロロベンジル)トリフェニルホスホニウムクロリド、2-ジメチルアミノエチルトリフェニルホスホニウムブロミド、エトキシカルボニルメチル(トリフェニル)ホスホニウムブロミド、(ホルミルメチル)トリフェニルホスホニウムクロリド、N-メチルアニリノトリフェニルホスホニウムヨージド、フェナシルトリフェニルホスホニウムブロミドなどが挙げられる。
【0089】
かかる構成要素[c]の総量は、構成要素[a]の総量100質量部に対して、1質量部以上10質量部以下含むことが好ましく、1質量部以上5質量部以下含むことがより好ましく、1質量部以上3質量部以下含むことがさらに好ましい。1質量部未満の場合、硬化時間が長くなり生産性の低下を招く恐れがある。一方、10質量部を上回る場合、構成要素[a]に含まれるオキシラン基の自己重合が進行し、耐熱性が不足する恐れがある。
【0090】
かかる構成要素[c]は、硬化過程で均一に触媒作用を発現させるために、構成要素[a]のエポキシ樹脂に溶解し得る触媒であることが好ましい。ここで構成要素[a]のエポキシ樹脂に溶解し得る触媒とは、構成要素[a]のエポキシ樹脂に触媒を、構成要素[a]の総量100質量部に対して1質量部加え、室温または触媒の融点付近まで昇温後、200rpmで30分混練し、室温で1時間放置したときに、両者が均一に相溶することを意味する。均一に相溶しているか否かを確認する手段としては、位相差顕微鏡を用い、触媒の不溶物の有無から判断する。
【0091】
ここまで説明してきたエポキシ樹脂組成物[B]の[a]~[c]の各構成要素を用いることに加えて、本発明の繊維強化複合材料用エポキシ樹脂組成物の第1の態様は、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおける吸光度比Da/(Da+Db)が0.4~1の範囲となるある特定の硬化度Xが85~95%の範囲に存在することを必須とする。すなわち、本発明の繊維強化複合材料用エポキシ樹脂組成物の第1の態様では、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xが85~95%の範囲のいずれか(例えば、硬化度90%)における吸光度比Da/(Da+Db)が0.4~1の範囲となることを必須としている。なお、ここで説明される吸光度比Da/(Da+Db)は、前記のとおりである。すなわち、ATR法のFT-IRを用い、エポキシ樹脂組成物の硬化物の、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比Da/(Da+Db)で算出した値を意味している。例えば、FT-IR(ATR法)により、分解能を4cm-1、積算回数を32回で測定した際に、1760cm-1付近の吸収の吸光度をDa、1710cm-1付近の吸収の吸光度をDbとすることから算出することができる。また、硬化度は、昇温速度10℃/分でのDSCにより得られるエポキシ樹脂組成物の総発熱量QTと、その硬化物の残存発熱量QRから硬化度(%)=(QT-QR)/QT×100を算出することにより特定される。
【0092】
前記特定の硬化度Xにおける吸光度比Da/(Da+Db)が0.4~1の範囲、好ましくは0.5~1の範囲で、より好ましくは0.7~1の範囲であることにより、耐熱性を維持しつつ、架橋密度が低い構造を形成、すなわち、高靭性化に繋げることができる。前記特定の硬化度Xにおける吸光度比Da/(Da+Db)が0.4より低い場合、架橋密度が高くなりすぎ、エポキシ樹脂組成物の硬化物の強度、靭性が低下する。なお、吸光度比Da/(Da+Db)が1に近いほど、低架橋密度でかつ強度、靭性に優れる傾向にあり、好ましい態様である。
【0093】
本発明の繊維強化複合材料用エポキシ樹脂組成物の第1の態様において、エポキシ樹脂組成物は、30℃から10℃/分で昇温しながら硬化した際に、硬化度Yにおける吸光度比Da/(Da+Db)が0.01~1の範囲となるある特定の硬化度Yが15~25%の範囲に存在することが好ましい。すなわち、本発明の繊維強化複合材料用エポキシ樹脂組成物の第1の態様では、30℃から10℃/分で昇温しながら硬化した際に、硬化度15~25%の範囲のいずれか(例えば、硬化度20%)における吸光度比Da/(Da+Db)が0.01~1の範囲となることが好ましい。
【0094】
前記特定の硬化度Yにおける吸光度比Da/(Da+Db)が0.01~1の範囲、好ましくは0.05~1の範囲、より好ましくは0.1~1の範囲となることにより、先行して生じる架橋密度が高くなりやすい反応を抑制することが可能となり、また、硬化初期における著しい増粘を避けることができる。前記特定の硬化度Yにおける吸光度比Da/(Da+Db)が0.01より低い場合、耐熱性の高い構造が期待できるものの、得られる繊維強化複合材料は脆いものとなる。また、十分な粘度を有するものではなく、表面品位の悪化に繋がる。
【0095】
本発明の繊維強化複合材料用エポキシ樹脂組成物についての第2の態様では、第1の態様と同様のエポキシ樹脂組成物[B]を用い、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおけるゴム状態弾性率(Gr)とガラス転移温度(Tg)の関係が式1を満たすある特定の硬化度Xが85~95%の範囲に存在することを必須とする。
【0096】
硬化の際にオキサゾリドン環が優先的に生成することにより、剛直かつ架橋密度の低い分子構造が形成される結果、GrとTgの関係が式1を、好ましくは式1aを、より好ましくは式1bを満たすようになる。その結果、耐熱性が高くかつ靱性に優れる硬化物および繊維強化複合材料を得ることができる。GrとTgの関係が式1を満たさない場合、得られる繊維強化複合材料の耐熱性と靭性のバランスが良好なものとはならない。かかるGrとTgの関係は、併せて式1’も満たすことが好ましい。
Tg≧10×Gr+120 (式1)
Tg≧10×Gr+140 (式1a)
Tg≧10×Gr+160 (式1b)
Tg≦10×Gr+230 (式1’)
また、本発明の繊維強化複合材料用エポキシ樹脂組成物についての第2の態様において、30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおけるゴム状態弾性率が0.5~15MPaの範囲となるある特定の硬化度Xが85~95%の範囲に存在することが好ましく、硬化度Xにおけるゴム状態弾性率が0.5~10MPaの範囲となるある特定の硬化度Xが85~95%の範囲に存在することがより好ましい。すなわち、本発明の繊維強化複合材料用エポキシ樹脂組成物についての第2の態様において、30℃から10℃/分で昇温しながら硬化した際に、硬化度85~95%の範囲のいずれか(例えば、硬化度90%)におけるゴム状態弾性率が0.5~15MPaの範囲となることが好ましい。
【0097】
前記特定の硬化度Xにおけるゴム状態弾性率が0.5~15MPaであることにより、剛直な骨格を導入しつつも架橋密度を適切にコントロールできているため、耐熱性と靭性を兼備したマトリックス樹脂とすることができる。前記特定の硬化度Xにおけるゴム状態弾性率が0.5MPaより低い場合、分子鎖の架橋密度が低すぎ、得られる繊維強化複合材料の耐熱性が劣る材料となる。また、前記特定の硬化度Xにおけるゴム状態弾性率が15MPaより超える場合、高架橋密度になりすぎてしまい、樹脂伸度が発現せず、得られる繊維強化複合材料の靭性が不足する。
【0098】
ここで説明されるゴム状態弾性率は、次のように計測した値である。すなわち、エポキシ樹脂組成物を厚さ約2mmの板状に加熱硬化し、これを幅12±1mm、長さ30~40mmの試験片に加工した後、動的粘弾性測定装置で昇温速度5℃/分の条件で動的粘弾性を測定する。ゴム状態弾性率は、動的粘弾性測定で得られるガラス転移温度を50℃上回った温度における貯蔵弾性率とする。なお、動的粘弾性測定で得られるガラス転移温度は、温度-貯蔵弾性率曲線において、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度である。
【0099】
本発明の繊維強化複合材料用エポキシ樹脂組成物における好ましい態様として、水酸基の量をエポキシ樹脂組成物1kg中のmol数で表した場合、エポキシ樹脂組成物中の水酸基量が0.20mol/kg以下であることが好ましく、0.17mol/kg以下であることがより好ましく、0.13mol/kg以下であることがさらに好ましく、0.09mol/kg以下であることがさらに好ましく、0.06mol/kg以下であることがさらに好ましく、0.03mol/kg以下であることがさらに好ましい。エポキシ樹脂組成物中の水酸基量が0.20mol/kgを上回る場合、イソシアネート基と組成物中の水酸基との反応が進行しウレタン結合が生成するため、大幅に耐熱性が低下する。また、かかる反応は、低温で進行しやすく、貯蔵時の保存安定性に問題が生じる。
【0100】
ここで、エポキシ樹脂組成物中の水酸基量は、構成要素の各成分ごとに水酸基当量を用いて、下記式3で算出する。なお、本発明の繊維強化複合材料用エポキシ樹脂組成物が構成要素[a]~[c}以外の成分を含有しその成分が水酸基を含む場合(フィラーや充填剤等の粉粒体成分も表面に水酸基を有するものについては成分が水酸基を含む場合に該当するものとする)には、その成分についても、前記の各成分に含めて下記式での算出に用いるものとする。
COH=(Σ(wn/wnOH))/W×1000 ・・・(式3)
COH:エポキシ樹脂組成物中の水酸基量(mol/kg)
wn:各成分の質量部
wnOH:各成分の水酸基当量(g/eq)
W:全成分の質量部の和。
【0101】
かかる各成分ごとの水酸基当量は、JIS K0070:1992に準拠したピリジン-塩化アセチル法にて測定された水酸基価(試料1gをアセチル化したときに、水酸基と結合した酢酸を中和するのに必要な水酸化カリウムのmg数、単位:mgKOH/g)を、水酸化カリウムの式量(56.11)で割った値の逆数を取ったもので、水酸基1個当たりの分子量に相当する(単位:g/eq)。エポキシ樹脂の水酸基当量を測定する「ピリジン-塩化アセチル法」は、具体的には、測定成分をピリジンに溶かし(粉粒体成分については分散し)、塩化アセチル-トルエン溶液を加えて加熱し、冷却後、さらに煮沸し過剰の塩化アセチルを加水分解させた後、生成した酢酸を水酸化カリウムエタノール溶液で滴定して測定したものである。
【0102】
本発明の繊維強化複合材料用エポキシ樹脂組成物は、30℃から10℃/分で昇温しながら硬化した際に、硬化度Zにおけるウレタン結合とオキシラン基の存在比率が0.10以下となるある特定の硬化度Zが5~15%の範囲に存在することが好ましく、より好ましくは、0.05以下である。すなわち、本発明の繊維強化複合材料用エポキシ樹脂組成物は、30℃から10℃/分で昇温しながら硬化した際に、硬化度5~15%の範囲のいずれか(例えば、硬化度10%)におけるウレタン結合とオキシラン基の存在比率が0.10以下となることが好ましい。ウレタン結合とオキシラン基の存在比率が、0.10を上回る場合、耐熱性や弾性率が不足すると共に、低温での粘度上昇が顕著となり、強化繊維への含浸性が不十分となる恐れがある。
【0103】
ここで説明されるウレタン結合とオキシラン基の存在比率は、前記特定の硬化度Zのエポキシ樹脂組成物を、核磁気共鳴により得られるエポキシ樹脂組成物中のオキシラン基のプロトン数とウレタン結合のプロトン数の面積比率で算出することにより特定される値である。例えば、高分解能核磁気共鳴分析装置(NMR測定)を用い、重水素化クロロホルム溶媒中、500MHz H-NMRを用い、積算回数128回により、2.7ppmにエポキシ樹脂のオキシラン基における炭素に隣接するプロトンと、5.4ppmにウレタン結合の窒素に隣接するプロトンが高分解能で観測できる値である。H-NMRの面積比は、そのmol数を反映していることから、存在比率を算出することができる。
【0104】
本発明の繊維強化複合材料用エポキシ樹脂組成物は、硬化度85~95%の範囲のいずれか(例えば硬化度90%)における曲げ弾性率が3.0GPa以上6.0GPa以下であることが好ましく、3.4GPa以上5.0GPa以下であることがより好ましい。曲げ弾性率が3.0GPa未満であると、繊維強化複合材料とした時に圧縮強度が不足することがあり、6.0GPaを超えると、繊維強化複合材料とした時に切削加工する際、切削面が荒れることがある。
【0105】
本発明の繊維強化複合材料用エポキシ樹脂組成物は、前記した成分を適正に配合して、25℃における粘度が0.1~1.0Pa・sであるようにすることが好ましく、0.1~0.5Pa・sであるようにすることがより好ましい。25℃における粘度を1.0Pa・s以下とすることにより、成形温度における粘度も低くでき、強化繊維基材への注入時間が短くなり、未含浸の原因を防ぐことができる。また、25℃における粘度を0.1Pa・s以上とすることにより、成形温度での粘度が低くなりすぎず、強化繊維基材への注入時に空気を巻き込んで生じるピットを防ぐことができ、含浸が不均一になって生じる未含浸領域の発生を防ぐことができる。なお、かかる25℃における粘度は、エポキシ樹脂組成物の調整直後の粘度を測定する。
【0106】
本発明の繊維強化複合材料用エポキシ樹脂組成物と組み合わされる強化繊維は特に限定されないが、本発明の繊維強化複合材料の成形方法と同様のものが好ましく用いられる。
【0107】
本発明の繊維強化複合材料用エポキシ樹脂組成物と組み合わされる繊維強化複合材料の形態、構成等は特に限定されないが、本発明の繊維強化複合材料の成形方法と同様のものが好ましく用いられる。
【実施例
【0108】
以下、実施例により、本発明についてさらに詳細に説明するが、本発明は本実施例に限定されるものではない。
【0109】
実施例1~3、参考例1、比較例1については以下(表1を含む)記載のとおりである。
【0110】
(1)エポキシ樹脂組成物の原料
実施例のエポキシ樹脂組成物を得るために、以下の原料を用いた。
・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂液状、三菱ケミカル(株)製)
・“ルプラネート(登録商標)”M20S(ポリメリックMDI、BASF INOAC ポリウレタン(株)製)
・“DBU(登録商標)”(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、サンアプロ(株)製))
・3,3’-DAS(3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製)。
【0111】
(2)エポキシ樹脂組成物の調製
実施例1~3、参考例1は、エポキシ樹脂として、“jER(登録商標)”828 100質量部、“DBU(登録商標)” 4質量部を投入し、混練し、透明な粘調液を得た。その後、“ルプラネート(登録商標)”M20S 72質量部添加し、さらに混練し、エポキシ樹脂組成物を得た。
【0112】
比較例1は、エポキシ樹脂として、“jER(登録商標)”828 75質量部、3,3’-DAS 25質量部添加し、さらに混練し、エポキシ樹脂組成物を得た。
【0113】
(3)エポキシ樹脂硬化板の作製
上記(2)で作製したエポキシ樹脂硬化物を真空中で脱泡した後、予備加熱したプレートに注型し、表1に記載した硬化条件で、動的粘弾性試験装置(ATD:アルファテクノロジーズLLC製)を用いてエポキシ樹脂硬化板を作製した。
【0114】
(4)エポキシ樹脂硬化板の硬化度測定
上記(2)で調製したエポキシ樹脂組成物を5mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、熱硬化性樹脂の総発熱量QTを算出した。分解反応などによる発熱または吸熱のピークが見られる場合は、それらピーク以下の温度範囲で測定を行った。
【0115】
上記(3)で作製したエポキシ樹脂硬化板、または硬化開始から所定時間経過後に取り出したエポキシ樹脂硬化板を10mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、エポキシ樹脂硬化物の残存発熱量QRを算出した。分解反応などによる発熱または吸熱のピークが見られる場合は、それらピーク以下の温度範囲で測定を行った。
【0116】
ここで、DSCにより得られる硬化度(%)は、硬化度(%)=(QT-QR)/QT×100で求めた。
【0117】
また、この測定により、エポキシ樹脂組成物が硬化度15~25%の範囲内のある特定の硬化度(本実施例では、硬化度20%)に到達する時間を算出した。
【0118】
(5)エポキシ樹脂硬化板のガラス転移温度測定
上記(3)で作製したエポキシ樹脂硬化板から10mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、JIS K7121:1987に基づいて求めた中間点温度をガラス転移温度Tgとし、耐熱性を評価した。
【0119】
(6)エポキシ樹脂硬化板の曲げ撓み量測定
上記(3)で作製したエポキシ樹脂硬化板を#240、#800、#2000のサンドペーパーで表面を研磨させ、厚さ2mmのエポキシ樹脂硬化板を得た。次に、得られたエポキシ樹脂硬化板から、幅10mm、長さ60mmの試験片を切り出し、スパン間32mmの3点曲げを測定し、JIS K7171:1994に従い、樹脂靭性の指標となる曲げ撓み量を求めた。
【0120】
(7)エポキシ樹脂硬化板の吸光度比測定
上記(3)で作製したエポキシ樹脂硬化板、または硬化度15~25%の範囲内のある特定の硬化度(本実施例では、硬化度20%)のエポキシ樹脂硬化板を採取し、FT-IR装置(7000FT-IR:Varian製)を用いて、FT-IR(ATR法)を実施した。測定条件は、分解能を4cm-1、積算回数を32回とした。
【0121】
なお、吸光度比Da/(Da+Db)は、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する1760cm-1付近の吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する1710cm-1付近の吸収の吸光度Dbから算出した。
【0122】
(8)エポキシ樹脂硬化板のTGAによる質量減少率測定
上記(3)で作製したエポキシ樹脂硬化板を10mg採取し、熱重量分析機(TGA7:パーキンエルマー社製)を用いて、窒素(純度:99.99%以上)気流下、プログラム温度50℃で1分保持、プログラム温度50℃から800℃まで昇温速度20℃/分で昇温の条件にて質量減少率の測定を行った。
【0123】
質量減少率△Wrは、前記の昇温過程において、70℃到達時点の試料質量W1と、320℃到達時点の試料質量W2から質量減少率ΔWr(%)=(W1-W2)/W1×100で算出した。
【0124】
(9)繊維強化複合材料の作製
350mm×700mm×2mmの板状キャビティーを持つ金型に、強化繊維として炭素繊維織物CO6343(炭素繊維:T300-3K、組織:平織、目付:198g/m、東レ(株)製)をキャビティー内に9枚積層し、プレス装置で型締めを行った。次に、100℃(成形温度)に保持した金型内を、真空ポンプにより、大気圧-0.1MPaに減圧し、あらかじめ、それぞれに50℃に加温しておいたエポキシ樹脂組成物を、樹脂注入機を用いて混合し、0.2MPaの圧力で注入した。その後、表1に記載の硬化条件で硬化し、脱型して、繊維強化複合材料を得た。
【0125】
(10)繊維強化複合材料のガラス転移温度測定
上記(9)で作製した繊維強化複合材料から10mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、JIS K7121:1987に基づいて求めた中間点温度をガラス転移温度Tgとし、耐熱性を評価した。
【0126】
(実施例1)
前記のようにして、表1に記載の硬化条件でエポキシ樹脂組成物の硬化物および繊維強化複合材料を作製した。かかるエポキシ樹脂組成物の硬化物は、耐熱性とΔWrは問題ないレベルであり、靭性は優れていた。
【0127】
(実施例2)
実施例1から硬化条件を変更した。かかるエポキシ樹脂組成物の硬化物は、耐熱性は問題ないレベルであり、靭性とΔWrは優れていた。
【0128】
(実施例3)
実施例1から硬化条件を変更した。かかるエポキシ樹脂組成物の硬化物は、耐熱性、靭性とΔWrは優れていた。
【0129】
(参考例1)
実施例1から硬化条件を変更した。かかるエポキシ樹脂組成物の硬化物はDa/(Da+Db)が劣っており、耐熱性は優れているものの、靭性およびΔWrに劣っていた。
【0130】
(比較例1)
構成要素[b]以外の硬化剤として、アミン化合物を配合した。かかるエポキシ樹脂組成物の硬化物はオキサゾリドン環が形成されず、耐熱性とΔWrに劣っていた。
【0131】
【表1】
【0132】
実施例4~27、比較例2~8については以下(表2-1~表2-4を含む)に記載のとおりである。
【0133】
(1)エポキシ樹脂組成物の原料
実施例のエポキシ樹脂組成物を得るために、以下の原料を用いた。
[a]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)
・“エポトート(登録商標)”YD-8125(ビスフェノールA型エポキシ樹脂、日鉄ケミカル&マテリアル(株)製)
・“EPICLON(登録商標)”830(ビスフェノールF型エポキシ樹脂、DIC(株)製)
・YD-8125変性品
100質量部の“エポトート(登録商標)”YD-8125に無水酢酸を10質量部添加し、110℃で1時間加熱撹拌し、YD-8125に少量含まれる水酸基をアセチル化した。その後、110℃で真空加熱することにより、余剰の酢酸と生成した酢酸を除去し、YD-8125変性品を得た。
・“デナコール”EX-313(グリセリン型エポキシ樹脂、1,3-ビス(オキシラニルメトキシ)プロパン-2-オール、ナガセケムテックス(株)製)
・“アラルダイド(登録商標)”MY0510(トリグリシジル-p-アミノフェノール、ハンツマン・アドバンスト・マテリアルズ社製)
・“アラルダイド(登録商標)”MY721(テトラグリシジルジアミノジフェニルメタン、ハンツマン・アドバンスト・マテリアルズ社製)。
【0134】
[b]少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
・“ルプラネート(登録商標)”M20S(ポリメリックMDI、BASF INOAC ポリウレタン(株)製)
・“ルプラネート(登録商標)”MI(モノメリックMDI、BASF INOAC ポリウレタン(株)製)。
【0135】
[c]触媒
・“DBU(登録商標)”(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、サンアプロ(株)製、pKb=25)
・“DBU”/フタル酸(東京化成工業(株)製、pKa=3)塩
・“DBU”/ジクロロ酢酸(東京化成工業(株)製、pKa=1.5)塩
・“DBU”/p-トルエンスルホン酸(東京化成工業(株)製、pKa=-3)塩
・“DBN(登録商標)”(1,5-ジアザビシクロ[4.3.0]-5-ノネン、サンアプロ(株)製、pKb=24)/フタル酸塩
・TBD(1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、東京化成工業(株)製、pKb=26)/ジクロロ酢酸塩
・TBAB(テトラブチルアンモニウムブロミド、東京化成工業(株)製)
・“ホクコー TBP-BB(登録商標)”(テトラブチルホスホニウムブロミド、北興化学工業(株)製)。
【0136】
[a]以外のエポキシ樹脂
・BGE(4-tert-ブチルフェニルグリシジルエーテル、東京化成工業(株)製)。
【0137】
[b]以外のイソシアネート基を有するエポキシ樹脂硬化剤
・2-フェニルエチルイソシアナート(東京化成工業(株)製)。
【0138】
[a]~[c]以外の成分
・ポリプロピレングリコール(富士フイルム和光純薬(株)製)。
・“ロンザキュア(登録商標)”M-DEA(ハンツマン・アドバンスト・マテリアルズ社製)。
【0139】
(2)エポキシ樹脂組成物の調製
表2-1~表2-4に記載した配合比(質量比)でエポキシ樹脂と触媒を配合し、位相差顕微鏡にて溶解を確認した後に、エポキシ樹脂硬化剤を配合してエポキシ樹脂組成物を調製した。
【0140】
(3)エポキシ樹脂組成物の水酸基量
エポキシ樹脂組成物中の水酸基量は、構成要素の成分ごとに水酸基当量を用いて、式3で算出した。
COH=(Σ(wn/wnOH))/W×1000 ・・・(式3)
COH:エポキシ樹脂組成物中の水酸基量(mol/kg)
wn:各成分の質量部
wnOH:各成分の水酸基当量(g/eq)
W:全成分の質量部の和。
【0141】
かかる成分ごとの水酸基当量は、JIS K0070:1992に準拠したピリジン-塩化アセチル法にて構成要素[a]の水酸基価(単位:mgKOH/g)を滴定し、これを水酸化カリウムの式量(56.11)で割ることにより水酸基量(単位:mmol/g)を算出したものである。エポキシ樹脂の水酸基当量を測定する「ピリジン-塩化アセチル法」は、具体的には、測定樹脂をピリジンに溶かし、塩化アセチル-トルエン溶液を加えて加熱し、冷却後、さらに煮沸し過剰の塩化アセチルを加水分解させた後、生成した酢酸を水酸化カリウムエタノール溶液で滴定して測定したものである。
【0142】
(4)エポキシ樹脂組成物の粘度測定
動的粘弾性測定装置(ARES:TAインスツルメント社製)を用い、直径40mmのパラレルプレートを用い、昇温速度1.5℃/minで単純昇温し、周波数1Hz、Gap 1mmの測定条件で得られた、複素粘性率ηの25℃における値を採用した。
【0143】
(5)エポキシ樹脂硬化板の作製
上記(2)で調製したエポキシ樹脂組成物を真空中で脱泡した後、予備加熱したプレートに注型し、動的粘弾性試験装置(ATD:アルファテクノロジーズLLC製)を用いて、30℃から(6)項に記載の測定で得た硬化度が90%となる温度まで10℃/分で昇温することでエポキシ樹脂硬化板を作製した。
【0144】
(6)エポキシ樹脂硬化板の硬化度測定
上記(2)で調製したエポキシ樹脂組成物を5mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、熱硬化性樹脂の総発熱量QTを算出した。分解反応などによる発熱または吸熱のピークが見られる場合は、それらピーク以下の温度範囲で測定を行った。
【0145】
上記(5)で作製したエポキシ樹脂硬化板を10mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、エポキシ樹脂硬化物の残存発熱量QRを算出した。分解反応などによる発熱または吸熱のピークが見られる場合は、それらピーク以下の温度範囲で測定を行った。
【0146】
ここで、DSCにより得られる硬化度(%)は、硬化度(%)=(QT-QR)/QT×100で求めた。
【0147】
また、この測定により、エポキシ樹脂組成物が特定の硬化度X(本実施例では、硬化度90%)、特定の硬化度Y(本実施例では、硬化度20%)、および特定の硬化度Z(本実施例では、硬化度10%)に到達する温度を算出した。
【0148】
(7)特定の硬化度Zにおけるウレタン結合とオキシラン基の存在比率
上記(5)で作製した特定の硬化度Z(本実施例では、硬化度10%)のエポキシ樹脂硬化物を採取し、重水素化クロロホルム溶媒中、500MHz 1H-NMRを用い、積算回数128回により測定した。2.7ppmにエポキシ樹脂のオキシラン基における炭素に隣接するプロトンと、5.4ppmにウレタン結合の窒素に隣接するプロトンの面積値より存在比率を算出した。
【0149】
(8)特定の硬化度XおよびYにおける吸光度比測定
上記(5)で作製した特定の硬化度X(本実施例では、硬化度90%)および特定の硬化度Y(本実施例では、硬化度20%)のエポキシ樹脂硬化物を採取し、FT-IR装置(7000FT-IR:Varian製)を用いて、FT-IR(ATR法)を実施した。測定条件は、分解能を4cm-1、積算回数を32回とした。
【0150】
なお、吸光度比Da/(Da+Db)は、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する1760cm-1付近の吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する1710cm-1付近の吸収の吸光度Dbから算出した。
【0151】
(9)特定の硬化度Xにおけるガラス転移温度測定
上記(5)で作製した硬化度X(本実施例では、硬化度90%)のエポキシ樹脂硬化物から10mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、JIS K7121:1987に基づいて求めた中間点温度をガラス転移温度Tgとし、耐熱性を評価した。
【0152】
(10)特定の硬化度Xにおけるゴム状態弾性率測定
上記(5)で作製した硬化度X(本実施例では、硬化度90%)のエポキシ樹脂硬化物からから、幅10mm、長さ40mmの試験片を切り出し、動的粘弾性測定装置(ARES:TAインスツルメント社製)を用い、固体ねじり治具に試験片をセットし、昇温速度5℃/分、周波数1Hz、歪み量0.1%にて30~300℃の温度範囲について測定を行った。架橋密度の指標となるゴム状態弾性率は、動的粘弾性測定で得られるガラス転移温度を50℃上回った温度における貯蔵弾性率を採用した。なお、動的粘弾性測定で得られるガラス転移温度は、温度-貯蔵弾性率曲線において、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度とした。
【0153】
(11)特定の硬化度Xにおける曲げ弾性率と曲げ撓み量測定
上記(5)で作製した硬化度X(本実施例では、硬化度90%)のエポキシ樹脂硬化物を#240、#800、#2000のサンドペーパーで表面を研磨させ、厚さ2mmのエポキシ樹脂硬化板を得た後に、得られたエポキシ樹脂硬化板から、幅10mm、長さ60mmの試験片を切り出し、スパン間32mmの3点曲げを測定し、JIS K7171:1994に従い、曲げ弾性率と樹脂靭性の指標となる曲げ撓み量を求めた。
【0154】
(実施例4)
前記のようにして、表2-1に記載した含有割合でエポキシ樹脂組成物を調製した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性、靭性、弾性率は優れていた。
【0155】
(実施例5)
実施例4から構成要素[a]を水酸基量の少ないエポキシ樹脂に変更した。かかるエポキシ樹脂組成物は25℃における粘度は特に優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性、弾性率は優れており、靭性は特に優れていた。
【0156】
(実施例6)
実施例4から構成要素[a]をビスフェノールF型エポキシ樹脂に変更した。かかるエポキシ樹脂組成物は25℃における粘度は特に優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性は問題ないレベルであり、靭性と弾性率は優れていた。
【0157】
(実施例7~11)
実施例4から構成要素[c]をブレンステッド塩基とブレンステッド酸の塩に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性は問題ないレベルであり、靭性と弾性率は優れていた。
【0158】
(実施例12、13)
実施例4から構成要素[c]をハロゲン化オニウム塩に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性は問題ないレベルであり、靭性と弾性率は優れていた。
【0159】
(実施例14)
実施例4から構成要素[c]の量を1質量部に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は問題ないレベルであり、靭性は優れていた。
【0160】
(実施例15)
実施例4から構成要素[c]の量を10質量部に変更した。かかるエポキシ樹脂組成物は25℃における粘度は問題ないレベルであった。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は優れており、靭性は問題ないレベルであった。
【0161】
(実施例16)
実施例4から構成要素[b]のイソシアネート基数とエポキシ樹脂組成物のオキシラン基数の比を0.8に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は問題ないレベルであり、靭性は優れていた。
【0162】
(実施例17)
実施例4から構成要素[b]のイソシアネート基数とエポキシ樹脂組成物のオキシラン基数の比を0.5に変更した。かかるエポキシ樹脂組成物は25℃における粘度は問題ないレベルであった。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は劣るものの、靭性は問題ないレベルであった。
【0163】
(実施例18)
実施例4から構成要素[b]のイソシアネート基数とエポキシ樹脂組成物のオキシラン基数の比を1.1に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は優れており、靭性は問題ないレベルであった。
【0164】
(実施例19)
実施例4から構成要素[b]のイソシアネート基数とエポキシ樹脂組成物のオキシラン基数の比を1.4に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は優れており、靭性は許容されるレベルであった。
【0165】
(実施例20)
実施例4から構成要素[b]のイソシアネート基数とエポキシ樹脂組成物のオキシラン基数の比を1.7に変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は優れており、靭性は許容されるレベルであった。
【0166】
(実施例21)
実施例4から構成要素[b]の種類を変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は問題ないレベルであり、靭性は優れていた。
【0167】
(実施例22)
実施例4から構成要素[a]の3割を水酸基量の少ないエポキシ樹脂に変更した。かかるエポキシ樹脂組成物は25℃における粘度はやや優位となり、エポキシ樹脂組成物の硬化度90%における耐熱性と靭性もそれぞれ向上した。
【0168】
(実施例23)
実施例22に対し、構成要素[a]の水酸基量の少ないエポキシ樹脂を7割に増量した。かかるエポキシ樹脂組成物は25℃における粘度はさらに優位となり、エポキシ樹脂組成物の硬化度90%における耐熱性と靭性もそれぞれさらに向上した。
【0169】
(実施例24)
実施例4から構成要素[a]を4官能アミン型エポキシ樹脂に変更した。かかるエポキシ樹脂組成物は25℃における粘度は特に優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は特に優れており、靭性は許容されるレベルであった。
【0170】
(実施例25)
実施例4から構成要素[a]をビスフェノールF型エポキシと3官能アミン型エポキシ樹脂の組み合わせに変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は特に優れており、靭性は優れていた。
【0171】
(実施例26)
実施例4から構成要素[a]をビスフェノールF型エポキシと4官能アミン型エポキシ樹脂の組み合わせに変更した。かかるエポキシ樹脂組成物は25℃における粘度は優れていた。エポキシ樹脂組成物の硬化度90%における耐熱性と弾性率は特に優れており、靭性は優れていた。
【0172】
(実施例27)
実施例5から構成要素[a]をさらに水酸基量の少ないエポキシ樹脂に変更した。かかるエポキシ樹脂組成物は25℃における粘度はさらに優位となり、エポキシ樹脂組成物の硬化度90%における耐熱性と靭性もそれぞれさらに向上した。
【0173】
(比較例2)
構成要素[a]としてグリセリン型エポキシ樹脂を配合し、25℃における粘度、硬化度90%における耐熱性、弾性率に劣っていた。
【0174】
(比較例3)
構成要素[a]として単官能エポキシ樹脂を配合し、25℃における粘度、硬化度90%における耐熱性、靭性、弾性率に劣っていた。
【0175】
(比較例4)
構成要素[b]として単官能イソシアネートを配合し、25℃における粘度、硬化度90%における耐熱性、靭性、弾性率に劣っていた。
【0176】
(比較例5)
構成要素[c]を配合しないことで、指定の条件では硬化度90%の硬化物が得られなかった。
【0177】
(比較例6)
特許文献1(国際公開第2014/184082号)の実施例I12に類似したものである。イソシアヌレート環が多く形成され、靭性に劣っていた。
【0178】
(比較例7)
特許文献2(国際公開第2016/102358号)の実施例1に類似したものである。ポリオールを配合した樹脂組成物とすることで水酸基量が大幅に増え、ウレタン結合が多く形成され、25℃における粘度、硬化度90%における耐熱性、弾性率に劣っていた。
【0179】
(比較例8)
構成要素[c]を含まず、かつ構成要素[b]の代わりにアミン硬化剤を配合した結果、25℃における粘度、硬化度90%における耐熱性、弾性率に劣っていた。
【0180】
【表2-1】
【0181】
【表2-2】
【0182】
【表2-3】
【0183】
【表2-4】
【産業上の利用可能性】
【0184】
本発明は、樹脂組成物の低温での粘度安定性に有するため、強化繊維への注入時に低粘度を保持して含浸性に優れ、高靭性と高耐熱性を兼備し、さらには高弾性率も備えた繊維強化複合材料用エポキシ樹脂組成物、およびそれを用いた繊維強化複合材料を提供可能となる。これにより、特に航空機、自動車用途への繊維強化複合材料の適用が進み、さらなる軽量化による燃費向上、地球温暖化ガス排出削減への貢献が期待できる。