(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-04-08
(45)【発行日】2025-04-16
(54)【発明の名称】推定装置、蓄電装置、推定方法
(51)【国際特許分類】
G01R 31/3828 20190101AFI20250409BHJP
G01R 31/387 20190101ALI20250409BHJP
H01M 10/48 20060101ALI20250409BHJP
H02J 7/00 20060101ALI20250409BHJP
【FI】
G01R31/3828
G01R31/387
H01M10/48 P
H02J7/00 M
(21)【出願番号】P 2021090029
(22)【出願日】2021-05-28
【審査請求日】2024-04-19
(73)【特許権者】
【識別番号】507151526
【氏名又は名称】株式会社GSユアサ
(74)【代理人】
【識別番号】110001036
【氏名又は名称】弁理士法人暁合同特許事務所
(72)【発明者】
【氏名】今中 佑樹
【審査官】青木 洋平
(56)【参考文献】
【文献】国際公開第2018/181489(WO,A1)
【文献】国際公開第2014/083856(WO,A1)
【文献】特開2005-261130(JP,A)
【文献】特開2001-078365(JP,A)
【文献】特開2013-057537(JP,A)
【文献】特開2000-150003(JP,A)
【文献】国際公開第2016/158396(WO,A1)
【文献】特開2006-017682(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/36-31/396
H01M 10/48
H02J 7/00
(57)【特許請求の範囲】
【請求項1】
蓄電セル又は組電池の残存電気量を推定する推定装置であって、
前記蓄電セル又は前記組電池の電流の積算値に基づき残存電気量を推定する第1処理と、
前記電流の計測誤差の積算値に基づいて、残存電気量の累積誤差を推定する第2処理と、
前記第1処理とは異なる方法で残存電気量を推定する第3処理と、
前記第1処理で推定した残存電気量と、前記第3処理で推定した残存電気量との差である残存電気量差を算出する第4処理と、
前記累積誤差と、前記残存電気量差と
の差分及び電流積算時間に基づいて、前記計測誤差の補正値を算出する第5処理と、
前記第5処理で算出した前記補正値に基づいて、前記計測誤差を補正する第6処理と、を実行
し、
前記第6処理の実行後、補正後の前記計測誤差を用いて、前記第2処理を実行する、推定装置。
【請求項2】
請求項1に記載の推定装置であって、
前記累積誤差と、前記残存電気量差との差が閾値を超えている場合に、前記第6処理を実行して、前記計測誤差を補正する、推定装置。
【請求項3】
請求項1
または請求項2に記載の推定装置であって、
前記第3処理において、前記蓄電セル又は前記組電池を満充電まで充電する満充電検出法により、前記蓄電セル又は前記組電池の残存電気量を推定する、推定装置。
【請求項4】
蓄電装置であって、
前記蓄電セル又は前記組電池と、
前記蓄電セル又は前記組電池の電流を計測する電流計測部と、
請求項1から
請求項3のいずれか一項に記載の推定装置と、を含む、蓄電装置。
【請求項5】
蓄電セル又は組電池の残存電気量を推定する推定方法であって、
前記蓄電セル又は前記組電池の電流の積算値に基づき残存電気量を推定する第1ステップと、
前記電流の計測誤差の積算値に基づいて、残存電気量の累積誤差を推定する第2ステップと、
前記第1ステップとは異なる方法で残存電気量を推定する第3ステップと、
前記第1ステップで求めた残存電気量と、前記第3ステップで求めた残存電気量との差である残存電気量差を算出する第4ステップと、
前記累積誤差と、前記残存電気量差との差
分及び電流積算時間に基づいて、前記計測誤差の補正値を算出する第5ステップと、
前記第5ステップで算出した前記補正値に基づいて、前記計測誤差を補正する第6ステップと、を実行
し、
前記第6ステップの実行後、補正後の前記計測誤差を用いて、前記第2ステップを実行する、推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電流の計測誤差を補正して、蓄電セル又は組電池の残存電気量の推定精度を向上させる技術に関する。
【背景技術】
【0002】
蓄電セル又は組電池の電流や電圧を計測して、これらの計測結果から蓄電セル又は組電池の残存電気量を推定する技術が知られている(例えば、下記特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
蓄電セル又は組電池の残存電気量を推定する方法の一つに、電流積算法がある。電流積算法では、電流計測値に含まれる計測誤差に起因する誤差が、推定結果に累積される(以下、残存電気量の推定結果に累積されるこのような誤差を、「累積誤差」と称する)。
【0005】
本発明は、電流の計測誤差の補正値を求め、累積誤差の推定精度を向上させる技術を開示する。
【課題を解決するための手段】
【0006】
蓄電セル又は組電池の残存電気量を推定する推定装置は、前記蓄電セル又は前記組電池の電流の積算値に基づき残存電気量を推定する第1処理と、前記電流の計測誤差の積算値に基づいて、残存電気量の累積誤差を推定する第2処理と、前記第1処理とは異なる方法で残存電気量を推定する第3処理と、前記第1処理で推定した残存電気量と、前記第3処理で推定した残存電気量との差である残存電気量差を算出する第4処理と、前記累積誤差と、前記残存電気量差とに基づいて、前記計測誤差の補正値を算出する第5処理と、を実行する。
【0007】
「残存電気量」として、蓄電セル又は組電池の残存容量[Ah]、SOC(State of Charge)[%]、などを例示することができる。
【0008】
この発明は、蓄電装置に適用することができ、蓄電装置の残存電気量推定方法、及び残存電気量推定プログラムにも適用することができる。
【発明の効果】
【0009】
この構成によると、蓄電セル又は組電池に流れる電流の計測誤差の補正値を求めることができる。補正値に基づき計測誤差を補正して、累積誤差の推定精度を向上させることができる。
【図面の簡単な説明】
【0010】
【発明を実施するための形態】
【0011】
<推定装置の概要>
(1)蓄電セル又は組電池の残存電気量を推定する推定装置は、前記蓄電セル又は前記組電池の電流の積算値に基づき残存電気量を推定する第1処理と、前記電流の計測誤差の積算値に基づいて、残存電気量の累積誤差を推定する第2処理と、前記第1処理とは異なる方法で残存電気量を推定する第3処理と、前記第1処理で推定した残存電気量と、前記第3処理で推定した残存電気量との差である残存電気量差を算出する第4処理と、前記累積誤差と、前記残存電気量差とに基づいて、前記計測誤差の補正値を算出する第5処理と、を実行する。
【0012】
この構成では、蓄電セル又は組電池の電流の積算値に基づき、残存電気量を推定し(第1処理)、電流の計測誤差の積算値に基づいて、残存電気量の累積誤差を推定する(第2処理)。計測誤差とは、直接計測することが困難である誤差の真値に代えて、統計値又は実験値に基づいて設定した任意の値である。
【0013】
第1処理とは異なる方法で蓄電セル又は組電池の残存電気量を推定する(第3処理)。第1処理で推定した残存電気量と第3処理で推定した残存電気量との差である残存電気量差を算出する(第4処理)。第3処理で推定した残存電気量は、電流の積算値に基づくものではないため、電流に起因する誤差は含まれない。したがって、第4処理で算出される残存電気量差は、電流に起因する誤差を累積した値を反映している。
【0014】
電流に起因する誤差としては、ゲイン誤差とオフセット誤差がある。ゲイン誤差は充電及び放電を繰り返すことで相殺されるため、残存電気量の推定精度向上のためには、オフセット誤差の影響を小さくすることが求められる。第4処理で算出される残存電気量差には、オフセット誤差の累積値が含まれる。
【0015】
こうして得られた累積誤差と残存電気量差とに基づいて、計測誤差の補正値を算出する(第5処理)。計測誤差の補正値を求めることで、第2処理において用いた計測誤差の値が妥当であるか否かを判断することができる。例えば、算出した補正値が無視できるほど小さい値であれば、第2処理で用いた計測誤差の値は妥当であり、計測誤差に基づき推定した累積誤差の精度は十分に高いと判断できる。算出した補正値が非常に大きい値であれば、第2処理で用いた計測誤差の値が不当であり、補正を要するものであるか、又は、電流計測回路等に異常が発生している可能性があると判断できる。
【0016】
(2)前記第5処理で算出した前記補正値に基づいて、前記計測誤差を補正し(第6処理)、第6処理の実行後、補正後の前記計測誤差を用いて、前記第2処理を実行してもよい。この構成によれば、補正により計測誤差の値を真値に近付けて、累積誤差の推定精度を向上させることができる。累積誤差の推定精度が向上すると、電流の積算値に基づく蓄電セル又は組電池の残存電気量の推定精度が向上する。これにより、蓄電セル又は組電池の残存電気量を高精度に推定することができるため、蓄電セル又は組電池の電池性能を最大限に活用できる。
【0017】
(3)推定装置は、前記累積誤差と、前記残存電気量差との差が閾値を超えている場合に、前記第6処理を実行して、前記計測誤差を補正してもよい。累積誤差と残存電気量差との差が大きい場合には、計測誤差の累積値である累積誤差が大きいことが想定される。具体的には、計測誤差を真値よりも大きな値に設定した結果、累積誤差が大きくなっている場合である。第6処理を実行し、計測誤差の補正を行うことにより、計測誤差を真値に近付けることができる。これにより、電流の積算値に基づく蓄電セル又は組電池の残存電気量の推定精度が向上して、蓄電セル又は組電池の電池性能を最大限に活用できる。
【0018】
(4)前記第3処理では、前記蓄電セル又は前記組電池を満充電まで充電する満充電検出法により、前記蓄電セル又は前記組電池の残存電気量を推定してもよい。
【0019】
満充電検出法により推定した残存電気量には、電流の計測誤差が累積されていないため、電流の積算値に基づき推定した残存電気量と比べて推定精度が高い。満充電検出法により推定した残存電気量に基づき、第4処理において、第1処理で推定した残存電気量を高精度に補正することができる。その結果、第5処理において、精度の高い補正値を得ることができる。
【0020】
(5)蓄電装置は、蓄電セル又は組電池と、前記蓄電セル又は前記組電池の電流を計測する電流計測部と、上記の推定装置と、を含む。推定装置によって蓄電セル又は組電池の残存電気量の推定精度が向上するため、蓄電セル又は組電池の性能を最大限に活用できる。
【0021】
<実施形態1>
1.バッテリの説明
図1は自動車10の側面図、
図2はバッテリ50の分解斜視図である。自動車10は、エンジン駆動車であり、バッテリ50を備えている。自動車10は、エンジン(内燃機関)に代えて、車両駆動装置としての蓄電装置や燃料電池を備えていてもよい。
図1では、自動車10、エンジン20、バッテリ50のみ示し、自動車10を構成する他の部品は図示を省略している。自動車10は「車両」の一例、バッテリ50は「蓄電装置」の一例である。
【0022】
図2に示すように、バッテリ50は、組電池60と、回路基板ユニット65と、収容体71を備える。
【0023】
収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
【0024】
収容体71は、組電池60と回路基板ユニット65を収容する。
図2に示す形態では、組電池60は12個の二次電池セル62を有する。二次電池セル62は、「蓄電セル」の一例である。12個の二次電池セル62は、3並列で4直列に接続されている。回路基板ユニット65は、組電池60の上部に配置されている。後述する
図6のブロック図では、並列に接続された3つの二次電池セル62が1つの電池記号で表される。
【0025】
図2に示す蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部(
図2における左手前側)のうち、一方の隅部に正極の外部端子52が固定され、他方の隅部に負極の外部端子51が固定されている。
【0026】
図3及び
図4に示すように、二次電池セル62は、直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。本実施形態における二次電池セル62は、リチウムイオン二次電池である。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
【0027】
二次電池セル62は、
図3及び
図4に示したプリズマティックセルに限定されず、円筒型セルであってもよいし、ラミネートフィルムケースを有するパウチセルであってもよい。
【0028】
電極体83は、例えば銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
【0029】
電極体83は、巻回タイプのものに代えて、積層タイプのものであってもよい。
【0030】
正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている(
図4参照)。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。
【0031】
正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。
【0032】
蓋85は、圧力開放弁95を有している。圧力開放弁95は、
図3に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。
【0033】
図5は自動車10の電気的構成を示すブロック図、
図6はバッテリ50の電気的構成を示すブロック図である。
【0034】
自動車10は、
図5に示すように、駆動装置であるエンジン20、エンジン制御部21、エンジン始動装置23、車両発電機であるオルタネータ25、電気負荷27、車両ECU(電子制御装置:Electronic Control Unit)30、バッテリ50を備えている。
【0035】
バッテリ50は、電力線37に接続されている。バッテリ50には、電力線37を介して、エンジン始動装置23、オルタネータ25、電気負荷27が接続されている。
【0036】
エンジン始動装置23は、スターターモータを含む。イグニッションスイッチ24をオンにすると、バッテリ50からクランキング電流が流れ、エンジン始動装置23が駆動する。エンジン始動装置23の駆動により、クランクシャフトが回転し、エンジン20を始動することがきる。
【0037】
電気負荷27は、エンジン始動装置23以外の、自動車10に搭載された電気負荷である。電気負荷27は、定格12Vであり、エアコン、オーディオシステム、カーナビゲーション、補機類などである。
【0038】
オルタネータ25は、エンジン20の動力により発電する車両発電機である。オルタネータ25の発電量が自動車10の電気負荷による電力消費量を上回っている場合、オルタネータ25によりバッテリ50は充電される。オルタネータ25の発電量が自動車10の電気負荷による電力消費量よりも小さい場合、バッテリ50は放電し、発電量の不足を補う。
【0039】
車両ECU30は、通信線M1を介してバッテリ50と通信可能に接続されており、通信線M2を介してオルタネータ25と通信可能に接続されている。車両ECU30は、バッテリ50からSOCの情報を受け、オルタネータ25の発電量を制御することで、バッテリ50のSOCをコントロールする。
【0040】
車両ECU30は、通信線M3を介してエンジン制御部21と通信可能に接続されている。エンジン制御部21は、自動車10に搭載されており、エンジン20の動作状態を監視する。
【0041】
エンジン制御部21は、速度計測器などの計器類の計測値から、自動車10の走行状態を監視する。車両ECU30は、エンジン制御部21から、イグニッションスイッチ24の入り切りの情報、エンジン20の動作状態の情報及び自動車10の走行状態(走行中、走行停止、アイドリングストップなど)の情報を得る。
【0042】
バッテリ50は、
図6に示すように、電流遮断装置53と、組電池60と、電流計測部54と、温度センサ58と、管理装置100と、を備える。バッテリ50は、定格12Vのバッテリである。
【0043】
電流遮断装置53、組電池60及び電流計測部54は、パワーライン55P、55Nを介して、直列に接続されている。パワーライン55Pは、正極の外部端子52と組電池60の正極とを接続する。パワーライン55Nは、負極の外部端子51と組電池60の負極とを接続する。
【0044】
電流遮断装置53は正極のパワーライン55Pに設けられている。電流計測部54は、負極のパワーライン55Nに設けられている。
【0045】
電流遮断装置53として、リレーなどの有接点スイッチ(機械式)や、FETなどの半導体スイッチを用いることができる。電流遮断装置53は、常時、CLOSEに制御される。バッテリ50に異常がある場合、電流遮断装置53をOPENして、電流を遮断することで、バッテリ50を保護する。
【0046】
電流計測部54は、組電池60の電流I[A]を計測して、電流計測値Imを制御部120に出力する。電流計測部54は、電流検出抵抗や磁気センサを用いることができる。
【0047】
温度センサ58は、組電池60の側面に取り付けられており、組電池60の温度を計測して、制御部120に出力する。
【0048】
管理装置100は、回路基板ユニット65(
図2参照)に設けられている。管理装置100は、電圧計測部110と制御部120とを備える。制御部120は、「推定装置」の一例である。
【0049】
電圧計測部110は、信号線によって各二次電池セル62の両端にそれぞれ接続され、各二次電池セル62のセル電圧Vを計測する。電圧計測部110は、各二次電池セル62のセル電圧Vと、それら全ての電圧Vを合計して得られる組電池60の端子間電圧VBを、制御部120に出力する。
【0050】
制御部120は、演算機能を有するCPU121と、記憶部であるメモリ123と、通信部125を含む。通信部125は車両ECU30との通信用である。
【0051】
制御部120は、組電池60の計測電流Im、総電圧VB、温度の情報をモニタして、バッテリ50の状態を監視する。また、各二次電池セル62のセル電圧Vも監視する。
【0052】
メモリ123は、フラッシュメモリやEEPROM等の不揮発性の記憶媒体である。メモリ123には、組電池60の状態を監視するプログラム、SOCの推定プログラム(
図9に示すフローの実行プログラム)、及び各プログラムの実行に必要なデータが記憶されている。
【0053】
2.組電池の残存電気量の推定方法について
本実施形態における二次電池セル62は、正極活物質にリン酸鉄リチウム(LiFePO
4)、負極活物質にグラファイトを用いたLFP/Gr系(リン酸鉄系)のリチウムイオン二次電池セルである。
図2に示した12個の二次電池セル62を、3並列で4直列に接続することに代えて、4個の二次電池セル62を直列に接続して1つの組電池60を構成してもよい。
【0054】
組電池60を構成する各二次電池セル62には同じ大きさの電流Iが流れ、組電池60の電圧VBは4直列された各二次電池セル62の電圧Vを合計した値である。以下に説明する残存電気量の推定では、組電池60の残存電気量を推定している。
【0055】
組電池60の残存電気量を表す物理量として、SOCを用いて説明する。SOCは、組電池60の満充電容量Co[Ah]に対する残存容量Cr[Ah]の比率[%]であり、以下の(1)式により表される。満充電容量Coは、完全充電された組電池60から放電可能な電気量である。
【0056】
SOC=(Cr/Co)×100・・・・・(1)
【0057】
電流の積算値に基づくSOCの推定方法として、電流積算法がある。電流積算法は、下記(2)式に示すように、電流Iの時間積分値に基づいてSOCを推定する方法である。電流Iの符号を、充電時はプラス、放電時はマイナスとする。
【0058】
SOC=SOCo+100×(∫Idt)/Co・・・・・(2)
SOCoは、SOCの初期値、Iは電流、tは積算時間である。
【0059】
下記(3)式に示すように、電流計測部54の電流計測値Imは計測誤差εを含む。
Im=Ic+ε・・・・・(3)
Imは電流計測値、Icは電流の真値、εは計測誤差である。
【0060】
以下の説明において、電流積算法により推定したSOCを第1SOCとする。第1SOCの推定では、通電にともなう計測誤差εの累積により、SOCの誤差(後述するSOC推定誤差Se)が増大する。計測誤差εに含まれる誤差として、ゲイン誤差とオフセット誤差(無電流の状態でも検出される誤差)が知られている。ゲイン誤差は充放電により相殺されるため、オフセット誤差が支配的と考えられる。
【0061】
SOC推定誤差Seは、計測誤差εを用いて、以下の(4)式で表すことができる。SOC推定誤差Seは、「累積誤差」の一例である。
【0062】
Se=(∫εdt)/Co×100・・・・・(4)
【0063】
電流積算法では、計測誤差εが累積されるため、時間の経過とともにSOC推定誤差Seが増大するという課題がある。電流積算法により推定した第1SOCを、電流積算法とは異なる別の方法で推定したSOCに基づいて補正することで、SOC推定誤差Seを抑えることが可能であり、第1SOCの推定精度を向上させることができる。
【0064】
蓄電セルの電圧に基づくSOCの推定方法の一つに、満充電検出法がある。満充電検出法は、組電池60が満充電に相当する電圧まで充電されたことを制御部120が検出すると、そのときのSOCを、100%又はそれに近い所定の設定値と推定する方法である。以下の説明において、満充電検出法で推定したSOCを第2SOCとし、満充電に相当する電圧まで充電されたときの第2SOCを、100%とする。
【0065】
組電池60が満充電に相当する電圧まで充電されたか否かの判断は、所定の満充電完了条件を満たしたか否かにより判断することができる。例えば、定電圧充電の場合、組電池60の電圧VBが所定の目標電圧に到達した以降の充電時間Tsや、垂下する電流値を閾値電流Isと比較することより行うことができる(
図7参照)。満充電に到達したか否かの判断は、組電池60の総電圧VBが所定値以上、電流計測値Imが所定値以下であるかにより判断してもよい。
【0066】
この実施形態では、電流積算法で推定した第1SOCを、満充電検出法により推定した第2SOCに基づいて補正し、その後は、補正後の第1SOCを初期値として、電流積算法で第1SOCを推定する。
【0067】
例えば、満充電容量が60[Ah]、満充電検出の直前に電流積算法で推定した残存容量が59.528[Ah]の場合、満充電検出後に残存容量を59.528[Ah]から60[Ah]に補正する。補正後は、残存容量60[Ah]を初期値として、電流積算法で第1SOCを推定する。つまり、初期値を100[%]として、第1SOCを推定する。
【0068】
下記の(5)式に示すSOC差Sxは、満充電検出法で推定した第2SOCから、電流積算法で推定した第1SOCを減じたSOC差である。Sxは、電流積算法によるSOC推定誤差Seの真値又は真値に近い値を示す。SOC差Sxは、「残存電気量差」の一例である。
【0069】
Sx=(第2SOC-第1SOC)・・・・・(5)
【0070】
例えば、満充電を検出する直前に電流積算法で推定した残存容量が59.528[Ah]の場合、第1SOCに換算すると、99.21[%]であることから、SOC差Sxは、100[%]-99.21[%]=0.79[%]である。
【0071】
(4)式で算出したSOC推定誤差Seと(5)式で算出したSOC差Sxとに基づいて、電流計測値Imに含まれる計測誤差εの補正値Δεを算出する(下記(6)式)。
【0072】
Δε=k×(Se-Sx)/T・・・・・(6)
Tは電流積算時間、kは所定の係数である。
【0073】
電流積算時間Tとは、電流積算法により第1SOCを推定するにあたり、電流計測値Imを積算する時間である。具体的には、第1SOCの推定開始から、満充電を検出する直前までの時間になる。
【0074】
図8は、第1SOCの推定値L0の時間変化をプロットしたグラフの一例である。
図8では、t1、t2、t3にて、第1SOCを100%に補正している。1サイクル目の場合、t0~t1が電流積算時間Tである。2サイクル目の場合、t1~t2、3サイクル目の場合、t2~t3がそれぞれ電流積算時間Tである。第1SOCの推定値L0を挟み込む点線は、推定値L0を中心とした、SOC推定誤差Seの範囲を示している。
【0075】
(6)式で求めた補正値Δεを用いて、下記(7)式で示すように、電流計測値Imの計測誤差εを補正することができる。
【0076】
ε1=ε-Δε・・・・・(7)
ε1は補正後の計測誤差、εは補正前の計測誤差である。
【0077】
計測誤差εの補正により、SOC推定誤差Seの推定精度が向上する。SOC推定誤差Seの推定精度向上により、真値よりも計測誤差εを大きく見積もっていた場合に比べて、SOCの推定範囲を狭くすることができる。
【0078】
3.SOC推定処理の制御フロー
図9は、SOC推定処理のフローチャートである。SOC推定処理は、S10~S130のステップから構成されており、制御部120の起動後、所定の演算周期で実行される。メモリ123には第1SOCの初期値SOCoと、計測誤差εの初期値が予め記憶されているものとする。計測誤差εの初期値は、統計値又は実験値を用いる。以下の例において、計測誤差εの初期値は4.8[mA]とする。
【0079】
制御部120は、SOC推定処理を開始すると、組電池60の電圧VBに基づいて、組電池60が満充電であるか否かを判断する(S10)。SOCが上述した満充電完了条件を満たしていなければ、組電池60が満充電ではないと判断する。
【0080】
組電池60が満充電でない場合(S10:NO)、制御部120は、電流積算法により組電池60の第1SOCを推定する(S20)。具体的には、制御部120は、(2)式に示すように、電流計測部54により計測した電流計測値Imを積算し、SOCの初期値SOCoに加減算することで第1SOCを推定して、その結果をメモリ123に記憶する。
【0081】
例えば、満充電容量=60[Ah]、電流計測値Im=1[A]、演算周期0.1[s]、残存容量の前回値=59.5[Ah]、第1SOC=99.17[%]の場合、1000周期経過時の充電量=1[A]×0.1[s]×1000/3600≒0.028[Ah]となる。そのため、残存容量の更新値は59.5+0.028=59.528[Ah]、第1SOCの更新値は99.21[%]である。S20は、「第1処理」及び「第1ステップ」の一例である。
【0082】
次に、制御部120は、メモリ123に記憶された計測誤差εを用いて、SOC推定誤差Seを算出する(S30)。制御部120は、(4)式に基づいて、SOC推定誤差Seを算出し、その結果を、メモリ123に記憶する。
【0083】
例えば、計測誤差ε=4.8[mA]、SOC推定誤差Seの前回値を容量に換算した値が800[mAh]の場合、1000周期経過時に累積されている誤差累積量Cxは、800[mAh]+4.8[mA]×0.1×1000[s]/3600≒800.13[mAh]である。このとき、SOC推定誤差Seの更新値は、800.13[mAh]/60[Ah]×100≒1.33[%]となる。S30は、「第2処理」及び「第2ステップ」の一例である。
【0084】
次に、制御部120は、SOC推定誤差Seを判定する(S40)。具体的には、SOC推定誤差Seの絶対値を閾値TH1と比較する。閾値TH1は、第1SOCに要求される推定精度に応じて設定する任意の値である。SOC推定誤差Seが閾値TH1より小さい場合(S40:NO)、制御部120は、第1SOCを補正する必要はないと判断する。この場合、S20に移行し、電流積算法による第1SOCの推定を継続する。
【0085】
SOC推定誤差Seは、積算時間tが長くなるほど計測誤差εが累積して大きくなるため、やがて閾値TH1以上になる。
【0086】
SOC推定誤差Seの絶対値が閾値TH1以上になると、制御部120は、SOC推定精度Seが大きく、計測誤差εを補正する必要が有ると判断し(S40:YES)、車両ECU30に対して組電池60の充電を指示する(S50)。
【0087】
組電池60の充電中も、制御部120は、組電池60が満充電完了条件を満たすまで、電流積算法による第1SOCの推定を継続し、その結果を逐一メモリ123に記憶する。満充電完了条件を満たすと、制御部120は、組電池60が満充電であると判断する(S10:YES)。
【0088】
その後、制御部120は、満充電検出法により、第2SOCを推定する(S60)。具体的には、制御部120は、第2SOCを100%と推定する。S60は、電流積算法とは異なる方法(満充電検出法)でSOCを推定する処理であり、「第3処理」及び「第3ステップ」の一例である。
【0089】
次に、制御部120は、(5)式に基づいて、SOC差Sxを算出する(S70)。
【0090】
満充電検出直前の第1SOCが99.21[%]の場合、SOC差Sxは、0.79[%]である。満充電検出直前における、電流積算法による残存容量の推定値が59.528[Ah]の場合、SOC差Sxに相当する容量は0.472[Ah]である。S70は、「第4処理」及び「第4ステップ」の一例である。
【0091】
次に、制御部120は、電流積算法で推定した第1SOCを、満充電検出法により推定した第2SOCに基づいて補正する(S80)。
【0092】
例えば、満充電容量が60[Ah]、電流積算法による満充電検出直前の残存容量推定値が59.528[Ah]の場合、残存容量推定値を60[Ah]に補正し、第1SOCを100[%]に補正する。
【0093】
補正後、制御部120は、SOC推定誤差Seを、ゼロにリセットする(S90)。上記の例では、SOC推定誤差Se=1.33[%]をリセットする。SOC推定誤差Seのリセットにより、誤差累積量Cx=800.13[mAh]もリセットさせる。
【0094】
次に、制御部120は、S30で算出した満充電検出直前のSOC推定誤差Seから、S70で算出したSOC差Sxを減算する(S100)。
【0095】
上記の例では、SOC差Sxは0.79[%]、SOC推定誤差Seは1.33[%]であることから、(Se-Sx)は0.54[%]である。容量では、800.13[mAh]-0.472[Ah]≒328[mAh]である。S100は、「第5処理」及び「第5ステップ」の一例である。
【0096】
その後、制御部120は、(Se-Sx)の絶対値の大きさを判定する。具体的には、(Se-Sx)の絶対値を閾値TH2と比較する(S110)。閾値TH2は、計測誤差εに要求される精度に応じて設定する任意の値である。
【0097】
(Se-Sx)の絶対値が閾値TH2より小さい場合(S110:NO)、制御部120は、計測誤差εを補正する必要はないと判断する。
【0098】
この場合、計測誤差εを補正せずにS20に移行する。制御部120は、メモリ123に記憶されている計測誤差εをそのまま用いて、電流積算法による第1SOCの推定を行う。つまり、S80で補正した第1SOCを初期値として、(2)式に基づいて、第1SOCを推定する。
【0099】
(Se-Sx)の絶対値が、閾値TH2以上の場合(S110:YES)、制御部120は、計測誤差εを補正する必要が有ると判断する。この場合、制御部120は、S100で算出した(Se-Sx)の値に基づいて、(6)式より、計測誤差εの補正値Δεを算出する(S120)。
【0100】
次に、制御部120は、S120で算出した補正値Δεを用いて、(7)式により計測誤差εを補正し(S130)、補正後の計測誤差ε1をメモリ123に記憶する。S130は、「第6処理」の一例である。
【0101】
その後、S20に移行し、制御部120は、補正後の計測誤差ε1を使用して、電流積算法による第1SOCの推定を行う。このようにすることで、SOC推定誤差Seの推定精度を向上させることができる。
【0102】
<S110における判定の例>
S110では、(Se-Sx)の絶対値を閾値TH2と比較し、(Se-Sx)の絶対値が閾値TH2以上の場合、制御部120は、計測誤差εを補正する必要が有ると判断する。閾値TH2は、固定値でもよいし、電流積算時間Tに応じて変更してもよい。
【0103】
計測誤差εは、誤差の真値である誤差真値ε0と、誤差量εxとの和として、下記(8)式で表すことができる。
ε=ε0+εx・・・・・(8)
【0104】
以下、計測誤差εに含まれる誤差量εxを0.5[mA]未満に抑制したいときに、電流積算時間Tが31日の場合と7日の場合とで、それぞれどのように判断されるかについて説明する。
【0105】
誤差量εxが0.5[mAh]の場合、積算時間に伴い累積する誤差(Se-Sx)の絶対値を容量に換算すると、1日あたり、0.5[mA]×24[h]=12[mAh]である。したがって、S110において、1日あたりの誤差が12[mAh]未満であれば補正を行わず、12[mAh]以上であれば補正を行う。なお、このときの閾値TH2は、1日あたりのSOCに換算すると、12[mAh]/(60[Ah]×1000)×100=0.02[%]である。
【0106】
例えば、誤差(Se-Sx)の容量換算値が328[mAh]であり、このときの電流積算時間Tが31日の場合、1日あたりの誤差は、328[mAh]/31[日]≒10.6[mAh]である。これは12[mAh]より小さいため、制御部120は補正を行わない(S110:NO)。
【0107】
同じ328[mAh]の誤差が累積するのに要した電流積算時間Tが7日である場合、1日あたりの誤差は46.9[mAh]となり、12[mAh]以上である。この場合、制御部120は補正が必要と判断し(S110:YES)、S120、S130を実行する。
【0108】
<S130の補正例>
S110で補正が必要と判断した場合、計測誤差εを補正する。計測誤差εの補正値Δεには、S100において式(6)で算出した値を用いる。係数kは、1以下の正の値である。k=1とすれば、大きな補正値Δεで計測誤差εを補正できる。係数kを1未満の正の値として、小さな補正値Δεによる補正を繰り返してもよい。
【0109】
上記例のように、7日間で328[mAh]、SOC推定誤差Seを多く推定していた場合を考える。この場合、電流が一定であるとして容量を電流に換算すると、328[mAh]/168[h]=1.95[mA]となる。これが、計測誤差εに含まれる誤差量εxである。
【0110】
計測誤差εの前回値が4.8[mA]の場合、係数k=1のときは、誤差量εxがそのまま補正値Δεとなる。(6)式及び(7)式より、補正後の計測誤差ε1=4.8[mA]-1.95[mA]=2.85[mA]となる。
【0111】
従って、S130にて、電流計測値Imの計測誤差εを、前回値4.8[mA]から補正後の2.85[mA]に置き換えることで、電流積算法におけるSOC推定誤差Seの推定精度を向上させることができる。
【0112】
係数kとして1未満の正の値を用いると、以下のようになる。
【0113】
例えば係数k=0.5に設定した場合、4.8[mA]-1.95[mA]×0.5=3.825[mA]であるため、補正後の計測誤差ε1を3.825[mA]とする。係数k=1の場合と比べると補正値Δεが小さい。今後満充電検出法を実施する際に補正を行い、補正を繰り返して最終的に電流の計測誤差εを誤差真値ε0に徐々に近づける。
【0114】
5.効果説明
この構成では、電流計測値Imに含まれる計測誤差εの補正により、SOC推定誤差Seの推定精度が向上する。これにより、SOC推定範囲Yを狭くすることができる。補正前の計測誤差εを真値よりも小さく見積もっていた場合には、計測誤差εの補正により、SOC推定誤差Seの推定精度が向上し、SOC推定範囲Yの信頼性が向上する。
【0115】
図10は、SOC推定範囲を示すグラフである。L0はSOCの推定値、Y1は非補正時のSOC推定範囲、Y2は補正実行時のSOC推定範囲である。計測誤差εの補正により、推定誤差Seを抑えることができるため、非補正時に比べて、SOC推定範囲Yを狭く絞り込むことができる。
【0116】
SOC推定範囲Yの絞り込みにより、電池性能を維持することが可能となる。例えば、組電池60の充電制御では、電池性能の低下を防ぐために、SOC推定範囲Yの上限値に応じて充電電流が決められている場合がある。この構成では、SOC推定範囲Yの上限値に応じた適切な充電電流で組電池60を充電することができるため、電池性能を維持できる。
【0117】
SOCの使用範囲(例えばSOC50%~80%)が決められている場合は、SOC推定範囲Yの上限値が使用範囲の上限値になるまで、組電池60を充電することができる。この構成では、SOC推定範囲Yが絞り込まれており、L0を使用範囲の上限値に近付けることができるため、組電池60の性能を活用できる。
【0118】
計測誤差εの補正により、計測誤差εの累積であるSOC推定誤差Seが、閾値TH1に到達するまでの時間を長くすることができる。満充電検出法によるSOCの補正の頻度を抑えることができる。
【0119】
SOCの補正の頻度を減らすことで、SOC補正のための充電頻度を減らすことができる。満充電への充電中は回生を受け入れることができないので、SOC補正のための充電頻度を減らすことで、回生受入が制限される期間を短くすることが可能となり、車両の燃費向上に寄与する。
【0120】
<実施形態2>
実施形態1では、満充電検出法で推定した第2SOCを用いて計測誤差εを補正した。
【0121】
実施形態2では、OCV法で推定した第2SOCを用いて、計測誤差εを補正する。
【0122】
図11は、正極にリン酸鉄リチウム、負極にグラファイトを使用したLFP/Gr系のリチウムイオン二次電池セル62のSOC-OCVの相関特性である。横軸はSOC、縦軸はOCVである。OCVは開放電圧(Open Circuit Voltage)である。OCVは無電流又は無電流とみなせる場合(電流値が所定値以下の場合)のセル62の端子電圧でもよい。
【0123】
リチウムイオン二次電池セルは、SOCの変化量に対するOCVの変化量が相対的に低い低変化領域Lと、相対的に高い高変化領域Hを含む複数の充電領域を有している。
【0124】
具体的には、2つの低変化領域L1、L2と、3つの高変化領域H1、H2、H3を有している。
【0125】
低変化領域L1はSOCの値で35[%]~62[%]の範囲であり、低変化領域L2はSOCの値で68[%]~96[%]の範囲である。
【0126】
低変化領域L1、L2は、SOCの変化量に対するOCVの変化量が非常に小さくOCVが略一定のプラトー領域である。プラトー領域とは、SOCの変化量に対するOCVの変化量が所定値以下の領域である。所定値は、一例として2[mV/%]である。
【0127】
第1高変化領域H1は、SOCの値で62[%]よりも大きく68[%]未満の範囲である。第2高変化領域H2は、SOCの値で35[%]未満の範囲、第3高変化領域H3は、SOCの値で96[%]より大きい範囲である。
【0128】
OCV法は、OCVを、SOC-OCVの相関特性(
図11のグラフ)に参照することで、SOCを推定する。例えば、OCVがOCVxの場合のSOCは、SOCxと推定することができる。このようにして、OCV法により第2SOCを推定できる。
【0129】
組電池60の使用範囲Fは、50%~80%など、上限値が100%未満に設定される場合がある。使用範囲Fの上限値を100%未満として、満充電に対して余裕を持った設定とすることで、回生の受け入れが可能となる。
【0130】
この例では、第1高変化領域H1は、使用範囲Fに含まれている。したがって、使用範囲F内においても、OCV法を実行して、第2SOCを推定できる。
【0131】
OCV法の実行は、使用範囲F内に限らず、第3高変化領域H3まで組電池60を充電して行ってもよいし、第2高変化領域H2まで組電池60を放電して行ってもよい。
【0132】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
【0133】
(1)上記実施形態では、二次電池セル62の一例として、リチウムイオン二次電池セルを示した。二次電池セル62は、リチウムイオン二次電池セルに限らず、他の非水電解質二次電池セルでもよい。鉛蓄電池セルでもよい。二次電池セルに代えてキャパシタを使用してもよい。二次電池セル62、キャパシタは、「蓄電セル」の一例である。
【0134】
(2)組電池60は、複数の二次電池セル62を直並列に接続する場合に限らず、直列の接続や、単セルの構成でもよい。
【0135】
(3)上記実施形態では、バッテリ50を自動車用としたが、自動二輪用でもよい。船舶、AGV、航空機など他の移動体にバッテリ50を使用してもよい。
【0136】
(4)上記実施形態では、制御部120をバッテリ50の内部に設けた。制御部120はバッテリ50の外部に設けてもよい。つまり、バッテリ50の外に設けた制御部120で、計測誤差εの補正、SOC推定誤差Seの算出、SOC推定を行ってもよい。この場合、制御部120は、バッテリ50の内部に設けた電流計測部54と電圧計測部110とから、電流計測値Im及び総電圧VBの情報を通信により取得して、計測誤差εの補正、SOC推定誤差Seの算出、SOC推定を行ってもよい。
【0137】
(5)上記実施形態では、電流の積算値に基づく推定とは異なる残存電気量の推定方法として、満充電検出法とOCV法を例示した。電流の積算値を用いることなく残存電気量の推定ができれば、満充電検出法、OCV法以外のどのような方法を用いてもよい。
【符号の説明】
【0138】
10 自動車(車両の一例)
50 バッテリ(蓄電装置の一例)
54 電流計測部
60 組電池
62 二次電池セル(蓄電セルの一例)
110 電圧計測部
120 制御部(推定装置の一例)
ε 計測誤差
Δε 補正値
Im 電流計測値
Se SOC誤差(累積誤差の一例)
Sx SOC差(残存電気量差の一例)