IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックエナジー株式会社の特許一覧

<>
  • 特許-非水電解質二次電池 図1
  • 特許-非水電解質二次電池 図2
  • 特許-非水電解質二次電池 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-04-18
(45)【発行日】2025-04-28
(54)【発明の名称】非水電解質二次電池
(51)【国際特許分類】
   H01M 10/058 20100101AFI20250421BHJP
   H01M 4/133 20100101ALI20250421BHJP
   H01M 4/36 20060101ALI20250421BHJP
   H01M 4/38 20060101ALI20250421BHJP
   H01M 4/48 20100101ALI20250421BHJP
   H01M 4/587 20100101ALI20250421BHJP
   H01M 10/0525 20100101ALI20250421BHJP
   H01M 10/0569 20100101ALI20250421BHJP
   H01M 50/417 20210101ALI20250421BHJP
   H01M 50/423 20210101ALI20250421BHJP
   H01M 50/431 20210101ALI20250421BHJP
   H01M 50/443 20210101ALI20250421BHJP
   H01M 50/446 20210101ALI20250421BHJP
   H01M 50/451 20210101ALI20250421BHJP
【FI】
H01M10/058
H01M4/133
H01M4/36 E
H01M4/38 Z
H01M4/48
H01M4/587
H01M10/0525
H01M10/0569
H01M50/417
H01M50/423
H01M50/431
H01M50/443 M
H01M50/446
H01M50/451
【請求項の数】 6
(21)【出願番号】P 2021563990
(86)(22)【出願日】2020-12-09
(86)【国際出願番号】 JP2020045747
(87)【国際公開番号】W WO2021117748
(87)【国際公開日】2021-06-17
【審査請求日】2023-10-23
(31)【優先権主張番号】P 2019225086
(32)【優先日】2019-12-13
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】322003798
【氏名又は名称】パナソニックエナジー株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】杉井 紀子
(72)【発明者】
【氏名】砂野 泰三
(72)【発明者】
【氏名】四宮 拓也
(72)【発明者】
【氏名】横井 麻衣
【審査官】冨士 美香
(56)【参考文献】
【文献】特開2011-009203(JP,A)
【文献】特開2000-138061(JP,A)
【文献】国際公開第2013/031226(WO,A1)
【文献】国際公開第2019/131195(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/058
H01M 10/0569
H01M 4/133
H01M 50/443
H01M 50/417
H01M 50/423
H01M 50/431
H01M 50/446
H01M 50/451
H01M 4/38
H01M 4/36
H01M 4/48
H01M 10/0525
H01M 4/587
(57)【特許請求の範囲】
【請求項1】
正極と負極がセパレータを介して対向してなる電極体と、非水電解質と、前記電極体及び前記非水電解質を収容する外装体と、を備える非水電解質二次電池であって、
前記非水電解質は、炭酸エステルからなる非水溶媒を含み、
前記負極は、負極集電体と、前記負極集電体の表面に設けられた第1負極合剤層と、前記第1負極合剤層の表面に設けられた第2負極合剤層と、を有し、
前記第1負極合剤層及び前記第2負極合剤層は、黒鉛粒子を含み、
前記第1負極合剤層における前記黒鉛粒子間の空隙率(S1)に対する前記第2負極合剤層における前記黒鉛粒子間の空隙率(S2)の比率(S2/S1)は、1.1~2.0であり、
前記第1負極合剤層の充填密度(D1)に対する前記第2負極合剤層の充填密度(D2)の比率(D2/D1)は、0.9~1.1であり、
前記セパレータは、前記正極に接する第1表面と前記負極に接する第2表面を有し、
前記第1表面のエチレンカーボネートに対する接触角は、前記第2表面のエチレンカーボネートに対する接触角よりも小さい、非水電解質二次電池。
【請求項2】
前記セパレータは基材層と被覆層を含み、前記被覆層は前記第1表面に配置されている、請求項1に記載の非水電解質二次電池。
【請求項3】
前記基材層はポリオレフィン系樹脂を含む、請求項2に記載の非水電解質二次電池。
【請求項4】
前記被覆層はアラミド樹脂及び無機粒子を含む、請求項2又は3に記載の非水電解質二次電池。
【請求項5】
前記第1負極合剤層の充填密度(D1)及び前記第2負極合剤層の充填密度(D2)は、1.3g/m~2.0g/mである、請求項1~4のいずれか1項に記載の非水電解質二次電池。
【請求項6】
前記第1負極合剤層及び前記第2負極合剤層の少なくともいずれか一方は、Si系材料を含む、請求項1~5のいずれか1項に記載の非水電解質二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、非水電解質二次電池に関する。
【背景技術】
【0002】
黒鉛粒子を負極活物質として用いる非水電解質二次電池は、高エネルギー密度の二次電池として広く利用されている。負極合剤層における負極活物質の単位体積当たりの充填密度を上げることで電池容量を大きくすることができるが、負極活物質の充填密度を上げると、負極活物質間の空隙が小さくなり電解液の液回りが悪くなって、急速充電を繰り返す充放電サイクル(急速充放電サイクル)に伴い電池容量が低下するという問題がある。
【0003】
例えば、特許文献1~3に開示された発明では、負極合剤層において負極活物質の充填密度を集電体側よりも外表面側で低くすることで、外表面側での負極活物質間の空隙を大きくして、電解液の液回りを向上させている。しかし、負極合剤層における単位体積当たりの負極活物質の量が少なくなるので、電池容量が低くなるという課題がある。さらに、負極合剤層の液回りを改善することで、正極側と負極側の電解液のバランスが失われて、高温環境下で電池容量が低下することがある。これらの面で、特許文献1~3に開示された発明には、未だ改良の余地がある。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2003-77463号公報
【文献】特開2006-196457号公報
【文献】特表2015-511389号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本開示の目的は、電池容量低下を抑制しつつ、急速充放電サイクル特性及び高温保存特性を改善した非水電解質二次電池を提供することにある。
【課題を解決するための手段】
【0006】
本開示の一態様である非水電解質二次電池は、正極と負極がセパレータを介して対向してなる電極体と、非水電解質と、電極体及び非水電解質を収容する外装体と、を備える。負極は、負極集電体と、負極集電体の表面に設けられた第1負極合剤層と、第1負極合剤層の表面に設けられた第2負極合剤層と、を有し、第1負極合剤層及び第2負極合剤層は、黒鉛粒子を含み、第1負極合剤層における黒鉛粒子間の空隙率(S1)に対する第2負極合剤層における黒鉛粒子間の空隙率(S2)の比率(S2/S1)は、1.1~2.0であり、第1負極合剤層の充填密度(D1)に対する第2負極合剤層の充填密度(D2)の比率(D2/D1)は、0.9~1.1であり、セパレータは、正極に接する第1表面と負極に接する第2表面を有し、第1表面のエチレンカーボネートに対する接触角は、第2表面のエチレンカーボネートに対する接触角よりも小さいことを特徴とする。
【発明の効果】
【0007】
本開示の一態様によれば、電池容量の低下を抑制しつつ、急速充放電サイクル特性及び高温保存特性を改善した非水電解質二次電池を提供することが可能となる。
【図面の簡単な説明】
【0008】
図1図1は、実施形態の一例である円筒型の二次電池の軸方向断面図である。
図2図2は、実施形態の一例における負極の断面図である。
図3】実施形態の一例におけるセパレータの断面図である。
【発明を実施するための形態】
【0009】
本開示の一態様である非水電解質二次電池は、正極と負極がセパレータを介して対向してなる電極体と、非水電解質と、電極体及び非水電解質を収容する外装体と、を備える。負極は、負極集電体と、負極集電体の表面に設けられた第1負極合剤層と、第1負極合剤層の表面に設けられた第2負極合剤層と、を有し、第1負極合剤層及び第2負極合剤層は、黒鉛粒子を含み、第1負極合剤層における黒鉛粒子間の空隙率(S1)に対する第2負極合剤層における黒鉛粒子間の空隙率(S2)の比率(S2/S1)は、1.1~2.0であり、第1負極合剤層の充填密度(D1)に対する第2負極合剤層の充填密度(D2)の比率(D2/D1)は、0.9~1.1であり、セパレータは、正極に接する第1表面と負極に接する第2表面を有し、第1表面のエチレンカーボネートに対する接触角は、第2表面のエチレンカーボネートに対する接触角よりも小さいことを特徴とする。
【0010】
以下では、図面を参照しながら、本開示に係る円筒型の二次電池の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、円筒型の二次電池の仕様に合わせて適宜変更することができる。また、外装体は円筒型に限定されず、例えば角型等であってもよい。また、以下の説明において、複数の実施形態、変形例が含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。
【0011】
図1は、実施形態の一例である円筒型の二次電池10の軸方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。
【0012】
外装体15の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が終端部に設置されている場合は、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。
【0013】
外装体15は、例えば有底の円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。
【0014】
封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。
【0015】
以下、電極体14を構成する正極11、負極12、及びセパレータ13と、非水電解質について、特に負極12を構成する負極合剤層に含まれる負極活物質と、セパレータ13について詳説する。
【0016】
[負極]
図2は、実施形態の一例における負極12の断面図である。負極12は、負極集電体30と、負極集電体30の表面に設けられた第1負極合剤層32aと、第1負極合剤層32aの表面に設けられた第2負極合剤層32bと、を有する。第1負極合剤層32aと第2負極合剤層32bの厚みは、同じであっても相互に異なっていてもよい。第1負極合剤層32aと第2負極合剤層32bとの厚みの比率は、例えば3:7~7:3であり、4:6~6:4が好ましく、5:5~6:4がより好ましい。
【0017】
負極集電体30は、例えば、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。負極集電体30の厚みは、例えば5μm~30μmである。
【0018】
第1負極合剤層32a及び第2負極合剤層32b(以下、第1負極合剤層32a及び第2負極合剤層32bを合わせて負極合剤層32という場合がある)は、黒鉛粒子を含む。また、負極合剤層32は、結着剤等を含むことが好ましい。結着剤としては、例えば、フッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0019】
本実施形態に用いられる黒鉛粒子は、天然黒鉛、人造黒鉛等が挙げられる。本実施形態に用いられる黒鉛粒子のX線広角回折法による(002)面の面間隔(d002)は、例えば、0.3354nm以上であることが好ましく、0.3357nm以上であることがより好ましく、また、0.340nm未満であることが好ましく、0.338nm以下であることがより好ましい。また、本実施形態に用いられる黒鉛粒子のX線回折法で求めた結晶子サイズ(Lc(002))は、例えば、5nm以上であることが好ましく、10nm以上であることがより好ましく、また、300nm以下であることが好ましく、200nm以下であることがより好ましい。面間隔(d002)及び結晶子サイズ(Lc(002))が上記範囲を満たす場合、上記範囲を満たさない場合と比べて、二次電池10の電池容量が大きくなる傾向がある。
【0020】
第1負極合剤層32aに含まれる黒鉛粒子は、例えば、以下のようにして作製することができる。主原料となるコークス(前駆体)を所定サイズに粉砕し、それらを結着剤で凝集した後、さらにブロック状に加圧成形した状態で、2600℃以上の温度で焼成し、黒鉛化させる。黒鉛化後のブロック状の成形体を粉砕し、篩い分けることで、所望のサイズの黒鉛粒子を得る。ここで、粉砕後の前駆体の粒径や凝集させた状態の前駆体の粒径等によって、黒鉛粒子の内部空隙率を調整することができる。例えば、粉砕後の前駆体の平均粒径(体積基準のメジアン径D50、以下同じ)は、12μm~20μmの範囲であることが好ましい。また、ブロック状の成形体に添加される揮発成分の量によって、黒鉛粒子の内部空隙率を調整することもできる。コークス(前駆体)に添加される結着剤の一部が焼成時に揮発する場合、結着剤を揮発成分として用いることができる。そのような結着剤としてピッチが例示される。
【0021】
第2負極合剤層32bに含まれる黒鉛粒子は、例えば、以下のようにして作製することができる。主原料となるコークス(前駆体)を所定サイズに粉砕し、それらをピッチ等の結着剤で凝集させた状態で、2600℃以上の温度で焼成し、黒鉛化させた後、篩い分けることで、所望のサイズの黒鉛粒子を得ることができる。ここで、粉砕後の前駆体の粒径や凝集させた状態の前駆体の粒径等によって、黒鉛粒子の内部空隙率を調整することができる。例えば、粉砕後の前駆体の平均粒径は、12μm~20μmの範囲であることが好ましい。
【0022】
第1負極合剤層32aにおける黒鉛粒子間の空隙率(S1)に対する第2負極合剤層32bにおける黒鉛粒子間の空隙率(S2)の比率(S2/S1)は、1.1~2.0であり、好ましくは1.1~1.7であり、より好ましくは1.1~1.5である。S2/S1が1.1未満では、電解液の液回りが悪くなって急速充電の繰り返しにより電池容量が低下してしまう。また、S2/S1が2.0超であると、後述する第2負極合剤層32bの充填密度を第1負極合剤層32aの充填密度と略同等にすることができず、電池容量が低くなってしまう。ここで、黒鉛粒子間の空隙率とは、負極合剤層32の断面積に対する黒鉛粒子間の空隙の面積の割合から求めた2次元値である。S2/S1は、以下の手順で、第1負極合剤層32aにおける黒鉛粒子間の空隙率(S1)、及び、第2負極合剤層32bにおける黒鉛粒子間の空隙率(S2)を算出することで求められる。
【0023】
<黒鉛粒子間の空隙率の測定方法>
(1)負極合剤層の断面を露出させる。断面を露出させる方法としては、例えば、負極の一部を切り取り、イオンミリング装置(例えば、日立ハイテク社製、IM4000PLUS)で加工し、負極合剤層の断面を露出させる方法が挙げられる。
(2)走査型電子顕微鏡を用いて、上記露出させた負極合剤層の断面の反射電子像を、第1負極合剤層32a及び第2負極合剤層32bのそれぞれについて撮影する。反射電子像を撮影する際の倍率は、例えば、800倍である。
(3)上記により得られた断面像をコンピュータに取り込み、画像解析ソフト(例えば、アメリカ国立衛生研究所製、ImageJ)を用いて二値化処理を行い、断面像内の粒子断面を黒色とし、粒子断面に存在する空隙を白色として変換した二値化処理画像を得る。
(4)第1負極合剤層32a及び第2負極合剤層32bの二値化処理画像において、各々、白色として変換された空隙のうち、黒鉛粒子内部の空隙(粒子表面につながっていない細孔)及び黒鉛粒子表面につながる幅が3μm以下の細孔を除く部分を黒鉛粒子間の空隙として、黒鉛粒子間の空隙の面積を算出する。黒鉛粒子間の空隙率は、以下の式に基づいて算出できる。
黒鉛粒子間の空隙率=黒鉛粒子間の空隙の面積/負極合剤層断面の面積×100
【0024】
S1及びS2は、各々、上記測定3回の平均値として求められ、これらの値から、S1/S2が算出できる。
【0025】
第1負極合剤層32aの充填密度(D1)に対する第2負極合剤層32bの充填密度(D2)の比率(D2/D1)は、0.9~1.1である。S2/S1が1.1~2.0を満たしつつ、D2/D1がこの範囲にあることで、電池容量の低下を抑制することができる。例えば、第1負極合剤層32aに含まれる黒鉛粒子の内部空隙率を第2負極合剤層32bに含まれる黒鉛粒子の内部空隙率よりも高くすることで、S2/S1及びD2/D1について、上記の範囲を満たすことができる。
【0026】
第1負極合剤層32aの充填密度(D1)及び第2負極合剤層32bの充填密度(D2)は、例えば1.3g/m~2.0g/mである。
【0027】
負極合剤層32の充填密度とは、負極合剤層32の単位体積当たりの質量である。まず、負極12を用いて、第1負極合剤層32aと第2負極合剤層32bのそれぞれの単位面積あたりの合剤質量を測定する。また、第1負極合剤層32aと第2負極合剤層32bのそれぞれの合剤層厚みを、粒子間空隙率を算出する際に得られた断面像から測定する。合剤層厚みが安定していないときには、上記画像において10点測定し、平均値を合剤層厚みとすることができる。単位面積あたりの合剤質量を合剤層厚みで除すことで、第1負極合剤層32aの充填密度(D1)及び第2負極合剤層32bの充填密度(D2)を算出できる。これらの値から、第1負極合剤層32aの充填密度(D1)に対する第2負極合剤層32bの充填密度(D2)の比率(D2/D1)が得られる。
【0028】
次に、第1負極合剤層32a及び第2負極合剤層32bを形成する具体的方法について説明する。例えば、まず、黒鉛粒子(以下、第1黒鉛粒子という場合がある)を含む負極活物質と、結着剤と、水等の溶媒とを混合して、第1負極合剤スラリーを調製する。これとは別に、第1黒鉛粒子とは異なる黒鉛粒子(以下、第2黒鉛粒子という場合がある)を含む負極活物質と、結着剤と、水等の溶媒とを混合して、第2負極合剤スラリーを調製する。そして、負極集電体の両面に、第1負極合剤スラリーを塗布、乾燥した後、第1負極合剤スラリーによる塗膜の上に、第2負極合剤スラリーを両面に塗布、乾燥する。さらに、圧延ローラにより第1負極合剤層32a及び第2負極合剤層32bを圧延することで負極合剤層32を形成することができる。
【0029】
第1負極合剤層32a及び第2負極合剤層32bについて、上記の通り同時に圧延したとしても、第1黒鉛粒子及び第2黒鉛粒子の圧延時の充填性は必ずしも同じではない。例えば、第1黒鉛粒子及び第2黒鉛粒子の粒度分布を変化させることで、第1負極合剤層32aと第2負極合剤層32bの充填密度を調整することができる。また、第2黒鉛粒子の内部空隙率を第1黒鉛粒子の内部空隙率よりも低くすることで、第2負極合剤層32bの充填密度を過度に低減することなく粒子間空隙率を高めることができる。なお、上記方法では、第1負極合剤スラリーを塗布、乾燥させてから、第2負極合剤スラリーを塗布したが、第1負極合剤スラリーを塗布後、乾燥前に、第2負極合剤スラリーを塗布してもよい。また、第1負極合剤スラリーを塗布、乾燥させて圧延した後に、第1負極合剤層32a上に第2負極合剤スラリーを塗布してもよい。第1負極合剤層32aと第2負極合剤層32bの圧延の条件を変えることで、それぞれの充填密度の調整をより自由にすることができる。
【0030】
第1負極合剤層32a及び第2負極合剤層32bの少なくともいずれか一方は、Si系材料を含んでもよい。Si系材料は、リチウムイオンを可逆的に吸蔵、放出できる材料であり、負極活物質として機能する。Si系材料としては、例えば、Si、Siを含む合金、SiO(xは0.8~1.6)で表されるケイ素酸化物等が挙げられる。Si系材料は、黒鉛粒子より電池容量を向上させることが可能な負極材料である。Si系材料の含有量は、電池容量の向上、急速充放電サイクル特性の低下抑制等の点で、例えば、負極活物質の質量に対して1質量%~10質量%であることが好ましく、3質量%~7質量%であることがより好ましい。
【0031】
リチウムイオンを可逆的に吸蔵、放出できる他の材料としては、その他に、錫(Sn)等のリチウムと合金化する金属、又はSn等の金属元素を含む合金や酸化物等が挙げられる。負極活物質は、上記他の材料を含んでいてもよく、上記他の材料の含有量は、例えば、負極活物質の質量に対して10質量%以下であることが望ましい。
【0032】
[正極]
正極11は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合剤層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、例えば、正極活物質、結着剤、導電剤等を含む。
【0033】
正極11は、例えば、正極活物質、結着剤、導電剤等を含む正極合剤スラリーを正極集電体上に塗布、乾燥して正極合剤層を形成した後、この正極合剤層を圧延することにより作製できる。
【0034】
正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
【0035】
導電剤は、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等のカーボン系粒子などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0036】
結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0037】
[セパレータ]
図3は、実施形態の一例におけるセパレータ13の断面図である。セパレータ13は、正極11に接する第1表面13aと負極12に接する第2表面13bを有する。第1表面13aのエチレンカーボネートに対する接触角は、第2表面13bのエチレンカーボネートに対する接触角より小さい。これにより、第2表面13bに比べて第1表面13aの非水電解質に対する濡れ性が向上し、正極11側と負極12側の非水電解質のバランスが保たれる。本実施形態では、第1表面13aに被覆層40が配置され、第2表面13bに基材層42が配置されている。基材層42に比べてエチレンカーボネートに対する接触角が大きい被覆層を用いる場合、その被覆層は第2表面13bに配置してもよい。ここで、接触角は、静的な液滴法で測定された角度であり、例えば、全自動接触角計(協和界面科学株式会社製、DM-901型)等を用いて測定することができる。
【0038】
基材層42には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが挙げられ、ポリオレフィン系樹脂が好適である。セパレータ13は、複数の基材層を有する多層セパレータであってもよい。多層セパレータを用いて第1表面13aのエチレンカーボネートに対する接触角を第2表面13bのエチレンカーボネートに対する接触角より小さくする場合、被覆層40は必ずしも必要ではない。基材層42の厚みは、例えば、5μm~30μmであり、好ましくは8μm~20μmである。
【0039】
被覆層40は、例えば、ポリマーを含んでもよい。被覆層40に含まれるポリマーは、特に限定されないが、例えば、ポリアミド、ポリアミドイミド、ポリイミド等が例示できて、ポリアミド及びポリアミドイミドの少なくとも1種以上を含有することが好ましい。
【0040】
被覆層40は、無機粒子を含んでもよい。これにより、被覆層40表面の接触角を小さくすることができる。被覆層40における無機粒子の含有量は、例えば、30質量%~70質量%である。被覆層40に含まれる無機粒子は、特に限定されないが、例えば、無機酸化物とすることができる。無機酸化物は、例えば、アルミナ、チタニア、ジルコニア等が例示できて、アルミナ及びチタニアの少なくとも1種以上を含有することが好ましい。被覆層40の厚みは、例えば、1μm~5μmである。
【0041】
被覆層40は、基材層42の一方の表面にドクターブレード法、グラビアコート法、転写法、又はダイコート法を用いて作製できる。
【0042】
[非水電解質]
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
【0043】
上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
【0044】
上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
【0045】
上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
【0046】
電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、溶媒1L当り0.8~1.8molとすることが好ましい。
【実施例
【0047】
以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
【0048】
<実施例>
[正極の作製]
正極活物質として、アルミニウム含有ニッケルコバルト酸リチウム(LiNi0.88Co0.09Al0.03)を用いた。上記正極活物質が100質量部、導電剤としての黒鉛が1質量部、結着剤としてのポリフッ化ビニリデン粉末が0.9質量部となるよう混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。このスラリーをアルミニウム箔(厚さ15μm)からなる正極集電体の両面にドクターブレード法により塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極集電体の両面に正極合剤層が形成された正極を作製した。
【0049】
[黒鉛粒子Aの作製]
平均粒径が17μmのコークスに結着剤としてのピッチを添加して凝集させた。この凝集物に等方的な圧力を加えて1.6g/cm~1.9g/cmの密度を有するブロック状の成型体を作製した。このブロック状の成形体を2800℃の温度で焼成して黒鉛化した後、成型体を粉砕し、篩い分けることで、平均粒径が23μmの黒鉛粒子Aを作製した。
【0050】
[黒鉛粒子Bの作製]
平均粒径が13μmのコークスに結着剤としてのピッチを添加し、平均粒径が18μmとなるまで凝集させた。この凝集物を2800℃の温度で焼成して黒鉛化した後、篩い分けることで、平均粒径が23μmの黒鉛粒子Bを作製した。黒鉛粒子Bを作製する際、コークスに添加するピッチの量を黒鉛粒子Aの作製の際に用いたピッチの量を小さくするとともに上記の凝集物の平均粒径を調整することで、黒鉛粒子Aに比べて小さな内部空隙率を有する黒鉛粒子Bを作製した。
【0051】
[負極の作製]
黒鉛粒子Aが95質量部、SiOが5質量部となるように混合し、これを負極活物質Aとした。負極活物質A:カルボキシメチルセルロース(CMC):スチレン-ブタジエン共重合体ゴム(SBR)の質量比が、100:1:1となるようにこれらを混合し、その混合物を水中で混練して、第1負極合剤スラリーを調製した。また、黒鉛粒子Bが95質量部、SiOが5質量部となるように混合し、これを負極活物質Bとした。負極活物質B:カルボキシメチルセルロース(CMC):スチレン-ブタジエン共重合体ゴム(SBR)の質量比が、100:1:1となるようにこれらを混合し、その混合物を水中で混練して、第2負極合剤スラリーを調製した。
【0052】
第1負極合剤スラリーを銅箔からなる負極集電体の両面にドクターブレード法により塗布し、乾燥させて第1負極合剤層を形成した。さらに、第1負極合剤層上に、上記の第2負極合剤スラリーを塗布し、乾燥して第2負極合剤層を形成した。このとき、第1負極合剤スラリーと第2負極合剤スラリーの単位面積あたりの塗布質量比は5:5とした。圧延ローラにより第1負極合剤層及び第2負極合剤層を圧延して、負極を作製した。
【0053】
[非水電解質の作製]
エチレンカーボネート(EC)と、ジメチルカーボネートとを体積比で1:3となるように混合した100質量部の非水溶媒に、5質量部のビニレンカーボネート(VC)を添加し、LiPFを1.5mol/Lの濃度で溶解し、これを非水電解質とした。
【0054】
[セパレータの作製]
基材層としてのポリプロピレン製の微多孔膜の一方の表面に、アルミナを含むアラミド樹脂をドクターブレード法で塗布し、乾燥させてから圧縮することで被覆層を有するセパレータを作製した。
【0055】
[非水電解質二次電池の作製]
(1)正極集電体に正極リードを取り付け、負極集電体に負極リードを取り付けた後、被覆層が正極に接するようにセパレータを介して正極と負極を巻回し、巻回型の電極体を作製した。
(2)電極体の上下に絶縁板をそれぞれ配置し、負極リードを外装体に溶接し、正極リードを封口体に溶接して、電極体を外装体内に収容した。
(3)外装体内に非水電解質を減圧方式により注入した後、外装体の開口部をガスケットを介して封口体で封止し、これを非水電解質二次電池とした。
【0056】
[黒鉛粒子間の空隙率の算出]
環境温度25℃の下、非水電解質二次電池を、0.2C(920mA)で、4.2Vまで定電流充電した後、4.2Vで、C/50まで定電圧充電した。その後、0.2Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、5サイクル行った。5サイクル後の非水電解質二次電池から負極を取り出し、黒鉛粒子間の空隙率を算出した。
【0057】
[急速充放電サイクル特性の評価]
環境温度25℃の下、非水電解質二次電池を、1C(4600mA)で、4.2Vまで定電流充電した後、4.2Vで、1/50Cまで定電圧充電した。その後、0.5Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、100サイクル行った。以下の式により、非水電解質二次電池の急速充放電サイクルにおける容量維持率を求めた。また、1サイクル目の放電容量を電池容量とした。
容量維持率=(100サイクル目の放電容量/1サイクル目の放電容量)×100
【0058】
[高温保存特性の評価]
環境温度25℃の下、非水電解質二次電池を、1C(4600mA)で4.2Vまで定電流充電した後、4.2Vで1/50Cまで定電圧充電した。さらに、0.5Cで2.5Vまで定電流放電し、この時の放電容量を測定して初期容量とした。その後、環境温度25℃の下、非水電解質二次電池を、1Cで4.2Vまで定電流充電した後、4.2Vで1/50Cまで定電圧充電し、これを満充電状態とした。さらに、この満充電状態の非水電解質二次電池を60℃に維持された恒温槽中で20日間保存した。20日間保存後の電池について、環境温度25℃の下、0.5Cで2.5Vまで定電流放電した後、初期容量測定と同じ条件で測定した放電容量を保存後の容量として、以下の式により、容量復帰率を求めた。
容量復帰率=(保存後の容量/初期容量)×100
【0059】
<比較例1>
セパレータの被覆層が負極に接するようにしたこと以外は実施例と同様にして非水電解質二次電池を作製し、評価を行った。
【0060】
<比較例2>
セパレータとして被覆層を形成しなかったこと以外は実施例と同様にして非水電解質二次電池を作製し、評価を行った。
【0061】
<比較例3>
第1負極合剤スラリーに含まれる負極活物質A及び第2負極合剤スラリーに含まれる負極活物質Bが、いずれも、黒鉛粒子Aが47.5質量部、黒鉛粒子Bが47.5質量部、SiOが5質量部となるように混合したものであること以外は実施例と同様にして非水電解質二次電池を作製し、評価を行った。
【0062】
<比較例4>
第1負極合剤スラリーに含まれる負極活物質A及び第2負極合剤スラリーに含まれる負極活物質Bが、いずれも、黒鉛粒子Aが47.5質量部、黒鉛粒子Bが47.5質量部、SiOが5質量部となるように混合したものであること以外は比較例1と同様にして非水電解質二次電池を作製し、評価を行った。
【0063】
<比較例5>
第1負極合剤スラリーに含まれる負極活物質A及び第2負極合剤スラリーに含まれる負極活物質Bが、いずれも、黒鉛粒子Aが47.5質量部、黒鉛粒子Bが47.5質量部、SiOが5質量部となるように混合したものであること以外は比較例2と同様にして非水電解質二次電池を作製し、評価を行った。
【0064】
表1に、実施例及び比較例の非水電解質二次電池の急速充放電サイクルにおける容量維持率、及び高温保存後の容量復帰率の結果をまとめた。また、表1には、D1、D2、D2/D1、及びS2/S1も併せて示す。なお、急速充放電サイクルにおける容量維持率の値が高いほど、急速充放電サイクル特性の低下が抑制されたことを示している。
【0065】
【表1】
【0066】
実施例においては、容量維持率及び容量復帰率が比較例1~5よりも高く、急速充放電サイクル特性及び高温保存特性が改善されていることが確認できた。急速充放電サイクル特性については、第2負極合剤層の粒子間空隙を高くすることで、負極の電解質の液回りが向上したためと考えられる。高温保存特性については、セパレータの正極に接する表面に被覆層を配置することで正極側と負極側で非水電解質のバランスが取れたためと考えられる。このような非水電解質のバランスは、セパレータの正極に接する表面と負極に接する表面の非水電解質に対する濡れ性の相違に起因している。したがって、第1表面のエチレンカーボネートに対する接触角を、第2表面のエチレンカーボネートに対する接触角より小さくすることで、上記の効果が発揮される。
【符号の説明】
【0067】
10 二次電池、11 正極、12 負極、13 セパレータ、13a 第1表面、13b 第2表面、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 溝入部、22 フィルタ、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a 開口部、27 ガスケット、30 負極集電体、32 負極合剤層、32a 第1負極合剤層、32b 第2負極合剤層、40 被覆層、42 基材層
図1
図2
図3