(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-04-21
(45)【発行日】2025-04-30
(54)【発明の名称】生体情報測定装置および生体情報処理システム
(51)【国際特許分類】
A61B 5/02 20060101AFI20250422BHJP
A61B 5/022 20060101ALI20250422BHJP
A61B 5/256 20210101ALI20250422BHJP
A61B 5/28 20210101ALI20250422BHJP
【FI】
A61B5/02 310V
A61B5/022 400M
A61B5/256 220
A61B5/28
A61B5/022 400F
(21)【出願番号】P 2021128376
(22)【出願日】2021-08-04
【審査請求日】2024-03-27
(73)【特許権者】
【識別番号】503246015
【氏名又は名称】オムロンヘルスケア株式会社
(74)【代理人】
【識別番号】110002860
【氏名又は名称】弁理士法人秀和特許事務所
(72)【発明者】
【氏名】川端 康大
(72)【発明者】
【氏名】藤井 健司
(72)【発明者】
【氏名】松村 直美
(72)【発明者】
【氏名】伊藤 晃人
(72)【発明者】
【氏名】阪口 裕暉
(72)【発明者】
【氏名】藤田 麗二
(72)【発明者】
【氏名】岡 大蔵
【審査官】藤原 伸二
(56)【参考文献】
【文献】米国特許出願公開第2016/0287172(US,A1)
【文献】特開2016-195747(JP,A)
【文献】特開2001-037727(JP,A)
【文献】特開2019-154864(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/02-5/03
A61B 5/25-5/29
A61B 5/318-5/367
(57)【特許請求の範囲】
【請求項1】
人体の上腕部に装着して用いられる生体情報測定装置であって、
前記上腕部に巻き付けられるベルト部と、
前記人体の心電信号を検出するための複数の電極を備える心電測定手段と、
前記人体の脈波を検出するため脈波センサを備える脈波測定手段と、
前記人体の心臓の拍動に起因する振動を検出するための振動センサを備える心拍振動測定手段と、
前記心電信号の時系列データ
、前記脈波の時系列データ
、及び前記心臓の拍動に起因する振動の時系列データ
から、それぞれ心拍の基準点を抽出し、当該抽出した各時系列データの前記心拍の基準点の時間の差分を求めることにより、心臓の前駆出時間及び脈波伝播時間を算出する解析処理部と、
を有することを特徴とする、生体情報測定装置。
【請求項2】
前記解析処理部が算出する脈波伝播時間に基づいて、前記人体の血圧値を算出する第一血圧測定部をさらに有する、
ことを特徴とする、請求項1に記載の生体情報測定装置。
【請求項3】
押圧カフと、前記押圧カフに流体を供給する流体供給手段と、前記押圧カフ内の圧力を検出する圧力センサと、前記圧力センサの出力信号に基づいて前記人体の血圧値を算出する第二血圧測定部と、をさらに有する、
ことを特徴とする、請求項2に記載の生体情報測定装置。
【請求項4】
前記第一血圧測定部は、前記第二血圧測定部によって測定される血圧値に基づいて、前記脈波伝播時間に基づいて血圧値を算出するための算出式の較正を行う、
ことを特徴とする、請求項3に記載の生体情報測定装置。
【請求項5】
前記脈波センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記複数の電極よりも前記人体の末梢に近い側に位置するように配置されている、
ことを特徴とする、請求項1から4のいずれか一項に記載の生体情報測定装置。
【請求項6】
少なくとも前記振動センサが格納される筐体を有しており、
前記振動センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記筐体の前記人体の皮膚表面から最も遠くに位置する内壁面の近傍に格納されている、
ことを特徴とする、請求項1から5のいずれか一項に記載の生体情報測定装置。
【請求項7】
前記振動センサを複数有しており、該複数の振動センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記人体の末梢に近い側から前記人体の中枢に近い側に亘って間隔をおいて配置されている、
ことを特徴とする、請求項1から5のいずれか一項に記載の生体情報測定装置。
【請求項8】
前記振動センサは基板に実装されたものであって、前記複数の前記振動センサはそれぞれ離間した異なる基板に実装されている、
ことを特徴とする、請求項7に記載の生体情報測定装置。
【請求項9】
前記振動センサを複数有しており、該複数の振動センサには、前記生体情報測定装置が前記上腕部に装着された状態において、前記上腕部の周方向において対向する位置に配置される少なくとも一つの組が含まれる、
ことを特徴とする、請求項1から5のいずれか一項に記載の生体情報測定装置。
【請求項10】
前記振動センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記人体の中枢に近い側の端部近傍に位置するように配置されている、
ことを特徴とする、請求項1から5のいずれか一項に記載の生体情報測定装置。
【請求項11】
前記複数の電極の少なくともいずれか一つと前記振動センサが一体に形成されており、
前記振動センサは、一体に形成された前記電極の前記人体との接触面とは対向する側に配置されている、
ことを特徴とする、請求項1から5のいずれか一項に記載の生体情報測定装置。
【請求項12】
前記振動センサはマイクロフォンであり、
前記振動センサと一体に形成された前記電極には、収音構造が設けられている、
ことを特徴とする、請求項11に記載の生体情報測定装置。
【請求項13】
前記収音構造は前記電極に厚み方向へ貫通するように設けられた中空部である、
ことを特徴とする、請求項12に記載の生体情報測定装置。
【請求項14】
前記中空部には、人体の皮膚と同程度の硬度を有する樹脂が前記接触面と面一となるように充填されている、
ことを特徴とする、請求項13に記載の生体情報測定装置。
【請求項15】
前記樹脂は、導電性の樹脂である
ことを特徴とする、請求項14に記載の生体情報測定装置。
【請求項16】
ベルト部と、人体の心電信号を検出するための複数の電極と、前記人体の脈波を検出する脈波センサと、前記人体の心臓の拍動に起因する振動を検出する振動センサと、を備え、前記人体の上腕部に装着して用いられるセンサ装置と、
前記心電信号の時系列デー
タ、前記脈波の時系列デー
タ、及び前記人体の心臓の拍動に起因する振動の時系列データ
から、それぞれ心拍の基準点を抽出し、当該抽出した各時系列データの前記心拍の基準点の時間の差分を求めることにより、
前記人体の心臓の前駆出時間及び脈波伝播時間を算出する解析処理部と、
を有することを特徴とする、生体情報処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ヘルスケア関連の技術分野に属し、特に生体情報の測定及び処理に関する。
【背景技術】
【0002】
近年、血圧値、心電波形などの、個人の身体・健康に関する情報(以下、生体情報ともいう)を測定装置によって非侵襲的に測定し、当該測定結果を情報処理端末で記録、分析することで、健康管理を行うことが普及しつつある。
【0003】
上記のような測定装置の一例として、いわゆるオシロメトリック法による血圧測定装置が普及している。カフの収縮により上腕(の血管)を圧迫・解放するとともに、その際のカフ内の圧力を測定することで血圧値を推定する、という処理を自動的に行うこのような血圧測定装置は、操作に専門的な知識や熟練が不要であり、一般のユーザーが日常的に血圧を測定するのに非常に簡便である。
【0004】
ところで、近年では、日常生活において常時身体に測定機器を装着し、継続的に生体情報を取得することで、疾患の早期発見や適切な治療を行うことのニーズが高まっている。しかしながら、上記のような従来型のオシロメトリック法を用いた血圧測定装置では、連続的な血圧計測を行うことができない。即ち、オシロメトリック法では、血圧測定のために時間をかけて上腕を圧迫・解放する手順が必要であり、そもそも連続的な(例えば心拍ごとの)血圧測定が困難である。また、血圧測定の度に上腕を圧迫されることになるため、日常生活において常時そのような測定が行われることは、ユーザーにとって大きな負担となる。
【0005】
これに対して、ウェアラブルデバイスにより常時非侵襲的に取得できる生体情報に基づいて血圧を推定することにより、連続的に血圧を測定する技術が提案されている(例えば特許文献1など)。特許文献1には、心電図(ECG:Electrocardiogram)センサ、光電脈波(PPG:Photo Plethysmography)センサ、心音図(PCG:Phonocardiogram)センサなどを備えるパッチ型のバイオセンサを人体の胸部に貼り付け、各センサから得られる生体信号に基づいて得られる脈波伝達時間(PAT:Pulse Arrival Time)や脈波伝播時間(PTT:Pulse Transit Time)などの心臓タイミング特徴、及びPPG信号特徴に基づいて、収縮期血圧(SBP:Systolic Blood Pressure)、拡張期血圧(DBP:Diastolic Blood Pressure)、及び平均血圧(MBP:Mean Blood Pressure)を予測することが開示されている。PATやPTTといった生体指標から血圧値を推定する手法は知られており、特にPTTを用いる場合には、心臓の前駆出時間(PEP:Pre Ejection Period)分のずれを排除できるため、比較的精度の高い血圧値を予測することができる。このため、特許文献1のような技術によれば、1つのセンサ装置を装着するのみで非侵襲的かつ常時連続的に、比較的正確な血圧値を取得することが可能になる。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1のバイオセンサ装置は胸部に装着されるものであり、着衣の
状態ではセンサの装着に困難を生じるという問題がある。また、接着して胸部に装着される場合、強固に接着されると皮膚への侵襲性が大きくなる一方、接着力が弱いとセンサが脱落してしまう虞が生じる。また、PPG信号の取得という観点からは、心臓に近い位置にPPGセンサが配置されていると、PATやPTTが短くなり、そのデータのS/N(Signal/Noise)比(ロバスト性)が低下してしまう。さらに、正確なECG信号を取得するといった観点からは、ECGセンサとしての電極と心臓の位置関係が適切になるようにパッチを取り付けなくてはならず、専門的な知識がない一般のユーザーが自ら適切な位置にセンサ装置を装着することが難しい、という問題がある。
【0008】
上記のような問題に鑑み、本発明は複数の生体情報センサを備え専門知識のないユーザーであっても容易にかつ負担なく着脱可能なウェアラブルセンサ及びこれを用いた生体情報測定に係る技術を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記の課題を解決するため、本発明に係る生体情報測定装置は以下の構成を採用する。即ち、人体の上腕部に装着して用いられる生体情報測定装置であって、
前記上腕部に巻き付けられるベルト部と、
前記人体の心電信号を検出するための複数の電極を備える心電測定手段と、
前記人体の脈波を検出するため脈波センサを備える脈波測定手段と、
前記人体の心臓の拍動に起因する振動を検出するための振動センサを備える心拍振動測定手段と、
前記心電信号の時系列データと前記脈波の時系列データと前記心臓の拍動に起因する振動の時系列データとに基づいて、心臓の前駆出時間及び脈波伝播時間を算出する解析処理部と、
を有することを特徴とする。
【0010】
なお、上記において「心臓の拍動に起因する振動」とは、例えば、心音や心弾動として検出することができ、これらの時系列データからはそれぞれ心音図、心弾動図(BCG:Ballistocardiogram)を得ることができる。また、上記「前駆出時間」とは、心臓の拍動に係る電気信号が検出されてから実際に拍動が開始される(血液が排出される)までの時間である。また、「脈波伝播時間」とは脈波が血管中の異なる二点間を伝播するのに要する時間である。
【0011】
また、本明細書では、心電波形(心電図)に係る情報(信号を含む。以下同じ。)をECGデータ、脈波波形に係る情報を脈波データ(特に光電脈波の場合はPPGデータ)、心音図に係る情報をPCGデータ、心弾動図に係る情報をBCGデータ、などという場合がある。
【0012】
上記のような構成であると、上腕に装着する一つの装置で心電信号と脈波と心臓の拍動に起因する振動を検出し、前駆出時間及び脈波伝播時間を算出することが可能になる。また、ベルトを用いて上腕に装着することが可能であるため、専門知識のないユーザーであっても容易にかつ負担なく着脱することができる。
【0013】
また、前記生体情報測定装置は、前記解析処理部が算出する脈波伝播時間に基づいて、前記人体の血圧値を算出する第一血圧測定部をさらに有していてもよい。脈波伝播時間は心拍ごとに連続的に算出することができるため、このような構成であると、脈波伝播時間に基づく常時連続的な血圧測定が可能になる。
【0014】
また、前記生体情報測定装置は、押圧カフと、前記押圧カフに流体を供給する流体供給手段と、前記押圧カフ内の圧力を検出する圧力センサと、前記圧力センサの出力信号に基
づいて前記人体の血圧値を算出する第二血圧測定部と、をさらに有していてもよい。例えばオシロメトリック法などの、カフを用いた血圧測定方法はその精度に対する信頼性が確立されている。このため、このような測定方法による血圧測定部を有することで、精度の高い血圧測定も行うことが可能になり、正確な血圧値を得たいという状況にも対応することが可能になる。
【0015】
また、前記第一血圧測定部は、前記第二血圧測定部によって測定される血圧値に基づいて、前記脈波伝播時間に基づいて血圧値を算出するための算出式の較正を行う、ものであってもよい。これによれば、精度の高い血圧測定結果に基づいて脈波伝播時間により算出する血圧値の較正(算出式の較正)を行うことが可能になるため、脈波伝播時間に基づいて算出される血圧値の精度を高くすることができる。
【0016】
また、前記脈波センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記複数の電極よりも前記人体の末梢に近い側に位置するように配置されていてもよい。ECGやPCG(又はBCG)から脈波伝播時間を求める場合、脈波の検出位置は人体の中枢側(即ち心臓に近い側)から遠い位置にあるほど、即ち脈波伝播時間が長いほうがS/N比の高いデータを取得することができる。このため、上記のように、より末梢側(即ち、心臓から遠い側)に脈拍センサが配置されることで、正確な脈波伝播時間を算出しやすくすることができる。
【0017】
また、前記生体情報測定装置は少なくとも前記振動センサが格納される筐体を有しており、前記振動センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記筐体の前記人体の皮膚表面から最も遠くに位置する内壁面の近傍に格納されていてもよい。人体(腕)を通じて伝わってくる心臓の拍動に起因する振動が装置を揺らす際、皮膚表面から離れた位置ほど振幅が大きくなるため、このような構成であると振動(の波形)を検出しやすくすることができる。
【0018】
また、前記生体情報測定装置は、前記振動センサを複数有しており、該複数の振動センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記人体の末梢に近い側から前記人体の中枢に近い側に亘って間隔をおいて配置されていてもよい。このような構成であると、振動の伝播距離が異なる複数のセンサから出力された信号を比較することにより、ノイズ成分を除去(低減)することが可能になる。
【0019】
また、前記振動センサは基板に実装されたものであって、前記複数の前記振動センサはそれぞれ離間した異なる基板に実装されているのでもよい。センサ自体が分離して配置されているとしても、基板のような剛体で一体になっていると同一の振動データ(信号)を取得してしまうことになるため、ノイズ成分除去(低減)のためには、このような構成が望ましい。
【0020】
また、前記生体情報測定装置は、前記振動センサを複数有しており、該複数の振動センサには、前記生体情報測定装置が前記上腕部に装着された状態において、前記上腕部の周方向において対向する位置に配置される少なくとも一つの組が含まれるのであってもよい。
【0021】
常時着用して連続的に身体情報を測定するウェアラブルデバイスの場合、着用者の姿勢によっては(例えば就寝時の仰臥位など)、センサが圧迫されて振動が減衰され、適切な強度の振動を検出できないといった事態も想定される。この点、上記のように複数の振動センサが腕を挟んで対向するような位置に配置されることにより、少なくとも一方のセンサにおいて良好な振動を検出することが可能になる。
【0022】
また、前記振動センサは、前記生体情報測定装置が前記上腕部に装着された状態において、前記人体の中枢に近い側の端部近傍に位置するように配置されていてもよい。振動センサの検出対象の振動は心臓の拍動に起因するものであるため、上記構成のように人体の中枢側(即ち、心臓に近い側)に配置されることが良好な信号取得のためには望ましい。
【0023】
また、前記複数の電極の少なくともいずれか一つと前記振動センサが一体に形成されており、前記振動センサは、一体に形成された前記電極の前記人体との接触面とは反対の側に配置されていてもよい。このような電極の接触面と反対側の位置には、通常、電極を固定するための機構や、電極の電位情報を取得するための基板が配置されるが、そのような機構と一体に振動センサを設けることで、振動センサを設置するための専用部材(基板など)を省略することができる。
【0024】
また、前記振動センサはマイクロフォンであり、前記振動センサと一体に形成された前記電極には、収音構造が設けられていてもよい。このように電極とマイクロフォンが取得する振動の増幅機能を一体に構成にすることで、部品点数の増加を抑えつつ、振動センサによって取得する信号のS/N比を向上させることができる。
【0025】
また、前記収音構造は前記電極に厚み方向へ貫通するように設けられた中空部であってもよい。また、前記中空部には、人体の皮膚と同程度の硬度を有する樹脂が前記接触面と面一となるように充填されていてもよい。皮膚と同程度の硬度を有する樹脂を介して振動を取得することで、振動の伝播効率が向上し、取得する信号のS/N比を向上させることができる。
【0026】
また、前記樹脂は、導電性の樹脂であってもよい。このような構成であると、中空部を設けることにより皮膚との接触面積が減少する電極の接触面における接触抵抗の低下を抑制することができる。
【0027】
また、本発明は、ベルト部と、人体の心電信号を検出するための複数の電極と、前記人体の脈波を検出する脈波センサと、前記人体の心臓の拍動に起因する振動を検出する振動センサと、を備え、前記人体の上腕部に装着して用いられるセンサ装置と、
前記心電信号の時系列データと、前記脈波の時系列データと、前記人体の心臓の拍動に起因する振動の時系列データと、に基づいて、心臓の前駆出時間及び脈波伝播時間を算出する解析処理部と、を有することを特徴とする生体情報処理システム、としても捉えることができる。
【0028】
なお、上記構成及び処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
【発明の効果】
【0029】
本発明によれば、複数の生体情報センサを備え専門知識のないユーザーであっても容易にかつ負担なく着脱可能なウェアラブルセンサ及びこれを用いた生体情報測定に係る技術を提供することができる。
【図面の簡単な説明】
【0030】
【
図1】
図1Aは、本発明の実施形態1に係る生体情報測定装置の概略を示す外観斜視図である。
図1Bは、本発明の実施形態1に係る生体情報測定装置のベルト部の内周面の概略を示す図である。
【
図2】
図2Aは、実施形態1に係る生体情報測定装置の概略正面図である。
図2Bは、実施形態1に係る生体情報測定装置の振動センサの配置部位を説明する説明図である。
【
図3】
図3は、実施形態1に係る生体情報測定装置の機能構成を示すブロック図である。
【
図4】
図4は、一の心拍から得られる心電波形と心拍に起因する振動の波形と脈波波形、及びこれらの各基準点の差から算出できる指標の関係を説明する図である。
【
図5】
図5は、実施形態1に係る生体情報測定装置による血圧測定処理の流れを示すフローチャートである。
【
図6】
図6は、実施形態1の変形例1に係る生体情報測定装置の概略正面図である。
【
図7】
図7Aは、実施形態1の変形例2についての第1の説明図である。
図7Bは、実施形態1の変形例2についての第2の説明図である。
図7Cは、実施形態1の変形例2についての第3の説明図である。
【
図8】
図8Aは、本発明の実施形態2に係る生体情報測定装置の概略を示す外観斜視図である。
図8Bは、実施形態2に係る生体情報測定装置のベルト部の内周面の概略を示す図である。
【
図9】
図9は、実施形態2に係る生体情報測定装置の振動センサの配置部位を説明する説明図である。
【
図10】
図10は、実施形態2に係る生体情報測定装置の機能構成を示すブロック図である。
【
図11】
図11は、実施形態2に係る生体情報測定装置における血圧算出式の較正に係る処理の流れを示すフローチャートである。
【
図12】
図12は、本発明の実施形態3に係る生体情報処理システムの概略を示す図である。
【
図13】
図13は、実施形態3に係る生体情報処理システムの機能構成を示すブロック図である。
【発明を実施するための形態】
【0031】
<実施形態1>
以下、本発明の具体的な実施形態について図面に基づいて説明する。ただし、以下の実施形態に記載されている構成の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0032】
(装置構成)
図1及び
図2は、実施形態1における生体情報測定装置1の構成を示す概略図であり、
図1Aは生体情報測定装置1の外観斜視図を示し、
図1Bは生体情報測定装置1のベルト部20の内周面の概略を示している。また、
図2Aは生体情報測定装置1の概略正面図を示し、
図2Bは、生体情報測定装置1の本体内の振動センサ15の配置部位を説明する図である。
【0033】
図1及び
図2に示すように、生体情報測定装置1は概略、本体筐体11、制御部(
図1では図示せず)、LEDインジケータ12、操作ボタン13、脈波センサ14、振動センサ15などを備える本体部10と、固定ベルト29、複数の電極21a、21b、21c、21d、21e、21fからなる電極部、ベルト通し環22を備えるベルト部20とを有する構成となっている。電極部の各電極はベルト部20内部に配置される導電線(図示せず)などを介して本体部10と電気的に接続されており、ユーザーは例えば左上腕部に、固定ベルト29を用いて各電極が皮膚表面に接触するようにして生体情報測定装置1を装着する。なお、図示しないが固定ベルト29にはフック&ループからなる面ファスナー部が設けられており、固定ベルト29の一方端部をベルト通し環22に通したうえで折り返して面ファスナーを係合させることで、固定ベルト29を環状にして上腕に固定することができる。
【0034】
図3に、生体情報測定装置1の機能構成を示すブロック図を示す。
図3に示すように、生体情報測定装置1は制御部110、電極部101、脈波センサ部102、振動センサ部103、タイマ部104、記憶部105、表示部106、操作部107、電源部108、通信部109、の各機能部を備える構成となっている。
【0035】
(機能構成)
制御部110は、生体情報測定装置1の制御を司る手段であり、例えば、CPU(Central Processing Unit)などを含んで構成される。制御部110は、操作部107を介してユーザーの操作を受け付けると、所定のプログラムに従って生体情報測定、情報通信など各種の処理を実行するように生体情報測定装置1の各構成要素を制御する。なお、所定のプログラムは後述の記憶部105に保存され、ここから読み出される。また、制御部110は、機能モジュールとして、心電測定部111、脈波測定部112、心拍振動測定部113、解析処理部114、第一血圧測定部115を備えている。これらの機能モジュールについては後述する。
【0036】
電極部101は、6つの電極21a、21b、21c、21d、21e、21fを含んでおり、心電信号を検出するセンサ部として機能する。具体的には、生体情報測定装置1が装着された状態において、対向する位置関係になる2つの電極がそれぞれ対となり、対となる2つの電極の電位差に基づいて心電信号が検出される。即ち、3対の電極から同時に3通りの心電信号を検出することができる。
【0037】
脈波センサ部102は、所望の脈波センサ14を含んでおり、脈波信号を検出するセンサ部として機能する。本実施形態における脈波センサ14は、
図1Bに示すように本体筐体11下面側(即ち、装着時に皮膚に接触する面)に配置される反射型の光電脈波センサである。反射型の光電脈波センサは赤外線や赤色光、緑色光を生体に向けて照射し、フォトダイオードなどを用いて、生体内で反射した光を検出することにより、心臓の拍動に伴って変化する血流量(血管の容量変化)を検出することができる。
【0038】
振動センサ部103は所望の振動センサ15を含んでおり、心臓の拍動に起因する振動を検出するための振動センサとして機能し、BCGデータを取得する。本実施形態における振動センサ15は、例えばピエゾ抵抗式の加速度センサであり、MEMS(Micro
Electro Mechanical Systems)センサチップとして構成されている。
図2Bに示すように、本実施形態においては、振動センサ15は本体筐体11内の、上面側(即ち、装着時に皮膚表面から最も離れた位置となる面)の内壁近傍に配置される。人体(腕)を通じて伝わってくる心臓の拍動に起因する振動が装置を揺らす際、皮膚表面から離れた位置ほど振幅が大きくなるため、このような構成であると振動(の波形)を検出しやすくすることができる。
【0039】
なお、電極部101を含む上記の各センサ部は、図示しないが、センサから出力された信号を増幅するアンプ部や、アナログ信号をデジタル信号に変換するA/D変換部、ノイズ成分を除去するフィルタ回路などを備えている。
【0040】
タイマ部104は図示しないRTC(Real Time Clock)を参照して、時間を計測する機能を有している。例えば所定のイベント発生時などにおける時間をカウントし、これをアウトプットする。
【0041】
記憶部105は、RAM(Random Access Memory)などの主記憶装置(図示せず)を含んで構成され、アプリケーションプログラム、後述の各測定部が測定した生体情報データなどの各種の情報を記憶する。また、RAMに加えて、例えばフラッシュメモリなどの長期記憶媒体を備えており、長期的な生体情報の記憶が可能になって
いる。
【0042】
表示部106は、LEDインジケータ12を含んで構成され、LEDインジケータ12の点灯、点滅などによって装置の状態、所定のイベントの発生などをユーザーに伝達する。また、操作部107は、複数の操作ボタン13を含み、該操作ボタンを介してユーザーからの入力操作を受け付け、当該操作に応じた処理を制御部110に実行させるための機能を有する。
【0043】
電源部108は、装置の稼働に必要な電力を供給するバッテリー(図示せず)を含んで構成される。バッテリーは、例えばリチウムイオンバッテリーなどの二次電池であってもよいし、一次電池としてもよい。また、二次電池を備える構成の場合には、充電端子などを備える構成であってもよい。通信部109は、無線通信用のアンテナ、有線通信端子(いずれも図示せず)などを含み、情報処理端末などの他の機器と通信する機能を有する。なお、通信部109が充電端子を兼ねる構成であってもよい。
【0044】
心電測定部111は電極部101から心電信号の時系列データを取得しユーザーの心電波形を測定するとともに、記憶部105にECGデータを格納する。脈波測定部112は、脈波センサ部102から脈波信号の時系列データを取得しユーザーの脈波波形を測定するとともに、記憶部105にPPGデータを格納する。心拍振動測定部113は、振動センサ部103からユーザーの心拍振動に起因する振動の時系列データを取得し心弾動図を生成するとともに、記憶部105にBCGデータを格納する。
【0045】
解析処理部114は、記憶部105に格納されているECGデータ(心電信号の時系列データ)とPPGデータ(脈波の時系列データ)とBCGデータ(心臓の拍動に起因する振動の時系列データ)とに基づいて、ユーザーの心臓の前駆出時間(PEP)及び脈波伝播時間(PTT)を算出する。具体的には、ECGデータ、PPGデータ、BCGデータから、それぞれ心拍の基準点(例えば、ECGデータであればR波のピーク、PPGデータであれば脈波の立ち上がり点、BCGデータであれば血液の駆出時点など)を抽出し、当該各基準点の時間の差分を求めることにより、PEP及びPTTを算出する。
【0046】
図4は、一の心拍から得られる心電波形と心拍に起因する振動の波形と脈波波形、及びこれらの各基準点の差から算出できる指標(PAT、PEP、PTT)の関係を説明する図である。
図4に示すように、心電波形の基準点と脈波波形の基準点との差分(時間)を取ることにより、PATを求めることができる。また、心電波形の基準点と振動波形の基準点の差分(時間)を取ることにより、PEPを求めることができる。そして、PATからPEPを差し引くことで、PTTを算出することができる。なお、PTTは心拍振動波形の基準点と脈波波形の基準点との差分(時間)を取ることによっても求めることができるが、心電波形のR波の検出が容易であり、これを全ての基準として用いることにより、容易かつ正確に各指標を得ることが可能になる。
【0047】
第一血圧測定部115は、解析処理部114が取得したPTT及び予め記憶部105に保存されている血圧算出式に基づいて、ユーザーの血圧値を一心拍ごとに算出する。脈波伝播時間と血圧とが相関することは古くから知られているが、このような相関関係は個体差があるため、事前に試験を行ってユーザー毎に最適化された関係式を血圧算出式として用意し、これにPTTの値を入力することにより血圧値(例えばSBP)を算出することが可能になる。
【0048】
(血圧測定処理の流れ)
次に、本実施形態に係る生体情報測定装置1の血圧測定の処理について、
図5に基づいて説明する。
図5は、本実施形態に係る生体情報測定装置1における血圧測定処理の流れ
を示すフローチャートである。
【0049】
なお、血圧測定(生体情報取得)に先立ち、ユーザーは例えば左上腕部に、ベルト部20を用いて電極部101の各電極が皮膚表面に接触するようにして生体情報測定装置1を装着する。そして、操作ボタン13を操作することにより、血圧測定(生体情報取得)を開始する。
【0050】
その後、心電測定部111、脈波測定部112、心拍振動測定部113が、それぞれ生体情報を取得し、記憶部105に格納する(S101)。次に、心電測定部111により、3つの電極対のうち、使用する電極対、より正しくはどの電極対の電位差から得られるECGデータを用いてこの後の処理を行うかが決定される(S102)。この際には、最も正常(及び明瞭)な心電波形が取得できる電極の対が選択される。
【0051】
続けて、解析処理部114が、心電波形基準点の抽出(S103)、脈波波形基準点の抽出(S104)、心拍振動波形の基準点の抽出(S105)を行う。さらに、抽出した各基準点に基づき、PATの算出(S106)、PEPの算出(S107)を行い、算出したPATとPEPに基づいてPTTの算出を行う(S108)。さらに、算出されたPTTを用いて、第一血圧測定部115が血圧値の算出を行い(S109)、一拍の血圧測定が終了する。なお、測定された血圧のデータは時系列データとして記憶部105に保存される。
【0052】
そして、次に所定の測定終了条件(例えば、終了ボタンが押下された、記憶容量が十分に残っていない、など)を満たしているか否かを判断する処理を行う(S110)。ここで、終了条件を満たしていないと判断された場合には、ステップS101に戻って以降の処理を繰り返す。一方、ステップS110において、終了条件を満たしていると判定された場合には、血圧測定を終了する。
【0053】
なお、ステップS109で算出された血圧値が所定の条件を満たす場合(例えば、所定の上下限値を逸脱する)や、記憶部105に記憶された血圧値の時系列データが所定の条件を満たす場合(所定時間を超えて所定値以上の血圧が継続しているなど)には、LEDインジケータ12を点灯、点滅させることにより、ユーザーに報知するようにしてもよい。
【0054】
以上見たような本実施形態に係る生体情報測定装置1によれば、専門知識のないユーザーでも自ら着脱が容易に行え、非侵襲的に心拍ごとの血圧値を算出することができるウェアラブルデバイスを提供することができる。これにより、ユーザーの日常生活の質を落とさずに、常時(或いは長期間の)連続した血圧測定を用意に行うことができ、疾患やその予兆の早期発見に役立てることが可能になる。
【0055】
(変形例1)
上記実施形態1に係る生体情報測定装置1は、様々な形での変形が可能である。
図6にこのような変形例の一例を示す。なお、以下の変形例及び他の実施形態の説明においては、実施形態1と同一の構成及び処理については同一の符号を付し、詳細な説明を省略する。
図6は変形例1に係る生体情報測定装置3の概略正面図である。本変形例に係る生体情報測定装置3は、生体情報測定装置1とほぼ同様の構成であるが、振動センサを複数有する点において異なっている。
【0056】
生体情報測定装置3はベルト部30の周方向において、本体筐体11と対向する位置に、振動センサ筐体31を備える構成となっている。振動センサ筐体31内には、第二の振動センサ(図示せず)が設けられている。また、第二の振動センサはベルト部30内の図示しない導電部を介して本体部10と電気的に接続される。そして、生体情報測定装置3がユーザーの上腕部に装着された状態では、本体筐体11と振動センサ筐体31とが、上腕部の周方向において対向する位置に配置され、振動センサ15と第二の振動センサとが上腕を挟んで反対方向に位置する組になる構成となっている。
【0057】
常時着用して連続的に身体情報を測定するウェアラブルデバイスの場合、着用者の姿勢によっては(例えば就寝時の仰臥位など)、センサが圧迫されて振動が減衰され、適切な強度の振動を検出できないといった事態も想定される。この点、本変形例に係る生体情報測定装置3のように複数の振動センサが腕を挟んで対向するような位置に配置されることにより、少なくとも一方のセンサにおいて良好な振動を検出することが可能になる。
【0058】
(変形例2)
続けて、他の変形例について説明する。
図7は、第二の変形例に係る生体情報測定装置4について示す図であり、
図7Aは、生体情報測定装置4のベルト部40の内周面の概略を示す図であり、
図7Bは生体情報測定装置4の電極41の概略底面図、
図7Cは生体情報測定装置4の電極及び振動センサ45について説明する簡易断面図である。なお、
図7C中の破線は、固定ベルト49の内周面のラインを示しており、破線より上は固定ベルト49の内部に位置することを示す。
【0059】
本変形例に係る生体情報測定装置4は振動センサ45がマイクロフォンであり、電極41と振動センサ45が一体に形成されている。そして、
図7Aに示すように、生体情報測定装置4のベルト部40の内周面には、そのような振動センサ45と一体形成された電極41a、41b、41c、41d、41e、41fが配置された構成となっている。
【0060】
続けて、本変形例に係る電極41の構造についてさらに詳細に説明する。
図7B、
図7Cに示すように、生体情報測定装置4の電極41は電極の接触面とは反対側の面において基板43及び当該基板に実装された振動センサ45が設けられた構造となっている。このような構造とすることで、電極の電位情報を取得するための基板と振動センサを配置するための基板と一体化することができ、装置部材を省略することができる。
【0061】
また、電極41は円形で中央部に厚み方向に貫通した中空部が設けられている。当該中空部は、振動センサ45としてのマイクロフォンの収音構造となる。このように、電極とマイクロフォンが検出する振動の増幅機能を一体に構成にすることで、部品点数の増加を抑えつつ、振動センサによって取得する信号のS/N比を向上させることができる。
【0062】
さらに、電極41の中空部には人体の皮膚と同程度の硬度の導電性樹脂42が、電極41の皮膚との接触面と面一となるように充填されている。皮膚と同程度の硬度を有する樹脂を介して振動を取得することで、振動の伝播効率が向上し、取得する信号のS/N比を向上させることができるとともに、導電性の樹脂であるため、中空部を設けることにより皮膚との接触面積が減少する電極の接触面における接触抵抗の低下を抑制することができる。
【0063】
<実施形態2>
次に本発明の他の実施形態について、
図8乃至
図11に基づいて説明する。
【0064】
(装置構成)
図8及び
図9は、実施形態2における生体情報測定装置5の構成を示す概略図であり、
図8Aは生体情報測定装置5の外観斜視図を示し、
図8Bは生体情報測定装置5のベルト部60の内周面の概略を示している。また、
図9は生体情報測定装置5の本体筐体51内の振動センサ55a、55bの配置部位を説明する図である。なお、
図8、
図9中の黒色
矢印は、生体情報測定装置5を人体の上腕に装着した際に、末梢側の位置する方向を示している。即ち、矢印が指し示している側が、装置を装着した際に末梢側(心臓から遠い側を示している)。
【0065】
図8及び
図9に示すように、生体情報測定装置5は概略、本体部50とベルト部60を有する構成となっている。本体部50は、本体筐体51、制御部(
図8、9では図示せず)、液晶ディスプレイ52、操作ボタン53、振動センサ55a、55bなどを備えている。また、ベルト部60は、固定ベルト61、複数の電極62a、62b、62c、62d、62e、62fからなる心電電極部62、同じく複数の電極63a、63b、63c、63dからなる脈波電極部63、面ファスナー(フック部65)などを備えている。本実施形態においては、電極63a、63b、63c、63dが脈波センサに相当する。
【0066】
なお、
図8Bに示すように、心電電極部62と、脈波電極部63とは、装置を装着した状態において脈波電極部63の方が末梢に近い側に位置するように配置されている。ECGやPCG(又はBCG)から脈波伝播時間を求める場合、脈波の検出位置は人体の中枢側から遠い位置にあるほど、即ち脈波伝播時間が長いほうがS/N比の高いデータを取得することができる。このため、上記のように、より末梢に近い側に脈拍センサが配置されることで、正確な脈波伝播時間を算出しやすくすることができる。
【0067】
上記各電極はベルト部60に配置される導電線(図示せず)などを介して本体部50と電気的に接続されており、ユーザーは例えば左上腕部に、固定ベルト61を用いて各電極が皮膚表面に接触するようにして生体情報測定装置5を装着する。なお、図示しないが固定ベルト61の外周面側に面ファスナーのループ部が設けられており、固定ベルトを上腕部に巻き付けてフック部65をループ部に係合させることで、装置を上腕に固定することができる。
【0068】
また、
図9に示すように、本実施形態に係る生体情報測定装置5は、振動センサを二つ(振動センサ55a、55b)を備えており、これらは一つずつ本体部50の長手方向の両端近傍に配置されている。即ち、装置が上腕部に装着された状態において、ユーザーの末梢に近い側から中枢に近い側に亘って間隔をおいて配置された状態となっている。このような構成であると、振動の伝播距離が異なる複数のセンサから出力された信号を比較することにより、ノイズ成分を除去(低減)することが可能になる。また、振動センサ55a、55bはそれぞれが離間した別々の基板上に設けられている。センサ自体が分離して配置されているとしても、基板のような剛体で一体になっていると同一の振動データ(信号)を取得してしまうことになるため、ノイズ成分除去(低減)のためには、このような構成が望ましい。
【0069】
(機能構成)
図10に、生体情報測定装置5の機能構成を示すブロック図を示す。
図10に示すように、生体情報測定装置5は制御部510、電極部101、脈波センサ部502、振動センサ部503、押圧カフ504、ポンプ505、弁506、圧力センサ507、タイマ部104、記憶部105、表示部516、操作部107、電源部108、通信部109、の各機能部を備える構成となっている。
【0070】
このうち、電極部101、タイマ部104、記憶部105、操作部107、電源部108、通信部109については、実施形態1に係る生体情報測定装置1と同様の構成であるため、説明は省略する。また、表示部516についても、本実施形態においては液晶ディスプレイ52を備えることにより、多様な情報の表示が可能となっていることの他は機能面において生体情報測定装置1の表示部106と同様である。
【0071】
本実施形態における脈波センサ部502は、
図8Bに示すように、脈波センサとしての4つの電極63a、63b、63c、63dを含んで構成される。脈波センサ部502は、電極63aと63dとの間に電流を流し、通電状態で電極63b、63c間の電圧を検出することによって脈波を検出する。電極63aと63dとが通電状態であれば、電極63b及び63cに当接する動脈を伝播する脈波による電気インピーダンスの変化(動脈の容積変化)を検出することができ、これにより脈波を検出することができる。
【0072】
押圧カフ504、ポンプ505、弁506、圧力センサ507は、いずれも後述のようにオシロメトリック法による血圧測定のために用いられる構成要素である。押圧カフ504はベルト部60内に配置される空気袋であり、後述する第二血圧測定部511によって制御されるポンプ505、弁506の開閉によって、押圧カフ504の空気の流入出が行われる。圧力センサ507は、押圧カフ504内の圧力を検出し、当該圧力を表す電気信号を生成する。圧力センサ507は、例えばピエゾ抵抗式圧力センサとすることができる。ポンプ505、弁506は、本体部50内に配置される。
【0073】
制御部510は、生体情報測定装置5の制御を司る手段であり、概ねは実施形態1に係る生体情報測定装置1と同様の構成である。ただし、機能モジュールとして第二血圧測定部511と血圧算出式較正部512を備える点において異なっている。
【0074】
第二血圧測定部511は、所定の条件を満たした場合に、押圧カフ504(ポンプ505、弁506)を制御し、圧力センサ507の出力信号に基づくオシロメトリック法による血圧測定を実行し、記憶部105に測定結果を保存する。ここで、所定の条件とは例えば、操作ボタン53を介したユーザーの指示入力を受け付けた場合の他、第一血圧測定部115の測定血圧値が、所定時間に亘って上下限値を逸脱している場合や、所定時間内の変動幅が所定値以上となっている場合、などが考えられる。
【0075】
血圧算出式較正部512は、第二血圧測定部511による(即ち、オシロメトリック法による)血圧測定が行われた場合に、記憶部105に記憶された当該血圧測定の結果を用いて、第一血圧測定部115による血圧算出のための血圧算出式の較正を行う。
【0076】
(血圧算出式の較正処理の流れ)
以下で、
図11に基づいて、本実施形態に係る生体情報測定装置5の血圧算出式の較正に係る処理の流れについて説明する。
図11は、生体情報測定装置5における血圧算出式の較正に係る処理の流れを示すフローチャートである。
図11に示すように、装置による血圧値の測定は、先ずは実施形態1の場合と同様に、第一血圧測定部115によりPTTに基づいた心拍ごとの連続測定が行われる(S109)。
【0077】
その後、制御部510は、第一血圧測定部115による測定血圧値が、所定の条件を満たすか否かを判断する処理を行う(S201)。所定の条件は例えば、所定時間に亘って測定値が上下限値を逸脱している場合や、所定時間内の測定値の変動幅が所定値以上となっている場合、等とすることができる。ここで、所定の条件を満たしていないと判断された場合には、血圧算出式の較正は行わずに、一旦フローを終了する。
【0078】
一方、ステップS201で、所定の条件を満たすと判断された場合には、制御部510は、オシロメトリック法による血圧測定を実施する旨を、液晶ディスプレイ52を介してユーザーに報知する(S202)。なお、表示以外に音声による報知を行うのであってもよい。ユーザーに対する報知を行った後、第二血圧測定部511により、ポンプ505、弁506が制御されオシロメトリック法による血圧測定が実行される(S203)。オシロメトリック法による血圧測定が終了すると、測定結果が記憶部105に保存される(S204)。なお、この際に液晶ディスプレイ52に、測定結果を表示するようにしてもよ
い。
【0079】
そして、血圧算出式較正部512により、ステップS204で記憶部105に保存された血圧の測定結果に基づいて、血圧算出式の較正が実行され、更新された血圧算出式が記憶部105に保存されて(S205)、血圧算出式較正の一連のフローを一旦終了する。なお、上記のステップS202の処理においてユーザーに報知した後、ユーザーの許可(測定指示)を受けてから、ステップS203の処理に進むような処理としても構わない。
【0080】
以上見てきたような、本実施形態に係る生体情報測定装置5によれば、PTTに基づく心拍ごとの連続血圧測定と、オシロメトリック法による精度の高い血圧測定とを、一のウェアラブルデバイスで実現することが可能になる。これにより、ユーザーは一つの装置を装着するだけで、簡便な連続血圧測定と、正確な血圧測定とを状況に応じて使い分けることができる。また、オシロメトリック法による血圧測定結果を用いて、PTTに基づく血圧算出式の較正を行うことができるため、心拍ごとの連続血圧測定についても高い精度を維持することが可能になる。
【0081】
<実施形態3>
なお、上記の各例では本発明は生体情報測定装置として適用され、記憶部や表示部も含めてすべての機能が一の生体情報測定装置に集約された構成であったが、本発明はこれらの構成や機能の一部を分離した生体情報処理システムとして適用することも可能である。
図12及び
図13にこのような情報処理システムの例を示す。
図12は本実施形態に係る生体情報処理システム7の概略を示している。
図12に示すように、生体情報処理システム7は、ユーザーの上腕に装着されるセンサ装置71と、センサ装置71が取得する生体情報を処理する情報処理端末72を備えている。センサ装置71は、図示しないが複数の電極(心電センサ)、脈波センサ、振動センサ、を備えるウェアラブルデバイスであり、ベルトなどによってユーザーの上腕に固定して用いられる。情報処理端末72は、センサ装置71と通信可能であればどのようなものであってもよいが、例えばスマートフォンを情報処理端末72として用いることができる。
【0082】
図13は、生体情報処理システム7のセンサ装置71及び情報処理端末72の機能構成を示すブロック図である。センサ装置71は、電極部101、脈波センサ部102、振動センサ部103、制御部710、記憶部705、操作部107、電源部108、通信部109の機能部を有している。また、制御部710はその機能モジュールとして、心電測定部111、脈波測定部112、心拍振動測定部113を備えている。
【0083】
センサ装置71は、実施形態1の生体情報測定装置1と同様の構成を多く有するが、制御部710における機能モジュールが省略されている点、及び表示部が省略されている点が特に異なっている。また、記憶部705についても、RAMやROMなどの主記憶装置のみを有するのみであり、記憶容量は限られている。このため、後述のように各センサ部によって測定された生体情報は、リアルタイムに通信部109を介して情報処理端末72に送信される。
【0084】
情報処理端末72は通信部725を介してセンサ装置72と通信を行い、センサ装置71が測定したユーザーの生体情報を受信する。通信規格は特に限定されないが、Bluetooth(登録商標)、Wi-Fi(登録商標)、赤外線通信などの無線通信規格により通信を行うことができる。なお、情報処理端末72のハードウェア構成はスマートフォンの構成そのものであり、例えば、タッチパネルディスプレイが表示部722及び操作部726を兼ねるものとなっている。
【0085】
通信部725を介して受信した情報は記憶部721に保存され、当該保存された情報に
基づいて、解析処理部723による解析処理、及び血圧測定部724による血圧測定処理が行われる。なお、解析処理部723及び血圧測定部724はそれぞれ、生体情報測定装置1の解析処理部114及び第一血圧測定部115と同様の機能を有する構成であるため、説明は省略する。
【0086】
以上、見たように本実施形態の情報処理システム7は、生体情報のセンシングをセンサ装置71で行い、生体情報の解析処理、血圧測定処理などは情報処理端末72により行う構成となっている。このような構成によれば、ウェアラブルデバイスの構成を簡略化することができる。また、上記実施例のように既に存在する情報処理端末を活用することも可能であるため、システム全体のコストを抑えることができる。
【0087】
<その他>
上記の各例の説明は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明は、その技術的思想の範囲内で種々の変形及び組み合わ
せが可能である。例えば、上記の実施形態1で採用した光電式の脈波センサを実施形態2の装置に適用してもよいし、実施形態1の変形例2で採用した電極と振動センサの一体構造を実施形態2の装置に適用してもよい。また、実施形態2におい二か所に配置されていた振動センサを、中枢側に配置されたもののみとしてもよい。
【0088】
また、上記の各例では、各生体情報及び各指標は血圧値の測定のために用いられていたが、当該生体情報及び指標そのものを活用することも可能である。例えば、PEPはその時間が長いほど心臓の機能が低下しているものと想定されるため、PEPが所定の値を超えるようであれば、その旨の警告を報知するようにしてもよい。
【符号の説明】
【0089】
1、3、4、5・・・生体情報測定装置
10、50・・・本体部
11、51・・・本体筐体
12・・・LEDインジケータ
13、53・・・操作ボタン
14・・・脈波センサ
15、45・・・振動センサ
101・・・電極部
102・・・脈波センサ部
103・・・振動センサ部
104・・・タイマ部
105、705、721・・・記憶部
106、516、722・・・表示部
107、726・・・操作部
108・・・電源部
109、725・・・通信部
110、510、710・・・制御部
20、30、40、60・・・ベルト部
21a、21b、21c、21d、21e、21f、41a、41b、41c、41d、41e、41f、62a、62b、62c、62d、62e、62f、63a、63b、63c、63d・・・電極
22・・・ベルト通し環
29、49、61・・・固定ベルト
31・・・振動センサ筐体
42・・・導電性樹脂
43・・・基板
52・・・液晶ディスプレイ
62・・・心電電極部
63・・・脈波電極部
65・・・フック部
7・・・生体情報処理システム
71・・・センサ装置
72・・・情報処理端末