IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社NTTドコモの特許一覧

特許7688138端末、無線通信方法、基地局及びシステム
<>
  • 特許-端末、無線通信方法、基地局及びシステム 図1
  • 特許-端末、無線通信方法、基地局及びシステム 図2
  • 特許-端末、無線通信方法、基地局及びシステム 図3
  • 特許-端末、無線通信方法、基地局及びシステム 図4
  • 特許-端末、無線通信方法、基地局及びシステム 図5
  • 特許-端末、無線通信方法、基地局及びシステム 図6
  • 特許-端末、無線通信方法、基地局及びシステム 図7
  • 特許-端末、無線通信方法、基地局及びシステム 図8
  • 特許-端末、無線通信方法、基地局及びシステム 図9
  • 特許-端末、無線通信方法、基地局及びシステム 図10
  • 特許-端末、無線通信方法、基地局及びシステム 図11
  • 特許-端末、無線通信方法、基地局及びシステム 図12
  • 特許-端末、無線通信方法、基地局及びシステム 図13
  • 特許-端末、無線通信方法、基地局及びシステム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-05-26
(45)【発行日】2025-06-03
(54)【発明の名称】端末、無線通信方法、基地局及びシステム
(51)【国際特許分類】
   H04W 24/08 20090101AFI20250527BHJP
   H04W 16/28 20090101ALI20250527BHJP
   H04W 76/19 20180101ALI20250527BHJP
【FI】
H04W24/08
H04W16/28
H04W76/19
【請求項の数】 4
(21)【出願番号】P 2023546621
(86)(22)【出願日】2021-09-08
(86)【国際出願番号】 JP2021032992
(87)【国際公開番号】W WO2023037441
(87)【国際公開日】2023-03-16
【審査請求日】2024-04-09
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】110004185
【氏名又は名称】インフォート弁理士法人
(72)【発明者】
【氏名】松村 祐輝
(72)【発明者】
【氏名】永田 聡
(72)【発明者】
【氏名】ワン ジン
(72)【発明者】
【氏名】チン ラン
【審査官】久松 和之
(56)【参考文献】
【文献】NTT DOCOMO, INC,Discussion on beam management for MTRP,3GPP TSG RAN WG1 #104b-e R1-2103562,フランス,3GPP,2021年04月06日
【文献】NTT DOCOMO, INC,Discussion on beam management for MTRP,3GPP TSG RAN WG1 #104-e R1-2101600,フランス,3GPP,2021年01月19日
【文献】Huawei, HiSilicon,Summary of remaining issues on beam failure recovery,3GPP TSG RAN WG1 #92b R1-1803637,フランス,3GPP,2018年04月06日
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24 - 7/26
H04W 4/00 - 99/00
3GPP TSG RAN WG1-4
SA WG1-4、6
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
1つのビーム障害検出参照信号(BFD-RS)セットを示す設定を受信する受信部と、
前記BFD-RSセットに含まれる2つのBFD-RSが、2つの送信設定指示(TCI)状態に関連付けられる1つの制御リソースセット(CORESET)の復調用参照信号(DM-RS)と、疑似コロケーション(QCL)であると判断する制御部と、を有し、
前記制御部は、前記2つのTCI状態に基づいて、前記CORESETに対する1つの無線リンク品質を評価する、端末。
【請求項2】
1つのビーム障害検出参照信号(BFD-RS)セットを示す設定を受信するステップと、
前記BFD-RSセットに含まれる2つのBFD-RSが、2つの送信設定指示(TCI)状態に関連付けられる1つの制御リソースセット(CORESET)の復調用参照信号(DM-RS)と、疑似コロケーション(QCL)であると判断するステップと、
前記2つのTCI状態に基づいて、前記CORESETに対する1つの無線リンク品質を評価するステップと、を有する、端末の無線通信方法。
【請求項3】
1つのビーム障害検出参照信号(BFD-RS)セットを示す設定を送信する送信部と、
前記BFD-RSセットに含まれる2つのBFD-RSが、2つの送信設定指示(TCI)状態に関連付けられる1つの制御リソースセット(CORESET)の復調用参照信号(DM-RS)と、疑似コロケーション(QCL)であると判断する制御部と、を有し、
前記制御部は、前記2つのTCI状態に基づいて、前記CORESETに対する1つの無線リンク品質が評価されると判断する、基地局。
【請求項4】
端末と基地局を有するシステムであって、
前記端末は、
1つのビーム障害検出参照信号(BFD-RS)セットを示す設定を受信する受信部と、
前記BFD-RSセットに含まれる2つのBFD-RSが、2つの送信設定指示(TCI)状態に関連付けられる1つの制御リソースセット(CORESET)の復調用参照信号(DM-RS)と、疑似コロケーション(QCL)であると判断する制御部と、を有し、
前記制御部は、前記2つのTCI状態に基づいて、前記CORESETに対する1つの無線リンク品質を評価し、
前記基地局は、
前記設定を送信する送信部を有するシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、次世代移動通信システムにおける端末、無線通信方法基地局及びシステムに関する。
【背景技術】
【0002】
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
【0003】
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
【先行技術文献】
【非特許文献】
【0004】
【文献】3GPP TS 36.300 V8.12.0 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8)”、2010年4月
【発明の概要】
【発明が解決しようとする課題】
【0005】
将来の無線通信システム(例えば、NR)において、端末(ユーザ端末、User Equipment(UE))が、ビーム障害を検出して他のビームに切り替える手順(ビーム障害回復(Beam Failure Recovery(BFR))手順、BFR、リンクリカバリ手順(Link recovery procedures)などと呼ばれてもよい)を実施することが検討されている。
【0006】
さらに、端末が複数の送受信ポイント(TRP)/UEパネルを利用して通信を行うことも想定される。この場合、複数のTRP/複数のUEパネルにおいてビーム障害検出を行うことが考えられるが、各TRP/UEパネルにおけるビーム障害検出(BFD)又はビーム障害回復(BFR)をどのように制御するかが問題となる。各TRP/UEパネルにおけるビーム障害検出又はビーム障害回復を適切に制御できなければ、通信スループット/通信品質の低下するおそれがある。
【0007】
そこで、本開示は、ビーム障害検出を適切に行う端末、無線通信方法基地局及びシステムを提供することを目的の1つとする。
【課題を解決するための手段】
【0008】
本開示の一態様に係る端末は、1つのビーム障害検出参照信号(BFD-RS)セットを示す設定を受信する受信部と、前記BFD-RSセットに含まれる2つのBFD-RSが、2つの送信設定指示(TCI)状態に関連付けられる1つの制御リソースセット(CORESET)の復調用参照信号(DM-RS)と、疑似コロケーション(QCL)であると判断する制御部と、を有し、前記制御部は、前記2つのTCI状態に基づいて、前記CORESETに対する1つの無線リンク品質を評価する
【発明の効果】
【0009】
本開示の一態様によれば、ビーム障害検出を適切に行うことができる。
【図面の簡単な説明】
【0010】
図1図1A及び1Bは、移動体と送信ポイント(例えば、RRH)との通信の一例を示す図である。
図2図2Aから2Cは、SFNに関するスキーム0から2の一例を示す図である。
図3図3A及び3Bは、スキーム1の一例を示す図である。
図4図4Aから4Cは、ドップラー事前補償スキームの一例を示す図である。
図5図5は、ビーム回復手順の一例を示す図である。
図6図6は、第1の実施形態に係るBFD-RSセット及びCORESETの関係の一例を示す図である。
図7図7は、態様2-Aに係るBFD-RSセット及びCORESETの関係の一例を示す図である。
図8図8は、態様2-Bに係るBFD-RSセット及びCORESETの関係の一例を示す図である。
図9図9は、態様2-Cに係るBFD-RSセット及びCORESETの関係の一例を示す図である。
図10図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。
図11図11は、一実施形態に係る基地局の構成の一例を示す図である。
図12図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。
図13図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
図14図14は、一実施形態に係る車両の一例を示す図である。
【発明を実施するための形態】
【0011】
(TCI、空間関係、QCL)
NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
【0012】
TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
【0013】
TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
【0014】
QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
【0015】
なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
【0016】
QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
・QCLタイプD(QCL-D):空間受信パラメータ。
【0017】
ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
【0018】
UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
【0019】
TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
【0020】
物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
【0021】
TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
【0022】
また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
【0023】
SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
【0024】
TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
【0025】
(マルチTRP)
NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
【0026】
なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
【0027】
マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
【0028】
NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
【0029】
なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
【0030】
これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
【0031】
マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。
【0032】
マルチTRPに対するUltra-Reliable and Low Latency Communications(URLLC)において、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返しスキーム(URLLCスキーム、信頼性拡張(reliability enhancement)スキーム、例えば、スキーム1a、2a、2b、3、4)がサポートされることが検討されている。スキーム1aにおいて、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
【0033】
このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
【0034】
複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
【0035】
次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
1のCORESETプールインデックスが設定される。
[条件2]
CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
【0036】
次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
【0037】
共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。
【0038】
(マルチTRP PDCCH)
非single frequency network(SFN)に基づくマルチTRP PDCCHの信頼性のために、以下の検討1から3が検討されている。
[検討1]符号化/レートマッチングが1つの繰り返し(repetition)に基づき、他の繰り返しにおいて同じ符号化ビットが繰り返される。
[検討2]各繰り返しは、同じcontrol channel element(CCE)数と、同じ符号化ビットと、を有し、同じDCIペイロードに対応する。
[検討3]2つ以上のPDCCH候補が明示的に互いにリンクされる。UEが復号前にそのリンクを知る。
【0039】
PDCCH繰り返しのための次の選択肢1-2、1-3、2、3が検討されている。
【0040】
[選択肢1-2]
PDCCH候補の2つのセットがCORESETの2つのTCI状態にそれぞれ関連付けられる。ここでは、同じCORESET、同じサーチスペース(SS)セット、異なるモニタリングオケージョンにおけるPDCCH繰り返し、が用いられる。
【0041】
[選択肢1-3]
PDCCH候補の2つのセットが2つのSSセットにそれぞれ関連付けられる。両方のSSセットはCORESETに関連付けられ、各SSセットはそのCORESETの1つのみのTCI状態に関連付けられる。ここでは、同じCORESET、2つのSSセット、が用いられる。
【0042】
[選択肢2]
1つのSSセットが2つの異なるCORESETに関連付けられる。
【0043】
[選択肢3]
2つのSSセットが2つのCORESETにそれぞれ関連付けられる。
【0044】
このように、PDCCH繰り返しのための2つのSSセット内の2つのPDCCH候補がサポートされ、2つのSSセットが明示的にリンクされることが検討されている。
【0045】
(SFN/HST)
LTEにおいて、HST(high speed train)のトンネルにおける配置が難しい。ラージアンテナはトンネル外/内への送信を行う。例えば、ラージアンテナの送信電力は1から5W程度である。ハンドオーバのために、UEがトンネルに入る前にトンネル外に送信することが重要である。例えば、スモールアンテナの送信電力は250mW程度である。同じセルIDを有し300mの距離を有する複数のスモールアンテナ(送受信ポイント)はsingle frequency network(SFN)を形成する。SFN内の全てのスモールアンテナは、同じPRB上の同じ時間において同じ信号を送信する。端末は1つの基地局に対して送受信すると想定する。実際は複数の送受信ポイントが同一のDL信号を送信する。高速移動時には、数kmの単位の送受信ポイントが1つのセルを形成する。セルを跨ぐ場合にハンドオーバが行われる。これによって、ハンドオーバ頻度を低減することができる。
【0046】
NRでは、高速に移動する電車等の移動体(HST(high speed train))に含まれる端末(以下、UEとも記す)との通信を行うために、送信ポイント(例えば、RRH)から送信されるビームを利用することが想定される。既存システム(例えば、Rel.15)では、RRHから一方向のビームを送信して移動体との通信を行うことがサポートされている(図1A参照)。
【0047】
図1Aでは、移動体の移動経路(又は、移動方向、進行方向、走行経路)に沿ってRRHが設置され、各RRHから移動体の進行方向側にビームが形成される場合を示している。一方向のビームを形成するRRHは、ユニディレクショナルRRH(uni-directional RRH)と呼ばれてもよい。図1Aに示す例では、移動体は各RRHからマイナスのドップラーシフト(-f)を受ける。
【0048】
なお、ここでは、移動体の進行方向側にビームが形成される場合を示しているが、これに限られず進行方向と逆方向側にビームが形成されてもよいし、移動体の進行方向とは無関係にあらゆる方向にビームが形成されてもよい。
【0049】
Rel.16以降では、RRHから複数(例えば、2以上)のビームが送信されることも想定される。例えば、移動体の進行方向と、その逆方向と、の両方に対してビームを形成することが想定される(図1B参照)。
【0050】
図1Bでは、移動体の移動経路に沿ってRRHが設置され、各RRHから移動体の進行方向側と進行方向の逆方向側の両方にビームが形成される場合を示している。複数方向(例えば、2方向)のビームを形成するRRHは、バイディレクショナルRRH(bi-directional RRH)と呼ばれてもよい。
【0051】
このHSTにおいて、UEは、シングルTRPと同様に、通信を行う。基地局実装においては、複数のTRP(同じセルID)から送信することができる。
【0052】
図1Bの例において、2つのRRH(ここでは、RRH#1とRRH#2)がSFNを用いる場合、移動体が2つのRRHの中間において、マイナスのドップラーシフトを受けた信号から、電力が高くなるプラスのドップラーシフトを受けた信号に切り替わる。この場合、補正が必要となる最大のドップラーシフトの変化幅は、-fから+fへの変化となり、ユニディレクショナルRRHの場合と比較して2倍となる。
【0053】
なお、本開示において、プラスのドップラーシフトは、プラスのドップラーシフトに関する情報、プラス(正)方向のドップラーシフト、プラス(正)方向のドップラー情報と読み替えられてもよい。また、マイナスのドップラーシフトは、マイナスのドップラーシフトに関する情報、マイナス(負)方向のドップラーシフト、マイナス(負)方向のドップラー情報と読み替えられてもよい。
【0054】
ここで、HST用スキームとして、以下のスキーム0からスキーム2(HSTスキーム0からHSTスキーム2)を比較する。
【0055】
図2Aのスキーム0においては、tracking reference signal(TRS)とDMRSとPDSCHとが2つのTRP(RRH)に共通に(同じ時間及び同じ周波数のリソースを用いて)送信される(通常のSFN、透過的(transparent)SFN、HST-SFN)。
【0056】
スキーム0において、UEがシングルTRP相当でDLチャネル/信号を受信することから、PDSCHのTCI状態は1つである。
【0057】
なお、Rel.16において、シングルTRPを利用する送信と、SFNを利用する送信とを区別するためのRRCパラメータが規定されている。UEは、対応するUE能力情報を報告した場合、当該RRCパラメータに基づいて、シングルTRPのDLチャネル/信号の受信と、SFNを想定するPDSCHの受信と、を区別してもよい。一方で、UEは、シングルTRPを想定して、SFNを利用する送受信を行ってもよい。
【0058】
図2Bのスキーム1においては、TRSがTRP固有に(TRPによって異なる時間/周波数のリソースを用いて)送信される。この例では、TRP#1からTRS1が送信され、TRP#2からTRS2が送信される。
【0059】
スキーム1において、UEがそれぞれのTRPからのTRSを用いてそれぞれのTRPからのDLチャネル/信号を受信することから、PDSCHのTCI状態は2つである。
【0060】
図2Cのスキーム2においては、TRSとDMRSとがTRP固有に送信される。この例では、TRP#1からTRS1及びDMRS1が送信され、TRP#2からTRS2及びDMRS2が送信される。スキーム1及び2は、スキーム0に比べて、ドップラーシフトの急変を抑え、ドップラーシフトを適切に推定/補償することができる。スキーム2のDMRSはスキーム1のDMRSよりも増加することから、スキーム2の最大スループットはスキーム1より低下する。
【0061】
スキーム0において、UEは、上位レイヤシグナリング(RRC情報要素/MAC CE)に基づいて、シングルTRPとSFNを切り替える。
【0062】
UEは、上位レイヤシグナリング(RRC情報要素/MAC CE)に基づいて、スキーム1/スキーム2/NW pre-compensationスキームを切り替えてもよい。
【0063】
スキーム1において、HSTの進行方向とその逆方向とに対して2つのTRSリソースがそれぞれ設定される。
【0064】
図3Aの例において、HSTの逆方向へDL信号を送信するTRP(TRP#0、#2、…)は、同一の時間及び周波数のリソース(SFN)において第1TRS(HSTの前から到来するTRS)を送信する。HSTの進行方向へDL信号を送信するTRP(TRP#1、#3、…)は、同一の時間及び周波数のリソース(SFN)において第2TRS(HSTの後から到来するTRS)を送信する。第1TRS及び第2TRSは、互いに異なる周波数リソースを用いて送信/受信されてもよい。
【0065】
図3Bの例において、第1TRSとしてTRS1-1から1-4が送信され、第2TRSとしてTRS2-1から2-4が送信される。
【0066】
ビーム運用を考えると、64個のビーム及び64個の時間リソースを用いて第1TRSを送信し、64個のビーム及び64個の時間リソースを用いて第2TRSを送信する。第1TRSのビームと、第2TRSのビームとは、等しい(QCLタイプD RSが等しい)と考えられる。第1TRS及び第2TRSを同一の時間リソース及び異なる周波数リソースに多重することによって、リソース利用効率を高めることができる。
【0067】
図4Aの例において、HSTの移動経路に沿って、RRH#0-#7が配置されている。RRH#0-#3及びRRH#4-#7は、それぞれベースバンドユニット(BBU)#0及び#1と接続されている。各RRHはバイディレクショナルRRHであり、移動経路の進行方向とその逆方向との両方に、各送受信ポイント(Transmission/Reception Point(TRP))を利用してビームを形成している。
【0068】
図4Bの例(シングルTRP(SFN)/スキーム1)の受信信号において、TRP#2n-1(nは0以上の整数)から送信される信号/チャネル(HSTの進行方向のビーム、UEの後からのビーム)をUEが受信する場合、マイナスのドップラーシフト(この例では、-fD)が起こる。また、TRP#2n(nは0以上の整数)から送信される信号/チャネル(HSTの進行方向の逆方向のビーム、UEの前からのビーム)をUEが受信する場合、プラスのドップラーシフト(この例では、+fD)が起こる。
【0069】
Rel.17以降では、基地局が、TRPからのHSTにおけるUEに対する下りリンク(DL)信号/チャネルの送信において、ドップラー事前(予備)補償(補正)スキーム(Pre-Doppler Compensation scheme、Doppler pre-Compensation scheme、network(NW)事前補償スキーム(NW pre-compensation scheme、HST NW pre-compensation scheme))を行うことが検討されている。TRPは、UEへDL信号/チャネルの送信を行う際に、予めドップラー補償を行うことで、UEにおけるDL信号/チャネルの受信時のドップラーシフトの影響を小さくすることが可能になる。本開示において、ドップラー事前補償スキームは、スキーム1と、基地局によるドップラーシフトの事前補償と、の組み合わせであってもよい。
【0070】
ドップラー事前補償スキームにおいては、各TRPからのTRSに対しては、ドップラー事前補償を行われずに送信され、各TRPからのPDSCHに対しては、ドップラー事前補償が行われて送信されることが検討されている。
【0071】
ドップラー事前補償スキームにおいて、移動経路の進行方向側にビームを形成するTRP及び移動経路の進行方向と逆方向側にビームを形成するTRPは、ドップラー補正を行った上でHST内のUEに対してDL信号/チャネルの送信を行う。この例では、TRP#2n-1は、プラスのドップラー補正を行い、TRP#2nは、マイナスのドップラー補正を行うことで、UEの信号/チャネルの受信時におけるドップラーシフトの影響を低減する(図4C)。
【0072】
なお、図4Cの状況においては、UEがそれぞれのTRPからのTRSを用いてそれぞれのTRPからのDLチャネル/信号を受信することから、PDSCHのTCI状態は2つであってもよい。
【0073】
さらに、Rel.17以降では、TCIフィールド(TCI状態フィールド)を使用して、シングルTRPとSFNとを動的に切り替えることが検討されている。例えば、RRC情報要素/MAC CE(例えば、Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)/DCI(TCIフィールド)を用いて、各TCIコードポイント(TCIフィールドのコードポイント、DCIコードポイント)で、1つ又は2つのTCI状態が設定/指示される。UEは、1つのTCI状態を設定/指示されるとき、シングルTRPのPDSCHを受信すると判断してもよい。また、UEは、2つのTCI状態を設定/指示されるとき、マルチTRPを用いる、SFNのPDSCHを受信すると判断してもよい。
【0074】
(SFN PDCCH繰り返し)
Rel.15において、CORESETプールインデックス(CORESETPoolIndex)(TRP情報(TRP Info)と呼ばれてもよい)なしの1つのTCI状態が、1つのCORESETに設定される。
【0075】
Rel.16で規定されるPDCCH/CORESETのエンハンスメントについて、マルチDCIに基づくマルチTRPでは、各CORESETに対して、CORESETプールインデックスが設定される。
【0076】
Rel.17以降では、PDCCH/CORESETに関する以下のエンハンスメント1及び2が検討されている。
【0077】
同じセルIDを有する複数のアンテナ(スモールアンテナ、送受信ポイント)がsingle frequency network(SFN)を形成するケースにおいて、1つのCORESETに対し、上位レイヤシグナリング(RRCシグナリング/MAC CE)で最大2つのTCI状態が設定/アクティベートされうる(エンハンスメント1)。SFNは、HST(high speed train)の運用及び信頼性向上の少なくとも一方に寄与する。
【0078】
また、PDCCHの繰り返し送信(単に、「repetition」と呼ばれてもよい)において、2つのサーチスペースセットにおける2つのPDCCH候補がリンクし、各サーチスペースセットが、対応するCORESETに関連付く(エンハンスメント2)。2つのサーチスペースセットは、同じ又は異なるCORESETに関連付いてもよい。1つのCORESETに対し、上位レイヤシグナリング(RRCシグナリング/MAC CE)で1つ(最大1つ)のTCI状態が設定/アクティベートされうる。
【0079】
もし2つのサーチスペースセットが、異なるTCI状態を有する異なるCORESETに関連付けられる場合、マルチTRPの繰り返し送信であることを意味してもよい。もし2つのサーチスペースセットが、同じCORESET(同じTCI状態のCORESET)に関連付けられる場合、シングルTRPの繰り返し送信であることを意味してもよい。
【0080】
(Beam Failure Detection(BFD)/Beam Failure Recovery(BFR))
NRでは、ビームフォーミングを利用して通信を行う。例えば、UE及び基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
【0081】
ビームフォーミングを用いる場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(Radio Link Failure(RLF))が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
【0082】
NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(Beam Recovery(BR))、ビーム障害回復(Beam Failure Recovery(BFR))、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施する。なお、BFR手順は単にBFRと呼ばれてもよい。
【0083】
なお、本開示におけるビーム障害(beam failure(BF))は、リンク障害(link failure)と呼ばれてもよい。
【0084】
図5は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。初期状態(ステップS101)において、UEは、2つのビームを用いて送信される参照信号(Reference Signal(RS))リソースに基づく測定を実施する。
【0085】
当該RSは、同期信号ブロック(Synchronization Signal Block(SSB))及びチャネル状態測定用RS(Channel State Information RS(CSI-RS))の少なくとも1つであってもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックなどと呼ばれてもよい。
【0086】
RSは、プライマリ同期信号(Primary SS(PSS))、セカンダリ同期信号(Secondary SS(SSS))、モビリティ参照信号(Mobility RS(MRS))、SSBに含まれる信号、SSB、CSI-RS、復調用参照信号(DeModulation Reference Signal(DMRS))、ビーム固有信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号であってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(Beam Failure Detection RS(BFD-RS)、ビーム障害検出用RS)、又はビーム回復手順に利用するためのRS(BFR-RS)などと呼ばれてもよい。
【0087】
ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
【0088】
UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RS(BFD-RSリソース設定)の全てについて、BLER(Block Error Rate)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
【0089】
なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(Layer 1 Reference Signal Received Power(L1-RSRP))であってもよい。また、RS測定の代わりに又はRS測定に加えて、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSと擬似コロケーション(Quasi-Co-Location(QCL))であると期待されてもよい。
【0090】
ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
【0091】
なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
【0092】
BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFR用リソースに関する情報などと呼ばれてもよい。
【0093】
UEの上位レイヤ(例えば、MACレイヤ)は、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
【0094】
基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
【0095】
ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチ(candidate beam detection(CBD))を開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補RS、新候補ビーム識別のためのRS、NCBI-RS(New Candidate Beam Identification RS)、新規ビーム識別のためのRS、新規ビーム識別用RS、NBI-RS(New Beam Identification RS)、CBI-RS(Candidate Beam Identification RS)、CB-RS(Candidate Beam RS)、候補ビーム検出RS(Candidate Beam Detection RS、CBD-RS)、などと呼ばれてもよい。NBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、単に候補ビーム又は候補RSと呼ばれてもよい。
【0096】
UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
【0097】
NBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新規ビーム識別(NBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。新候補RS(又は、NBI-RS)に関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NBI-RSに関する情報は、NBI用リソースに関する情報などと呼ばれてもよい。
【0098】
なお、BFD-RS、NBI-RSなどは、無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))と互いに読み替えられてもよい。
【0099】
ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(Beam Failure Recovery reQuest(BFRQ))を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
【0100】
BFRQは、例えば、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、コンフィギュアド(設定)グラント(configured grant(CG))PUSCHの少なくとも1つを用いて送信されてもよい。
【0101】
BFRQは、ステップS103において特定された新候補ビーム/新候補RSの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(Beam Index(BI))、所定の参照信号のポートインデックス、RSインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CSI-RS Resource Indicator(CRI))、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
【0102】
Rel.15 NRでは、衝突型ランダムアクセス(Random Access(RA))手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。CB-BFR及びCF-BFRでは、UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、RACHプリアンブルなどともいう)をBFRQとして送信してもよい。
【0103】
CB-BFRでは、UEは、1つ又は複数のプリアンブルからランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
【0104】
なお、CB-BFR及びCF-BFRは、それぞれCB PRACHベースBFR(contention-based PRACH-based BFR(CBRA-BFR))及びCF PRACHベースBFR(contention-free PRACH-based BFR(CFRA-BFR))と呼ばれてもよい。CBRA-BFRは、BFR用CBRAと呼ばれてもよい。CFRA-BFRは、BFR用CFRAと呼ばれてもよい。
【0105】
CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
【0106】
ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。
【0107】
当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(Cell-Radio RNTI(C-RNTI)))によって巡回冗長検査(Cyclic Redundancy Check(CRC))スクランブルされたPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
【0108】
UEは、当該応答信号を、BFR用の制御リソースセット(COntrol REsource SET(CORESET))及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
【0109】
CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
【0110】
ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
【0111】
ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
【0112】
ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
【0113】
Rel.15では、SpCell(PCell/PSCell)で検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、ランダムアクセス手順を利用して行うことがサポートされている。一方で、Rel.16では、SCellで検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、BFR用のPUCCH(例えば、スケジューリングリクエスト(SR))送信と、BFR用のMAC CE(例えば、UL-SCH)送信の少なくとも一つを利用して行うことがサポートされる。
【0114】
例えば、UEは、MAC CEベースの2ステップを利用して、ビーム障害に関する情報を送信してもよい。ビーム障害に関する情報は、ビーム障害を検出したセルに関する情報、新候補ビーム(又は、新候補RSインデックス)に関する情報が含まれていてもよい。
【0115】
[ステップ1]
BFが検出された場合、UEから、PCell/PSCellに対して、PUCCH-BFR(スケジューリング要求(SR))が送信されてもよい。次いで、PCell/PSCellから、UEに対して、下記ステップ2のためのULグラント(DCI)が送信されてもよい。ビーム障害が検出された場合に、新候補ビームに関する情報を送信するためのMAC CE(又は、UL-SCH)が存在する場合には、ステップ1(例えば、PUCCH送信)を省略して、ステップ2(例えば、MAC CE送信)を行ってもよい。
【0116】
[ステップ2]
次いで、UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新候補ビームに関する情報を、MAC CEを用いて、上りリンクチャネル(例えば、PUSCH)を介して、基地局(PCell/PSCell)に送信してもよい。その後、BFR手順を経て、基地局からの応答信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCLが、新たなビームに更新されてもよい。
【0117】
なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
【0118】
(BFD-RS/NBI-RS)
BFDにおいて、UEは、上位レイヤシグナリングなどにより、明示的BFD-RS(例えば、SSB/CSI-RS)の設定が行われてもよい。又は、UEは、BFDにおいて、PDCCH/CORESETのTCI状態に基づく暗示的BFD-RSの設定が行われてもよい(UEが当該TCI状態に基づいてBFD-RSを決定してもよい)。また、BFRにおいて、UEは、上位レイヤシグナリングなどにより、明示的NBI-RS(例えば、SSB/CSI-RS)の設定が行われてもよい。以下、明示的BFD-RS、暗示的BFD-RS、明示的NBI-RSなどについて具体的に説明する。
【0119】
Rel.16において、UEは、1つのサービングセルの各BWPに対し、そのサービングセルのそのBWP上の無線リンク品質測定のために、障害検出リソースリスト(failureDetectionResourcesToAddModList)によって周期的(P)-CSI-RSリソース設定インデックスのセットq0バーを提供されることができる。UEは、1つのサービングセルの各BWPに対し、そのサービングセルのそのBWP上の無線リンク品質測定のために、候補ビームRSリスト(candidateBeamRSList)又は拡張候補ビームRSリスト(candidateBeamRSListExt)又はSCell用候補ビームRSリスト(candidateBeamRSSCellList)によって、P-CSI-RSリソース設定インデックス及びSS/PBCHブロックインデックスの少なくとも1つのセットq1バーを提供されることができる。
【0120】
q0バーは、「q0」にオーバーラインを付した表記である。以下、q0バーは、単にq0と表記される。q1バーは、「q1」にオーバーラインを付した表記である。以下、q1バーは、単にq1と表記される。
【0121】
障害検出リソースによって提供されるP-CSI-RSリソースのセットq0は、明示的BFD-RSと呼ばれてもよい。セットq1は、明示的New Beam Identification(NBI)-RSと呼ばれてもよい。
【0122】
言い換えれば、UEは、セル毎BFR用のBFD-RSセットq0を明示的に設定されることができる。
【0123】
UEは、セットq0及びセットq1の少なくとも1つのセットに含まれるインデックスに対応するRSリソースを用いてL1-RSRP測定などを実施し、ビーム障害を検出してもよい。
【0124】
なお、本開示において、BFD用リソースに対応するインデックスの情報を示す上述の上位レイヤパラメータを提供されることは、BFD用リソースを設定されること、BFD-RSを設定されることなどと互いに読み替えられてもよい。本開示において、BFD用リソース、周期的CSI-RSリソース設定インデックス又はSSBインデックスのセットq0、BFD-RS、は互いに読み替えられてもよい。
【0125】
もしUEが、そのサービングセルの1つのBWPに対し、障害検出リソース(failureDetectionResources)によってq0を提供されない場合、UEがPDCCHのモニタリングに用いる、対応するCORESETに対するTCI状態(TCI-State)によって指示されるRSセット内のRSインデックスと同じ値を有するP-CSI-RSリソース設定インデックスを、セットq0に含めることを決定する。もし1つのTCI状態内に2つのRSインデックスがある場合、セットq0が、対応するTCI状態に対してQCLタイプD設定を有するRSインデックスを含む。UEは、そのセットq0が2つまでのRSインデックスを含むと想定する。UEは、そのセットq0内においてシングルポートRSを想定する。
【0126】
このセットq0は、暗示的BFD-RSと呼ばれてもよい。
【0127】
UE内の物理レイヤは、リソース設定のセットq0に従う無線リンク品質を、閾値Qout,LRに対して評価する(assess)。セットq0に対し、UEは、UEによってモニタされるPDCCH受信のDM-RSと疑似コロケートされた(quasi co-located)PCell又はPSCell上のSS/PBCHブロック、又は、UEによってモニタされるPDCCH受信のDM-RSと疑似コロケートされたP-CSI-RSリソース設定、のみに従って、無線リンク品質を評価する。
【0128】
言い換えれば、セットq0に対し、UEは、PDCCH/CORESETのDMRSとQCLされたBFD-RSに従って無線リンク品質を評価する。
【0129】
(セル毎BFR(per-cell BFR)及びTRP毎BFR(per-TRP BFR))
前述(Rel.15/16)のBFRは、セル毎に行われるため、セル毎BFRと呼ばれてもよい。これに対し、TRP毎に行われるBFRが検討されている。
【0130】
シングルDCIベースマルチTRPに対し、新規RRC設定パラメータ(例えば、TRP-ID、グループID、新規IDなど)が設定されることが検討されている。新規RRC設定パラメータは、以下のオプション1及び2のいずれかに従ってもよい。
[オプション1]
各CORESETが新規IDに関連付けられる。上位レイヤによってTRP毎BFR用のBFD-RSの2つのセットが設定された場合、1つのセット内のBFD-RSとQCLされるCORESETは、同じ新規IDに関連付けられ、異なるセット内のBFD-RSとQCLされるCORESETは、異なる新規IDに関連付けられてもよい。
[オプション2]
各TCI状態が新規IDに関連付けられる。上位レイヤによってTRP毎BFR用のBFD-RSの2つのセットが設定された場合、1つのセット内のBFD-RSとQCLされるTCI状態/CORESETは、同じ新規IDに関連付けられ、異なるセット内のBFD-RSとQCLされるTCI状態/CORESETは、異なる新規IDに関連付けられてもよい。
【0131】
2つのTCI状態とシングルDCIベースマルチTRPとの少なくとも1つを用いるCORESETを考慮した明示的BFD-RSセット設定は、十分に検討されていない。
【0132】
明示的BFD-RSセット設定に関し、以下のケース#1から#5が考えられる。
[ケース#1]
シングルセル/シングルTRP動作において、2つのTCI状態を伴うSFN CORESETを用いる場合の、セル毎BFR(per-cell BFR)のために、1つのBFD-RSセットが設定される。
[ケース#2]
シングルDCIベースマルチTRP動作において、全てのCORESETが1つのTCI状態を伴う場合の、セル毎BFR(per-cell BFR)のために、1つのBFD-RSセットが設定される。
[ケース#3]
シングルDCIベースマルチTRP動作において、全てのCORESETが1つのTCI状態を伴う場合の、TRP毎BFR(per-TRP BFR)のために、2つまでのBFD-RSセットが設定される。
[ケース#4]
シングルDCIベースマルチTRP動作において、2つのTCI状態を伴うSFN CORESETを用いる場合の、セル毎BFR(per-cell BFR)のために、1つのBFD-RSセットが設定される。
[ケース#5]
シングルDCIベースマルチTRP動作において、2つのTCI状態を伴うSFN CORESETを用いる場合の、TRP毎BFR(per-TRP BFR)のために、2つまでのBFD-RSセットが設定される。
【0133】
SFN PDCCHスキーム1は、HST及びURLLCを含むことが検討されている。本開示において、SFN PDCCHスキーム1、SFN PDCCHスキーム、SFN PDCCH、TRPベース事前補償(TRP-based pre-compensation)スキーム、は互いに読み替えられてもよい。
【0134】
暗示的BFD-RSに対し、SFN PDCCHスキームは、1つ及び2つのTCI状態の両方を含んでもよい。もしSFN PDCCHスキームが設定され、且つ、少なくとも1つのCORESETに対して2つのTCI状態がアクティベートされる場合、BFD用RSの暗示的設定のために、1つ及び2つのTCI状態を伴うCORESETのRSが用いられることが検討されている。
【0135】
SFN PDCCH/CORESETに関連付けられたBFD-RSを用いて計算がどのように行われるかが問題となる。1つのCORESETに対して2つのTCI状態がアクティベートされた場合、UEは、マルチTRP用のSFN送信を想定し、CORESETのBFD-RSペアを用いて、仮想(hypothetical)block error rate(BLER)を計算すること、が検討されている。
【0136】
2つのリンクされたPDCCHを考慮した明示的BFD-RSセット設定は、十分に検討されていない。
【0137】
明示的BFD-RSセット設定に関し、以下のケース#aから#eが考えられる。
[ケース#a]
2つのリンクされたPDCCHを用いるシングルセル/シングルTRPの動作における、セル毎BFR(per-cell BFR)のために、1つのBFD-RSセットが設定される。
[ケース#b]
2つのリンクされたPDCCHを用いるシングルDCIベースマルチTRP動作における、セル毎BFR(per-cell BFR)のために、1つのBFD-RSセットが設定される。
[ケース#c]
2つのリンクされたPDCCHを用いるシングルDCIベースマルチTRP動作における、TRP毎BFR(per-TRP BFR)のために、2つまでのBFD-RSセットが設定される。
[ケース#d]
2つのリンクされたPDCCHを用いるマルチDCIベースマルチTRP動作における、セル毎BFR(per-cell BFR)のために、1つのBFD-RSセットが設定される。
[ケース#e]
2つのリンクされたPDCCHを用いるマルチDCIベースマルチTRP動作における、TRP毎BFR(per-TRP BFR)のために、2つまでのBFD-RSセットが設定される。
【0138】
このように、明示的BFD-RSセット設定に関する動作が明らかでないケース(特に、ケース#1、#4、#5、#aから#e)がある。このような動作が明らかでなければ、通信品質/通信スループットが低下するおそれがある。
【0139】
そこで、本発明者らは、明示的BFD-RSセット設定に関する動作を着想した。
【0140】
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
【0141】
本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
【0142】
本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
【0143】
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
【0144】
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
【0145】
本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
【0146】
本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
【0147】
本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
【0148】
本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
【0149】
本開示において、シングルTRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチTRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
【0150】
本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。
【0151】
本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。
【0152】
本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。
【0153】
本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
【0154】
本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。
【0155】
本開示において、SFNを利用してDL信号(PDSCH/PDCCH)を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ(PDSCH)/制御情報(PDCCH)を、複数の送受信ポイントから受信すること、を意味してもよい。また、SFNを利用してDL信号を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ/制御情報を、複数のTCI状態/空間ドメインフィルタ/ビーム/QCLを利用して受信すること、を意味してもよい。
【0156】
本開示において、HST-SFNスキーム、Rel.17以降のSFNスキーム、新規SFNスキーム、新規HST-SFNスキーム、Rel.17以降のHST-SFNシナリオ、HST-SFNシナリオのためのHST-SFNスキーム、HST-SFNシナリオのためのSFNスキーム、スキーム1、ドップラー事前補償スキーム、スキーム1(HSTスキーム1)及びドップラー事前補償スキームの少なくとも1つ、は互いに読み替えられてもよい。本開示において、ドップラー事前補償スキーム、基地局事前補償スキーム、TRP事前補償スキーム、pre-Doppler compensationスキーム、Doppler pre-compensationスキーム、NW pre-compensationスキーム、HST NW pre-compensationスキーム、は互いに読み替えられてもよい。本開示において、事前補償スキームは、低減スキーム、改善スキーム、補正スキーム、は互いに読み替えられてもよい。
【0157】
本開示において、新規ID、TRP-ID、グループID、CORESETプールインデックス、は互いに読み替えられてもよい。本開示において、新規IDの1番目の値、新規IDの値0、2つのTCI状態の内の1番目のTCI状態、は互いに読み替えられてもよい。本開示において、新規IDの2番目の値、新規IDの値1、2つのTCI状態の内の2番目のTCI状態、は互いに読み替えられてもよい。
【0158】
本開示において、2つのリンクされたPDCCH(PDCCH候補)、2つのリンクされたサーチスペース(SS)セット、2つのリンクされたCORESET、PDCCH繰り返しのための2つのリンクされたSSセット、PDCCH繰り返しのための2つのリンクされたPDCCH、2つのリンクされたSSセットに関連付けられた2つのPDCCH候補、PDCCH繰り返しのための2つのリンクされたCORESET、2つのリンクされたSSセットにそれぞれ関連付けられた2つのCORESET、は互いに読み替えられてもよい。
【0159】
リンケージ(linkage、結合、連携)を有する複数SSセット(SSセットペア)は、PDCCH繰り返しに対し、RRC IE/MAC CEを介して、一方のSSセットが、他方のSSセットとリンクされることを意味してもよい。リンケージを有しないSSセット(単独(individual)のSSセット)は、RRC IE/MAC CEを介して、RRC IE/MAC CEを介して、そのSSセットが、別のSSセットとリンクされないことを意味してもよい。
【0160】
本開示において、リンケージを有する、リンクされた、ペア、は互いに読み替えられてもよい。本開示において、リンケージを有しない、リンクされない、単独の、は互いに読み替えられてもよい。
【0161】
本開示において、セル毎BFR(per-cell BFR)、1つのセルに対して1つのBFR-RSセットが設定される/関連付けられること、は互いに読み替えられてもよい。本開示において、TRP毎BFR(per-TRP BFR)、1つのセルに対して2つまでのBFR-RSセットが設定される/関連付けられること、TRP毎のBFR-RSセットが設定される/関連付けられること、は互いに読み替えられてもよい。
【0162】
(無線通信方法)
UEは、セルに対する1つ又は2つのBFD-RSセット(例えば、q0、q0_0、q0_1など)を示す設定(例えば、リソース、リソースリストなど)を受信してもよい。UEは、1つのCORESET又は2つのPDCCHに関連付けられた2つのTCI状態の少なくとも1つと、1つ又は2つのBFD-RSセットと、を用いて無線リンク品質を評価してもよい。
【0163】
2つのTCI状態は、1つのCORESET/PDCCHに関連付けられてもよい。2つのTCI状態は、2つのリンクされたPDCCHのに関連付けられてもよい。
【0164】
<第1の実施形態>
この実施形態は、前述のケース#1又は#4に関する。
【0165】
RRC IE/MAC CEは、1つのBFD-RSセットq0を設定/更新してもよい。ここで、図6の例のように、セットq0内の2つのBFD-RSが、PDCCH/CORESETの1つ又は2つのTCI状態のいずれとQCLされるかが問題となる。
【0166】
セットq0内のBFD-RS(例えば、SS/PBCHブロック又はP-CSI-RSリソース)は、以下のQCL関係1から4の少なくとも1つに従ってもよい。
[QCL関係1]セットq0内のBFD-RSは、1つのみのTCI状態を伴うPDCCH/CORESETのDM-RS(TCI状態)とQCLされる。SFN-CORESETとQCLされるBFD-RSは、除外されてもよい。
[QCL関係2]もしPDCCH/CORESETが1つのTCI状態を伴ってアクティベートされる場合、セットq0内のBFD-RSは、そのPDCCH/CORESETのDM-RS(TCI状態)とQCLされる。又は、もしPDCCH/CORESETのDM-RSが2つのTCI状態を伴ってアクティベートされる場合、そのPDCCH/CORESETの1番目(又は2番目)のTCI状態。
[QCL関係3]セットq0内のBFD-RSは、2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの1番目(又は2番目)のTCI状態とQCLされる。
[QCL関係4]セットq0内の2つのBFD-RSは、2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの2つのTCI状態とそれぞれQCLされる。そのCORESETは、SFN-CORESETであってもよい。
【0167】
セットq0に対し、UEが、PDCCHのDM-RSとQCLされたBFD-RSに従って無線リンク品質を評価する場合、UEは、以下の動作1から3の少なくとも1つに従ってもよい。
【0168】
[動作1]
そのPDCCH/CORESETが1つのみのTCI状態を伴う場合、UEは、前述のRel.16の動作に従う。
【0169】
[動作2]
そのPDCCH/CORESETが2つのTCI状態を伴い、且つ、そのセット内の1つのBFD-RSがそのCORESETの1番目(又は2番目)のTCI状態とQCLされる場合、UEは、以下の想定1及び2のいずれかを想定し、そのPDCCH/CORESETに対する1つの無線リンク品質を評価する。
[[[想定1]]]1番目(又は2番目)のTCI状態からの(1番目(又は2番目)のTCI状態を用いる)受信。
[[[想定2]]]両方のTCI状態からの(両方のTCI状態を用いる)SFN受信。
【0170】
[動作3]
そのPDCCH/CORESETが2つのTCI状態を伴い、且つ、そのセット内の2つのBFD-RSがそのCORESETの2つのTCI状態とそれぞれQCLされる場合、UEは、以下の評価1及び2の少なくとも1つに従う。
【0171】
[[評価1]]
UEは、以下の想定1及び2のいずれかを想定し、そのPDCCH/CORESETに対する1つの無線リンク品質を評価する。
[[[想定1]]]1番目(又は2番目)のTCI状態からの(1番目(又は2番目)のTCI状態を用いる)受信。
[[[想定2]]]両方のTCI状態からの(両方のTCI状態を用いる)SFN受信。
【0172】
[[評価2]]
UEは、各TCI状態からの(各TCI状態を用いる)受信を想定し、そのPDCCH/CORESETに対する2つの無線リンク品質を評価する。
【0173】
この実施形態によれば、UEは、指示された1つのBFD-RSセットをセル毎のBFRに適切に用いることができる。
【0174】
<第2の実施形態>
この実施形態は、前述のケース#5に関する。
【0175】
《態様2-A》
RRC IE/MAC CEは、2つのBFD-RSセットq0_0、q0_1を設定/更新してもよい。ここで、図7の例のように、セットq0_0内の2つのBFD-RS、セットq0_1内の2つのBFD-RSが、PDCCH/CORESETの1つ又は2つのTCI状態のいずれとQCLされるかが問題となる。
【0176】
本開示において、セットq0_0は、1番目のTRP ID/CORESETプールインデックス/グループID/新規ID(例えば、値0)に関連付けられてもよい。セットq0_1は、2番目のTRP ID/CORESETプールインデックス/グループID/新規ID(例えば、値1)に関連付けられてもよい。
【0177】
セットq0_0、q0_1内のBFD-RS(例えば、SS/PBCHブロック又はP-CSI-RSリソース)は、以下のQCL関係に従ってもよい。
[QCL関係]セットq0_0内のBFD-RSは、2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの1番目のTCI状態とQCLされる。セットq0_1内のBFD-RSは、2つのTCI状態を伴ってアクティベートされたそのPDCCH/CORESETの2番目のTCI状態とQCLされる。
【0178】
1つのTCI状態を伴ってアクティベートされたCORESETは、以下のCORESET1から3のいずれかに従ってもよい。
[CORESET1]SFNが設定された場合、このようなCORESET(少なくともUE-specific search space(USS)を伴う(含む)CORESET、又は、少なくともcommon search space(CSS)タイプを伴わない(含まない)CORESET)は存在しない。
[CORESET2]このようなCORESETが存在するが、BFD-RSのための上記のQCL関係には考慮されない。
[CORESET3]このようなCORESETが存在し、任意のセット内のBFD-RSのための上記のQCL関係に考慮される。
【0179】
セットq0_0、q0_1の各セットに対し、UEが、PDCCHとQCLされたBFD-RSに従って無線リンク品質を評価する場合、UEは、以下の評価に従ってもよい。
[評価]
もしそのPDCCH/CORESETが2つのTCI状態を伴い、且つ、セットq0_0及びq0_1が、そのCORESETの1番目及び2番目のTCI状態とそれぞれQCLされる場合、UEは、以下の評価1及び2のいずれかに従って、そのPDCCH/CORESETに対する無線リンク品質を評価する。
[[評価1]]
UEは、各TCI状態からの(各TCI状態を用いる)受信を想定し、各TRP/セットに対する2つの無線リンク品質を評価する。
[[評価2]]
UEは、両方のTCI状態からの(両方のTCI状態を用いる)SFN受信を想定し、同じ1つの無線リンク品質又は2つの無線リンク品質を評価する。
【0180】
《態様2-B》
各CORESETが新規IDに関連付けられる。各CORESETは、新規IDの2つの値に対応する2つのグループのいずれか内にある。
【0181】
図8の例のように、もし1つのCORESETが2つのTCI状態を伴ってアクティベートされた場合、1つのグループ内にそのCORESETをどのように配置する(関連付ける)かが問題となる。CORESETは、以下の関連付け1から3のいずれかに従ってもよい。
[関連付け1]2つのTCI状態を伴うCORESETに対するグループの指示/関連付けはない。
[関連付け2]2つのTCI状態を伴うCORESETに対し、固定のグループ(例えば、グループ#0)が指示される/関連付けられる。
[関連付け3]2つのTCI状態を伴うCORESETに対するグループの指示/関連付けの制限はない。
【0182】
RRC IE/MAC CEは、2つのBFD-RSセットq0_0、q0_1を設定/更新してもよい。ここで、図8の例のように、セットq0_0内の2つのBFD-RS、セットq0_1内の2つのBFD-RSが、PDCCH/CORESETの1つ又は2つのTCI状態のいずれとQCLされるかが問題となる。
【0183】
セットq0_0、q0_1内のBFD-RS(例えば、SS/PBCHブロック又はP-CSI-RSリソース)は、以下のQCL関係1及び2のいずれかに従ってもよい。
【0184】
[QCL関係1]
セットq0_0内のBFD-RSは、2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの1番目のTCI状態、又は、1番目のグループ(グループ#0)内の1つのTCI状態を伴ってアクティベートされたPDCCH/CORESETのそのTCI状態とQCLされてよい。セットq0_1内のBFD-RSは、2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの1番目のTCI状態、又は、2番目のグループ(グループ#1)内の1つのTCI状態を伴ってアクティベートされたPDCCH/CORESETのそのTCI状態とQCLされてよい。
【0185】
[QCL関係2]
セットq0_0内のBFD-RSは、1番目のグループ(グループ#0)内の2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの1番目のTCI状態、又は、1番目のグループ(グループ#0)内の1つのTCI状態を伴ってアクティベートされたPDCCH/CORESETのそのTCI状態とQCLされてよい。セットq0_1内のBFD-RSは、2番目のグループ(グループ#1)内の2つのTCI状態を伴ってアクティベートされたPDCCH/CORESETの1番目のTCI状態、又は、2番目のグループ(グループ#1)内の1つのTCI状態を伴ってアクティベートされたPDCCH/CORESETのそのTCI状態とQCLされてよい。
【0186】
セットq0_0、q0_1の各セットに対し、UEが、PDCCHとQCLされたBFD-RSに従って無線リンク品質を評価する場合、UEは、以下の評価に従ってもよい。
[評価]
もしそのPDCCH/CORESETが2つのTCI状態を伴い、且つ、セットq0_0(又はq0_1)が、そのCORESETの1つのTCI状態とQCLされる場合、UEは、以下の評価1及び2のいずれかに従って、そのPDCCH/CORESETに対する無線リンク品質を評価する。
[[評価1]]
UEは、対応するTCI状態からの(対応するTCI状態を用いる)受信を想定し、対応するTRP/セットに対する無線リンク品質を評価する。
[[評価2]]
UEは、両方のTCI状態からの(両方のTCI状態を用いる)SFN受信を想定し、無線リンク品質を評価する。
【0187】
《態様2-C》
各TCI状態が新規IDに関連付けられる。各TCI状態は、新規IDの2つの値に対応する2つのグループのいずれか内にある。
【0188】
図9の例のように、2つのTCI状態を伴ってアクティベートされた1つのCORESETに対し、その2つのTCI状態は、異なるグループ(グループ#0、#1)内にあると想定される。
【0189】
RRC IE/MAC CEは、2つのBFD-RSセットq0_0、q0_1を設定/更新してもよい。ここで、セットq0_0内の2つのBFD-RS、セットq0_1内の2つのBFD-RSが、PDCCH/CORESETの1つ又は2つのTCI状態のいずれとQCLされるかが問題となる。
【0190】
セットq0_0、q0_1内のBFD-RS(例えば、SS/PBCHブロック又はP-CSI-RSリソース)は、以下のQCL関係に従ってもよい。
【0191】
[QCL関係]
セットq0_0内のBFD-RSは、そのPDCCH/CORESETのTCI状態とQCLされる。ここで、そのTCI状態は、1番目のグループ(グループ#0)からのTCI状態である。セットq0_1内のBFD-RSは、そのPDCCH/CORESETのTCI状態とQCLされる。ここで、そのTCI状態は、2番目のグループ(グループ#1)からのTCI状態である。
【0192】
RRC IEは、各TCI状態内の各RSがBFD用に利用/設定が可能か否かを設定してもよい。RRC IEは、各TCI状態内のBFD用のこのようなRSに対して、関連付けられたBFD-RSを設定してもよい。
【0193】
セットq0_0、q0_1の各セットに対し、UEが、PDCCHとQCLされたBFD-RSに従って無線リンク品質を評価する場合、UEは、以下の評価に従ってもよい。
[評価]
もしそのPDCCH/CORESETが2つのTCI状態を伴い、且つ、セットq0_0(又はq0_1)が、対応するグループからの、そのCORESETの1つのTCI状態とQCLされる場合、UEは、以下の評価1及び2のいずれかに従って、そのPDCCH/CORESETに対する無線リンク品質を評価する。
[[評価1]]
UEは、同じグループ内の対応するTCI状態からの(同じグループ内の対応するTCI状態を用いる)受信を想定し、対応するTRP/セットに対する無線リンク品質を評価する。
[[評価2]]
UEは、両方のTCI状態からの(両方のTCI状態を用いる)SFN受信を想定し、無線リンク品質を評価する。
【0194】
《分析》
シングルDCIベースマルチTRPにおいて、TCI状態のグルーピングは、CORESETのグルーピングよりも明確に見え、マルチDCIベースマルチTRPとの区別においても好ましい。
【0195】
各TCI状態内の各RSがBFD用に利用/設定が可能か否かのRRC設定は、前述のケース#1/#4に適用されてもよい。
【0196】
《態様2-D》
SFN-PDCCHに対し、2つのTRPからのBFD-RSを用いてどのように計算が行われるかは、UE実装(implementation)に依存してもよい。
【0197】
SFN-PDCCHに対し、TRP毎BFRをサポートすることが難しく、セル毎BFRのみがサポートされる可能性がある。TRP毎BFRに対し、UEは、2つのTCI状態を伴うCORESETと関連付けられた(QCLされた)明示的/暗示的なBFD-RSを用いることを想定しない、と規定されてもよい。
【0198】
2つのリンクされたPDCCHに対し、TRP毎BFRに対する明示的/暗示的なBFD-RSがサポートされてもよい。
【0199】
この実施形態によれば、UEは、指示された1つ又は2つのBFD-RSセットをTRP毎のBFRに適切に用いることができる。
【0200】
<第3の実施形態>
この実施形態は、前述のケース#a、#b、#dに関する。
【0201】
第1の実施形態における、2つのTCI状態を伴うCORESET/PDCCH(CORESET/PDCCHに関連付けられた2つのTCI状態)の1番目/2番目のTCI状態が、2つのリンクされたPDCCHの1番目/2番目のPDCCHのTCI状態、と読み替えられてもよい。
【0202】
この実施形態によれば、UEは、指示された1つ又は2つのBFD-RSセットをセル毎のBFRに適切に用いることができる。
【0203】
<第4の実施形態>
この実施形態は、前述のケース#cに関する。
【0204】
第2の実施形態における、2つのTCI状態を伴うCORESET/PDCCH(CORESET/PDCCHに関連付けられた2つのTCI状態)の1番目/2番目のTCI状態が、2つのリンクされたPDCCHの1番目/2番目のPDCCHのTCI状態、と読み替えられてもよい。
【0205】
この実施形態によれば、UEは、指示された1つ又は2つのBFD-RSセットをTRP毎のBFRに適切に用いることができる。
【0206】
<第5の実施形態>
この実施形態は、前述のケース#eに関する。
【0207】
RRC IE/MAC CEは、2つのBFD-RSセットq0_0、q0_1を設定/更新してもよい。
【0208】
セットq0_0、q0_1内のBFD-RS(例えば、SS/PBCHブロック又はP-CSI-RSリソース)は、以下のQCL関係1及び2のいずれかに従ってもよい。
【0209】
[QCL関係1]
UEは、2つのリンクされたPDCCHのCORESETは、同じCORESETプールインデックスに属する(関連付けられる)と想定する。セットq0_0内のBFD-RSは、CORESETプールインデックス=0からのCORESETとQCLされる。セットq0_1内のBFD-RSは、CORESETプールインデックス=1からのCORESETとQCLされる。BFD-RSとQCLされた2つのリンクされたPDCCHは、同じBFD-RSセット内にあってもよい。
【0210】
[QCL関係2]
UEは、2つのリンクされたPDCCHのCORESETは、異なるCORESETプールインデックスに関連付けられると想定する。セットq0_0内のBFD-RSは、CORESETプールインデックス=0からのCORESETとQCLされる。セットq0_1内のBFD-RSは、CORESETプールインデックス=1からのCORESETとQCLされる。BFD-RSとQCLされた2つのリンクされたPDCCHは、異なるBFD-RSセット内にあってもよい。
【0211】
この実施形態によれば、UEは、指示された1つ又は2つのBFD-RSセットをTRP毎のBFRに適切に用いることができる。
【0212】
<他の実施形態>
《UE能力情報/上位レイヤパラメータ》
以上の各実施形態における機能(特徴、feature)に対応する上位レイヤパラメータ(RRC IE)/UE能力(capability)が規定されてもよい。上位レイヤパラメータは、その機能を有効化するか否かを示してもよい。UE能力は、UEがその機能をサポートするか否かを示してもよい。
【0213】
その機能に対応する上位レイヤパラメータが設定されたUEは、その機能を行ってもよい。「その機能に対応する上位レイヤパラメータが設定されないUEは、その機能を行わない(例えば、Rel.15/16に従う)こと」が規定されてもよい。
【0214】
その機能をサポートすることを示すUE能力を報告/送信したUEは、その機能を行ってもよい。「その機能をサポートすることを示すUE能力を報告していないUEは、その機能を行わない(例えば、Rel.15/16に従う)こと」が規定されてもよい。
【0215】
UEがその機能をサポートすることを示すUE能力を報告/送信し、且つその機能に対応する上位レイヤパラメータが設定された場合、UEは、その機能を行ってもよい。「UEがその機能をサポートすることを示すUE能力を報告/送信しない場合、又はその機能に対応する上位レイヤパラメータが設定されない場合に、UEは、その機能を行わない(例えば、Rel.15/16に従う)こと」が規定されてもよい。
【0216】
以上の複数の実施形態の内の、どの実施形態/オプション/選択肢/機能が用いられるかは、上位レイヤパラメータによって設定されてもよいし、UE能力としてUEによって報告されてもよいし、仕様に規定されてもよいし、報告されたUE能力と上位レイヤパラメータの設定とによって決定されてもよい。
【0217】
UE能力は、以下の少なくとも1つの機能をサポートするか否かを示してもよい。
・セル毎BFR用の明示的BFD-RSセットが、2つのTCI状態を伴うCORESET(の1つ又は2つのTCI状態)とQCLされる。
・TRP毎BFR用の明示的な2つのBFD-RSセットの設定に対し、各セット内のBFD-RSが(シングルDCIベースマルチTRPのための)2つのTCI状態を伴うCORESETの1つのTCI状態とQCLされる。
・2つのCORESETが(シングルDCIベースマルチTRPのための)2つのグループにグループ化される/関連付けられる。
・2つのTCI状態を伴うCORESETに対して、そのグルーピングが行われる。
・2つのTCI状態が(シングルDCIベースマルチTRPのための)2つのグループにグループ化される/関連付けられる。
・1つのCORESETが2つのTCI状態を伴う場合に、そのグルーピングが行われる。
・2つのTCI状態を伴うCORESETに対し、UEがそのPDCCH/CORESETの無線リンク品質を評価する場合、UEは、以下の想定1及び2に従う。
[想定1]UEは、1つの/それぞれのTCI状態からの(1つの/それぞれのTCI状態を用いる)受信を想定する。
[想定2]UEは、両方のTCI状態からの(両方のTCI状態を用いる)SFN受信を想定する。
・複数のCORESETに対して異なる数(例えば、1及び2)のTCI状態がアクティベートされる。この機能をサポートすることを示すUE能力は、CORESET0を含むか除くかを示してもよい。この機能は、SFN-PDCCHに対してサポートされてもよい。
・2つのリンクされたPDCCH/PDCCH候補/SSセットを用いるPDCCH繰り返しが行われる。
【0218】
以上のUE能力/上位レイヤパラメータによれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
【0219】
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
【0220】
図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
【0221】
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
【0222】
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
【0223】
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
【0224】
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
【0225】
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
【0226】
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
【0227】
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
【0228】
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
【0229】
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
【0230】
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
【0231】
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
【0232】
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
【0233】
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
【0234】
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
【0235】
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
【0236】
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
【0237】
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
【0238】
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
【0239】
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
【0240】
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
【0241】
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
【0242】
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
【0243】
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
【0244】
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
【0245】
(基地局)
図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
【0246】
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
【0247】
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
【0248】
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
【0249】
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
【0250】
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
【0251】
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
【0252】
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
【0253】
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
【0254】
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
【0255】
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
【0256】
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
【0257】
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
【0258】
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
【0259】
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
【0260】
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
【0261】
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
【0262】
なお、送受信部120は、セルに対する1つ又は2つのビーム障害検出参照信号(BFD-RS)セットを示す設定を送信してもよい。制御部110は、1つのコントロールリソースセット又は2つの物理下りリンク制御チャネル(PDCCH)に関連付けられた2つのTCI状態の少なくとも1つと、前記1つ又は2つのBFD-RSセットと、を用いて評価された無線リンク品質に基づく結果の受信を制御してもよい。
【0263】
(ユーザ端末)
図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
【0264】
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
【0265】
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
【0266】
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
【0267】
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
【0268】
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
【0269】
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
【0270】
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
【0271】
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
【0272】
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
【0273】
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
【0274】
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
【0275】
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
【0276】
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
【0277】
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
【0278】
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
【0279】
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
【0280】
なお、送受信部220は、セルに対する1つ又は2つのビーム障害検出参照信号(BFD-RS)セットを示す設定を受信してもよい。制御部210は、1つのコントロールリソースセット又は2つの物理下りリンク制御チャネル(PDCCH)に関連付けられた2つのTCI状態の少なくとも1つと、前記1つ又は2つのBFD-RSセットと、を用いて無線リンク品質を評価してもよい。
【0281】
前記設定は、2つのBFD-RSセットを示してもよい。前記2つのBFD-RSセットは、前記2つのTCI状態にそれぞれ関連付けられてもよい。
【0282】
前記1つのコントロールリソースセットは、前記2つのTCI状態に関連付けられてもよい。
【0283】
前記2つのPDCCHは、前記2つのTCI状態にそれぞれ関連付けられてもよい。前記2つのPDCCHは、互いにリンクされてもよい。
【0284】
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
【0285】
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
【0286】
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
【0287】
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0288】
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
【0289】
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
【0290】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
【0291】
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
【0292】
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0293】
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
【0294】
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
【0295】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0296】
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
【0297】
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
【0298】
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
【0299】
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
【0300】
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
【0301】
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
【0302】
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
【0303】
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
【0304】
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
【0305】
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
【0306】
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
【0307】
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
【0308】
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
【0309】
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
【0310】
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
【0311】
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
【0312】
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
【0313】
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
【0314】
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
【0315】
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
【0316】
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
【0317】
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
【0318】
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
【0319】
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
【0320】
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
【0321】
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
【0322】
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
【0323】
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
【0324】
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
【0325】
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
【0326】
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
【0327】
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
【0328】
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
【0329】
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
【0330】
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
【0331】
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
【0332】
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
【0333】
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
【0334】
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
【0335】
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
【0336】
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
【0337】
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
【0338】
図14は、一実施形態に係る車両の一例を示す図である。図14に示すように、車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
【0339】
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
【0340】
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
【0341】
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
【0342】
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
【0343】
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
【0344】
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
【0345】
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
【0346】
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号及び当該信号に基づいて得られる情報の少なくとも一方を、無線通信を介して外部装置へ送信してもよい。
【0347】
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
【0348】
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
【0349】
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
【0350】
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
【0351】
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
【0352】
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
【0353】
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0354】
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
【0355】
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
【0356】
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
【0357】
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
【0358】
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
【0359】
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
【0360】
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
【0361】
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
【0362】
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
【0363】
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
【0364】
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
【0365】
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14