(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-06-30
(45)【発行日】2025-07-08
(54)【発明の名称】共通フィルタを備える高周波フロントエンドモジュール
(51)【国際特許分類】
H04B 1/38 20150101AFI20250701BHJP
H04B 1/44 20060101ALI20250701BHJP
H04B 1/00 20060101ALI20250701BHJP
【FI】
H04B1/38
H04B1/44
H04B1/00 257
【外国語出願】
(21)【出願番号】P 2021179678
(22)【出願日】2021-11-02
【審査請求日】2024-11-01
(32)【優先日】2020-12-07
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-12-07
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】503031330
【氏名又は名称】スカイワークス ソリューションズ,インコーポレイテッド
【氏名又は名称原語表記】SKYWORKS SOLUTIONS,INC.
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ジョエル・リチャード・キング
(72)【発明者】
【氏名】ティアミン・チェン
(72)【発明者】
【氏名】シェイアン・ファラーバッシュ
(72)【発明者】
【氏名】ステファーヌ・リシャール・マリー・ブロクジシアク
(72)【発明者】
【氏名】アナンド・ラガバン
(72)【発明者】
【氏名】デイビッド・リチャード・ペールケ
【審査官】麻生 哲朗
(56)【参考文献】
【文献】米国特許出願公開第2016/0261901(US,A1)
【文献】米国特許出願公開第2004/0266378(US,A1)
【文献】特開平10-107677(JP,A)
【文献】特開2003-087150(JP,A)
【文献】特開2019-140671(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 1/38
H04B 1/44
H04B 1/00
(57)【特許請求の範囲】
【請求項1】
第1周波数範囲内で送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、
前記第1周波数範囲と異なる第2周波数範囲内で受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、
アンテナに結合された出力ノードと、
選択的に、前記出力ノードを、送信期間に前記少なくとも1つのパワーアンプに結合し、受信期間に前記少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、
前記パワーアンプと前記少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、
前記低雑音増幅器と前記少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、
前記少なくとも1つのスイッチと前記出力ノードとの間に結合された共通フィルタとを備え、前記共通フィルタは、前記第1周波数範囲および前記第2周波数範囲で共通にフィルタリングされる1つ以上の周波数をフィルタリングするように構成された1つ以上のコンポーネントを含み、前記共通フィルタは、前記少なくとも1つの送信フィルタとともに、前記第1周波数範囲に対するバンドパスフィルタとして構成され、前記共通フィルタは、前記少なくとも1つの受信フィルタとともに、前記第2周波数範囲に対するバンドパスフィルタとして構成され、
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、高周波フロントエンドシステム。
【請求項2】
前記少なくとも1つの送信フィルタを含む第1マルチプレクサと、前記少なくとも1つの受信フィルタを含む第2マルチプレクサとをさらに備え、前記少なくとも1つの送信フィルタは、複数の送信フィルタを含み、前記少なくとも1つの受信フィルタは、複数の受信フィルタを含む、請求項1に記載のフロントエンドシステム。
【請求項3】
前記少なくとも1つのスイッチは、前記第1マルチプレクサおよび前記第2マルチプレクサのうち一方を前記出力ノードに選択的に結合するようにさらに構成される、請求項2に記載のフロントエンドシステム。
【請求項4】
前記少なくとも1つの送信フィルタを含む第1フィルタバンクと、前記少なくとも1つの受信フィルタを含む第2のフィルタバンクとをさらに備え、前記少なくとも1つの送信フィルタは、複数の送信フィルタを含み、前記少なくとも1つの受信フィルタは、複数の受信フィルタを含む、請求項1に記載のフロントエンドシステム。
【請求項5】
前記少なくとも1つのスイッチは、前記送信フィルタのうち1つおよび前記受信フィルタのうち1つを前記出力ノードに同時に選択的に結合するようにさらに構成される、請求項4に記載のフロントエンドシステム。
【請求項6】
前記少なくとも1つのパワーアンプは、第1のパワーアンプおよび第2のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、第1の低雑音増幅器および第2の低雑音増幅器を含み、前記少なくとも1つの送信フィルタは、送信ダイプレクサを含み、前記少なくとも1つの受信フィルタは、受信ダイプレクサを含み、前記少なくとも1つのスイッチは、第1スイッチおよび第2スイッチを含む、請求項1に記載のフロントエンドシステム。
【請求項7】
送信補助フィルタと受信補助フィルタとをさらに備え、前記少なくとも1つのスイッチは、連結された第1スイッチと第2スイッチとを含み、前記第2スイッチは、選択的に、前記送信期間に前記送信補助フィルタを前記少なくとも1つのパワーアンプに結合し、前記受信期間に前記受信補助フィルタを前記少なくとも1つの低雑音増幅器に結合するように構成される、請求項1に記載のフロントエンドシステム。
【請求項8】
前記送信補助フィルタおよび前記受信補助フィルタは、シャントフィルタを含む、請求項7に記載のフロントエンドシステム。
【請求項9】
前記送信補助フィルタおよび前記受信補助フィルタは、ノッチフィルタを含む、請求項7に記載のフロントエンドシステム。
【請求項10】
モバイル機器であって、
高周波信号を基地局に送信するように構成されたアンテナと、
前記アンテナに結合され、前記アンテナからの前記高周波信号を送受信するように構成されたフロントエンドシステムとを備え、前記フロントエンドシステムは、
第1周波数範囲内で送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、
前記第1周波数範囲と異なる第2周波数範囲内で受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、
選択的に、前記アンテナを、送信期間に前記少なくとも1つのパワーアンプに結合し、受信期間に前記少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、
前記パワーアンプと前記少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、
前記低雑音増幅器と前記少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、
前記少なくとも1つのスイッチと前記アンテナとの間に結合された共通フィルタとを備え、前記共通フィルタは、前記第1周波数範囲および前記第2周波数範囲で共通にフィルタリングされる1つ以上の周波数をフィルタリングするように構成された1つ以上のコンポーネントを含み、前記共通フィルタは、前記少なくとも1つの送信フィルタとともに、前記第1周波数範囲に対するバンドパスフィルタとして構成され、前記共通フィルタは、前記少なくとも1つの受信フィルタとともに、前記第2周波数範囲に対するバンドパスフィルタとして構成され、
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、モバイル機器。
【請求項11】
前記フロントエンドシステムは、前記少なくとも1つの送信フィルタを含む第1マルチプレクサと、前記少なくとも1つの受信フィルタを含む第2マルチプレクサとをさらに含み、前記少なくとも1つの送信フィルタは、複数の送信フィルタを含み、前記少なくとも1つの受信フィルタは、複数の受信フィルタを含む、請求項10に記載のモバイル機器。
【請求項12】
前記少なくとも1つのスイッチは、前記第1マルチプレクサおよび前記第2マルチプレクサのうち一方を前記アンテナに選択的に結合するようにさらに構成される、請求項11に記載のモバイル機器。
【請求項13】
前記フロントエンドシステムは、前記少なくとも1つの送信フィルタを含む第1フィルタバンクと、前記少なくとも1つの受信フィルタを含む第2のフィルタバンクとをさらに備え、前記少なくとも1つの送信フィルタは、複数の送信フィルタを含み、前記少なくとも1つの受信フィルタは、複数の受信フィルタを含む、請求項10に記載のモバイル機器。
【請求項14】
前記少なくとも1つのスイッチは、前記送信フィルタのうち1つおよび前記受信フィルタのうち1つを前記アンテナに同時に選択的に結合するようにさらに構成される、請求項13に記載のモバイル機器。
【請求項15】
前記少なくとも1つのパワーアンプは、第1のパワーアンプおよび第2のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、第1の低雑音増幅器および第2の低雑音増幅器を含み、前記少なくとも1つの送信フィルタは、送信ダイプレクサを含み、前記少なくとも1つの受信フィルタは、受信ダイプレクサを含み、前記少なくとも1つのスイッチは、第1スイッチおよび第2スイッチを含む、請求項10に記載のモバイル機器。
【請求項16】
高周波フロントエンドシステムを操作するための方法であって、
送信期間に、少なくとも1つのスイッチを介して少なくとも1つのパワーアンプをアンテナに結合するステップを備え、前記スイッチは、少なくとも1つの送信フィルタを介して前記少なくとも1つのパワーアンプに結合され、前記スイッチは、共通フィルタを介して出力ノードに結合され、前記少なくとも1つのパワーアンプは、第1周波数範囲内で送信高周波信号を増幅するように構成され、前記方法は、さらに、
受信期間に、前記少なくとも1つのスイッチを介して少なくとも1つの低雑音増幅器を前記アンテナに結合するステップを含み、前記スイッチは、少なくとも1つの受信フィルタを介して前記少なくとも1つの低雑音増幅器に結合され、前記少なくとも1つの低雑音増幅器は、前記第1周波数範囲と異なる第2周波数範囲内で受信高周波信号を受信するように構成され、前記方法は、さらに、
前記共通フィルタの1つ以上のコンポーネントを用いて、前記第1周波数範囲および前記第2周波数範囲で共通にフィルタリングされる1つ以上の周波数をフィルタリングするステップを含み、前記共通フィルタは、前記少なくとも1つの送信フィルタとともに、前記第1周波数範囲に対するバンドパスフィルタとして構成され、前記共通フィルタは、前記少なくとも1つの受信フィルタとともに、前記第2周波数範囲に対するバンドパスフィルタとして構成され、
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、方法。
【請求項17】
前記共通フィルタは、前記出力ノードを介して前記アンテナにさらに結合される、請求項16に記載の方法。
【請求項18】
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、請求項16に記載の方法。
【請求項19】
第1周波数範囲内で送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、
前記第1周波数範囲と異なる第2周波数範囲内で受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、
アンテナに結合された出力ノードと、
選択的に、前記出力ノードを、送信期間に前記少なくとも1つのパワーアンプに結合し、受信期間に前記少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、
前記パワーアンプと前記少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、
前記低雑音増幅器と前記少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、
前記少なくとも1つのスイッチと前記出力ノードとの間に結合された共通フィルタとを備え、前記共通フィルタは、前記第1周波数範囲および前記第2周波数範囲で共通にフィルタリングされる1つ以上の周波数をフィルタリングするように構成された1つ以上のコンポーネントを含み、前記共通フィルタは、前記少なくとも1つの送信フィルタとともに、前記第1周波数範囲に対するバンドパスフィルタとして構成され、前記共通フィルタは、前記少なくとも1つの受信フィルタとともに、前記第2周波数範囲に対するバンドパスフィルタとして構成され、
送信補助フィルタと受信補助フィルタとをさらに備え、前記少なくとも1つのスイッチは、連動する第1スイッチと第2スイッチとを含み、前記第2スイッチは、選択的に、前記送信期間に前記送信補助フィルタを前記少なくとも1つのパワーアンプに結合し、前記受信期間に前記受信補助フィルタを前記少なくとも1つの低雑音増幅器に結合するように構成される、高周波フロントエンドシステム。
【請求項20】
前記送信補助フィルタおよび前記受信補助フィルタは、シャントフィルタまたはノッチフィルタを含む、請求項19に記載の高周波フロントエンドシステム。
【請求項21】
モバイル機器であって、
高周波信号を基地局に送信するように構成されたアンテナと、
前記アンテナに結合され、前記アンテナからの前記高周波信号を送受信するように構成されたフロントエンドシステムとを備え、前記フロントエンドシステムは、
第1周波数範囲内で送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、
前記第1周波数範囲と異なる第2周波数範囲内で受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、
選択的に、前記アンテナを、送信期間に前記少なくとも1つのパワーアンプに結合し、受信期間に前記少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、
前記パワーアンプと前記少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、
前記低雑音増幅器と前記少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、
前記少なくとも1つのスイッチと前記アンテナとの間に結合された共通フィルタとを備え、前記共通フィルタは、前記第1周波数範囲および前記第2周波数範囲で共通にフィルタリングされる1つ以上の周波数をフィルタリングするように構成された1つ以上のコンポーネントを含み、前記共通フィルタは、前記少なくとも1つの送信フィルタとともに、前記第1周波数範囲に対するバンドパスフィルタとして構成され、前記共通フィルタは、前記少なくとも1つの受信フィルタとともに、前記第2周波数範囲に対するバンドパスフィルタとして構成され、
前記フロントエンドシステムは、送信補助フィルタと受信補助フィルタとをさらに備え、前記少なくとも1つのスイッチは、連動する第1スイッチと第2スイッチとを含み、前記第2スイッチは、選択的に、前記送信期間に前記送信補助フィルタを前記少なくとも1つのパワーアンプに結合し、前記受信期間に前記受信補助フィルタを前記少なくとも1つの低雑音増幅器に結合するように構成される、モバイル機器。
【請求項22】
高周波フロントエンドシステムを操作するための方法であって、
送信期間に、少なくとも1つのスイッチを介して少なくとも1つのパワーアンプをアンテナに結合するステップを備え、前記スイッチは、少なくとも1つの送信フィルタを介して前記少なくとも1つのパワーアンプに結合され、前記スイッチは、共通フィルタを介して出力ノードに結合され、前記少なくとも1つのスイッチは、連動する第1のスイッチおよび第2のスイッチを含み、前記少なくとも1つのパワーアンプは、第1周波数範囲内で送信高周波信号を増幅するように構成され、前記方法は、さらに、
受信期間に、前記少なくとも1つのスイッチを介して少なくとも1つの低雑音増幅器を前記アンテナに結合するステップを含み、前記スイッチは、少なくとも1つの受信フィルタを介して前記少なくとも1つの低雑音増幅器に結合され、前記少なくとも1つの低雑音増幅器は、前記第1周波数範囲と異なる第2周波数範囲内で受信高周波信号を受信するように構成され、前記方法は、さらに、
前記共通フィルタの1つ以上のコンポーネントを用いて、前記第1周波数範囲および前記第2周波数範囲で共通にフィルタリングされる1つ以上の周波数をフィルタリングするステップを含み、前記共通フィルタは、前記少なくとも1つの送信フィルタとともに、前記第1周波数範囲に対するバンドパスフィルタとして構成され、前記共通フィルタは、前記少なくとも1つの受信フィルタとともに、前記第2周波数範囲に対するバンドパスフィルタとして構成され、
前記第2のスイッチを介して、前記送信期間
に送信補助フィルタを前記少なくとも1つのパワーアンプに選択的に結合するステップと、
前記第2のスイッチを介して、前記受信期間に前記受信補助フィルタを前記少なくとも1つの低雑音増幅器に選択的に結合するステップとをさらに備える、方法。
【請求項23】
高周波フロントエンドシステムであって、
送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプ、および受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器を備え、前記送信高周波信号および前記受信高周波信号の少なくとも1つは、WiFi通信の周波数に隣接した周波数帯で動作し、さらに、
選択的に、アンテナに結合された出力ノードを送信期間に前記少なくとも1つのパワーアンプに結合し、受信期間に前記少なくとも1つの低雑音増幅器に結合するように構成された第1スイッチと、
前記パワーアンプ
と少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタ、および前記低雑音増幅器と前記少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、
送信補助フィルタおよび受信補助フィルタとを備え、前記送信補助フィルタおよび受信補助フィルタのうちの少なくとも1つは、前記WiFi通信の周波数においてノッチを含み、さらに、
選択的に、前記送信期間に前記送信補助フィルタを前記少なくとも1つのパワーアンプおよび前記少なくとも1つの送信フィルタに結合し、前記受信期間に前記受信補助フィルタを前記少なくとも1つの低雑音増幅器および前記少なくとも1つの受信フィルタに結合するように構成された第2スイッチとを備える、高周波フロントエンドシステム。
【請求項24】
前記第1スイッチと前記第2スイッチとは連結されている、請求項23に記載のフロントエンドシステム。
【請求項25】
前記第1スイッチと前記出力ノードとの間に結合された共通フィルタをさらに備える、請求項23に記載のフロントエンドシステム。
【請求項26】
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、請求項23に記載のフロントエンドシステム。
【請求項27】
前記送信補助フィルタおよび前記受信補助フィルタは、シャントフィルタを含む、請求項23に記載のフロントエンドシステム。
【請求項28】
前記シャントフィルタは、RFスペクトルの所定部分を除去するように構成される、請求項27に記載のフロントエンドシステム。
【請求項29】
前記送信補助フィルタおよび前記受信補助フィルタは、ノッチフィルタを含む、請求項23に記載のフロントエンドシステム。
【請求項30】
前記送信補助フィルタおよび前記受信補助フィルタは、中心周波数および周波数特性において、前記少なくとも1つの送信フィルタおよび前記少なくとも1つの受信フィルタとは全く異なる、請求項23に記載のフロントエンドシステム。
【請求項31】
前記第2スイッチは
、第1の補助フィルタおよび第2の補助フィルタの一方に切替えて、少なくとも1つのパワーアンプと、前記少なくとも1つの低雑音増幅器と、前記出力ノードとの間の信号パスにつなげることによって、前記少なくとも1つの送信フィルタおよび前記少なくとも1つの受信フィルタを動的に再構成するようにさらに構成される、請求項23に記載のフロントエンドシステム。
【請求項32】
モバイル機器であって、
高周波信号を基地局に送信するように構成されたアンテナと、
前記アンテナに結合され、前記アンテナからの前記高周波信号を送受信するように構成されたフロントエンドシステムとを備え、前記フロントエンドシステムは、
送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、
受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、
選択的に、前記アンテナを送信期間に前記少なくとも1つのパワーアンプに結合し、受信期間に前記少なくとも1つの低雑音増幅器に結合するように構成された第1スイッチと、
前記パワーアンプ
と少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、
前記低雑音増幅器と前記少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、
送信補助フィルタと、
受信補助フィルタと、
選択的に、前記送信期間に前記送信補助フィルタを前記少なくとも1つのパワーアンプおよび前記少なくとも1つの送信フィルタに結合し、前記受信期間に前記受信補助フィルタを前記少なくとも1つの低雑音増幅器および前記少なくとも1つの受信フィルタに結合するように構成された第2スイッチとを備え、
前記送信補助フィルタおよび受信補助フィルタのうちの少なくとも1つは、WiFi通信の周波数においてノッチを含み、前記送信高周波信号および前記受信高周波信号の少なくとも1つは、前記WiFi通信の周波数に隣接した周波数帯で動作する、モバイル機器。
【請求項33】
前記第1スイッチと前記第2スイッチとは連結されている、請求項32に記載のモバイル機器。
【請求項34】
前記フロントエンドシステムは、前記第1スイッチ
と出力ノードとの間に結合された共通フィルタをさらに含む、請求項32に記載のモバイル機器。
【請求項35】
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、請求項32に記載のモバイル機器。
【請求項36】
前記送信補助フィルタおよび前記受信補助フィルタは、シャントフィルタを含む、請求項32に記載のモバイル機器。
【請求項37】
前記シャントフィルタは、RFスペクトルの所定部分を除去するように構成される、請求項36に記載のモバイル機器。
【請求項38】
前記送信補助フィルタおよび前記受信補助フィルタは、ノッチフィルタを含む、請求項32に記載のモバイル機器。
【請求項39】
前記送信補助フィルタおよび前記受信補助フィルタは、中心周波数および周波数特性において、前記少なくとも1つの送信フィルタおよび前記少なくとも1つの受信フィルタとは全く異なる、請求項32に記載のモバイル機器。
【請求項40】
高周波フロントエンドシステムを操作する方法であって、
送信期間に、第1スイッチを介して少なくとも1つのパワーアンプをアンテナに結合するステップを含み、前記第1スイッチは、少なくとも1つの送信フィルタを介して前記少なくとも1つのパワーアンプに結合され、前記少なくとも1つのパワーアンプは、前記送信期間に送信高周波信号を増幅し、前記方法は、さらに、
受信期間に、前記第1スイッチを介して少なくとも1つの低雑音増幅器を前記アンテナに結合するステップを含み、前記第1スイッチは、少なくとも1つの受信フィルタを介して前記少なくとも1つの低雑音増幅器に結合され、前記少なくとも1つの低雑音増幅器は、前記受信期間に受信高周波信号を受信し、前記送信高周波信号および前記受信高周波信号の少なくとも1つは、WiFi通信の周波数に隣接した周波数帯で動作し、前記方法は、さらに、
前記送信期間に、第2スイッチを介して送信補助フィルタを前記少なくとも1つのパワーアンプおよび前記少なくとも1つの送信フィルタに結合するステップと、
前記受信期間に、前記第2スイッチを介して受信補助フィルタを前記少なくとも1つの低雑音増幅器および前記少なくとも1つの受信フィルタに結合するステップとを含み、前記送信補助フィルタおよび受信補助フィルタのうちの少なくとも1つは、前記WiFi通信の周波数においてノッチを含む、方法。
【請求項41】
前記第1スイッチと前記アンテナとの間に共通フィルタが結合される、請求項40に記載の方法。
【請求項42】
前記少なくとも1つのパワーアンプは、複数のパワーアンプを含み、前記少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含む、請求項40に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願とともに出願した出願データシートにおいて外国または国内優先権を主張することが明らかなすべての出願を、米国特許法施行規則1.57に従って、引用により本明細書に援用する。
【0002】
背景
技術分野
本開示の態様は、RF(高周波数)通信システムに関し、特に、RF通信システムにおいて使用するためのフロントエンドモジュールに関する。
【背景技術】
【0003】
関連技術の説明
RF通信システムは、ベースバンドシステムとの間でRF信号を通信する送信パスおよび受信パスに1つ以上のアンテナを結合するフロントエンドを含む。TDD(時分割複信)通信時、アンテナは、一度に送信パスおよび受信パスのうち1つだけに接続される場合がある。フロントエンドは、所与の通信帯域の範囲外のRF信号から周波数をフィルタ処理して取り除くように構成された1つ以上のフィルタをさらに含む。通常、これらのフィルタは、送信パスと受信パスとの間で共有されているであろう。
【発明の概要】
【課題を解決するための手段】
【0004】
特定の発明の態様の概要
本開示のシステム、方法、およびデバイスは、各々、複数の革新的な態様を有しており、それらのうち、いずれの態様も、本明細書に開示の望ましい特性に単独で貢献しているとは限らない。
【0005】
一態様では、高周波フロントエンドシステムを提供する。この高周波フロントエンドシステムは、送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、アンテナに結合された出力ノードと、選択的に、送信期間に出力ノードを少なくとも1つのパワーアンプに結合し、受信期間に少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、パワーアンプと少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、低雑音増幅器と少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、少なくとも1つのスイッチと出力ノードとの間に結合された共通フィルタとを備える。
【0006】
少なくとも1つのパワーアンプは、複数のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含んでもよい。
【0007】
フロントエンドシステムは、少なくとも1つの送信フィルタを含む第1マルチプレクサと、少なくとも1つの受信フィルタを含む第2マルチプレクサとをさらに備えてもよく、少なくとも1つの送信フィルタは、複数の送信フィルタを含み、少なくとも1つの受信フィルタは、複数の受信フィルタを含む。
【0008】
少なくとも1つのスイッチは、第1マルチプレクサおよび第2マルチプレクサのうち一方を出力ノードに選択的に結合するようにさらに構成されてもよい。
【0009】
フロントエンドシステムは、少なくとも1つの送信フィルタを含む第1フィルタバンクと、少なくとも1つの受信フィルタを含む第2のフィルタバンクとをさらに備えてもよく、少なくとも1つの送信フィルタは、複数の送信フィルタを含み、少なくとも1つの受信フィルタは、複数の受信フィルタを含む。
【0010】
少なくとも1つのスイッチは、遷移フィルタのうち1つおよび受信機フィルタのうち1つを出力ノードに同時に選択的に結合するようにさらに構成されてもよい。
【0011】
少なくとも1つのパワーアンプは、第1のパワーアンプおよび第2のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、第1の低雑音増幅器および第2の低雑音増幅器を含んでもよく、少なくとも1つの送信フィルタは、送信ダイプレクサを含んでもよく、少なくとも1つの受信フィルタは、受信ダイプレクサを含んでもよく、少なくとも1つのスイッチは、第1スイッチおよび第2スイッチを含む。
【0012】
フロントエンドシステムは、送信補助フィルタと受信補助フィルタとをさらに備えてもよく、少なくとも1つのスイッチは、連結された第1スイッチと第2スイッチとを含んでもよく、第2スイッチは、選択的に、送信期間に送信補助フィルタを少なくとも1つのパワーアンプに結合し、受信期間に受信補助フィルタを少なくとも1つの低雑音増幅器に結合するように構成されてもよい。
【0013】
送信補助フィルタおよび受信補助フィルタは、シャントフィルタを含んでもよい。
送信補助フィルタおよび受信補助フィルタは、ノッチフィルタを含んでもよい。
【0014】
別の態様では、モバイル機器を提供する。このモバイル機器は、高周波信号を基地局に送信するように構成されたアンテナと、アンテナに結合され、アンテナからの高周波信号を送受信するように構成されたフロントエンドシステムとを備え、フロントエンドシステムは、送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、選択的に、送信期間にアンテナを少なくとも1つのパワーアンプに結合し、受信期間に少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、パワーアンプと少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、低雑音増幅器と少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、少なくとも1つのスイッチと出力ノードとの間に結合された共通フィルタとを備える。
【0015】
少なくとも1つのパワーアンプは、複数のパワーアンプを含み、少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含んでもよい。
【0016】
フロントエンドシステムは、少なくとも1つの送信フィルタを含む第1マルチプレクサと、少なくとも1つの受信フィルタを含む第2マルチプレクサとをさらに含んでもよく、少なくとも1つの送信フィルタは、複数の送信フィルタを含んでもよく、少なくとも1つの受信フィルタは、複数の受信フィルタを含む。
【0017】
少なくとも1つのスイッチは、第1マルチプレクサおよび第2マルチプレクサのうち一方を出力ノードに選択的に結合するようにさらに構成されてもよい。
【0018】
フロントエンドシステムは、少なくとも1つの送信フィルタを含む第1フィルタバンクと、少なくとも1つの受信フィルタを含む第2のフィルタバンクとをさらに備えてもよく、少なくとも1つの送信フィルタは、複数の送信フィルタを含み、少なくとも1つの受信フィルタは、複数の受信フィルタを含んでもよい。
【0019】
少なくとも1つのスイッチは、遷移フィルタのうち1つおよび受信機フィルタのうち1つを出力ノードに同時に選択的に結合するようにさらに構成されてもよい。
【0020】
少なくとも1つのパワーアンプは、第1のパワーアンプおよび第2のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、第1の低雑音増幅器および第2の低雑音増幅器を含んでもよく、少なくとも1つの送信フィルタは、送信ダイプレクサを含んでもよく、少なくとも1つの受信フィルタは、受信ダイプレクサを含んでもよく、少なくとも1つのスイッチは、第1スイッチおよび第2スイッチを含んでもよい。
【0021】
さらに別の態様では、高周波フロントエンドシステムを操作するための方法を提供する。この方法は、送信期間に、少なくとも1つのスイッチを介して少なくとも1つのパワーアンプをアンテナに結合するステップを備え、スイッチは、少なくとも1つの送信フィルタを介して少なくとも1つのパワーアンプに結合され、スイッチは、共通フィルタを介して出力ノードに結合され、方法は、さらに、受信期間に、少なくとも1つのスイッチを介して少なくとも1つの低雑音増幅器をアンテナに結合するステップを含み、スイッチは、少なくとも1つの受信フィルタを介して少なくとも1つの低雑音増幅器に結合される。
【0022】
共通フィルタは、出力ノードを介してアンテナにさらに結合されてもよい。
少なくとも1つのパワーアンプは、複数のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含んでもよい。
【0023】
さらに別の態様では、高周波フロントエンドシステムを提供する。この高周波フロントエンドシステムは、送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプ、および受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、選択的に、アンテナに結合された出力ノードを送信期間に少なくとも1つのパワーアンプに結合し、受信期間に少なくとも1つの低雑音増幅器に結合するように構成された第1スイッチと、パワーアンプと少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタ、および低雑音増幅器と少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、送信補助フィルタおよび受信補助フィルタと、選択的に、送信期間に送信補助フィルタを少なくとも1つのパワーアンプに結合し、受信期間に受信補助フィルタを少なくとも1つの低雑音増幅器に結合するように構成された第2スイッチとを備える。
【0024】
第1スイッチと第2スイッチとは連結されてもよい。
フロントエンドシステムは、第1スイッチと出力ノードとの間に結合された共通フィルタをさらに備えてもよい。
【0025】
少なくとも1つのパワーアンプは、複数のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含んでもよい。
【0026】
送信補助フィルタおよび受信補助フィルタは、シャントフィルタを含んでもよい。
シャントフィルタは、RFスペクトルの所定部分を除去するように構成されてもよい。
【0027】
送信補助フィルタおよび受信補助フィルタは、ノッチフィルタを含んでもよい。
送信補助フィルタおよび受信補助フィルタは、中心周波数および周波数特性において、少なくとも1つの送信フィルタおよび少なくとも1つの受信フィルタとは全く異なってもよい。
【0028】
第2スイッチは、第1の補助フィルタおよび第2の補助フィルタの一方に切替えて、少なくとも1つのパワーアンプと、少なくとも1つの低雑音増幅器と、出力ノードとの間の信号パスにつなげることによって、少なくとも1つの送信フィルタおよび少なくとも1つの受信フィルタを動的に再構成するようにさらに構成されてもよい。
【0029】
別の態様では、モバイル機器を提供する。このモバイル機器は、高周波信号を基地局に送信するように構成されたアンテナと、アンテナに結合され、アンテナからの高周波信号を送受信するように構成されたフロントエンドシステムとを備え、フロントエンドシステムは、送信高周波信号を増幅するように構成された少なくとも1つのパワーアンプと、受信高周波信号を受信するように構成された少なくとも1つの低雑音増幅器と、選択的に、送信期間にアンテナを少なくとも1つのパワーアンプに結合し、受信期間に少なくとも1つの低雑音増幅器に結合するように構成された少なくとも1つのスイッチと、パワーアンプと少なくとも1つのスイッチとの間に結合された少なくとも1つの送信フィルタと、低雑音増幅器と少なくとも1つのスイッチとの間に結合された少なくとも1つの受信フィルタと、送信補助フィルタと、受信補助フィルタと、選択的に、送信期間に送信補助フィルタを少なくとも1つのパワーアンプに結合し、受信期間に受信補助フィルタを少なくとも1つの低雑音増幅器に結合するように構成された第2スイッチとを備える。
【0030】
第1スイッチと第2スイッチとは連結されてもよい。
フロントエンドシステムは、第1スイッチと出力ノードとの間に結合された共通フィルタをさらに含んでもよい。
【0031】
少なくとも1つのパワーアンプは、複数のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含んでもよい。
【0032】
送信補助フィルタおよび受信補助フィルタは、シャントフィルタを含んでもよい。
シャントフィルタは、RFスペクトルの所定部分を除去するように構成されてもよい。
【0033】
送信補助フィルタおよび受信補助フィルタは、ノッチフィルタを含んでもよい。
送信補助フィルタおよび受信補助フィルタは、中心周波数および周波数特性において、少なくとも1つの送信フィルタおよび少なくとも1つの受信フィルタとは全く異なってもよい。
【0034】
さらに別の態様では、高周波フロントエンドシステムを操作するための方法を提供する。この方法は、送信期間に、第1スイッチを介して少なくとも1つのパワーアンプをアンテナに結合するステップを含み、第1スイッチは、少なくとも1つの送信フィルタを介して少なくとも1つのパワーアンプに結合され、方法は、さらに、受信期間に、第1スイッチを介して少なくとも1つの低雑音増幅器をアンテナに結合するステップを含み、第1スイッチは、少なくとも1つの受信フィルタを介して少なくとも1つの低雑音増幅器に結合され、方法は、さらに、送信期間に、第2スイッチを介して送信補助フィルタを少なくとも1つのパワーアンプに結合するステップと、受信期間に、第2スイッチを介して受信補助フィルタを少なくとも1つの低雑音増幅器に結合するステップとを含む。
【0035】
第1スイッチとアンテナとの間に共通フィルタが結合されてもよい。
少なくとも1つのパワーアンプは、複数のパワーアンプを含んでもよく、少なくとも1つの低雑音増幅器は、複数の低雑音増幅器を含んでもよい。
【図面の簡単な説明】
【0036】
【
図1B】セルラーネットワークおよびWiFiネットワークを経由して通信を行うモバイル機器の一例の概略図である。
【
図2】モバイル機器の一実施の形態の概略図である。
【
図3】一実施の形態に係る、パワーアンプシステムの概略図である。
【
図4A】パッケージ化されたモジュールの一実施の形態の概略図である。
【
図4B】線4B-4Bに沿った
図4Aのパッケージ化されたモジュールの断面の概略図である。
【
図5】トランシーバ/RFフロントエンドの一実施の形態の概略図である。
【
図6A】本開示の態様に係る、TDDに使用できる例示的なマルチバンドRFフロントエンドを示す図である。
【
図6B】本開示の態様に係る、TDDに使用できる別の例示的なマルチバンドRFフロントエンドを示す図である。
【
図6C】本開示の態様に係る、TDDに使用できるさらに別の例示的なマルチバンドRFフロントエンドを示す図である。
【
図7A】本開示の態様に係る、2つのバンドについての例示的なRFフロントエンド部分を示す図である。
【
図7B】本開示の態様に係る、2つのバンドについての別の例示的なRFフロントエンド部分を示す図である。
【
図7C】本開示の態様に係る、2つのバンドについてのさらに別の例示的なRFフロントエンド部分を示す図である。
【
図7D】本開示の態様に係る、2つのバンドについてのさらに別の例示的なRFフロントエンド部分を示す図である。
【
図8】本開示の態様に係る、3つのバンドについての例示的なRFフロントエンド部分を示す図である。
【
図9A】本開示の態様に係る、1つのバンドについての例示的なRFフロントエンド部分を示す図である。
【
図9B】本開示の態様に係る、送信パスおよび受信パス用に別個のフィルタが設けられた1つのバンドについての別の例示的なRFフロントエンド部分を示す図である。
【
図9C】本開示の態様に係る、1つのバンドについての例示的なRFフロントエンド部分を示す図である。
【
図10A】本開示の態様に係る、1つのバンドについての例示的なRFフロントエンド部分を示す図である。
【
図10B】本開示の態様に係る、1つのバンドについての別の例示的なRFフロントエンド部分を示す図である。
【発明を実施するための形態】
【0037】
特定の発明の実施の形態の詳細な説明
以下の特定の実施の形態の詳細な説明では、具体的な実施の形態について様々な説明を提示する。しかしながら、本明細書において説明するイノベーションは、たとえば、特許請求の範囲に示されて含まれている多くの異なる方法で具体化できる。本説明では、図面を参照しており、図面では、同一または機能的に同様の要素が同一の参照番号によって示され得る。図面に示す要素が必ずしも縮尺通りではないことが理解されるであろう。また、特定の実施の形態が図面に示す要素よりも多い数の要素を含み得ること、および/または図面に示す要素のサブセットを含み得ることが理解されるであろう。さらには、いくつかの実施の形態は、2つ以上の図面に含まれる特徴の任意の適切な組合せを取り入れている場合がある。
【0038】
ITU(国際電気通信連合)とは、電波スペクトルの世界規模の共同利用を含む、情報および通信技術についての世界的な課題を担うUN(国連)の専門機関である。
【0039】
3GPP(3rd Generation Partnership Project)とは、ARIB(電波産業会)、TTC(情報通信技術委員会)、CCSA(中国通信標準化協会)、ATIS(米国電気通信標準化アライアンス)、TTA(韓国情報通信技術協会)、ETSI(欧州電気通信標準化機構)、およびTSDSI(インド通信標準化協会)など、世界中の電気通信規格標準化団体のグループによる合作である。
【0040】
ITUの範囲内での活動において、3GPPは、たとえば、2G(第2世代)技術(たとえば、GSM(登録商標)(Global System for Mobile Communications)およびEDGE(Enhanced Data Rates for GSM Evolution))、3G(第3世代)技術(たとえば、UMTS(Universal Mobile Telecommunications System)およびHSPA(High Speed Packet Access))、ならびに4G(第4世代)技術(たとえば、LTE(Long Term Evolution)およびLTE-Advanced)を含む、様々な移動体通信技術の技術仕様書を作成および管理している。
【0041】
仕様書リリースを行うことによって、3GPPが管理する技術仕様書を拡張および改訂することができる。仕様書リリースは、数年にわたって行われる可能性があり、新しい特徴および進化の広がりを指定し得る。
【0042】
一例では、3GPPは、リリース10では、LTEのキャリアアグリゲーション(CA)を採用した。当初は、2つの下りリンクキャリアで始まったが、リリース14では、3GPPは、最大5つの下りリンクキャリア、および最大3つの上りリンクキャリアを含むようにキャリアアグリゲーションを拡張した。3GPPのリリースによってもたらされる新しい特徴および進化のその他の例として、LAA(License Assisted Access)、eLAA(enhanced LAA)、NB-IoT(Narrowband Internet of things)、V2X(Vehicle-to-Everything)、およびHPUE(High Power User EQuipment)などが挙げられるが、これらに限定されない。
【0043】
3GPPは、リリース15では、5G(第5世代)技術のフェーズ1を採用し、リリース16(2020年目標)では、5G技術のフェーズ2を採用する予定である。後続の3GPPのリリースは、5G技術をさらに進化および拡大させていくはずである。また、5G技術は、本明細書において、5G NR(New Radio)とも称される。
【0044】
5G NRは、ミリ波スペクトルでの通信、ビームフォーミング機能、スペクトル効率が高い波形、待ち時間が少ない通信、複数の無線ヌメロロジー、および/またはNOMA(非直交多元接続)など、様々な機能に対応するまたは対応する予定である。このようなRF機能は、ネットワークに柔軟性を与えてユーザデータの転送速度を向上させるが、このような機能に対応することで複数の技術的課題がもたらされる可能性がある。
【0045】
本明細書における教示は、LTE-Advanced、LTE-Advanced Pro、および/または5G NR(これらに限定されない)など、最先端のセルラー技術を利用した通信システムを含む、多種多様な通信システムに適用可能である。
【0046】
図1Aは、通信ネットワーク10の一例の概略図である。通信ネットワーク10は、マクロセル基地局1と、スモールセル基地局3と、第1モバイル機器2a、ワイヤレス接続された車2b、ラップトップ2c、据置き型ワイヤレスデバイス2d、ワイヤレス接続された電車2e、第2モバイル機器2f、および第3モバイル機器2gを含む、UE(ユーザ機器)の様々な実施例とを備える。
【0047】
図1Aに基地局およびユーザ機器の具体例を示しているが、通信ネットワークは、多種多様な種類および/または数の基地局およびユーザ機器を含むことができる。
【0048】
たとえば、図示した例では、通信ネットワーク10は、マクロセル基地局1と、スモールセル基地局3とを含む。スモールセル基地局3は、マクロセル基地局1に比べて、比較的低パワー、短距離で動作できる、および/または少ない数の同時ユーザで動作できる。また、スモールセル基地局3は、フェムトセル、ピコセル、またはマイクロセルと称され得る。通信ネットワーク10は、2つの基地局を含むと図示されているが、それよりも多い数もしくは少ない数の基地局、および/またはその他の種類の基地局を含むように通信ネットワーク10を実装できる。
【0049】
ユーザ機器の様々な例を図示したが、本明細書における教示は、携帯電話、タブレット端末、ラップトップ、IoTデバイス、ウェアラブル電子機器、CPE(顧客構内設備)、ワイヤレス接続された車両、無線中継装置(これらに限定されない)を含む多種多様なユーザ機器、および/または多種多様なその他の通信装置に適用可能である。さらには、ユーザ機器は、セルラーネットワークで動作する現在利用可能な通信装置だけでなく、本明細書において説明またはクレームされている発明のシステム、処理、方法、および装置と合わせて容易に実装可能になるであろう後続して開発される通信装置も含む。
【0050】
図示した
図1Aの通信ネットワーク10は、たとえば、4G LTEおよび5G NRを含む様々なセルラー技術を用いた通信に対応している。特定の実施態様では、通信ネットワーク10は、WiFiなど、WLAN(ワイヤレスローカルエリアネットワーク)を提供するようになされる。通信技術の様々な例を提供したが、通信ネットワーク10は、多種多様な通信技術に対応するようになされ得る。
【0051】
通信ネットワーク10の様々な通信リンクを
図1Aに表した。これらの通信リンクを、たとえば、FDD(周波数分割復信)および/またはTDD(時分割複信)の利用を含む多種多様な方法で二重化できる。FDDは、信号の送信と受信に異なる周波数を使用するタイプの高周波数通信である。FDDによって、速いデータ転送速度および少ない待ち時間など、いくつもの利点がもたらされ得る。対照的に、TDDは、信号の送信と受信にほぼ同じ周波数を使用するタイプの高周波数通信であり、通信の送信と受信が遅れずに切り替えられる。TDDによって、スペクトルの有効利用、送信方向と受信方向との間でスループットの割り当てが調整可能であるなど、いくつもの利点がもたらされ得る。
【0052】
特定の実施態様では、ユーザ機器は、4G LTE技術、5G NR技術、およびWiFi技術のうち1つ以上を利用して基地局と通信できる。特定の実施態様では、eLAA(enhanced license assisted access)を使用して、1つ以上のライセンス周波数キャリア(たとえば、ライセンス4G LTEおよび/または5G NR周波数)が1つ以上のアンライセンスキャリア(たとえば、アンライセンスWiFi周波数)と束ねられている。
【0053】
図1Aに示すように、通信リンクは、UEと基地局との通信リンクだけでなく、UEとUEとの通信、および基地局と基地局との通信も含む。たとえば、(たとえば、モバイル機器2gとモバイル機器2fとの間で)セルフフロントホールおよび/またはセルフバックホールに対応するように通信ネットワーク10を実装できる。
【0054】
通信リンクは、多種多様な周波数で動作できる。特定の実施態様では、通信は、6GHz(ギガヘルツ)未満の1つ以上の周波数帯域の5G NR技術および/または6GHzよりも大きい1つ以上の周波数帯域の5G NR技術を使ってサポートされる。たとえば、通信リンクは、FR1(Frequency Range1)、FR2(Frequency Range2)、または、それらの組合せに使用できる。一実施の形態において、モバイル機器のうち1つ以上は、HPUE電力クラス規格に対応している。
【0055】
特定の実施態様では、基地局および/またはユーザ機器は、ビームフォーミングを使用して通信する。たとえば、ビームフォーミングは、信号強度を集中させて、高い信号周波数での通信に伴う高損失など、パス損失を克服するために用いられ得る。特定の実施形態では、1つ以上の携帯電話など、ユーザ機器は、30GHz~300GHzの範囲のミリ波周波数帯域および/または6GHz~30GHz、より具体的には、24GHz~30GHzの範囲のセンチメートル波周波数の上限帯域にビームフォーミングを使用して通信する。
【0056】
通信ネットワーク10の異なるユーザは、利用可能な周波数スペクトルなど、利用可能なネットワークリソースを多種多様な方法で共有できる。
【0057】
一例では、FDMA(周波数分割多元接続)を用いて、1つの周波数帯域を複数の周波数キャリアに分割する。これに加えて、1つ以上のキャリアが特定のユーザに割り当てられる。FDMAとして、SC-FDMA(シングルキャリアFDMA)およびOFDMA(直交FDMA)などが挙げられるが、これらに限定されない。OFDMAは、1つの利用可能な帯域幅を複数の互いに直交する狭帯域サブキャリアにさらに分割するマルチキャリア技術である。当該複数の狭帯域サブキャリアは、異なるユーザに別個に割り当てることができる。
【0058】
共有アクセスのその他の例として、周波数リソースを利用するための特定のタイムスロットがユーザに割り当てられるTDMA(時分割多元接続)、異なる一意の符号を各ユーザに割り当てることによってユーザ間で周波数リソースが共有されるCDMA(符号分割多元接続)、ビームフォーミングを利用して空間分割によって共有アクセスが与えられるSDMA(空間分割多元接続)、多元接続にパワードメインが用いられるNOMA(非直交多元接続)などが挙げられるが、これらに限定されない。たとえば、NOMAを利用して、同じ周波数、同じ時間、および/または同じ符号だが、異なる電力レベルで複数のユーザに対応することができるようになる。
【0059】
eMBB(enhanced mobile broadband)とは、LTEネットワークのシステム容量を増やすための技術を指す。たとえば、eMBBは、少なくとも10Gbpsのピークデータ転送速度、ユーザごとに最低でも100Mbpsのピークデータ転送速度での通信を指し得る。uRLLC(超高信頼低遅延)とは、待ち時間が非常に少ない、たとえば、2ミリ秒未満の通信のための技術を指す。uRLLCは、自動運転および/または遠隔手術といった用途のためのミッションクリティカルな通信に用いられ得る。mMTC(Massive Machine-Type Communications)とは、IoT(Internet of Things)の用途に関連する物など、日常の物へのワイヤレス接続に伴う低コストかつデータ転送速度が低い通信を指す。
【0060】
図1Aの通信ネットワーク10を利用して、eMBB、uRLLC、および/またはmMTC(これらに限定されない)を含む多種多様な高度な通信機能に対応できる。
【0061】
図1Bは、セルラーネットワークおよびWiFiネットワークを経由して通信するモバイル機器2aの一例の概略図である。たとえば、
図1Bに示すように、モバイル機器2aは、セルラーネットワークの基地局1、およびWiFiネットワークのWiFiアクセスポイント3と通信する。また、
図1Bは、基地局1と通信しているその他のUE(ユーザ機器)の実施例、たとえば、ワイヤレス接続された車2bおよび別のモバイル機器2cも示している。さらには、
図1Bは、WiFiアクセスポイント3と通信しているその他のWiFi対応デバイスの実施例、たとえば、ラップトップ4も示している。
【0062】
セルラーUEおよびWiFi対応デバイスの具体例を示したが、多種多様な種類のデバイスがセルラーおよび/またはWiFiネットワークを利用して通信することができる。このようなデバイスとして、携帯電話、タブレット端末、ラップトップ、IoT(Internet of Things)デバイス、ウェアラブル電子機器、CPE(顧客構内設備)、ワイヤレス接続された車両、無線中継装置、および/または多種多様なその他の通信装置などが挙げられるが、これらに限定されない。
【0063】
特定の実施態様では、
図1Bのモバイル機器2aなど、UEは、2G、3G、4G(LTE、LTE-Advanced、およびLTE-Advanced Proを含む)、5G NR、WLAN(たとえば、WiFi)、WPAN(たとえば、Bluetooth(登録商標)およびZigBee)、WMAN(たとえば、WiMax)、および/またはGPS(これらに限定されない)を含む、いくつもの技術を用いた通信に対応するように実装される。特定の実施態様では、eLAA(enhanced license assisted access)を使用して、1つ以上のライセンス周波数キャリア(たとえば、ライセンス4G LTEおよび/または5G NR周波数)が1つ以上のアンライセンスキャリア(たとえば、アンライセンスWiFi周波数)と束ねられている。
【0064】
さらには、特定のUEは、基地局およびアクセスポイントだけでなく、その他のUEとも通信できる。たとえば、ワイヤレス接続された車2bは、ワイヤレス接続された歩行者2d、ワイヤレス接続された信号機2e、ならびに/またはV2V(vehicle-to-vehicle)および/もしくはV2X(vehicle-to-everything)通信を利用する別のワイヤレス接続された車2fと通信できる。
【0065】
通信技術の様々な例を説明したが、モバイル機器を、広範囲の通信に対応するように実装することができる。
【0066】
様々な通信リンクを
図1Bに示した。これらの通信リンクを、たとえば、FDD(周波数分割復信)および/またはTDD(時分割複信)の利用を含む多種多様な方法で二重化できる。FDDは、信号の送信と受信に異なる周波数を使用するタイプの高周波数通信である。FDDによって、速いデータ転送速度および少ない待ち時間など、いくつもの利点がもたらされ得る。対照的に、TDDは、信号の送信と受信にほぼ同じ周波数を使用するタイプの高周波数通信であり、通信の送信と受信が遅れずに切り替えられる。TDDによって、スペクトルの有効利用、送信方向と受信方向との間でスループットの割り当てが調整可能であるなど、いくつもの利点がもたらされ得る。
【0067】
図示した通信ネットワークの異なるユーザは、利用可能な周波数スペクトルなど、利用可能なネットワークリソースを多種多様な方法で共有できる。一例では、FDMA(周波数分割多元接続)を用いて、1つの周波数帯域を複数の周波数キャリアに分割する。これに加えて、1つ以上のキャリアが特定のユーザに割り当てられる。FDMAとして、SC-FDMA(シングルキャリアFDMA)およびOFDMA(直交FDMA)などが挙げられるが、これらに限定されない。OFDMは、1つの利用可能な帯域幅を複数の互いに直交する狭帯域サブキャリアにさらに分割するマルチキャリア技術である。当該複数の狭帯域サブキャリアは、異なるユーザに別個に割り当てることができる。
【0068】
共有アクセスのその他の例として、周波数リソースを利用するための特定のタイムスロットがユーザに割り当てられるTDMA(時分割多元接続)、異なる一意の符号を各ユーザに割り当てることによってユーザ間で周波数リソースが共有されるCDMA(符号分割多元接続)、ビームフォーミングを利用して空間分割によって共有アクセスが与えられるSDMA(空間分割多元接続)、多元接続にパワードメインが用いられるNOMA(非直交多元接続)などが挙げられるが、これらに限定されない。たとえば、NOMAを利用して、同じ周波数、同じ時間、および/または同じ符号だが、異なる電力レベルで複数のユーザに対応することができるようになる。
【0069】
特定のRF通信システムは、複数の周波数帯域にわたる異なるワイヤレスネットワークを用いて、および/または異なる通信規格を用いて通信するための複数のトランシーバを備える。RF通信システムをこのように実装することで、機能を拡張したり、帯域幅を増やしたり、および/または柔軟性を高めたりすることができるが、RF通信システム内で動作するトランシーバ間でいくつもの混在する課題が生じ得る。
【0070】
たとえば、RF通信システムは、セルラーネットワークで通信されるRF信号を処理するためのセルラートランシーバと、WiFiネットワークなど、WLAN(ワイヤレスローカルエリアネットワーク)ネットワークで通信されるRF信号を処理するためのWLANトランシーバとを備えてもよい。たとえば、
図1Bのモバイル機器2aは、セルラーネットワークおよびWiFiネットワークを用いて通信するよう動作可能である。
【0071】
RF通信システムをこのように実装することでいくつもの恩恵が得られるが、WiFi信号の受信を妨げるセルラー伝送および/またはセルラー信号の受信を妨げるWiFi伝送によって、互いの感度を低下させてしまう影響が生じるおそれがある。
【0072】
一例では、セルラーバンド7は、2.4GHz(ギガヘルツ)のWiFiに対して、互いの感度低下を引き起こすおそれがある。たとえば、バンド7は、FDD復信方式であり、下りリンクについては約2.62GHz~2.69GHzの周波数帯域で動作し、上りリンクについては約2.50GHz~約2.57GHzの周波数帯域で動作するのに対し、2.4GHzのWiFiは、TDD復信方式であり、約2.40GHz~約2.50GHzの周波数帯域で動作する。よって、セルラーバンド7と2.4GHzのWiFiとは、周波数が隣接しており、一方のトランシーバ/フロントエンドのハイパワートランスミッタによるRF信号漏れが、特に、境界となる周波数チャネルで他方のトランシーバ/フロントエンドの受信機の性能に影響を与えてしまう。
【0073】
別の例では、セルラーバンド40と2.4GHzのWiFiとは、互いの感度低下を引き起こすおそれがある。たとえば、バンド40は、TDD復信方式であり、約2.30GHz~約2.40GHzの周波数帯域で動作するのに対し、2.4GHzのWiFiは、TDD復信方式であり、約2.40GHz~約2.50GHzの周波数帯域で動作する。したがって、セルラーバンド40と2.4GHzのWiFiとは周波数が隣接しており、特に、境界となる周波数チャネルでいくつもの混在する課題が引き起こされてしまう。
【0074】
感度の低下は、加害者となる送信信号が被害者となる受信機に直接漏れることから引き起こされるだけでなく、トランスミッタにおいて生成されるスペクトルリグロース成分からも引き起こされることがある。このような妨害は、被害者となる受信信号と周波数において比較的密接に関連し得る、および/または当該受信信号と直接重なり得る。
【0075】
図2は、モバイル機器800の一実施の形態の概略図である。モバイル機器800は、ベースバンドシステム801と、トランシーバ802と、フロントエンドシステム803と、アンテナ804と、電源管理システム805と、メモリ806と、ユーザインターフェース807と、バッテリ808とを備える。
【0076】
モバイル機器800を用いて、2G技術、3G技術、4G技術(LTE、LTE-Advanced、およびLTE-Advanced Proを含む)、5G NR、WLAN技術(たとえば、WiFi)、WPAN技術(たとえば、BluetoothおよびZigBee)、WMAN技術(たとえば、WiMax)、および/またはGPS技術(これらに限定されない)を含む、多種多様な通信技術を利用した通信を行うことができる。
【0077】
トランシーバ802は、送信するRF信号を生成し、アンテナ804から受信するRF信号を処理する。
図2にトランシーバ802としてまとめて表されている1つ以上の構成要素によってRF信号の送受信に関する様々な機能を実現できることが理解されるであろう。一例では、特定の種類のRF信号を扱うための別個の構成要素(たとえば、別個の回路またはダイ)を設けることができる。
【0078】
フロントエンドシステム803は、アンテナ804に送信される信号および/またはアンテナ804から受信した信号の調整を支援する。図示した実施の形態では、フロントエンドシステム803は、アンテナ同調回路810と、PA(パワーアンプ)811と、LNA(低雑音増幅器)812と、フィルタ813と、スイッチ814と、信号分割/合成回路815とを備える。しかしながら、その他の実施態様も可能である。
【0079】
たとえば、フロントエンドシステム803は、送信する信号の増幅、受信信号の増幅、信号のフィルタ処理、異なるバンド間の切替え、異なる電力モード間の切替え、送信モードと受信モードとの間での切替え、信号の二重化、信号の多重化(たとえば、二重化または三重化)(これらに限定されない)、またはそれらのいくつかの組合せを含む、いくつもの機能を提供できる。
【0080】
特定の実施態様では、モバイル機器800は、キャリアアグリゲーションに対応することにより、ピークデータ転送速度を柔軟に向上させる。キャリアアグリゲーションは、FDD(周波数分割復信)およびTDD(時分割複信)の両方に利用でき、複数のキャリアまたは複数のチャネルを束ねるために使用されてもよい。キャリアアグリゲーションは、同じ動作周波数帯域内の連続する搬送波が束ねられる連続アグリゲーションを含む。また、キャリアアグリゲーションは、非連続キャリアアグリゲーションであり得、共通バンドまたは異なるバンド内で周波数が分けられた搬送波を含み得る。
【0081】
アンテナ804は、多種多様な種類の通信のために用いられるアンテナを含み得る。たとえば、アンテナ804は、多種多様な周波数および通信規格に対応付けられた信号を送信および/または受信するためのアンテナを含み得る。
【0082】
特定の実施態様では、アンテナ804は、MIMO通信および/または切替ダイバーシチ通信に対応している。たとえば、MIMO通信は、1つの高周波数チャネルで複数のデータストリームと通信するために複数のアンテナを使用する。MIMO通信は、高いSN比、符号化の向上、および/または無線環境の空間多重方式の違いによる信号干渉の抑制から恩恵を受ける。切替ダイバーシチは、特定の時刻に動作するために特定のアンテナが選択される通信を指す。たとえば、観測されるビット誤り率および/または信号強度インジケータなど、様々な要因に基づいてアンテナ群から特定のアンテナを選択するためにスイッチを使用できる。
【0083】
モバイル機器800は、特定の実施態様において、ビームフォーミングで動作し得る。たとえば、フロントエンドシステム803は、制御可能な利得を有する増幅器と、制御可能な位相を有する移相器とを備えて、アンテナ804を用いた信号の送信および/または受信のためのビームフォーミングならびにビーム指向性を提供できる。たとえば、信号の送信という状況では、強め合う干渉と弱め合う干渉とを利用してアンテナ804からの放出信号を合成し、所与の方向に伝播するより大きな信号強度を有するビームのような線質を呈した集合(aggregate)送信信号を生成するよう、アンテナ804に提供される送信信号の振幅および位相が制御される。信号の受信という状況では、特定の方向から信号がアンテナ804に到達する場合により多くの信号エネルギーが受信されるよう、振幅および位相が制御される。特定の実施態様では、ビームフォーミングを高めるために、アンテナ804は、アンテナ素子から構成される1つ以上のアレイを備える。
【0084】
音声およびデータなど、様々なユーザI/O(入出力)の処理を容易にするために、ベースバンドシステム801は、ユーザインターフェース807に結合される。ベースバンドシステム801は、トランシーバ802に送信信号のデジタル表現を提供し、トランシーバ802は、このデジタル表現を処理して送信用RF信号を生成する。また、ベースバンドシステム801は、トランシーバ802が提供する受信信号のデジタル表現を処理する。
図2に示すように、モバイル機器800の操作を容易にするために、ベースバンドシステム801は、メモリ806に結合される。
【0085】
メモリ806は、モバイル機器800の操作を容易にするおよび/またはユーザ情報の格納場所を提供するためにデータおよび/または命令を格納するなど、多種多様な目的のために使われ得る。
【0086】
電源管理システム805は、モバイル機器800の複数の電源管理機能を提供する。特定の実施態様では、電源管理システム805は、パワーアンプ811の電源電圧を制御するPA電源制御回路を備える。たとえば、パワーアンプ811のうち1つ以上に与えられる電源電圧(複数可)を変更して、PAE(電力付加効率)など、効率を向上させるように電源管理システム805を構成できる。
【0087】
図2に示すように、電源管理システム805は、バッテリ808からバッテリ電圧を受ける。バッテリ808は、たとえば、リチウムイオン電池を含む、モバイル機器800において使用するための任意の適切なバッテリであり得る。
【0088】
図3は、一実施の形態に係る、パワーアンプシステム860の概略図である。図示されているパワーアンプシステム860は、ベースバンドプロセッサ841と、トランスミッタ/観測用受信機842と、PA(パワーアンプ)843と、方向性結合器844と、フロントエンド回路845と、アンテナ846と、PAバイアス制御回路847と、PA電源制御回路848とを備える。図示したトランスミッタ/観測用受信機842は、I/Q変調器857と、ミキサ858と、ADC(アナログ/デジタルコンバータ)859とを備える。特定の実施態様では、トランスミッタ/観測用受信機842は、トランシーバに組み込まれる。
【0089】
ベースバンドプロセッサ841を使用してI(同相)信号とQ(直交位相)信号とを生成できる。I信号とQ信号とを使用して、所望の振幅、所望の周波数、および所望の位相を有する正弦波または信号を表すことができる。たとえば、I信号を使用して正弦波の同相成分を表すことができ、Q信号を使用して正弦波の直交位相成分を表すことができる。I信号およびQ信号は、正弦波の等価表現であり得る。特定の実施態様では、I信号およびQ信号は、デジタル形式でI/Q変調器857に提供できる。ベースバンドプロセッサ841は、ベースバンド信号を処理するように構成された任意の適切なプロセッサであり得る。たとえば、ベースバンドプロセッサ841は、デジタル信号プロセッサ、マイクロプロセッサ、プログラマブルコア、または、任意のそれらの組合せを含み得る。また、いくつかの実施態様では、2つ以上のベースバンドプロセッサ841をパワーアンプシステム860に含めることができる。
【0090】
ベースバンドプロセッサ841からI信号およびQ信号を受信して当該I信号およびQ信号を処理してRF信号を生成するようにI/Q変調器857を構成できる。たとえば、I/Q変調器857は、I信号およびQ信号をアナログ形式に変換するように構成されたDAC(デジタル/アナログコンバータ)と、I信号およびQ信号の周波数をより高い周波数に変換してRFにするためのミキサと、当該より高い周波数に変換されたI信号およびQ信号を合成して、パワーアンプ843による増幅に適したRF信号にするための信号合成器とを備えてもよい。特定の実施態様では、I/Q変調器857は、内部で処理された信号の周波数成分をフィルタ処理するように構成された1つ以上のフィルタを備えてもよい。
【0091】
パワーアンプ843は、RF信号をI/Q変調器857から受信でき、オンになると、増幅されたRF信号をフロントエンド回路845を介してアンテナ846に提供できる。
【0092】
フロントエンド回路845は、様々に実装できる。一例では、フロントエンド回路845は、1つ以上のスイッチ、1つ以上のフィルタ、1つ以上のダイプレクサ、1つ以上のマルチプレクサ、および/または1つ以上のその他の構成要素を備える。別の例では、増幅されたRF信号をパワーアンプ843がアンテナ846に直接提供することを選んで、フロントエンド回路845が省略される。
【0093】
方向性結合器844は、パワーアンプ823の出力信号を検知する。これに加えて、方向性結合器844からの検知された出力信号は、ミキサ858に提供される。ミキサ858は、検知された出力信号に、制御周波数の基準信号を乗算する。ミキサ858は、検知された出力信号の周波数成分をダウンシフトすることによってダウンシフト信号を生成するように動作する。このダウンシフト信号は、ADC859に提供され得る。ADC859は、ダウンシフト信号を、ベースバンドプロセッサ841による処理に適したデジタル形式に変換する。パワーアンプ843の出力部からベースバンドプロセッサ841までのフィードバック経路を備えることで、いくつもの利点がもたらされ得る。たとえば、ベースバンドプロセッサ841をこのように実装することで、電源を制御すること、トランスミッタが損なわれることに対して補償すること、および/またはDPD(デジタルプリディストーション)を実行することを支援できる。パワーアンプの検知パスの一例を示したが、その他の実施態様も可能である。
【0094】
PA電源制御回路848は、ベースバンドプロセッサ841から電力制御信号を受信し、パワーアンプ843の電源電圧を制御する。図示した構成では、PA電源制御回路848は、パワーアンプ843の入力段に電力を供給するための第1電源電圧VCC1と、パワーアンプ843の出力段に電力を供給するための第2電源電圧VCC2とを発生させる。PA電源制御回路848は、第1電源電圧VCC1および/または第2電源電圧VCC2の電圧レベルを制御して、パワーアンプシステムのPAEを向上させることができる。
【0095】
PA電源制御回路848は、様々な電源管理技術を採用して複数の電源電圧のうち1つ以上の電源電圧の電圧レベルを時間の経過とともに変更し、パワーアンプのPAE(電力付加効率)を向上させることにより、電力損を減らすことができる。
【0096】
パワーアンプの効率を向上させるための1つの技術は、DC/DCコンバータを使用して、パワーアンプの平均出力パワーに基づいてパワーアンプの電源電圧を生成するAPT(平均電力トラッキング)である。パワーアンプの効率を向上させるための別の技術は、パワーアンプの電源電圧がRF信号の包絡線に対応して制御されるET(エンベロープトラッキング)である。よって、RF信号の包絡線の電圧レベルが上がると、パワーアンプの電源電圧の電圧レベルも上げられる可能性がある。同様に、RF信号の包絡線の電圧レベルが下がると、パワーアンプの電源電圧の電圧レベルも下げられて消費電力が下がる可能性がある。
【0097】
特定の構成では、PA電源制御回路848は、APTモードおよびETモードを含む複数の供給制御モードで動作できるマルチモード電源制御回路である。たとえば、ベースバンドプロセッサ841からの電力制御信号が、PA電源制御回路848に特定の供給制御モードで動作するように指示し得る。
【0098】
図3に示すように、PAバイアス制御回路847は、ベースバンドプロセッサ841からバイアス制御信号を受信し、パワーアンプ843のためにバイアス制御信号を生成する。図示した構成では、バイアス制御回路847は、パワーアンプ843の入力段および出力段の両方のためにバイアス制御信号を生成する。しかしながら、その他の実施態様も可能である。
【0099】
図4Aは、パッケージ化されたモジュール900の一実施の形態の概略図である。
図4Bは、4B-4B線に沿った
図4Aのパッケージ化されたモジュール900の断面の概略図である。
【0100】
パッケージ化されたモジュール900は、高周波コンポーネント901と、半導体ダイ902と、表面実装部品903と、ワイヤボンド908と、パッケージ基板920と、カプセル化構造940とを備える。パッケージ基板920は、内部に配置された導体から形成されるパッド906を含む。これに加えて、半導体ダイ902は、ピンまたはパッド904を含み、ダイ902のパッド904をパッケージ基板920のパッド906に接続するためにワイヤボンド908が使われている。
【0101】
半導体ダイ902は、パワーアンプ945を備える。パワーアンプ945は、本明細書に記載の1つ以上の特徴に従って実装できる。
【0102】
高周波コンポーネント901、半導体ダイ902、および表面実装部品903など、複数の構成要素を収納するようにパッケージ基板920を構成できる。表面実装部品903は、たとえば、表面実装コンデンサおよび/または表面実装インダクタを含み得る。一実施態様では、高周波コンポーネント901は、IPD(集積型パッシブデバイス)を含む。
【0103】
図4Bに示すように、パッケージ化されたモジュール900には、半導体ダイ902を配置するために使われている面とは反対側の面に複数の接触パッド932が配置されていると図示されている。パッケージ化されたモジュール900をこのように構成することで、パッケージ化されたモジュール900を、モバイル機器の携帯電話基板など、配線基板に接続することを支援できる。高周波信号、バイアス信号、ならびに/または電力(たとえば、電源電圧およびアース)を半導体ダイ902ならびに/またはその他の構成要素に提供するように例示的な接触パッド932を構成できる。
図4Bに示すように、接触パッド932と半導体ダイ902との電気接続は、パッケージ基板920まで通る連結部933によって容易になり得る。連結部933は、多層積層パッケージ基板のビアおよび導体に関連する連結部など、パッケージ基板920まで形成された電気経路を表し得る。
【0104】
また、いくつかの実施の形態では、パッケージ化されたモジュール900は、たとえば、保護用および/またはハンドリング性を容易にするための1つ以上のパッケージング構造を備えてもよい。このようなパッケージング構造は、パッケージ基板920およびその上に配置された構成要素およびダイ(複数可)を覆うように形成されたオーバーモールドまたはカプセル化構造940を含み得る。
【0105】
パッケージ化されたモジュール900について、ワイヤボンドに基づいた電気接続を背景に説明したが、本開示の1つ以上の特徴は、たとえばフリップチップ構成など、その他のパッケージング構成でも実現できることが理解されるであろう。
【0106】
図5は、トランシーバ/RFフロントエンド1603(または、単に、RFフロントエンド)を備えるRF通信システム1620の一実施の形態の概略図である。詳しくは、RF通信システムは、ベースバンドモデム1602と、RFフロントエンド1603と、電源管理1604と、複数のアンテナ1601a~1601nとを備える。
【0107】
RFフロントエンド1603は、ベースバンドモデム1602に接続され、ベースバンドモデム1602との間でベースバンド信号を受送信する。ベースバンドモデム1602から受信したベースバンド信号は、アンテナ1601a~1601nを介してワイヤレスに送信されるようにRFフロントエンドによって処理される。同様に、アンテナ1601a~1601nを介して受信したRF信号は、ベースバンドモデム1602に提供される前にRFフロントエンド1603によって処理される。
【0108】
電源管理1604は、ベースバンドモデム1602およびRFフロントエンド1603の各々に電力を提供する。このために、電源管理1604は、ベースバンドモデム1602に電力を提供するように構成されたPMU(電源管理ユニット)ベースバンド1611と、RFフロントエンド1603に電力を提供するように構成されたPMU RF1612とを備える。
【0109】
RFフロントエンド1603は、MUX/DEMUXブロック1605と、ビームフォーミングブロック1606と、データ変換ブロック1607と、ミキシングブロック1608と、増幅ブロック1609と、フィルタ処理/切替ブロック1610とを含む。複数の通信帯域パスを経由したRFフロントエンド1603の残りの構成要素からベースバンドモデム1602までのRF信号の流れ、および複数の通信帯域パスを経由したベースバンドモデム1602からRFフロントエンド1603の残りの構成要素までのRF信号の流れを制御するようにMUX/DEMUXブロック1605を構成できる。ビームフォーミングブロック1606は、アンテナ1601a~1601nとの間で送受信される複数のRF信号の利得および/または位相を調整して、信号強度を所望の方向に集中させるようにビームを向けるように構成される。
【0110】
データ変換ブロック1607は、ビームフォーミングブロック1606から受信した信号をアナログ形式に変換するように構成された複数のDACを備えてもよい。また、データ変換ブロック1607は、ミキシングブロック1608から受信したアナログ信号をデジタル形式に変換するように構成された複数のADCを備えてもよい。ミキシングブロック1608は、複数のLO(局部発振器)を備えてもよく、データ変換ブロック1607から受信したアナログ信号の周波数をより高い周波数に変換し、増幅ブロック1609から受信した信号の周波数をより低い周波数に変換するように構成される。
【0111】
増幅ブロック1609は、ミキシングブロックから受信した信号を増幅するように構成された複数のPAと、フィルタ処理/切替ブロック1610から受信した信号を増幅するように構成された複数のLNAとを備えてもよい。フィルタ処理/切替ブロック1610は、対応する通信帯域の一部を形成しない周波数をフィルタ処理して取り除くように構成された複数のフィルタと、アンテナ1601a~1601nを通信帯域のうち1つ以上に選択的に接続するように構成された複数のスイッチとを備える。
【0112】
RFフロントエンドモジュールの実施の形態
上述したように、通信システムは、通常、ベースバンドモデルを1つ以上のアンテナに接続し、それらの間で通信されるRF信号を処理するように設計されたRFフロントエンドを備える。
【0113】
携帯電話用の従来のTDD RFFE(RFフロントエンド)では、面積およびコストを節約するために送信パスおよび受信パスの両方に共通フィルタを用いることがある。このような共通フィルタには、(a)受信モードにおける3GPPレンジの3つの妨害(blocker)など、帯域の境界に比較的近い妨害に対する十分に高い除去性と、(b)送信モードにおける高効率のモジュールを得るのに十分に低いインサーションロスとを含む、競合する設計目標が存在する場合がある。特定のバンドの場合、所与のバンドが別のバンドに比較的近接している場合、上述した設計目標を達成することはさらに困難であろう。たとえば、5G規格内では、バンドn79は、第1のWiFi5GHzチャネル用のバンドの上限の境界からわずか125MHzの場所に位置している。別の例として、5Gバンドn77の場合、強いHBおよびWiFi2.4GHzの妨害は、n77バンドの下限の境界からわずか数百MHzの場所に位置している。
【0114】
これに加えて、5G NRには、隣接するパブリックバンドおよびミリタリーバンドで不要な放出をしないようパワーアンプが高い線形性(たとえば、しきい値レベルの線形性)を示すことという要件を含む、厳格な規制要件がある。携帯電話用のエリアを取っておくために、n77バンドおよびn79バンドは、マルチプレクサを経由して共用アンテナまで送られてもよい。n77バンドおよびn79バンドは、TXとRXとがRFFEモジュールのアンテナポートまでのパスを共有する5G NR TDDバンドの2つの実施例である。同様に、マルチプレクサを、n79バンドのパスがn79送信とn79受信との間で共有されるように使用することができる。
【0115】
WiFiとの混在によって、TDDフレームの受信期間にフィルタのインサーションロスに影響を与えることなくB41バンドの下限側で送信ノイズを50dBよりも多く除去することが強いられる場合、バンドB41には、別の困難なトレードオフが存在する。
【0116】
図6Aは、本開示の態様に係る、TDDに使用できる例示的なマルチバンドRFフロントエンド203である。例示的なRFフロントエンド203は、Band1、Band2、…、BandNというN個のバンドを送受信するように構成されてもよい。RFフロントエンド203は、複数のパワーアンプ204A、204B、…、204Nと、複数の低雑音増幅器206A、206B、…、206Nと、複数の送受信スイッチ208A、208B、…、208Nと、複数のフィルタ210A、210B、…、210Nを含むマルチプレクサ210とを備える。
【0117】
例としてBand1を参照すると、RFフロントエンド203内の各バンドには、送信パス専用のパワーアンプ204A、および受信パス専用の低雑音増幅器206Aがあってもよい。Band1の送信パスおよび受信パスは、対応する送受信スイッチ208Aを介して1つにまとめられる。送受信スイッチ208A~208Nの各々は、マルチプレクサ210に接続され、バンドBand1~BandNを、1つ以上のアンテナに接続される出力ノードに接続する。フィルタ210A~210Nは、対応するバンドBand1~BandNに関連する周波数を通過させるように構成されたバンドパスフィルタとして実装され得る。
【0118】
図6Bは、本開示の態様に係る、TDDに使用できる別の例示的なマルチバンドRFフロントエンド203である。特に、
図6BのRFフロントエンド203は、高性能TDD RFフロントエンド203として構成されてもよい。
図6Aの例と同様に、例示的なRFフロントエンド203は、Band1、Band2、…、BandNというN個のバンドを送受信するように構成されてもよい。RFフロントエンド203は、複数のパワーアンプ204A、204B、…、204Nと、複数の低雑音増幅器206A、206B、…、206Nと、第1の複数のフィルタ210A、210B、…、210Nを含む第1フィルタバンク210と、第2の複数のフィルタ212A、212B、…、212Nを含む第2のフィルタバンク212と、単極N投送受信スイッチ214とを備える。
【0119】
図6Aと比較して性能を改善するために、
図6Bの実施の形態には個々のフィルタから構成される2つのセットである、送信RF信号用に第1フィルタ210A~210N、および受信RF信号用に第2フィルタ212A~212Nがある。RFフロントエンド203が構成バンドBand1~BandN間での同時送受信に対応している実施態様では、送信パスおよび受信パスが送受信スイッチ214に接続される。1つ以上のアンテナに接続される出力ノードに複数の受信パスおよび送信パスを同時接続するように送受信スイッチ214を構成してもよい。
【0120】
図6Cは、本開示の態様に係る、TDDに使用できるさらに別の例示的なマルチバンドRFフロントエンド203である。特に、
図6BのRFフロントエンド203は、高性能TDD RFフロントエンド203の別の例として構成されてもよい。
図6Bと比較すると、
図6Cの実施の形態のインサーションロスは低い(よって、TX効率は高い)。なぜならば、TDDスイッチの投の数が少ないためである。
図6Bの例と同様に、例示的なRFフロントエンド203は、N個のバンドBand1、Band2、…、BandNを送受信するように構成されてもよい。RFフロントエンド203は、複数のパワーアンプ204A、204B、…、204Nと、複数の低雑音増幅器206A、206B、…、206Nと、第1の複数のフィルタ210A、210B、…、210Nを含む第1マルチプレクサ210と、第2の複数のフィルタ212A、212B、…、212Nを含む第2マルチプレクサ212と、単極双投送受信スイッチ216とを備える。
【0121】
RFフロントエンド203が構成バンドBand1~BandN間の同時受送信に対応していない実施態様では、送受信スイッチ216は、出力ノードに選択的に接続される第1マルチプレクサ210および第2マルチプレクサ212の各々の共通ノードに接続される。
【0122】
図7Aは、本開示の態様に係る、2つのバンドについての例示的なRFフロントエンド310部分を示す図である。
図7Aに示すように、RFフロントエンド310は、第1のパワーアンプ402と、第2のパワーアンプ404と、第1の低雑音増幅器406と、第2の低雑音増幅器408と、第1の送受信スイッチ410と、第2の送受信スイッチ412と、ダイプレクサ414とを備える。
【0123】
第1のパワーアンプ402、第1の低雑音増幅器406、および第1スイッチ410は、TDDを用いて第1バンドのRF信号を送受信するように構成されてもよく、第2のパワーアンプ404、第2の低雑音増幅器408、および第2スイッチ412は、TDDを用いて第2バンドのRF信号を送受信するように構成されてもよい。第1バンドおよび第2バンドの各々が送信モードまたは受信モードのいずれかになるように第1の送受信スイッチ410と第2の送受信スイッチ412とを構成できる。ダイプレクサ414は、バンドパスフィルタのペアから構成されてもよい。これらのバンドパスフィルタは、それぞれ、出力ノードと第1の送受信スイッチ410および第2の送受信スイッチ412それぞれとの間で第1バンドおよび第2バンドに対応するRF信号をそれぞれ通過させる。
【0124】
特定のバンド(たとえば、バンドn77およびバンドn79)の場合、本開示の態様は、近接したバンドに関する上述した課題の少なくとも一部について対処することに関する。たとえば、本開示の態様は、(a)受信モードにおける、3GPPレンジの3つの妨害など、帯域の境界に比較的近い妨害に対する十分に高い除去性と、(b)送信モードにおける高効率のモジュールを得るのに十分に低いインサーションロス、という競合する設計目標に対処することに関する。
図7Aの実施の形態では、RXおよびTXの両方に1つの共通フィルタが使われているので、競合する設計目標では、除去またはインサーションロスのいずれかにおいて妥協しなければならなくなるであろう。
【0125】
図7Bは、本開示の態様に係る、2つのバンドについての別の例示的なRFフロントエンド310部分を示す図である。この実施態様では、RFフロントエンド310は、第1のパワーアンプ402と、第2のパワーアンプ404と、第1の低雑音増幅器406と、第2の低雑音増幅器408と、第1の送受信スイッチ410と、第2の送受信スイッチ412と、第1ダイプレクサ416と、第2ダイプレクサ418とを備える。
【0126】
図7Bの例では、TDDの受信モードおよび送信モードの両方に対して1つの共通ダイプレクサ(たとえば、
図7Aのダイプレクサ414など)を使用するのではなく、
図7Bの実施の形態は、別個の第1ダイプレクサ416および第2ダイプレクサ418を備える。受信パスならびに送信パスについての異なる一式の仕様および/または設計上の制約に対処するように第1ダイプレクサ416ならびに第2ダイプレクサ418を構成できる。
【0127】
たとえば、受信側の第2ダイプレクサ418は、出力ノードから受信した信号を、低雑音増幅器406および408にフィルタ処理された信号を提供する前にフィルタ処理するように構成される。不要なIMD(バンド間相互変調歪み)成分を生成するおそれがある妨害を除去するために、第2ダイプレクサ418は、(帯域の境界から)近距離の周波数のRF信号を除去するように構成され得る。ダイプレクサ218を形成する受信フィルタのさらなる除去性のおかげで、ダイプレクサのインサーションロスは、これらの除去が行われないダイプレクサよりも比較的高い。
【0128】
受信パスと比較して、送信側の第1ダイプレクサ416の除去仕様および/または設計上の制約は、比較的緩くてもよい。よって、受信側の第2ダイプレクサ418と比較して、送信側の第1ダイプレクサ416をかなり低いインサーションロスで構成できるので、RFフロントエンド310のシステム効率を向上させることができる。
【0129】
これに加えて、
図7Aの実施の形態と比較して、
図7Bの実施の形態は、第1の送受信スイッチ410および第2の送受信スイッチ412の配置が異なる。すなわち、
図7Bの実施態様では、第1の送受信スイッチ410および第2の送受信スイッチ412は、第1ダイプレクサ416および第2ダイプレクサ418と出力ノードとの間に位置しており、
図7Aの実施態様では、第1の送受信スイッチ410および第2の送受信スイッチ412は、ダイプレクサ414と第1のパワーアンプ402および第2のパワーアンプ404との間、ならびにダイプレクサ414と第1の低雑音増幅器406および第2の低雑音増幅器408との間に位置している。
【0130】
図7Bの構成は、5G UHB(超広帯域)RFフロントエンド310で用いられてもよい。たとえば、
図7Aに示すように送信パスおよび受信パスの両方に1つのダイプレクサを使用する代わりに、送信パス用と受信パス用に第1ダイプレクサ416と第2ダイプレクサ418とを分けることができる。
【0131】
図7Cは、本開示の態様に係る、2つのバンドについてのさらに別の例示的なRFフロントエンド310部分を示す図である。この実施態様では、RFフロントエンド310は、第1のパワーアンプ402と、第2のパワーアンプ404と、第1の低雑音増幅器406と、第2の低雑音増幅器408と、第1ダイプレクサ416と、第2ダイプレクサ418と、SP4T(単極4投)スイッチ420とを備える。
【0132】
図7Cの実施態様は、第1バンドおよび第2バンドの同時操作が必要ない状況において用いられてもよい。たとえば、第1バンドおよび第2バンドの同時操作が必要ない場合、第1の送受信スイッチ410および第2の送受信スイッチ412の代わりにSP4Tスイッチ420を用いることができる。
図7Cに示すようなSP4Tスイッチ420を用いることによって、
図7Bの実施の形態と比較してインサーションロスを減らすことができるので、受信モードおよび送信モード両方の性能が改善される。
【0133】
図7Dは、本開示の態様に係る、2つのバンドについてのさらに別の例示的なRFフロントエンド310部分を示す図である。この実施態様では、RFフロントエンド310は、第1のパワーアンプ402と、第2のパワーアンプ404と、第1の低雑音増幅器406と、第2の低雑音増幅器408と、第1ダイプレクサ416と、第2ダイプレクサ418と、2極4投(2P4T)スイッチ422とを備える。
【0134】
図7Dの実施態様を使用して、たとえば、SP4Tスイッチ420を2P4Tスイッチ422に置き換えることによって、第1バンドおよび第2バンドとの間で非同期動作を可能にしてもよい。本実施の形態では、バンド1(たとえば、n77)をTXモードとし、同時にバンド2(たとえば、n79)をRXモードとしてもよい。このような非同期動作は、現在および今後の多くの5Gネットワークで普及している。
【0135】
図8は、本開示の態様に係る、3つのバンドについての例示的なRFフロントエンド310部分を示す図である。特定の実施態様では、RFフロントエンド310は、2つの中帯域(たとえば、バンドB34およびバンドB39)のRF信号、および1つの広帯域(たとえば、バンドn41)のRF信号を送信/受信するように構成されてもよい。
【0136】
図8のRFフロントエンド310は、中帯域パワーアンプ502と、広帯域パワーアンプ504と、中帯域低雑音増幅器506と、広帯域低雑音増幅器508と、第1のSPDTスイッチ510と、第2のSPDTスイッチ512と、第1のトリプレクサ514と、第2のトリプレクサ516と、2P6Tスイッチ518とを備える。
【0137】
バンドを特定の組合せにした場合、広帯域は、特定の中帯域と同期しなくてもよい。たとえば、バンドn41の動作は、中帯域アンカーバンドB34およびB39と同期しなくてもよい。しかしながら、TDDフレームの受信期間と送信期間とが重なることは可能であってもよいので、2P6Tスイッチ518は、この重なりを可能にするために2つのポールを備える。
【0138】
中帯域と広帯域との間で非同期動作を可能にするために、送信パス上の第1のトリプレクサ514と受信側の第2のトリプレクサ516とが分けられ得る。しかしながら、2P6Tスイッチは、同時受送信動作を可能にするために2つのポールを備える。
【0139】
図9Aは、本開示の態様に係る、1つのバンドについての例示的なRFフロントエンド310部分を示す図である。
図9Aに示すように、RFフロントエンド310は、パワーアンプ602と、低雑音増幅器604と、送受信スイッチ606と、バンドパスフィルタ608とを備える。
【0140】
図9Bは、本開示の態様に係る、1つのバンドについての別の例示的なRFフロントエンド310部分を示す図であり、送信パスおよび受信パスに対して別個のフィルタが設けられている。
図9Bに示すように、RFフロントエンド310は、パワーアンプ602と、低雑音増幅器604と、送信フィルタ610と、受信フィルタ612と、スイッチ614とを備える。
図9Aと比較すると、送信パスおよび受信パスの両方に1つのフィルタ608を使用するのではなく、
図9Bの実施態様は、フィルタを送信フィルタ610と受信フィルタ612とに分けている。このように送信フィルタ610および受信フィルタ612に分けることで、
図7Bに関連して上述した改善と同じ改善(たとえば、受信パス上のブロックの向上、および送信パス上のインサーションロスの低減)が可能になる。
【0141】
特定の実施形態では、所与のRF通信システムのための各バンド(たとえば、すべてのTDD LTE/NRバンド)を、
図9Bに関連して説明したレイアウトを用いて実装できる。
【0142】
しかしながら、特定のバンド用の受信フィルタおよび送信フィルタの少なくとも一部を1つにまとめることによって実装の大きさおよびコストを減らすことも可能である。
図9Cは、本開示の態様に係る、1つのバンドについての例示的なRFフロントエンド310部分を示す図である。
図9Aに示すように、RFフロントエンド310は、パワーアンプ602と、低雑音増幅器604と、送信フィルタ610と、受信フィルタ612と、スイッチ614と、共通フィルタ616とを備える。スイッチ614と出力ノードとの間の共有パス上に共通フィルタ616を備えることによって、送信フィルタ610および受信フィルタ612の各々で共通フィルタ616の構成要素を複製する必要がなくなるので、
図9Bの実施態様と比較して、RFフロントエンド310全体の大きさを縮小できる。さらには、別個の送信フィルタ610および受信612を有することによって、別個のフィルタを用いることに伴う恩恵を本実施の形態においても実現できる。
【0143】
図10Aは、本開示の態様に係る、1つのバンドについての例示的なRFフロントエンド310部分を示す図である。
図10Aに示すRFフロントエンド310は、パワーアンプ702と、低雑音増幅器704と、送信フィルタ706と、受信フィルタ708と、第1スイッチ710と、第2スイッチ712と、第1の補助フィルタ714と、第2の補助フィルタ716と、共通フィルタ718とを備える。
【0144】
共通フィルタ718は、第1スイッチ712と出力ノードとの間の共有パスに対して、
図9Cの共通フィルタ616と同様の機能を行う。すなわち、送信フィルタ796および受信フィルタ708の各々において共通フィルタ718の成分を複製する必要がないので、
図9Bの実施態様と比較して、RFフロントエンド310全体の大きさを縮小できる。
【0145】
図9Bおよび
図9Cの実施の形態では、スイッチ614によって、RFフロントエンド310が信号パスフィルタ処理における動的変更を選択する(たとえば、送信パス上の送信フィルタ610または受信パス上の受信フィルタ612のうちいずれかを選択する)ことが可能になる。対照的に、
図10Aでは、第1の補助フィルタ714および第2の補助フィルタ716の一方に切り替えて信号パスにつなげることによってさらに複雑に送信フィルタおよび受信フィルタを動的に再構成するために、第1スイッチ710と第2スイッチ712とは連結されている。
図10Aの実施の形態では、RFスペクトルの特定部分を除去するために、第1の補助フィルタ714および第2の補助フィルタ176は、アースにつながれたシャントフィルタとして実装されてもよい。第1の補助フィルタ714と第2の補助フィルタ716とが切り替えられて、送信パスおよび受信パスの一部が形成され、中心周波数だけでなく、周波数特性も送信フィルタ706および受信フィルタ708とはまったく異なってもよい。
【0146】
図10Bは、本開示の態様に係る、1つのバンドについての別の例示的なRFフロントエンド310部分を示す図である。
図10Bに示すRFフロントエンド310は、パワーアンプ702と、低雑音増幅器704と、送信フィルタ706と、受信フィルタ708と、第1スイッチ710と、第2スイッチ712と、第1の補助フィルタ714と、第2の補助フィルタ716と、共通フィルタ718とを備える。
【0147】
図10Bの実施の形態では、第1の補助フィルタ714と第2の補助フィルタ716とが切り替えられて、送信パスおよび受信パスの一部が形成され、これらのフィルタがシャントノッチフィルタとして実装されてもよい。
【0148】
図10BのRFフロントエンド310がバンドB41用に実装された場合、送信期間の間、第1の補助フィルタ714に切り替えて送信パスにつないでもよく、B41のWiFiへの放出をしきい値レベル以下まで確実に抑えるようにしてB41バンドのトランスミッタが混在するWiFi電波を確実に妨害しないようにWiFi2.4GHz通信周波数の周波数のノッチを有してもよい。バンドB41の実施態様を引き続き参照すると、受信期間の間、第2の補助フィルタ716に切替えて受信パスにつないでもよく、B39トランスミッタが十分に減衰されてB41の低雑音増幅器704において飽和またはIMDが発生するのを確実に防ぐようにB39バンドの周波数のノッチを有してもよい。
【0149】
まとめ
状況において必要とされない限り、説明および特許請求の範囲のすべてを通して、「comprise」、「comprising」などの単語は、排他的または網羅的な意味とは反対に、包括的な意味、すなわち、「including、but not limited to」という意味であると解釈される。本明細書において全体的に用いられている「coupled」という単語は、直接接続されている、または1つ以上の中間要素を経由して接続されている2つ以上の要素を指す。同様に、本明細書において全体的に用いられている「connected」という単語は、直接接続されている、または1つ以上の中間要素を経由して接続されている2つ以上の要素を指す。これに加えて、「herein」、「above」、「below」、および同様の意味を持つ単語は、本願において用いられた場合、本願の特定の箇所ではなく、本願全体を指す。状況が許す場合、上記の詳細な説明において単数または複数を用いた単語は、それぞれ単数または複数を含んでもよい。2つ以上の項目からなる列挙に関連する「or」という単語は、列挙にある項目のうちいずれか;列挙にある項目のすべて;および列挙にある項目の任意の組合せ、という単語の解釈すべてを含む。
【0150】
また、特に、「can」、「could」、「might」、「can」、「e.g.」、「for example」、「such as」など、本明細書において用いられる条件を表す言い回しは、特に具体的に明示しない限り、またはコンテキストに用いられているように解釈されない限り、全体的に、特定の実施の形態が特定の機能、要素および/または状態を含み、その他の実施の形態は含まないという意味を伝えるものである。よって、このような条件を表す言い回しは、全体的に、機能、要素および/または状態が1つ以上の実施の形態にどうしても必要であることを暗示しているわけではなく、作成者による入力または指示があろうがなかろうが、これらの機能、要素および/または状態を特定の実施の形態に含めるか実行するかを判断するための論理を1つ以上の実施の形態が必ず含んでいることを暗示しているわけではない。
【0151】
上記本発明の実施の形態の詳細な説明は、網羅的でなく、先に開示した正確な表現に発明を限定しない。本発明の具体的な実施の形態および例を例示のために上述したが、当業者が認める様々な同等の変更が本発明の範囲で可能である。たとえば、プロセスまたはブロックを所与の順序で提示したが、別の実施の形態は、ステップを有するルーチンを異なる順序で実行してもよく、異なる順序のブロックを有する方式を採用してもよく、プロセスまたはブロックの一部を削除、移動、追加、細分化、結合、および/または変更してもよい。これらのプロセスまたはブロックの各々は、様々な異なる方法で実現されてもよい。また、プロセスまたはブロックは、連続して実行されるように示されている場合もあるが、代わりに並列して実行されてもよく、異なるタイミングで実行されてもよい。
【0152】
本明細書に示した本発明の教示は、上述したシステムに限らず、その他のシステムにも適用可能である。上述した様々な実施の形態の要素および動作を組み合わせてさらなる実施の形態を提供できる。
【0153】
本発明の特定の実施の形態を説明したが、これらの実施の形態は、一例として提示されたに過ぎず、本開示の範囲を限定しない。実際、本明細書に記載の新規な方法およびシステムを様々なその他の形式で具体化してもよく、さらには、本開示の要旨を逸脱しない範囲で様々な省略、置き換え、変更を本明細書に記載の方法およびシステムの形態に対して行ってもよい。添付の特許請求の範囲およびその均等物は、本開示の範囲および要旨に含まれる形式または変更を含む。