IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-車両の制御装置 図1
  • 特許-車両の制御装置 図2
  • 特許-車両の制御装置 図3
  • 特許-車両の制御装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-08-04
(45)【発行日】2025-08-13
(54)【発明の名称】車両の制御装置
(51)【国際特許分類】
   B60W 30/16 20200101AFI20250805BHJP
   B60W 60/00 20200101ALI20250805BHJP
   G08G 1/16 20060101ALI20250805BHJP
【FI】
B60W30/16
B60W60/00
G08G1/16 E
【請求項の数】 4
(21)【出願番号】P 2022199655
(22)【出願日】2022-12-14
(65)【公開番号】P2024085236
(43)【公開日】2024-06-26
【審査請求日】2024-07-24
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110003199
【氏名又は名称】弁理士法人高田・高橋国際特許事務所
(72)【発明者】
【氏名】青木 優和
(72)【発明者】
【氏名】橋本 洋介
(72)【発明者】
【氏名】高本 聡
【審査官】吉村 俊厚
(56)【参考文献】
【文献】国際公開第2018/138767(WO,A1)
【文献】特開2005-247143(JP,A)
【文献】国際公開第2019/058462(WO,A1)
【文献】特開2018-024286(JP,A)
【文献】特開2010-197215(JP,A)
【文献】米国特許出願公開第2015/0203108(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/00 - 60/00
B60L 1/00 - 3/12
B60L 7/00 - 13/00
B60L 15/00 - 58/40
B60T 7/12 - 8/1769
B60T 8/32 - 8/96
B62D 6/00 - 6/10
F02D 29/00 - 29/06
G08G 1/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
ドライバによる手動運転と自動運転とを切り替え可能な自車両を制御する制御装置であって、
前記手動運転中に前記ドライバが前記自車両を停止させた際の先行車に対する前記自車両の車間距離を学習する学習制御を実行し、前記学習制御による前記車間距離の学習結果を前記自動運転中の前記車間距離の制御に反映させるプロセッサと、
前記手動運転中に前記車間距離を学習データとして記憶する記憶装置と、
を備え、
前記学習制御において、前記プロセッサは、前記自車両の停止前期間から停止後期間までの一連の期間中の前記ドライバによる車両操作情報に基づいて、前記車間距離を前記学習データとして前記記憶装置に記憶させるか否かを決定し、
前記学習制御において前記学習データを記憶する学習条件は、前記停止前期間に関する停止前学習条件を含み、
前記停止前学習条件は、前回の停止後に前記自車両の車速が0より大きな閾値以上に到達していることを含む
両の制御装置。
【請求項2】
ドライバによる手動運転と自動運転とを切り替え可能な自車両を制御する制御装置であって、
前記手動運転中に前記ドライバが前記自車両を停止させた際の先行車に対する前記自車両の車間距離を学習する学習制御を実行し、前記学習制御による前記車間距離の学習結果を前記自動運転中の前記車間距離の制御に反映させるプロセッサと、
前記手動運転中に前記車間距離を学習データとして記憶する記憶装置と、
を備え、
前記学習制御において、前記プロセッサは、
前記自車両の停止前期間から停止後期間までの一連の期間中の前記ドライバによる車両操作情報に基づいて、前記車間距離を前記学習データとして前記記憶装置に記憶させるか否かを決定し、
前記先行車の高さが閾値未満の場合には、前記車間距離を前記学習データとして前記記憶装置に記憶させ、
前記高さが前記閾値以上の場合には、前記車間距離を前記学習データとして前記記憶装置に記憶させない
両の制御装置。
【請求項3】
ドライバによる手動運転と自動運転とを切り替え可能な自車両を制御する制御装置であって、
前記手動運転中に前記ドライバが前記自車両を停止させた際の先行車に対する前記自車両の車間距離を学習する学習制御を実行し、前記学習制御による前記車間距離の学習結果を前記自動運転中の前記車間距離の制御に反映させるプロセッサと、
前記手動運転中に前記車間距離を学習データとして記憶する記憶装置と、
を備え、
前記学習制御において、前記プロセッサは、前記自車両の停止前期間から停止後期間までの一連の期間中の前記ドライバによる車両操作情報に基づいて、前記車間距離を前記学習データとして前記記憶装置に記憶させるか否かを決定し、
前記自車両は、四輪の自動車であって、
前記学習制御において、前記プロセッサは、前記先行車が二輪の自動車である場合には、前記車間距離を前記学習データとして前記記憶装置に記憶させない
両の制御装置。
【請求項4】
前記学習制御において前記学習データを記憶する学習条件は、前記停止後期間に関する停止後学習条件を含み、
前記停止後学習条件は、
前記先行車及び前記自車両の双方の停止状態が所定時間継続されていること、
前記ドライバに右左折又は前記先行車の追い越しを行う意図がないこと、
前記自車両の停止が駐車のための停止でないこと、
前記先行車と前記自車両との間に他車両の割り込み又は横切りがないこと、及び
前記自車両が停止後に前記車間距離を変更していないこと
のうちの少なくとも1つを含む
請求項1から3のいずれか1つに記載の車両の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、手動運転と自動運転とを切り替え可能な車両の制御装置に関する。
【背景技術】
【0002】
特許文献1は、走行特性学習方法を開示している。走行特性学習方法では、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転における減速操作中の車間距離が優先して学習される。また、走行特性学習方法では、現在の走行状態が走行特性の学習に使用するデータを取得するのに適当であるか否かを判定するための学習条件として、車両の停止中の先行車との車間距離が所定値以内であることが含まれる。
【先行技術文献】
【特許文献】
【0003】
【文献】国際公開第2018/138767号
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、手動運転中にドライバが自車両を停止させた際の先行車に対する自車両の車間距離についてのドライバの嗜好を学習する学習制御を実行し、当該学習の結果を自動運転中の車間距離の制御に反映させることが考えられる。車両の停止中の先行車との車間距離に関し、特許文献1には、走行特性についての学習条件として車間距離が所定値以内であることのみが開示されている。しかしながら、このように開示された学習条件だけでは、上記学習制御の対象である車両停止時の車間距離についてのドライバの嗜好を適切に学習するうえで十分とはいえない。
【0005】
本開示は、上述のような課題に鑑みてなされたものであり、手動運転中にドライバが自車両を停止させた際の先行車に対する自車両の車間距離についてのドライバの嗜好を適切に学習できるようにした車両の制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示に係る車両の制御装置は、ドライバによる手動運転と自動運転とを切り替え可能な自車両を制御する。制御装置は、プロセッサと、記憶装置と、を備える。プロセッサは、手動運転中にドライバが自車両を停止させた際の先行車に対する自車両の車間距離を学習する学習制御を実行し、学習制御による車間距離の学習結果を自動運転中の車間距離の制御に反映させる。記憶装置は、手動運転中に車間距離を学習データとして記憶する。学習制御において、プロセッサは、自車両の停止前期間から停止後期間までの一連の期間中のドライバによる車両操作情報に基づいて、車間距離を学習データとして記憶装置に記憶させるか否かを決定する。付け加えると、学習制御による車間距離の学習結果の取得のために、機械学習が用いられてもよい。
【発明の効果】
【0007】
本開示によれば、手動運転中にドライバが自車両を停止させた際の先行車に対する自車両の車間距離についてのドライバの嗜好を適切に学習できるようになる。
【図面の簡単な説明】
【0008】
図1】実施の形態に係る車両(自車両)の構成の一例を概略的に示す図である。
図2】実施の形態に係る学習条件Cの一覧の一例を表した表である。
図3】自車両の停止時の先行車の車種の具体例を示す図である。
図4】実施の形態に係る車両走行制御に関連する処理の一例を示すフローチャートである。
【発明を実施するための形態】
【0009】
添付図面とともに、本開示の実施の形態について説明する。
【0010】
1.車両の構成
図1は、実施の形態に係る車両1の構成の一例を概略的に示す図である。車両1は、車両制御システム10を備えている。車両制御システム10は、車両1に搭載され、車両1の走行を制御する。車両制御システム10は、車両状態センサ12、認識センサ14、位置センサ16、通信装置18、走行装置20、電子制御ユニット(ECU)22、及び運転切替スイッチ24を含む。
【0011】
車両状態センサ12は、車両1の状態を検出する。車両状態センサ12は、例えば、車速センサ、加速度センサ、アクセルペダルセンサ、ブレーキペダルセンサ、操舵角センサ、及びウインカーセンサを含む。ウインカーセンサは、ウインカーの操作状態を検出する。認識センサ14は、車両1の周囲の状況を認識(検出)する。認識センサ14は、例えば、カメラを含む。位置センサ16は、車両1の位置及び方位を検出する。位置センサ16は、例えば、GNSS(Global Navigation Satellite System)受信機を含む。
【0012】
通信装置18は、車両1の外部と通信を行う。通信装置18は、例えば、外部システムと通信を行い、様々な情報を取得する。当該情報は、例えば、地図情報及び交通情報を含む。地図情報は、道路勾配等の道路情報を含む。交通情報は、例えば、渋滞情報、路面状態に関する情報、及び、霧の発生又は大雨等の視界に関する情報を含む。また、通信装置18は、例えば、車両1と周辺車両との通信(すなわち、車車間通信(V2V))を可能とする車車間通信機を含んでいてもよい。
【0013】
走行装置20は、車両1を動作させる装置である。例えば、走行装置20は、駆動装置、制動装置、及び操舵装置を含む。駆動装置は、例えば、車両1の駆動(加速)のための電動機及び内燃機関の少なくとも一方を含む。制動装置は、車両1の制動(減速)のためのブレーキアクチュエータを含む。操舵装置は、例えば、車両1の操舵のためのステアリングモータを含む。
【0014】
ECU22は、車両1を制御するコンピュータであり、本開示に係る「車両の制御装置」の一例に相当する。ECU22は、プロセッサ26と記憶装置28とを含んでいる。プロセッサ26は、各種処理を実行する。各種処理は、後述の車両走行制御に関する処理を含む。記憶装置28は、プロセッサ26による処理に必要な各種情報を格納する。プロセッサ26がコンピュータプログラムを実行することにより、ECU22による各種処理が実現される。コンピュータプログラムは、記憶装置28に格納されている。あるいは、コンピュータプログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。なお、ECU22は、複数のECUを組み合わせて構成されていてもよい。
【0015】
車両制御システム10は、車両1の「自動運転」を制御する自動運転制御を実行可能に構成されている。この自動運転制御は、車両(自車両)1が先行車の後ろに目標車間距離Dtで停止するように車間距離Dを制御する車両停止制御を含む。より詳細には、ここでいう自動運転は、例えば、米国の自動車技術会(SAE)の定義におけるレベル3以上の自動運転に相当するが、必ずしもレベル3以上の自動運転に限られない。すなわち、当該自動運転制御は、上記の車両停止制御を含むものであればよく、例えば、0km/hまで制動制御を行うことが可能なアダプティブクルーズコントロール(ACC)であってもよい。このような自動運転制御には、公知の技術が適用される。このため、自動運転制御の詳細に関する説明は省略される。
【0016】
運転切替スイッチ24は、ドライバによって操作され、ドライバによる手動運転と自動運転との間で車両1の運転を切り替えるために用いられる。すなわち、車両1は、手動運転と自動運転とを切り替え可能に構成されている。手動運転は、ドライバが自らの意思でアクセルペダル、ブレーキペダル、及びステアリングホイールを操作することによって行われる。
【0017】
2.車両走行制御
本実施形態では、運転切替スイッチ24を操作するドライバによって自動運転が選択された場合、ECU22は、上述の車両停止制御を含む自動運転制御を実行する。一方、ドライバによって手動運転が選択された場合、ECU22は、次の「車間学習制御」を実行する。
【0018】
2-1.停止時の車間学習制御
本実施形態に係る車間学習制御(又は、単に学習制御)は、手動運転中にドライバが自車両1を停止させた際の先行車に対する自車両1の車間距離D(例えば、図3(A)から3(C)参照)を学習するものである。この学習制御による車間距離Dの学習結果(すなわち、後述の学習値DL)は、自動運転中の車間距離Dの制御に反映される。
【0019】
学習条件Cは、学習制御による学習の実行条件である。換言すると、学習条件Cは、学習制御における学習データである車間距離Dの記憶を実行する条件である。停止時の車間距離Dに関するドライバの嗜好を正確に捉えられるようにするために、学習条件Cは次のように設定されている。
【0020】
図2は、実施の形態に係る学習条件Cの一覧の一例を表した表である。図2に示す例では、学習条件Cは、前提条件C0とともに、3種類の学習条件C1からC3を含んでいる。学習条件C1は、停止前期間P1に関する学習条件(停止前学習条件)である。学習条件C2は、停止過程P2に関する学習条件(停止過程条件)である。学習条件C3は、停止後期間P3に関する学習条件(停止後学習条件)である。学習条件Cは、これらの条件C0からC3のすべてが満たされる場合に成立する。
【0021】
停止前期間P1は、自車両1の停止のためのドライバ操作に基づく減速の開始前の期間に相当する。停止前期間P1は、例えば、前回の自車両1の停止に関する停止後期間P3の終了時点から今回の停止のための減速(制動を含む)の開始時点t0までの期間であってもよい。あるいは、当該減速の開始時点t0を予測可能な場合には、停止前期間P1は、当該減速の開始時点t0を終点とする所定期間であってもよい。停止過程P2は、減速の開始時点t0から自車両1の停止の完了時点t1までの期間である。停止後期間P3は、停止の完了時点t1からの所定期間である。
【0022】
学習条件Cは、学習条件C1からC3を含むことにより、停止前期間P1、停止過程P2、及び停止後期間P3という一連の期間Pを対象としている。これらの学習条件C1からC3の利用により、本実施形態に係る学習制御では、ECU22(プロセッサ26)は、一連の期間P中のドライバによる車両操作情報に基づいて、車間距離Dを学習データとして記憶装置28に記憶させるか否かを決定する。
【0023】
まず、停止前学習条件C1は、例えば、前回の停止後に自車両1の車速Vが閾値以上に到達していること(条件C1-1)を含む。換言すると、条件C1-1は、停止前期間P1における自車両1の走行がのろのろ走行でないことである。自車両1の前方の信号の配置又は渋滞等の要因で自車両1がのろのろ走行している状態から自車両1が停止した時の車間距離Dは、周囲の様子に応じたものになり易い。その結果、取得された車間距離Dは、ドライバの嗜好を正確に捉えにくいものとなる。したがって、条件C1-1によれば、のろのろ走行から自車両1が停止するシーン、すなわち、ドライバの嗜好を正確に捉えにくいシーンを学習対象から排除できる。なお、停止前学習条件C1は、複数であってもよい。
【0024】
次に、停止過程学習条件C2は、例えば、条件C2-1からC2-5を含む。条件C2-1は、先行車の停止後に自車両1が停止したことである。条件C2-2は、先行車及び自車両1の双方が直進状態で停止したことである。条件C2-3は、自車両1が停止過程P2において車線変更を行っていないことである。条件C2-4は、同一の先行車に向かって停止したこと(換言すると、先行車と自車両1との間に他車両の割り込み又は横切りがないことである。条件C2-5は、自車両1のドライバに右左折又は先行車の追い越しを行う意図がないことである。これらの各条件C2-1からC2-5の利用により、ドライバにとって制御し易い車間距離Dを学習データとして捉えることができる。
【0025】
さらに、学習条件C2は、例えば、今回の停止時に得られる車間距離Dが閾値以下であること(条件C2-6)を含む。その理由は、車間距離Dが長いと、他車両に道を譲るために車間距離Dを大きく確保した可能性があるためである。また、学習条件C2は、例えば、自車両1の停止がドライバによる急ブレーキを伴うものでないこと(条件C2―7)を含む。その理由は、自車両1がドライバの嗜好に応じた車間距離Dで停止したと考えにくいためである。また、学習条件C2は、例えば、ドライバ自らの操作によって制動が行われたこと(条件C2-8)を含む。その理由は、手動運転中に車両制御システム10による制御によって自動的に作動する緊急ブレーキによる制動時を排除して、ドライバの嗜好を捉えるためである。
【0026】
次に、停止後学習条件C3は、例えば、先行車及び自車両1の双方の停止状態が所定時間継続されていること(条件C3-1)を含む。その理由は、安定した停止シーンを捉えるためである。この所定期間は、停止後期間P3を特定する上記所定期間と同じであってもよいし、又は短くてもよい。また、学習条件C3は、例えば、自車両1のドライバに右左折又は先行車の追い越しを行う意図がないこと(条件C3-2)を含む。その理由は、右左折又は追い越しのために普段と異なる車間距離Dを確保している可能性があるためでる。
【0027】
さらに、学習条件C3は、例えば、自車両1の停止が駐車のための停止でないこと(条件C3-3)を含む。その理由は、自車両1を駐車枠に収めるために車間距離Dが嗜好と異なっている可能性があるためである。また、学習条件C3は、例えば、先行車と自車両1との間に他車両の割り込み又は横切りがないこと(条件C3-4)を含む。その理由は、他車両に道を譲るために車間距離Dを大きく確保した可能性があるためである。また、学習条件C3は、例えば、停止後に自車両1が車間距離Dを変更していないこと(条件C3-5)を含む。その理由は、変更前後の車間距離Dのどちらがドライバの嗜好を示しているかを判断しにくいためである。なお、停止後学習条件C3は、例えば、条件C3-1からC3-5の何れか1つ又は全部ではない複数であってもよい。
【0028】
次に、前提条件C0は、先行車の車種の観点に基づく条件である条件C0-1及びC0-2を含む。ここで、手動運転中に自車両1のドライバによって調整される車間距離Dは、先行車の高さHの影響を受ける。すなわち、高さHが大きいと、自車両1の停止中にドライバの前方の視界が妨げられ易くなる。例えば、前方の信号又は標識が見えにくくなる。このため、高さHの大きな先行車の後ろで停止する場合、高さHが同等又は小さな先行車の後ろで停止する場合と比べて、ドライバは車間距離Dを長く確保する傾向にあると考えられる。このように、車間距離Dは、先行車の高さHによってばらつき得る。
【0029】
上記の点に鑑み、条件C0-1は、先行車の高さHが閾値TH1未満であることである。すなわち、学習制御において、先行車の高さHが所定の閾値TH1未満の場合には、ECU22は、当該先行車を対象とする車間距離Dを学習データとして記憶装置28に記憶させる。一方、高さHが閾値TH1以上の場合には、ECU22は、当該車間距離Dを学習データとして記憶装置28に記憶させない。このように、自車両1のドライバが視界を確保し易い車種に学習対象を限定することにより、車種の違いに起因する車間距離Dの学習データのばらつきを回避できる。
【0030】
図3(A)から図3(C)は、自車両1の停止時の先行車の車種の具体例を示す図である。図3(A)に示す例における先行車2は、自車両1と同等の高さH1を有する。一方、図3(B)に示す例における先行車3は、自車両1と比べて大きな高さH2を有する。
【0031】
具体的には、先行車2は、自動車であり、より詳細には、例えば四輪の自動車である。先行車2は、例えば、日本の道路交通法における普通自動車(普通乗用車、小型乗用車、又は軽自動車)に相当する。付け加えると、先行車2は、自家用であるか商用であるかは問わない。一方、先行車3は、先行車2と比べて大型の自動車(トラック又はバスなど)である。より詳細には、先行車3は、例えば、日本の道路交通法における準中型自動車、中型自動車、又は大型自動車に相当する。
【0032】
閾値TH1は、先行車2と先行車3とを区別可能な値として事前に決定されている。すなわち、閾値TH1は、先行車2の高さH1と先行車3のH2との間に位置している。換言すると、閾値TH1は、普通自動車を、普通自動車よりも高さHの大きな自動車と区別可能な値に相当する。
【0033】
先行車2及び3を参照して説明された例では、自車両1は、先行車2と同様に普通自動車であることを前提としている。しかしながら、自車両1の車種は、必ずしも普通自動車に限られない。すなわち、車種を考慮して学習対象から先行車を除外する条件は、例えば、先行車の高さHが自車両1の高さより高く、かつ、自車両1に対する先行車の相対的な高さΔHが所定の閾値以上であることであってもよい。
【0034】
また、図3(C)に示す例における先行車4は、二輪の自動車(自動二輪車)である。ここで、自車両1が四輪の自動車である場合、先行車が二輪の自動車であると、ドライバは、先行車のサイズ及び挙動等の理由に起因して適切な車間距離Dの感覚を掴みにくい傾向にあると考えられる。このため、二輪の自動車に追従する場合、普通自動車等の四輪の自動車に追従する場合と比べて、ドライバは車間距離Dを長く確保しようとしたり、車間距離Dが安定しなくなったりする傾向にあると考えられる。
【0035】
上記の点に鑑み、条件C0-2は、先行車が二輪の自動車でないことである。すなわち、車種を考慮して学習対象から先行車を除外する条件は、先行車が二輪の自動車であることを含む。したがって、学習制御において、先行車が二輪の自動車である場合には、ECU22は、車間距離Dを学習データとして記憶装置28に記憶させない。これにより、車種の違いに起因する先行車への接近感の差異のために車間距離Dの学習データがばらつくことを回避できる。
【0036】
上述のように、条件C0-1及びC0-2によれば、ある先行車を対象として学習データ(車間距離D)を記憶装置28に記憶させるか否かは、当該先行車の車種に応じて決定(変更)される。付け加えると、条件C0-1及びC0-2に代え、例えば、自車両1と先行車の車種が同じであることが前提条件C0の1つとして含まれていてもよい。
【0037】
また、前提条件C0は、例えば、条件C0-3からC0-8を含む。条件C0-3は、自車両1が走行する道路が渋滞中でないことである。条件C0-4は、路面及び視界状況が良好であること(条件C0-4)である。条件C0-5は、自車両1が道路外(例えば、駐車場又は敷地内)でないことである。条件C0-6は、自車両1の道路が生活道路及び細街路の何れでもないことである。条件C0-7は、自車両1の走行地点が複数の道路の合流部でないことを含む。条件C0-8は、自車両1の走行地点が料金所でないことである。これらの条件C0-3からC0-8のそれぞれによれば、ドライバによる車間距離Dが周囲の様子に応じたものになり易いシーンを回避し、ドライバの嗜好を正確に捉えられるようにすることができる。
【0038】
さらに、前提条件C0は、例えば、道路勾配の絶対値が小さいこと(条件C0-9)を含む。その理由は、例えば急な下り坂のように道路勾配の絶対値が大きい場合、ドライバは停止時の自車両1のずり下がりに注意し、車間距離Dにドライバの嗜好が表れない可能性があるためである。また、前提条件C0は、例えば、自車両1が自動車専用道路(高速道路)の走行中でないこと(条件C0-10)を含む。その理由は、自動車専用道路での自車両1の停止は渋滞等の要因によるものであり、車間距離Dは周囲の様子に応じたものになり易いからである。
【0039】
2-2.処理の流れ
図4は、実施の形態に係る車両走行制御に関連する処理の一例を示すフローチャートである。このフローチャートの処理は、車両制御システム10の起動中に繰り返し実行される。
【0040】
ステップS100において、ECU22(プロセッサ26)は、車両1が手動運転中か自動運転中かを判定する。この判定は、例えば、運転切替スイッチ24の操作状態に基づいて行うことができる。
【0041】
車両1が手動運転中である場合(ステップS100;Yes)、処理はステップS102に進む。ステップS102では、ECU22は、学習制御の実行に必要な各種情報を取得する。当該各種情報は、停止時の車間距離Dを含む。より詳細には、処理がステップS102に進んだ際に自車両1が先行車の後ろに停止した状態(すなわち、車速Vが0km/hになった状態)にある場合に、例えば認識センサ14を用いて取得される。また、上記の各種情報は、学習条件C(例えば、図2参照)が成立するか否かを判定するために必要な情報を含む。当該情報は、先行車の高さHを含む。高さHは、例えば、認識センサ14又は車車間通信を用いて取得される。また、学習条件Cを判定するための他の情報は、例えば、車両状態センサ12及び認識センサ14からの情報、道路情報(地図情報)、並びに交通情報を用いて取得される。
【0042】
ステップS102に続くステップS104において、ECU22は、学習条件Cが成立するか否かを判定する。より詳細には、上述の条件C0からC3のすべてが満たされるか否かが判定される。その結果、学習条件Cが成立する場合、すなわち、ドライバの嗜好が車間距離Dに表れるような停止シーンであると判定された場合には、処理はステップS106に進む。付け加えると、学習条件Cは、上述の停止後期間P3が経過したタイミングにおいて条件C0からC3のすべてが満たされている場合に成立する。
【0043】
一方、上述の条件C0からC3の少なくとも1つが満たされない場合には、学習条件Cは不成立となる。学習条件Cが不成立となる場合には、処理はリターンに進む。
【0044】
ステップS106において、ECU22は、ステップS102にて取得された車間距離Dを記憶する。すなわち、学習条件Cが成立した場合には、当該車間距離Dが学習データとして記憶装置28に記憶される。
【0045】
ステップS106に続くステップS108において、ECU22は、所定数の車間距離Dのデータが蓄積されたか否かを判定する。この所定数は、例えば30個である。所定数の車間距離Dのデータが未だ蓄積されていない場合(ステップS108;No)、処理はリターンに進む。一方、所定数のデータが蓄積された場合(ステップS108;Yes)、処理はステップS110に進む。
【0046】
ステップS110において、ECU22は、車間距離Dの学習値DLを算出する。例えば、蓄積された車間距離Dのデータの平均値が学習値DLとして算出される。その後、処理はステップS112に進む。
【0047】
ステップS112において、ECU22は、ステップS110にて算出された学習値DLを目標車間距離Dtに適用する。すなわち、目標車間距離Dtが最新の学習値DLによって更新される。目標車間距離Dtは、自動運転中に行われる車両停止制御において用いられるものである。
【0048】
一方、車両1が自動運転中である場合(ステップS100;No)、処理はステップS114に進む。ステップS114において、ECU22は、例えば認識センサ14から得られる情報を用いて、先行車を伴う所定の車両停止条件が成立するか否かを判定する。その結果、この車両停止条件が成立する場合には、処理はステップS116に進む。一方、当該車両停止条件が成立しない場合には、処理はリターンに進む。
【0049】
ステップS116において、ECU22は、走行装置20を制御することによって、目標車間距離Dtを実現するように(実)車間距離Dを制御する。このように、ステップS112からS116の処理により、学習制御による車間距離Dの学習結果(学習値DL)が自動運転中の車間距離Dの制御に反映される。
【0050】
付け加えると、学習値DLの取得は、図4に示す処理に代え、例えば、機械学習モデルを用いて実行されてもよい。すなわち、この機械学習モデルは、例えば、所定の各種パラメータを入力とし、学習値DLを出力として構築される。各種パラメータは、例えば、上述の前提条件C0に関係する複数のパラメータである。より詳細には、各前提条件C0が成立していること(例えば、自車両1が走行する道路が渋滞中でないこと)を示すパラメータと、各前提条件C0が成立していないこと(例えば、当該道路が渋滞中であること)を示すパラメータと、を用いることができる。当該機械学習モデルの学習は、例えば、車両1の走行中に取得された学習データ(すなわち、説明変数(入力)である上記の各種パラメータと目的変数である車間距離D)を用いて行われる。
【0051】
3.効果
手動運転中に自車両1を停止させる際のドライバの操作は、停止過程P2だけでなく停止前期間P1及び停止後期間P3を含む一連の期間Pにおける自車両1の周囲の様々な環境及び状況の影響を受ける(例えば、図2に関する説明参照)。そして、当該影響は、ドライバの操作に基づく停止時の車間距離Dに表れる。以上説明した本実施形態によれば、一連の期間P中のドライバによる車両操作情報に基づいて、車間距離Dを学習データとして記憶装置28に記憶させるか否かが決定される。このように、本実施形態によれば、停止前後を含む一連の期間P中のドライバによる車両操作及び当該操作に伴う車両挙動が学習条件Cとして考慮される。これにより、一連の期間Pにおける自車両1の周囲の様々な環境及び状況の影響を起因する学習結果のばらつきを抑制できる。このため、車間距離Dについてのドライバの嗜好を適切なタイミングで学習できるようになる。そして、自動運転時に、ドライバの嗜好に基づいて適切に学習された目標車間距離Dtを用いることができる。このため、ドライバのストレスが軽減された自動運転を実現できる。
【0052】
4.学習制御の他の実行例
上述した前提条件C0-1からC0-6、C0-9、及びC0-10のそれぞれは、ステップS104の処理のように学習対象の走行シーンを限定するためではなく、次のように用いられてもよい。すなわち、例えば、前提条件C0-3に関し、本実施形態の学習制御は、自車両1が走行する道路が渋滞中でない時と、当該道路が渋滞中である時とを個別に対象として実行されてもよい。このことは、他の前提条件C0-1、C0-2、C0-4からC0-6、C0-9、及びC0-10についても同様である。
【符号の説明】
【0053】
1 車両、 2、3、4 先行車、 10 車両制御システム、 12 車両状態センサ、 14 認識センサ、 16 位置センサ、 18 通信装置、 20 走行装置、 22 電子制御ユニット(ECU)、 24 運転切替スイッチ、 26 プロセッサ、 28 記憶装置
図1
図2
図3
図4