(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-09-01
(45)【発行日】2025-09-09
(54)【発明の名称】車両の制御装置
(51)【国際特許分類】
B60W 10/08 20060101AFI20250902BHJP
B60K 6/48 20071001ALI20250902BHJP
B60K 6/54 20071001ALI20250902BHJP
B60W 10/04 20060101ALI20250902BHJP
B60W 10/10 20120101ALI20250902BHJP
B60W 20/30 20160101ALI20250902BHJP
F02D 29/00 20060101ALI20250902BHJP
F16H 59/42 20060101ALI20250902BHJP
F16H 61/04 20060101ALI20250902BHJP
F16H 63/50 20060101ALI20250902BHJP
【FI】
B60W10/08
B60K6/48 ZHV
B60K6/54
B60W10/00 104
B60W10/08 900
B60W10/10
B60W20/30
F02D29/00 C
F16H59/42
F16H61/04
F16H63/50
(21)【出願番号】P 2021209900
(22)【出願日】2021-12-23
【審査請求日】2024-10-08
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(74)【代理人】
【識別番号】100085361
【氏名又は名称】池田 治幸
(74)【代理人】
【識別番号】100147669
【氏名又は名称】池田 光治郎
(72)【発明者】
【氏名】木村 考浩
(72)【発明者】
【氏名】珍部 友宏
(72)【発明者】
【氏名】江藤 真吾
(72)【発明者】
【氏名】今永 雄二
(72)【発明者】
【氏名】今西 一貴
(72)【発明者】
【氏名】平田 大海
【審査官】戸田 耕太郎
(56)【参考文献】
【文献】特開2013-154727(JP,A)
【文献】特開2014-080943(JP,A)
【文献】特開2015-218895(JP,A)
【文献】特開2004-316831(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/08
B60K 6/48
B60K 6/54
B60W 10/04
B60W 10/10
B60W 20/30
F02D 29/00
F16H 59/42
F16H 61/04
F16H 63/50
(57)【特許請求の範囲】
【請求項1】
駆動力源としての電動機と、前記電動機と駆動輪との間の動力伝達経路に介挿されている変速機と、を備える車両に適用され、運転者によるアクセル操作を伴う前記変速機のダウンシフトを実行する場合、前記電動機の電動機トルクによって
前記ダウンシフト中に前記変速機へ入力される入力トルクを制御するように構成されている、車両の制御装置であって、
前記
運転者による第1のアクセル操作を伴う前記変速機の
前記ダウンシフトを実行するに当たって、
前記ダウンシフト中における前記変速機の入力回転速度と
前記ダウンシフト後の前記変速機の
変速比である第1の変速比に基づいて算出される
第1の同期回転速度との回転速度差が、予め設定されている所定値以下である場合、
前記入力回転速度と前記第1の同期回転速度との回転速度差が前記所定値よりも大きい場合に比較して前記変速機へ入力される入力トルクの上昇率を
制限し、
前記ダウンシフト中において前記入力トルクの上昇率が制限されている場合に、前記運転者による第2のアクセル操作により前記ダウンシフト後の前記変速機の変速比が前記第1の変速比とは異なる第2の変速比となることによって前記入力回転速度と前記ダウンシフト後の前記第2の変速比に基づいて算出される第2の同期回転速度との回転速度差が、予め設定されている前記所定値よりも大きくなった場合、前記入力トルクの上昇率の制限を解除する
ことを特徴とする車両の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも電動機を駆動力源とする車両の制御装置に関する。
【背景技術】
【0002】
特許文献1には、エンジンおよび電動機を駆動力源とする車両において、これら駆動力源と駆動輪との間の動力伝達経路に介挿されている変速機のパワーオンダウンシフトを行う場合、電動機を用いて変速機への入力トルクをアシスト(補助)することが記載されている。なお、変速機のパワーオンダウンシフトとは、運転者のアクセル操作を伴うダウンシフトを意味している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、変速機のパワーオンダウンシフト中に電動機によるトルクアシストを行うに当たって、入力トルクの増加に対して変速機のトルク容量の増加に遅れが生じると、入力回転速度の吹き上がりが発生する虞がある。これに対して、入力回転速度の吹き上がりを抑制することを目的として入力トルクを制限すると、ダウンシフト中のトルクの応答性が悪くなるという問題が発生する。
【0005】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、少なくとも電動機を駆動力源とする車両において、アクセル操作を伴う変速機のダウンシフトを実行するに当たって、トルクの応答性の低下を抑制しつつ、ダウンシフト中の入力回転速度の吹き上がりを抑制できる車両の制御装置を提供することにある。
【課題を解決するための手段】
【0006】
第1発明の要旨とするところは、(a)駆動力源としての電動機と、前記電動機と駆動輪との間の動力伝達経路に介挿されている変速機と、を備える車両に適用され、運転者によるアクセル操作を伴う前記変速機のダウンシフトを実行する場合、前記電動機の電動機トルクによって前記ダウンシフト中に前記変速機へ入力される入力トルクを制御するように構成されている、車両の制御装置であって、(b)前記運転者による第1のアクセル操作を伴う前記変速機の前記ダウンシフトを実行するに当たって、前記ダウンシフト中における前記変速機の入力回転速度と前記ダウンシフト後の前記変速機の変速比である第1の変速比に基づいて算出される第1の同期回転速度との回転速度差が、予め設定されている所定値以下である場合、前記入力回転速度と前記第1の同期回転速度との回転速度差が前記所定値よりも大きい場合に比較して前記変速機へ入力される入力トルクの上昇率を制限し、(c)前記ダウンシフト中において前記入力トルクの上昇率が制限されている場合に、前記運転者による第2のアクセル操作により前記ダウンシフト後の前記変速機の変速比が前記第1の変速比とは異なる第2の変速比となることによって前記入力回転速度と前記ダウンシフト後の前記第2の変速比に基づいて算出される第2の同期回転速度との回転速度差が、予め設定されている前記所定値よりも大きくなった場合、前記入力トルクの上昇率の制限を解除することを特徴とする。
【発明の効果】
【0007】
第1発明によれば、(a)前記ダウンシフト中における変速機の入力回転速度と前記ダウンシフト後の変速機の変速比である第1の変速比に基づいて算出される第1の同期回転速度との回転速度差が、予め設定されている所定値以下である場合、入力回転速度と第1の同期回転速度との回転速度差が所定値よりも大きい場合に比較して変速機へ入力される入力トルクの上昇率が制限され、(b)前記ダウンシフト中において入力トルクの上昇率が制限されている場合に、運転者による第2のアクセル操作により前記ダウンシフト後の変速機の変速比が第1の変速比とは異なる第2の変速比となることによって入力回転速度と前記ダウンシフト後の第2の変速比に基づいて算出される第2の同期回転速度との回転速度差が、予め設定されている所定値よりも大きくなった場合、入力トルクの上昇率の制限が解除される。これより、回転速度差が所定値以下であり、入力回転速度が同期回転速度に到達するまでにかかる時間が短く、ダウンシフト中に入力回転速度の吹き上がりが発生する虞がある場合には、入力トルクの上昇率が制限されることで、ダウンシフト中における入力回転速度の吹き上がりが抑制される。一方、前記回転速度差が所定値より大きく、入力回転速度が同期回転速度に到達するまでの間に、変速機が入力トルクを伝達できるトルク容量を持つことができる場合には、入力トルクの上昇率が制限されないため、トルクの応答性の低下が抑制される。このように、ダウンシフト中に算出される回転速度差に応じて入力トルクの上昇率が制限されることで、ダウンシフト中におけるトルクの応答性の低下を抑制しつつ、入力回転速度の吹き上がりを抑制することができる。
【0008】
ここで、好適には、第1発明において、前記入力トルクの上昇率の制限は、イナーシャ相の開始からトルク相の終了までの間で実行される。イナーシャ相の開始前およびトルク相の終了後は、変速機が入力トルクを伝達することができることから、これらの場合には入力トルクの上昇率が制限されないことで、不要な入力トルクの制限による応答性の低下が防止される。
【0009】
また、好適には、第1発明において、前記所定値は、前記変速機の入力回転速度が前記同期回転速度に到達した時点において、前記変速機が前記入力トルクを伝達できる回転速度差の閾値に設定されている。このようにすれば、回転速度差が所定値よりも大きい場合には、変速機の入力回転速度が同期回転速度に到達したとき、変速機が入力トルクを伝達できるため、入力トルクの上昇率を制限しなくても入力回転速度の吹き上がりが抑制される。一方、回転速度差が所定値以下の場合には、入力回転速度が同期回転速度に到達した時点で入力トルクに対して変速機のトルク容量が不足し、入力回転速度の吹き上がりが発生する虞がある。このような場合には、入力トルクの上昇率が制限されることで、ダウンシフト中の入力回転速度の吹き上がりが抑制される。
【0010】
また、好適には、第1発明において、ダウンシフト中に算出される前記回転速度差が所定値以下であった場合において設定される、入力トルクの上昇率の上限ガード値が、前記回転速度差が小さいほど低い値に設定される。このようにすれば、回転速度差が小さいほど、入力回転速度が同期回転速度に到達するまでにかかる時間が短くなり、入力回転速度が同期回転速度に到達した時点で変速機のトルク容量が不足し、入力回転速度の吹き上がりが発生しやすくなるのに対して、回転速度差が小さいほど入力トルクの上昇率の上限ガード値が低い値とされることで、入力トルクを緩やかに増加させて入力回転速度の吹き上がりを抑制することができる。
【図面の簡単な説明】
【0011】
【
図1】本発明が適用された車両の概略構成を説明する図であると共に、車両における各種制御のための制御機能および制御系統の要部を説明する図である。
【
図2】自動変速機の変速段を成立させるための各係合装置の組み合わせを表す係合作動表である。
【
図3】回転速度差に基づいて上昇率の上限ガード値を設定するときに使用される関係マップの一態様を示す図である。
【
図4】電子制御装置の制御作動の要部を説明するためのフローチャートであり、自動変速機のパワーオンダウンシフトにおいて、トルクの応答性の低下を抑制しつつ、タービン回転速度の吹き上がりを抑制する上昇率の上限ガード値を設定する制御作動を説明するためのフローチャートである。
【
図5】自動変速機のパワーオンダウンシフトにおいて、回転速度差が所定値以下であった場合の制御状態を示すタイムチャートである。
【
図6】自動変速機のパワーオンダウンシフトにおいて、ダウンシフト中に変速先がさらに低速側の変速段に変更された場合の制御状態を示すタイムチャートである。
【発明を実施するための形態】
【0012】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
【実施例】
【0013】
図1は、本発明が適用された車両10の概略構成を説明する図であると共に、車両10における各種制御のための制御機能および制御系統の要部を説明する図である。
図1において、車両10は、走行用の駆動力源である、エンジン12および電動機MGを備えたハイブリッド車両である。また、車両10は、駆動輪14、および、エンジン12と駆動輪14との間の動力伝達経路に設けられた動力伝達装置16を備えている。
【0014】
エンジン12は、ガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。エンジン12は、後述する電子制御装置90によって、車両10に備えられたスロットルアクチュエータや燃料噴射装置や点火装置等を含むエンジン制御装置50が制御されることによりエンジン12の出力トルクであるエンジントルクTeが制御される。
【0015】
電動機MGは、電力から機械的な動力を発生させる発動機としての機能および機械的な動力から電力を発生させる発電機としての機能を有する回転電気機械であって、所謂モータジェネレータである。電動機MGは、車両10に備えられたインバータ52を介して、車両10に備えられたバッテリ54に接続されている。電動機MGは、後述する電子制御装置90によってインバータ52が制御されることにより、電動機MGの出力トルク(電動機トルク)であるMGトルクTmが制御される。MGトルクTmは、例えば電動機MGの回転方向がエンジン12の運転時と同じ回転方向である正回転の場合、加速側となる正トルクでは力行トルクであり、減速側となる負トルクでは回生トルクである。具体的には、電動機MGは、エンジン12に替えて或いはエンジン12に加えて、インバータ52を介してバッテリ54から供給される電力により走行用の動力を発生する。また、電動機MGは、エンジン12の動力や駆動輪14側から入力される被駆動力により発電を行う。電動機MGの発電により発生させられた電力は、インバータ52を介してバッテリ54に蓄積される。バッテリ54は、電動機MGに対して電力を授受する蓄電装置である。前記電力は、特に区別しない場合には電気エネルギも同意である。前記動力は、特に区別しない場合にはトルクや力も同意である。
【0016】
動力伝達装置16は、車体に取り付けられる非回転部材であるケース18内において、K0クラッチ20、トルクコンバータ22、自動変速機24等を備えている。K0クラッチ20は、エンジン12と駆動輪14との間の動力伝達経路におけるエンジン12と電動機MGとの間に設けられたクラッチである。トルクコンバータ22は、K0クラッチ20を介してエンジン12に連結されている。
【0017】
自動変速機24は、エンジン12および電動機MGと駆動輪14との間の動力伝達経路に設けられている。すなわち自動変速機24は、エンジン12および電動機MGと駆動輪14との間の動力伝達経路の一部を構成している。また、動力伝達装置16は、自動変速機24の出力回転部材である変速機出力軸26に連結されたプロペラシャフト28、プロペラシャフト28に連結されたデファレンシャルギヤ30、デファレンシャルギヤ30に連結された1対のドライブシャフト32等を備えている。また、動力伝達装置16は、エンジン12とK0クラッチ20とを連結するエンジン連結軸34、K0クラッチ20とトルクコンバータ22とを連結する電動機連結軸36等を備えている。
【0018】
電動機MGは、ケース18内において、電動機連結軸36に動力伝達可能に連結されている。電動機MGは、エンジン12と駆動輪14との間の動力伝達経路、特にはK0クラッチ20とトルクコンバータ22との間の動力伝達経路に動力伝達可能に連結されている。つまり、電動機MGは、K0クラッチ20を介することなくトルクコンバータ22や自動変速機24と動力伝達可能に連結されている。見方を換えれば、トルクコンバータ22および自動変速機24は、各々、電動機MGと駆動輪14との間の動力伝達経路の一部を構成している。トルクコンバータ22および自動変速機24は、各々、エンジン12および電動機MGの駆動力源の各々からの駆動力を駆動輪14へ伝達する。
【0019】
トルクコンバータ22は、電動機連結軸36と連結されたポンプ翼車22a、および、自動変速機24の入力回転部材である変速機入力軸38と連結されたタービン翼車22bを備えている。ポンプ翼車22aは、K0クラッチ20を介してエンジン12と連結されていると共に、直接的に電動機MGと連結されている。ポンプ翼車22aはトルクコンバータ22の入力部材であり、タービン翼車22bはトルクコンバータ22の出力部材である。電動機連結軸36は、トルクコンバータ22の入力回転部材でもある。変速機入力軸38は、タービン翼車22bによって回転駆動されるタービン軸と一体的に形成されたトルクコンバータ22の出力回転部材でもある。トルクコンバータ22は、駆動力源(エンジン12、電動機MG)の各々からの駆動力を流体を介して変速機入力軸38へ伝達する流体式伝動装置である。トルクコンバータ22は、ポンプ翼車22aとタービン翼車22bとの間を断接する公知のロックアップクラッチ40(以下、LUクラッチ40)を備えている。
【0020】
LUクラッチ40は、車両10に備えられた油圧制御回路56から供給される調圧されたLU油圧PRluによりLUクラッチ40のトルク容量であるLUクラッチトルクTluが変化させられることで、作動状態つまり制御状態が切り替えられる。LUクラッチ40の制御状態としては、LUクラッチ40が解放された状態である完全解放状態、LUクラッチ40が滑りを伴って係合された状態であるスリップ状態、およびLUクラッチ40が係合された状態である完全係合状態がある。
【0021】
自動変速機24は、例えば不図示の1組または複数組の遊星歯車装置と、複数個の係合装置CBと、を備えている、公知の遊星歯車式の自動変速機である。係合装置CBは、例えば油圧アクチュエータにより押圧される多板式或いは単板式のクラッチやブレーキ、油圧アクチュエータによって引き締められるバンドブレーキなどにより構成される、油圧式の摩擦係合装置である。係合装置CBは、各々、油圧制御回路56から供給される調圧されたCB油圧PRcbによりそれぞれのトルク容量Tcbが変化させられることで、係合状態や解放状態などの制御状態が切り替えられる。本実施例では、係合装置CBが、例えば4個のクラッチC1~C4および2個のブレーキB1、B2から構成されている。
【0022】
自動変速機24は、係合装置CBのうちの何れかの係合装置が係合されることによって、変速比(ギヤ比ともいう)γat(=入力回転速度Ni/出力回転速度No)が異なる複数の変速段(ギヤ段ともいう)のうちの何れかの変速段が形成される有段式の自動変速機である。すなわち、自動変速機24は、複数個の係合装置CB(クラッチC1~C4およびブレーキB1、B2)の係合および解放の組み合わせに応じて複数の変速段に変速される。具体的には、
図2に示す自動変速機24の変速段を成立させるための各係合装置CBの組み合わせを表す係合作動表に基づいて、自動変速機24が変速させられる。
図2において、「○」は係合装置CBの係合を示し、「×」は係合装置CBの解放を示している。
図2に示すように、自動変速機24では、各係合装置CBの係合および解放の組み合わせが変更されることで、1速ギヤ段1st~10速ギヤ段10thまでの10速の変速段に切替可能に構成されている。なお、入力回転速度Niは、自動変速機24の変速機入力軸38の回転速度に対応し、出力回転速度Noは、自動変速機24の変速機出力軸26の回転速度に対応している。
【0023】
自動変速機24は、後述する電子制御装置90によって、運転者(=ドライバ)によるアクセルペダル42の操作量であるアクセル開度θaccや車速Vに基づいて変速段が決定される。なお、変速の判断に当たって、アクセル開度θaccだけでなく、スロットル開度θthなどアクセル開度θaccと相関のあるアクセル開度θaccの関連値に基づいて判断されても構わない。同様に、変速の判断に当たって、車速Vだけでなく、出力回転速度Noなど車速Vと相関のある車速Vの関連値に基づいて判断されても構わない。入力回転速度Niは、変速機入力軸38の回転速度であり、自動変速機24の入力回転速度である。また、入力回転速度Niは、トルクコンバータ22の出力回転部材の回転速度でもあり、トルクコンバータ22の出力回転速度であるタービン回転速度Ntと同値である。従って、入力回転速度Niは、タービン回転速度Ntで表すことができる。出力回転速度Noは、変速機出力軸26の回転速度であり、自動変速機24の出力回転速度である。なお、自動変速機24が、本発明の変速機に対応している。
【0024】
K0クラッチ20は、図示しない油圧アクチュエータにより押圧される多板式或いは単板式のクラッチにより構成される湿式または乾式の摩擦係合装置である。K0クラッチ20は、後述する電子制御装置90により油圧アクチュエータの作動状態が制御されることによって、係合状態や解放状態などの制御状態が切り替えられる。K0クラッチ20において、油圧制御回路56から調圧されたK0油圧PRk0が油圧アクチュエータに供給されると、K0クラッチ20のトルク容量Tk0が変化させられることで、K0クラッチ20の制御状態が切り替えられる。
【0025】
K0クラッチ20の係合状態では、エンジン連結軸34を介してポンプ翼車22aとエンジン12とが一体的に回転させられる。すなわち、K0クラッチ20は、係合されることによってエンジン12と駆動輪14とを動力伝達可能に連結する。一方で、K0クラッチ20の解放状態では、エンジン12とポンプ翼車22aとの間の動力伝達が遮断される。すなわち、K0クラッチ20は、解放されることによってエンジン12と駆動輪14との間の連結を切り離す。電動機MGはポンプ翼車22aに連結されているので、K0クラッチ20は、エンジン12と電動機MGとの間の動力伝達経路に設けられて、その動力伝達経路を断接するクラッチ、すなわちエンジン12と電動機MGとを断接するクラッチとして機能する。つまり、K0クラッチ20は、係合されることによってエンジン12と電動機MGとを連結する一方で、解放されることによってエンジン12と電動機MGとの間の連結を切り離す断接用クラッチである。
【0026】
動力伝達装置16において、K0クラッチ20が係合された場合でのエンジン12から出力される動力は、エンジン連結軸34から、K0クラッチ20、電動機連結軸36、トルクコンバータ22、自動変速機24、プロペラシャフト28、デファレンシャルギヤ30、およびドライブシャフト32等を順次介して駆動輪14へ伝達される。また、電動機MGから出力される動力は、K0クラッチ20の制御状態に拘わらず、電動機連結軸36から、トルクコンバータ22、自動変速機24、プロペラシャフト28、デファレンシャルギヤ30、およびドライブシャフト32等を順次介して駆動輪14へ伝達される。
【0027】
車両10は、機械式のオイルポンプであるMOP58、電動式のオイルポンプであるEOP60、ポンプ用モータ62等を備えている。MOP58は、ポンプ翼車22aに連結されており、駆動力源(エンジン12、電動機MG)により回転駆動させられて動力伝達装置16にて用いられる作動油を吐出する。ポンプ用モータ62は、EOP60を回転駆動するためのEOP60専用のモータである。EOP60は、ポンプ用モータ62により回転駆動させられて作動油を吐出する。MOP58やEOP60が吐出した作動油は、油圧制御回路56へ供給される。油圧制御回路56は、MOP58およびEOP60の少なくとも一方が吐出した作動油を元にして各々調圧した、CB油圧PRcb、K0油圧PRk0、LU油圧PRluなどを供給する。
【0028】
車両10は、更に、車両10の走行制御などに関連する制御装置を含む電子制御装置90を備えている。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置90は、必要に応じてエンジン制御用、電動機制御用、油圧制御用等の各コンピュータを含んで構成される。
【0029】
電子制御装置90には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ70、タービン回転速度センサ72、出力回転速度センサ74、MG回転速度センサ76、アクセル開度センサ78、スロットル開度センサ80、ブレーキスイッチ82、バッテリセンサ84、油温センサ86、シフトポジションセンサ88)による検出値に基づく各種信号等(例えばエンジン12の回転速度であるエンジン回転速度Ne、入力回転速度Niと同値であるタービン回転速度Nt、車速Vに対応する出力回転速度No、電動機MGの回転速度であるMG回転速度Nm、運転者の加速操作の大きさを表す運転者のアクセルペダル42の操作量であるアクセル開度θacc、電子スロットル弁の開度であるスロットル開度θth、ホイールブレーキを作動させるためのブレーキペダル44が運転者によって操作されている状態を示す信号であるブレーキオン信号Bon、バッテリ54のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbat、油圧制御回路56内の作動油の温度である作動油温THoil、運転者によって操作されるシフト操作装置46のシフトレバー48の操作位置であるシフト操作ポジションPsh)が、それぞれ供給される。
【0030】
電子制御装置90からは、車両10に備えられた各装置(例えばエンジン制御装置50、インバータ52、油圧制御回路56、ポンプ用モータ62など)に各種指令信号(例えばエンジン12を制御するためのエンジン制御指令信号Se、電動機MGを制御するためのMG制御指令信号Sm、係合装置CBを制御するためのCB油圧制御指令信号Scb、K0クラッチ20を制御するためのK0油圧制御指令信号Sko、LUクラッチ40を制御するためのLU油圧制御指令信号Slu、EOP60を制御するためのEOP制御指令信号Seopなど)が、それぞれ出力される。
【0031】
電子制御装置90は、車両10における各種制御を実現するために、ハイブリッド制御手段すなわちハイブリッド制御部92、クラッチ制御手段すなわちクラッチ制御部94、および変速制御手段すなわち変速制御部96を備えている。
【0032】
ハイブリッド制御部92は、エンジン12の作動を制御するエンジン制御手段すなわちエンジン制御部92aとしての機能と、インバータ52を介して電動機MGの作動を制御する電動機制御手段すなわち電動機制御部92bとしての機能と、を備えており、それらの制御機能によりエンジン12および電動機MGによるハイブリッド駆動制御等を実行する。
【0033】
ハイブリッド制御部92は、例えば要求駆動量マップにアクセル開度θaccおよび車速Vを適用することで、運転者による車両10に対する要求駆動量を算出する。前記要求駆動量マップは、予め実験的に或いは設計的に求められて記憶された関係すなわち予め定められた関係である。前記要求駆動量は、例えば駆動輪14における要求駆動トルクTrdemである。要求駆動トルクTrdem[Nm]は、見方を換えればそのときの車速Vにおける要求駆動パワーPrdem[W]である。前記要求駆動量として、駆動輪14における要求駆動力Frdem[N]、変速機出力軸26における要求AT出力トルク等を用いることもできる。前記要求駆動量の算出では、車速Vに替えて出力回転速度Noなどを用いても良い。
【0034】
ハイブリッド制御部92は、伝達損失、補機負荷、自動変速機24の変速比γat、バッテリ54の充電可能電力Winや放電可能電力Wout等を考慮して、要求駆動トルクTrdemを実現する、エンジン12の目標エンジントルクTedemおよび電動機MGの目標MGトルクTmdemを算出する。ハイブリッド制御部92は、算出された目標エンジントルクTedemが出力されるエンジン12のエンジン制御指令信号Seをエンジン制御装置50に出力する。また、ハイブリッド制御部92は、算出された目標MGトルクTmdemが出力される電動機MGのMG制御指令信号Smをインバータ52に出力する。エンジン制御指令信号Seは、例えばそのときのエンジン回転速度Neにおいて目標エンジントルクTedemを出力するエンジン12のパワーであるエンジンパワーPeの指令値である。MG制御指令信号Smは、例えばそのときのMG回転速度Nmにおいて目標MGトルクTmdemを出力する電動機MGの消費電力Wmの指令値である。
【0035】
バッテリ54の充電可能電力Winは、バッテリ54の入力電力の制限を規定する入力可能な最大電力であり、バッテリ54の入力制限を示している。バッテリ54の放電可能電力Woutは、バッテリ54の出力電力の制限を規定する出力可能な最大電力であり、バッテリ54の出力制限を示している。バッテリ54の充電可能電力Winや放電可能電力Woutは、例えばバッテリ温度THbatおよびバッテリ54の充電状態値SOC[%]に基づいて電子制御装置90により算出される。バッテリ54の充電状態値SOCは、バッテリ54の充電状態(充電量、充電残量)を示す値であり、例えばバッテリ充放電電流Ibatおよびバッテリ電圧Vbatなどに基づいて電子制御装置90により算出される。
【0036】
ハイブリッド制御部92は、電動機MGの出力のみで要求駆動トルクTrdemを賄える場合には、走行モードをモータ走行(以下、BEV走行)モードとする。ハイブリッド制御部92は、BEV走行モードでは、K0クラッチ20の解放状態で電動機MGのみを駆動力源として走行するBEV走行を行う。一方で、ハイブリッド制御部92は、少なくともエンジン12の出力を用いないと要求駆動トルクTrdemを賄えない場合には、走行モードをエンジン走行モードすなわちハイブリッド走行(以下、HEV走行)モードとする。
【0037】
ハイブリッド制御部92は、HEV走行モードでは、K0クラッチ20の係合状態でエンジン12および電動機MGを駆動力源として走行するエンジン走行すなわちHEV走行を行う。他方で、ハイブリッド制御部92は、電動機MGの出力のみで要求駆動トルクTrdemを賄える場合であっても、バッテリ54の充電状態値SOCが予め定められたエンジン始動閾値未満となる場合やエンジン12等の暖機が必要な場合などには、HEV走行モードを成立させる。前記エンジン始動閾値は、エンジン12を強制的に始動してバッテリ54を充電する必要がある充電状態値SOCであることを判断するための予め定められた閾値である。このように、ハイブリッド制御部92は、要求駆動トルクTrdem等に基づいて、HEV走行中にエンジン12を自動停止したり、そのエンジン停止後にエンジン12を再始動したり、BEV走行中にエンジン12を始動したりして、BEV走行モードとHEV走行モードとを適宜切り替える。
【0038】
ハイブリッド制御部92は、アクセルペダル42の踏込操作が解除された惰性走行中(コースト走行中)において、駆動輪14側から伝達される被駆動トルクによって電動機MGを回転させて発電を行う回生制御を実行する。回生によって発電された電力は、インバータ52を介してバッテリ54に充電される。なお、ブレーキペダル44が踏み込まれることによる制動時は、ブレーキペダル44の操作量に応じた制動力が得られるように、各車輪に設けられた油圧ブレーキによる制動力と電動機MGの回生による制動力との制動力配分が適宜調整される。
【0039】
クラッチ制御部94は、走行中の走行モードに応じてK0クラッチ20を制御する。クラッチ制御部94は、例えばBEV走行中にHEV走行モードへの切替が判断されると、エンジン12の始動制御を実行するようにK0クラッチ20の係合制御を行う。例えば、クラッチ制御部94は、走行状態に基づいてエンジン12の始動要求があると判定された場合には、エンジン回転速度Neを引き上げるトルクであるエンジン12のクランキングに必要なトルクをエンジン12側へ伝達するためのトルク容量Tk0が得られるように、解放状態のK0クラッチ20を係合状態に向けて制御するためのK0油圧制御指令信号Skoを油圧制御回路56へ出力する。
【0040】
変速制御部96は、例えば予め定められた変速条件が規定されている変速マップに基づいて自動変速機24の変速判断を行い、必要に応じて自動変速機24の変速制御を実行するためのCB油圧制御指令信号Scbを油圧制御回路56へ出力する。変速過渡期には、変速中に係合される係合装置(以下、係合側係合装置CB1)に供給されるCB1油圧PRcb1が増圧されるとともに、係合中に解放される係合装置(以下、解放側係合装置CB2)に供給されるCB2油圧PRcb2が減圧されるように制御される。
【0041】
前記変速マップは、例えば車速Vおよびアクセル開度θaccを変数とする二次元座標上に、自動変速機24の変速が判断されるための変速線を有する所定の関係である。例えば、走行中の車速Vまたはアクセル開度θaccが変化し、走行状態が関係マップ上に規定されている変速線を跨いだとき、変速条件を満たしたと判断されて変速段が切り替えられる。前記変速マップでは、車速Vに替えて、車速Vの関連値としての出力回転速度Noなどを用いても良いし、また、アクセル開度θaccに替えて、アクセル開度θaccの関連値としての要求駆動トルクTrdemや要求駆動力Frdemやスロットル開度θthなどを用いても良い。
【0042】
変速制御部96は、運転者によるアクセルペダル42の踏込操作に伴う自動変速機24のダウンシフト(すなわちパワーオンダウンシフト)を実行する場合、電動機制御部92bに対して、電動機MGのMGトルクTmによってダウンシフト中の自動変速機24への入力トルクTiを制御する指令を出力する。電動機制御部92bは、アクセル開度θaccや車速V等に基づいて目標入力トルクTitgtを算出すると、算出された目標入力トルクTitgtを目標にして、入力トルクTiが例えばアクセル開度θaccに応じた上昇率αで上昇するようにMGトルクTmを制御する。ここで、エンジン12のエンジントルクTeに比べて電動機MGのMGトルクTmの方が応答性が高い。従って、自動変速機24のパワーオンダウンシフト中は、専らMGトルクTmによって入力トルクTiが制御される。
【0043】
ところで、自動変速機24のパワーオンダウンシフト中において、自動変速機24に入力される入力トルクTiが、自動変速機24が伝達できるトルク容量(以下、トルク容量Tat)と略等しくなることが好ましい。しかしながら、ダウンシフトの初期では、電動機MGのMGトルクTmの応答性に比べて自動変速機24のトルク容量Tatの応答性が悪いため、MGトルクTmに対してトルク容量Tatが追従できず、自動変速機24の入力回転速度Niが同期回転速度Nsycに到達したときに入力回転速度Niの吹き上がりが発生する虞がある。この入力回転速度Niの吹き上がりを抑制する手段として、入力トルクTiを制限することが考えられるが、その背反としてトルクの応答性が低下する。なお、本実施例では、入力回転速度Niはタービン回転速度Ntと同じ回転速度であるため、以下において入力回転速度Niをタービン回転速度Ntと読み替えても構わない。
【0044】
これに対して、変速制御部96は、パワーオンダウンシフトを実行するに当たって、ダウンシフト中における、入力回転速度Niとダウンシフト後の自動変速機24の変速比γatに基づいて算出される同期回転速度Nsycとの回転速度差ΔNi(=|Nsyc-Ni|)が、予め設定されている所定値K以下である場合、入力トルクTiの上昇率αの上限ガード値αgdを設定することで、入力トルクTiの上昇率αを制限する。ここで、上昇率αは、単位時間当たりの入力トルクTiの増加量に対応する。従って、上昇率αが高い状態では、入力トルクTiの上昇勾配が急になり、上昇率αが低い状態では、入力トルクTiの上昇勾配が緩やかになる。また、同期回転速度Nsycは、出力回転速度Noに、ダウンシフト後の自動変速機24の変速段での変速比γatを乗算(=No×γat)することで算出することができる。
【0045】
パワーオンダウンシフトにあっては、ダウンシフト後に解放される解放側係合装置CB2が解放された後、入力トルクTiによって入力回転速度Niが上昇させられることでイナーシャ相が開始される。次いで、入力回転速度Niの上昇に合わせて係合側係合装置CB1の係合が開始され、入力回転速度Niが同期回転速度Nsycに到達する、または入力回転速度Niが同期回転速度Nsyc付近になると、自動変速機24のトルク容量Tatが入力トルクTiを伝達できる十分な容量となるまで係合側係合装置CB1のCB1油圧PRcb1が増圧されるトルク相が開始される。そして、自動変速機24のトルク容量Tatが前記十分な容量となるまで増加したと判断されると、トルク相が終了してダウンシフトが完了する。
【0046】
変速制御部96は、例えば、入力回転速度Niの増加側への変化量が予め設定されている所定値β1に到達したか否かに基づいて、イナーシャ相の開始を判断する。所定値β1は、予め実験的または設計的に求められ、イナーシャ相の開始を判断できる値に設定されている。
【0047】
また、変速制御部96は、例えば、入力回転速度Niと同期回転速度Nsycとの回転速度差ΔNiが、予め設定されている所定値β2以下になったか否かに基づいて、イナーシャ相の終了、言い換えればトルク相の開始を判断する。所定値β2は、予め実験的または設計的に求められ、入力回転速度Niが同期回転速度Nsycに到達したと判断できる値に設定されている。
【0048】
また、変速制御部96は、例えば、トルク相の開始から予め設定されている所定時間β3経過したか否かに基づいてトルク相の終了を判断する。所定時間β3は、予め実験的または設計的に求められ、自動変速機24のトルク容量Tatが入力トルクTiを伝達できる十分な大きさになったと判断できる値に設定されている。
【0049】
変速制御部96は、イナーシャ相が開始されたことを判断すると、同期回転速度Nsycを算出し、同期回転速度Nsycと入力回転速度Niとの回転速度差ΔNiが予め設定されている所定値K以下であるか否かを判定する。所定値Kは、予め実験的にまたは設計的に求められ、入力回転速度Niが同期回転速度Nsycに到達した時点で、自動変速機24のトルク容量Tatが入力トルクTi(目標入力トルクTitgt)を伝達できる容量となる回転速度差ΔNiの閾値に設定されている。
【0050】
例えば、高車速時など回転速度差ΔNiが大きい場合には、入力回転速度Niが同期回転速度Nsycに到達するまでにかかる時間が長くなる。従って、入力回転速度Niが同期回転速度Nsycに到達するまでの間に、係合装置CBのCB油圧PRcb(実圧)を指令圧に追従させて、自動変速機24のトルク容量Tatを入力トルクTiを伝達できる容量とすることができる。この場合には、入力トルクTiの上昇率αを制限しなくても入力回転速度Niの吹き上がりが抑制される。これより、所定値Kは、入力トルクTiの上昇率αを制限しない場合であっても、入力回転速度Niの吹き上がりが生じない回転速度差ΔNiの閾値ということもできる。なお、所定値Kは、必ずしも一定値とする必要はなく、車速V、変速パターン、アクセル開度θaccなどに応じて適宜変更される。
【0051】
変速制御部96は、回転速度差ΔNiが所定値Kよりも大きい場合、入力トルクTiを制限しなくても入力回転速度Niの吹き上がりが発生しないことから、入力トルクTiに上限ガード値αgdを設けない。その結果、パワーオンダウンシフト中において、入力トルクTiの応答性が低下することがなく、且つ、入力回転速度Niの吹き上がりも生じない。
【0052】
一方、変速制御部96は、回転速度差ΔNiが所定値K以下である場合、入力トルクTiの上昇率αに上限ガード値αgdを設定する。上限ガード値αgdは、予め実験的または設計的に求められ、パワーオンダウンシフト中に入力回転速度Niが同期回転速度Nsycに到達したときの、入力回転速度Niの吹き上がりが抑制される値に設定されている。また、上限ガード値αgdは、回転速度差ΔNiに応じて変更される。
【0053】
図3は、回転速度差ΔNiに基づいて上昇率αの上限ガード値αgdを設定するときに使用される関係マップの一態様を示している。
図3において、横軸が回転速度差ΔNiを示し、縦軸が上昇率αの上限ガード値αgdを示している。
図3に示すように、回転速度差ΔNiが所定値K以下の領域において、上限ガード値αgdが規定されている。また、
図3に示すように、回転速度差ΔNiが小さいほど、上昇率αの上限ガード値αgdが低い値とされている。
【0054】
回転速度差ΔNiが小さくなると、入力回転速度Niが同期回転速度Nsycに到達するまでに必要な時間が短くなる。その結果、係合装置CBのCB油圧PRcb(実圧)が指令圧に追従できず、入力回転速度Niが同期回転速度に到達するまでの間に、自動変速機24のトルク容量Tatが入力トルクTiを伝達できる容量に到達できず、トルク容量Tatの不足によって入力回転速度Niの吹き上がりが発生する。これを考慮に入れて、
図3の上限ガード値αgdが回転速度差ΔNiに応じて変更されている。具体的には、
図3に示す各回転速度差ΔNi毎の上限ガード値αgdは、予め実験的または設計的に求められ、入力回転速度Niが同期回転速度Nsycに到達したときに入力回転速度Niの吹き上がりが生じない入力トルクTiの閾値に設定されている。すなわち、上限ガード値αgdは、入力回転速度Niの吹き上がりを抑制しつつ、入力トルクTiの上昇率αの低下を最小限とする値に設定されている。
【0055】
入力トルクTiの上昇率αが上限ガード値αgdで制限されると、上限ガード値αgdで制限されない場合に比べて入力トルクTiの変化が緩やかとなる。これに関連して、入力回転速度Niの上昇勾配についても緩やかとなり、入力回転速度Niが同期回転速度Nsycに到達する時間が遅められる。その結果、入力回転速度Niが同期回転速度Nsycに到達するまでの間に、自動変速機24のトルク容量Tatを入力トルクTiを伝達できる容量まで増加させることができ、入力回転速度Niの吹き上がりが抑制される。
【0056】
図3に示す関係マップは、パワーオンダウンシフト時の変速パターン(3速ギヤ段3ndから2速ギヤ段2ndへのダウンシフトなど)、または、パワーオンダウンシフト中に係合または解放される係合装置CBの種類(クラッチC1)などに応じて、それぞれ別個に規定されている。回転速度差ΔNiが同じであっても、変速パターンや係合装置CB毎に係合装置CBのトルク容量Tcbの応答性が異なるためである。
【0057】
変速制御部96は、回転速度差ΔNiを算出すると、
図3に示す関係マップに回転速度差ΔNiを適用することで、適切な上限ガード値αgdを決定する。変速制御部96は、上限ガード値αgdを決定すると、ハイブリッド制御部92に入力トルクTiの上昇率αを上限ガード値αgd以下に制限する指令を出す。これを受けて、ハイブリッド制御部92は、入力トルクTiの上昇率αが上限ガード値αgd以下となるように入力トルクTiを制御する。
【0058】
変速制御部96は、例えば、イナーシャ相の開始が判断された時点で最初に算出された回転速度差ΔNiに基づいて設定された上限ガード値αgdを決定すると、トルク相の終了が判断されるまでの間、その上限ガード値αgdで維持させる。または、変速制御部96は、イナーシャ相の開始が判断されるとトルク相の終了が判断されるまでの間、回転速度差ΔNiを随時算出し、算出された回転速度差ΔNiに基づいて上限ガード値αgdを随時変更する。
【0059】
また、変速制御部96は、例えばパワーオンダウンシフト中に自動変速機24の変速先の変速段が変更された場合には、新たな変速段の変速比γatに基づいて同期回転速度Nsycを再度計算し、算出された同期回転速度Nsycから回転速度差ΔNiを算出する。次いで、変速制御部96は、上述したように回転速度差ΔNiが所定値K以下か否かを判定し、回転速度差ΔNiが所定値Kよりも大きい場合には上限ガード値αgdを解除し、回転速度差ΔNiが所定値K以下であった場合には回転速度差ΔNiに基づいて上昇率αの上限ガード値αgdを再度設定する。
【0060】
また、変速制御部96は、トルク相の終了を判断すると、上限ガード値αgdの設定を解除する。トルク相が終了した時点では、自動変速機24のトルク容量Tatが入力トルクTiを伝達できる十分な容量となっているため、上限ガード値αgdが解除された場合であっても影響は生じないためである。また、イナーシャ相が開始される前についても、解放側係合装置CB2によって自動変速機24において入力トルクTiを伝達することができるため、イナーシャ相の開始前に上限ガード値αgdが設定されなくても影響は生じない。従って、イナーシャ相の開始前およびトルク相の終了後には、上限ガード値αgdが設定されないことで、上限ガード値αgdが設定されることによる入力トルクTiの応答性の低下が抑制される。言い換えれば、イナーシャ相の開始からトルク相の終了の間、入力トルクTiの上昇率αが上限ガード値αgdによって制限されることで、入力トルクTiの上昇率αの制限が効率良く実行されることとなる。
【0061】
図4は、電子制御装置90の制御作動の要部を説明するためのフローチャートであり、アクセルペダル42の踏込操作を伴う自動変速機24のパワーオンダウンシフト中において、入力トルクTiの応答性の低下を抑制しつつ、入力回転速度Niの吹き上がりを抑制する上昇率αの上限ガード値αgdを設定する制御作動を説明するためのフローチャートである。このフローチャートは、車両走行中において繰り返し実行される。
【0062】
先ず、変速制御部96の制御機能に対応するステップ(以下、ステップを省略)S10において、運転者によるアクセルペダル42の踏込操作を伴う自動変速機24のパワーオンダウンシフトが実行されるか否かが判定される。S10の判定が否定された場合、本ルーチンは終了させられる。S10の判定が肯定された場合、変速制御部96の制御機能に対応するS20において、ダウンシフトがイナーシャ相(I相)の開始からトルク相(T相)の終了までの間であるか否かが判定される。S20の判定が否定された場合、本ルーチンが終了させられる。S20の判定が肯定された場合、変速制御部96の制御機能に対応するS30において、同期回転速度Nsycと入力回転速度Niとの回転速度差ΔNiが所定値K以下か否かが判定される。回転速度差ΔNiが所定値Kよりも大きい場合には、S30の判定が否定され、本ルーチンが終了させられる。S30の判定が肯定された場合、変速制御部96の制御機能に対応するS40において、回転速度差ΔNiに基づいて上限ガード値αgdが設定される。なお、上限ガード値αgdが一度設定されると、ダウンシフトが終了するまでの間その上限ガード値αgdで維持される場合には、S40において上限ガード値αgdが設定されると、その後はダウンシフトが完了するまでの間、S40のステップが実行されることなく通過する。一方、イナーシャ相の開始からトルク相の終了までの間、上限ガード値αgdが随時変更される場合には、S40において繰り返し上限ガード値αgdが設定(更新)される。
【0063】
図5および
図6は、自動変速機24のパワーオンダウンシフトにおける制御状態を示すタイムチャートである。
図5は、パワーオンダウンシフト中の回転速度差ΔNiが所定値K以下であった場合の制御状態を示すタイムチャートである。
図6は、自動変速機24のパワーオンダウンシフト中に、変速先がさらに低速側の変速段に変更された場合の制御状態を示すタイムチャートである。
【0064】
先ず、
図5に示す、自動変速機24のパワーオンダウンシフト中に、回転速度差ΔNiが所定値K以下であった場合について説明する。
【0065】
図5のt1時点において、アクセルペダル42の踏込操作に伴う自動変速機24のダウンシフト(パワーオンダウンシフト)が判断されることで、自動変速機24のダウンシフトが開始される。t2時点において、イナーシャ相の開始が判断されると、回転速度差ΔNiが算出され、回転速度差ΔNiが所定値K以下であるか否かが判定される。回転速度差ΔNiが所定値K以下であると判断されると、回転速度差ΔNiと上限ガード値αgdとの関係を規定する
図3に示すような関係マップに、回転速度差ΔNiが適用されることで上限ガード値αgdが設定される。
【0066】
t2時点以降では、上限ガード値αgdが設定されることで、入力トルクTiが、実線で示すガード後入力トルクTigdとなる。
図5に示すように、ガード後入力トルクTigdは、t2以降において上昇率αが上限ガード値αgdに制限されている。ここで、破線は、上限ガード値αgdが設定されない場合の入力トルクTiを示しており、上限ガード値αgdが設定されない場合には、イナーシャ相開始前の上昇率αで入力トルクTiが増加している。これより、ガード後入力トルクTigdは、上限ガード値αgdが設定されない場合の入力トルクTiに比べて緩やかに増加している。また、実線で示す入力回転速度Niについても、破線で示す上昇率αが制限されない場合に比べて緩やかに上昇している。
【0067】
t3時点では、入力回転速度Niが同期回転速度Nsycに到達している。このとき、入力トルクTiが上限ガード値αgdで制限されることで、入力回転速度Niの吹き上がりが抑制されている。一方、破線で示す上限ガード値αgdが設定されない場合には、破線で示すように入力回転速度Niがt3時点よりも早期に同期回転速度Nsycに到達し、さらに同期回転速度Nsycに到達した時点では、自動変速機24のトルク容量Tatが入力トルクTiを伝達できる容量に満たないため、入力回転速度Niの吹き上がりが発生している。t4時点では、トルク相の終了が判断されることで、上限ガード値αgdが解除されている。これに関連して、t4時点以降の入力トルクTiの上昇率αが増加し、速やかにアクセル開度θaccに応じた目標入力トルクTitgtに到達する。
【0068】
次いで、
図6に示す、自動変速機24のパワーオンダウンシフト中に、アクセルペダル42の踏み増しに伴い、変速先がさらに低速ギヤ段の変速段に変更された場合について説明する。
【0069】
図6のt1時点において、アクセルペダル42の踏込操作に伴う自動変速機24のダウンシフト(パワーオンダウンシフト)が判断されることで、自動変速機24のダウンシフトが開始される。t2時点においてイナーシャ相の開始が判断されると、回転速度差ΔNiが算出され、回転速度差ΔNiが所定値K以下か否かが判定される。このとき、回転速度差ΔNiが所定値K以下と判断されることで、上限ガード値αgdが設定される。従って、t2時点以降において、入力トルクTiの上昇率αが上限ガード値αgdに制限され、入力トルクTiの増加が緩やかになっている。t3時点では、運転者のアクセルペダル42の踏み増しによって、自動変速機24の変速先がさらに低速の変速段に変更される。このとき、同期回転速度Nsycが変更された変速段の変速比γatに基づいて再計算され、さらに、再計算された同期回転速度Nsycに基づいて回転速度差ΔNiが算出されるとともに、その回転速度差ΔNiが所定値K以下であるか否かが判定される。
図6のt3時点では、回転速度差ΔNiが所定値Kより大きいと判断されることで、上限ガード値αgdが解除される。これより、t3時点以降では、上限ガード値αgdが設定されない場合の上昇率αで入力トルクTiが増加している。t4時点では、入力回転速度Niが同期回転速度Nsycに到達するが、このとき、自動変速機24のトルク容量Tatが入力トルクTiを伝達できる容量まで増加しているため、入力回転速度Niの吹き上がりが抑制される。
【0070】
上述のように、本実施例によれば、ダウンシフト中における自動変速機24の入力回転速度Niとダウンシフト後の自動変速機24の変速比γatに基づいて算出される同期回転速度Nsycとの回転速度差ΔNiが、予め設定されている所定値K以下である場合、入力トルクTiの上昇率αが制限される。これより、回転速度差ΔNiが所定値K以下であり、入力回転速度Niが同期回転速度Nsycに到達するまでにかかる時間が短く、ダウンシフト中に入力回転速度Niの吹き上がりが発生する虞がある場合には、入力トルクTiの上昇率αが制限されることで、ダウンシフト中における入力回転速度Niの吹き上がりが抑制される。一方、前記回転速度差ΔNiが所定値Kより大きく、入力回転速度Niが同期回転速度Nsycに到達するまでの間に、自動変速機24が入力トルクTiを伝達できるトルク容量Tatを持つことができる場合には、入力トルクTiの上昇率αが制限されないため、トルクの応答性の低下が抑制される。このように、ダウンシフト中に算出される回転速度差ΔNiに応じて入力トルクTiの上昇率αが制限されることで、ダウンシフト中におけるトルクの応答性の低下を抑制しつつ、入力回転速度Niの吹き上がりを抑制することができる。
【0071】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0072】
例えば、前述の実施例では、イナーシャ相の開始が判断されると、上限ガード値αgdを設定するか否かが判断されるものであったが、イナーシャ相が開始される直前で上限ガード値αgdを設定するか否かが判断されるものであっても構わない。例えば、ダウンシフトの開始が判断された時点を基準する、イナーシャ相が開始される直前となる時間が、予め実験的または設計的に求められ、ダウンシフトの開始が判断された時点から前記時間が経過すると上限ガード値αgdを設定するか否かが判断される。
【0073】
また、前述の実施例では、トルク相の終了が判断されると上限ガード値αgdが解除されるものであったが、ダウンシフトが完了した時点まで上限ガード値αgdが維持されるものであっても構わない。
【0074】
また、前述の実施例では、自動変速機24は、1組または複数組の遊星歯車装置と複数個の係合装置CBとを備えて構成される、遊星歯車式の有段変速機であったが、本発明は必ずしもこれに限定されない。例えば、奇数段を成立させる第1クラッチと偶数段を成立させる第2クラッチとを備える、公知のDCT(Dual Clutch Transmission)形式の変速機であっても、本発明を適用することができる。
【0075】
また、前述の実施例では、車両10は、駆動力源としてのエンジン12および電動機MGと、自動変速機24と、エンジン12と電動機MGとの間に介挿されるK0クラッチ20と、を備える1モータ形式のハイブリッド車両であったが、本発明は必ずしもこれに限定されない。例えば、動力分割装置として作動する遊星歯車装置と、遊星歯車装置の第1回転要素に接続されているエンジンと、遊星歯車装置の第2回転要素に接続されている第1電動機と、遊星歯車装置の第3回転要素に接続されている第2電動機および変速機と、を備えて構成されるハイブリッド車両であっても構わない。
【0076】
また、前述の実施例では、アクセルペダル42の踏込操作に伴ってアクセル開度θaccが増加するものであったが、本発明は、アクセルペダル42の踏込に限定されず、運転者の手動操作によってアクセル開度θaccが増加されるように構成されるものであっても構わない。
【0077】
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【符号の説明】
【0078】
10:車両
14:駆動輪
24:自動変速機(変速機)
90:電子制御装置(制御装置)
MG:電動機
Ni:入力回転速度(変速機の入力回転速度)
Nsyc:同期回転速度
ΔNi:回転速度差
Ti:入力トルク
Tm:MGトルク(電動機トルク)
K:所定値
α:上昇率
γat:変速比