IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

特許7753162気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法
<>
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図1
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図2
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図3
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図4
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図5
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図6
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図7
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図8
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図9
  • 特許-気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-10-03
(45)【発行日】2025-10-14
(54)【発明の名称】気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法
(51)【国際特許分類】
   F04B 49/10 20060101AFI20251006BHJP
   F04B 51/00 20060101ALI20251006BHJP
【FI】
F04B49/10 331N
F04B49/10 331C
F04B49/10 331D
F04B49/10 331J
F04B51/00
【請求項の数】 14
(21)【出願番号】P 2022115202
(22)【出願日】2022-07-20
(65)【公開番号】P2024013262
(43)【公開日】2024-02-01
【審査請求日】2025-02-07
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】千葉 紘太郎
(72)【発明者】
【氏名】関谷 禎夫
(72)【発明者】
【氏名】野崎 務
【審査官】大瀬 円
(56)【参考文献】
【文献】特開2017-122585(JP,A)
【文献】特開2003-091313(JP,A)
【文献】特開2014-095335(JP,A)
【文献】特開2019-203466(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F04B 49/10
F04B 51/00
(57)【特許請求の範囲】
【請求項1】
気体を圧縮する気体圧縮機であって、
モータと、
前記モータの回転により気体を圧縮する圧縮機構部と、
前記圧縮機構部により圧縮された圧縮気体を冷却する気体冷却器と、
前記気体圧縮機の動作に関する状態量を検出する状態量検出部と、
前記気体圧縮機の状態を監視する監視部と、を備え、
前記監視部は、
前記状態量検出部で検出された前記圧縮気体の状態量に基づいて前記気体冷却器の冷却熱量を演算し、前記冷却熱量から前記圧縮機構部を交換した場合における前記気体冷却器の運転条件を演算し、前記運転条件に基づいて前記圧縮機構部を交換した場合の運転費用を演算し、前記運転費用に基づいて前記圧縮機構部を交換した場合の交換費用および省エネ効果を演算し、前記交換費用および前記省エネ効果の演算結果を表示部に表示させる
気体圧縮機。
【請求項2】
請求項1に記載の気体圧縮機において、
前記モータの回転速度と前記圧縮気体の吐出量に関する第1のデータベースを更に備え、
前記状態量検出部は、前記モータへ投入する電流値、および前記モータの回転速度を検出し、
前記監視部は、前記状態量検出部で検出された前記電流値および前記回転速度と、前記第1のデータベースから検索した前記圧縮気体の吐出量と、に基づいて交換前の前記圧縮機構部の運転費用を演算する
気体圧縮機。
【請求項3】
請求項1に記載の気体圧縮機において、
前記状態量検出部は、前記気体冷却器の上流側における前記圧縮気体の温度および圧力、前記気体冷却器の下流側における前記圧縮気体の温度を検出し、
前記監視部は、前記状態量検出部で検出された前記気体冷却器の上流側における前記圧縮気体の温度および圧力、前記気体冷却器の下流側における前記圧縮気体の温度に基づいて前記冷却熱量を演算する
気体圧縮機。
【請求項4】
請求項1に記載の気体圧縮機において、
交換候補の圧縮機構部の回転速度と前記圧縮気体の吐出量に関する第2のデータベースを更に備え、
前記監視部は、交換前の前記圧縮機構部の吐出量と、前記第2のデータベースから検索した前記吐出量および前記交換候補の圧縮機構部の回転速度とに基づいて前記交換候補の圧縮機構部の前記運転費用を演算する
気体圧縮機。
【請求項5】
請求項4に記載の気体圧縮機において、
前記監視部は、前記交換候補の圧縮機構部に交換した後の、前記気体冷却器の下流側における前記圧縮気体の温度を予測し、予め設定された上限値との大小関係を演算する
気体圧縮機。
【請求項6】
請求項5に記載の気体圧縮機において、
交換候補の気体冷却器の冷却性能に関する第3のデータベースを更に備え、
前記監視部は、前記交換候補の気体冷却器に交換した場合の、前記交換候補の気体冷却器の下流側における前記圧縮気体の温度を演算し、前記上限値との大小関係を演算する
気体圧縮機。
【請求項7】
気体を圧縮する気体圧縮機であって、
モータと、
前記モータの回転により気体を圧縮する圧縮機構部と、
前記圧縮機構部により圧縮された圧縮気体と前記圧縮機構部に供給された液体とを分離する分離部と、
前記分離部で分離された前記液体を冷却する液体冷却器と、
前記気体圧縮機の動作に関する状態量を検出する状態量検出部と、
前記気体圧縮機の状態を監視する監視部と、を備え、
前記監視部は、
前記状態量検出部で検出された前記液体の状態量に基づいて前記液体冷却器の冷却熱量を演算し、前記冷却熱量から前記圧縮機構部を交換した場合における前記液体冷却器の運転条件を演算し、前記運転条件に基づいて前記圧縮機構部を交換した場合の運転費用を演算し、前記運転費用に基づいて前記圧縮機構部を交換した場合の交換費用および省エネ効果を演算し、前記交換費用および前記省エネ効果の演算結果を表示部に表示させる
気体圧縮機。
【請求項8】
請求項7に記載の気体圧縮機において、
前記モータの回転速度と前記圧縮気体の吐出量に関する第1のデータベースを更に備え、
前記状態量検出部は、前記モータへ投入する電流値、および前記モータの回転速度を検出し、
前記監視部は、前記状態量検出部で検出された前記電流値および前記回転速度と、前記第1のデータベースから検索した前記圧縮気体の吐出量と、に基づいて交換前の前記圧縮機構部の運転費用を演算する
気体圧縮機。
【請求項9】
請求項7に記載の気体圧縮機において、
前記状態量検出部は、前記液体冷却器の上流側における前記液体の温度および圧力、前記液体冷却器の下流側における前記液体の温度を検出し、
前記監視部は、前記状態量検出部で検出された前記液体冷却器の上流側における前記液体の温度および圧力、前記液体冷却器の下流側における前記液体の温度に基づいて前記冷却熱量を演算する
気体圧縮機。
【請求項10】
請求項7に記載の気体圧縮機において、
交換候補の圧縮機構部の回転速度と前記圧縮気体の吐出量に関する第2のデータベースを更に備え、
前記監視部は、交換前の前記圧縮機構部の吐出量と、前記第2のデータベースから検索した前記吐出量および前記交換候補の圧縮機構部の回転速度とに基づいて前記交換候補の圧縮機構部の前記運転費用を演算する
気体圧縮機。
【請求項11】
請求項10に記載の気体圧縮機において、
前記監視部は、前記交換候補の圧縮機構部に交換した後の、前記液体冷却器の下流側における前記液体の温度を予測し、予め設定された上限値との大小関係を演算する
気体圧縮機。
【請求項12】
請求項11に記載の気体圧縮機において、
交換候補の液体冷却部の冷却性能に関する第4のデータベースを更に備え、
前記監視部は、前記交換候補の液体冷却器に交換した場合の、前記交換候補の液体冷却器の下流側における前記液体の温度を演算し、前記上限値との大小関係を演算する
気体圧縮機。
【請求項13】
気体を圧縮する気体圧縮機の監視装置であって、
モータの回転により気体を圧縮する圧縮機構部における圧縮気体の状態量に基づいて前記圧縮機構部により圧縮された圧縮気体を冷却する気体冷却器の冷却熱量を演算し、
前記冷却熱量から前記圧縮機構部を交換した場合における前記気体冷却器の運転条件を演算し、
前記運転条件に基づいて前記圧縮機構部を交換した場合の運転費用を演算し、
前記運転費用に基づいて前記圧縮機構部を交換した場合の交換費用および省エネ効果を演算し、
前記交換費用および前記省エネ効果の演算結果を表示部に表示させる
気体圧縮機の監視装置。
【請求項14】
気体を圧縮する気体圧縮機の監視方法であって、
モータの回転により気体を圧縮する圧縮機構部における圧縮気体の状態量に基づいて前記圧縮機構部により圧縮された圧縮気体を冷却する気体冷却器の冷却熱量を演算するステップと、
前記冷却熱量から前記圧縮機構部を交換した場合における前記気体冷却器の運転条件を演算するステップと、
前記運転条件に基づいて前記圧縮機構部を交換した場合の運転費用を演算するステップと、
前記運転費用に基づいて前記圧縮機構部を交換した場合の交換費用および省エネ効果を演算するステップと、
前記交換費用および前記省エネ効果の演算結果を表示部に表示させるステップと、を有する
気体圧縮機の監視方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法に関するものである。
【背景技術】
【0002】
空気圧縮機の監視装置および監視方法として、特許文献1がある。特許文献1には、「消耗部品ごとに、劣化度“正常”のとき、すなわち、部品新品時の電力消費量に対する現在の電力消費量の割合に相当する電力損失率を計算する。この電力損失率は、電力損失の大きさを示すもので、部品交換によって電力消費量の無駄を解消できる省エネ効果として見積もることができる。」と記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第6797528号
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の技術では、部品交換による電力消費量の低減効果を、部品新品時の電力消費量に対する現在の電力消費量の割合により演算している。
【0005】
気体圧縮機の一つである空気圧縮機の構成要素には、空気を圧縮する圧縮機構部と、圧縮され高温に達した空気を所定の温度まで冷却する空気冷却器がある。
【0006】
特許文献1に記載の通り、消耗部品の交換を促し、その結果として消耗部品のみを交換した場合、圧縮機構部における圧縮空気量が増大し、それだけ空気冷却器に要求される冷却能力も増大する、という問題がある。
【0007】
しかし、消耗品と同様に空気冷却器も、その使用過程において、熱交換器のフィンとフィンの間の埃の目詰まり、フィンの変形、またはフィンや圧縮空気流路内部の汚れなどにより、冷却性能が低下している恐れがある。従って、外部の圧縮空気消費機器に対する圧縮空気の供給温度に関して、品質水準を満足できない可能性がある。
【0008】
また、空気圧縮機の電力消費量に対する影響度が大きい消耗部品や圧縮機構部を、新品よりもさらに高性能なものに交換する場合、搭載されている空気冷却器の冷却能力が圧縮空気の供給温度に関する品質水準を満足するために必要十分か否か、空気冷却器の経年劣化により判断できない、との懸念があることが明らかとなった。
【0009】
すなわち、部品交換を行ったとしても、期待通りの効果が得られるか否かが不透明であり、改善の余地があることが明らかとなった。
【0010】
本発明は、気体圧縮機を分解せずとも、気体圧縮機のアップグレードにより得られる効果を従来に比べて高い精度で見積もることが可能な気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法を提供する。
【課題を解決するための手段】
【0011】
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、気体を圧縮する気体圧縮機であって、モータと、前記モータの回転により気体を圧縮する圧縮機構部と、前記圧縮機構部により圧縮された圧縮気体を冷却する気体冷却器と、前記気体圧縮機の動作に関する状態量を検出する状態量検出部と、前記気体圧縮機の状態を監視する監視部と、を備え、前記監視部は、前記状態量検出部で検出された前記圧縮気体の状態量に基づいて前記気体冷却器の冷却熱量を演算し、前記冷却熱量から前記圧縮機構部を交換した場合における前記気体冷却器の運転条件を演算し、前記運転条件に基づいて前記圧縮機構部を交換した場合の運転費用を演算し、前記運転費用に基づいて前記圧縮機構部を交換した場合の交換費用および省エネ効果を演算し、前記交換費用および前記省エネ効果の演算結果を表示部に表示させる。
【発明の効果】
【0012】
本発明によれば、気体圧縮機を分解せずとも、気体圧縮機のアップグレードにより得られる効果を従来に比べて高い精度で見積もることができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
【図面の簡単な説明】
【0013】
図1】本発明の第1実施例における空気圧縮機の構成図である。
図2】本発明の第1実施例における監視装置の構成図である。
図3】本発明の第1実施例における監視装置内演算部の構成図である。
図4】本発明の第1実施例における吐出空気量と圧縮機構部の回転速度の関係である。
図5】本発明の第1実施例における吐出空気量と圧縮空気用冷却ファンの回転速度の関係である。
図6】本発明の第1実施例における,計年劣化後の圧縮空気用冷却ファンの回転速度と吐出空気量の関係である。
図7】本発明の第1実施例における圧縮空気用冷却ファンの回転速度と空気冷却器の冷却熱量の関係である。
図8】本発明の第2実施例における空気圧縮機の構成図である。
図9】本発明の第2実施例における監視装置の構成図である。
図10】本発明の第2実施例における液体冷却機に関する演算部の構成図である。
【発明を実施するための形態】
【0014】
以下に本発明の気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法の実施例を、図面を用いて説明する。なお、本明細書で用いる図面において、同一のまたは対応する構成要素には同一、または類似の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。
【0015】
なお、以下の実施例では、気体として空気を所定の圧力まで圧縮する空気圧縮機に関して説明するが、気体は空気に限定されるものではない。
【0016】
<第1実施例>
本発明の気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法の第1実施例について図1乃至図7を用いて説明する。
【0017】
最初に、空気圧縮機の全体構成について図1を用いて説明する。図1に本実施例における空気圧縮機の構成を示す。
【0018】
図1に示す空気圧縮機1は、空気を圧縮する機械であって、吸込フィルタ2、モータ4の回転により空気を圧縮する圧縮機構部3の回転駆動するモータ4、圧縮機構部3により圧縮された高温の圧縮空気を冷却する空気冷却器5、空気冷却器5に冷却風を送風する空気用冷却ファン6、吐出フィルタ7、およびこれらを接続する圧縮空気配管8により構成される。
【0019】
モータ4により回転駆動された圧縮機構部3は、吸込フィルタ2を介して外気から吸い込んだ空気を所定の圧力まで圧縮したのち、圧縮空気配管8内に吐出する。
【0020】
ここで、圧縮空気配管8内の圧縮空気は常温よりも著しく高温になっているため、圧縮機構部3の下流側に設けられた空気冷却器5内部で所定の温度まで冷却される。
【0021】
その後、圧縮空気は吐出フィルタ7を介して空気圧縮機1外部の圧縮空気消費機器(図に示さず)に供給される。
【0022】
空気圧縮機1には、空気圧縮機1の動作に関する状態量として、圧縮前の空気の温度や圧力、圧縮後の空気冷却器5の通過前あるいは通過後での圧縮空気の温度や圧力、圧縮機構部3を回転駆動するモータ4の回転速度等の状態量を検出する複数のセンサ(状態量検出部)が取り付けられる。
【0023】
圧力センサは合計2箇所設けられており、吸込フィルタ2下流側の圧力を測定するための第1の圧力センサ9、および圧縮機構部3の下流側における圧力を測定するための第2の圧力センサ10である。
【0024】
回転速度検出手段は合計2箇所設けられており、圧縮機構部3を回転駆動するモータ4の回転速度を検出する第1の回転速度検出部11および空気用冷却ファン6の回転速度を検出する第2の回転速度検出部12である。なお、第1の回転速度検出部11および第2の回転速度検出部12のいずれとも、回転速度に加えてモータ4あるいは空気用冷却ファン6に供給される電流値の検出手段も併せ持つことが望ましい。
【0025】
温度センサは合計3箇所設けられており、外気温度を検出する第1の温度センサ13、圧縮機構部3の下流側における圧縮空気の温度を検出する第2の温度センサ14、および空気冷却器5の下流側における圧縮空気の温度を検出する第3の温度センサ15である。
【0026】
監視装置16は、空気圧縮機1の状態を監視するために各種センサの状態監視データを収集、演算、および出力する部分であり、気体圧縮機の監視方法の各ステップの好適な実行主体となる。
【0027】
監視装置16の構成を図2に示す。監視装置16は各種センサの出力値を収集するデータ収集部17、収集されたデータを基に省エネ性能や費用削減効果などを演算する演算部18、および演算部18の演算結果(省エネ効果、圧縮機構部3の交換により得られる費用削減効果)を出力表示する表示装置19により構成される。
【0028】
監視装置16は、専用の回路基板によってハードウェアとして構成されていてもよいし、コンピュータで実行されるソフトウェアによって構成されてもよい。ハードウェアにより構成する場合には、処理を実行する複数の演算器を配線基板上、または半導体チップまたはパッケージ内に集積することにより実現できる。ソフトウェアにより構成する場合には、コンピュータに高速な汎用CPUを搭載して、所望の演算処理を実行するプログラムを実行することで実現できる。
【0029】
データ収集部17は、圧力、回転速度、温度の情報を収集する部分であり、上述の第1の圧力センサ9、第2の圧力センサ10、第1の回転速度検出部11、第2の回転速度検出部12、第1の温度センサ13、第2の温度センサ14、および第3の温度センサ15からの出力値の入力を受け付ける部分であり、優先あるいは無線でこれらの各センサに接続されている(図示はその都合上省略している)。
【0030】
本実施例の監視装置16では、状態量検出部で検出された圧縮空気の状態量に基づいて空気冷却器5の冷却熱量を演算し、冷却熱量から圧縮機構部3を交換した場合における空気冷却器5の運転条件を演算し、運転条件に基づいて圧縮機構部3を交換した場合の運転費用を演算し、運転費用に基づいて圧縮機構部3を交換した場合の交換費用および省エネ効果を演算し、交換費用および省エネ効果の演算結果を表示装置19に表示させる。その詳細は後述する。
【0031】
また、本実施例では、監視装置16は、状態量検出部で検出された電流値および回転速度と、第1のデータベース20から検索した圧縮空気の吐出量と、に基づいて交換前の圧縮機構部3の運転費用を演算することができる。また、状態量検出部で検出された空気冷却器5の上流側における圧縮空気の温度および圧力、空気冷却器5の下流側における圧縮空気の温度に基づいて冷却熱量を演算することができる。更に、交換前の圧縮機構部3の吐出量と、第2のデータベース22から検索した吐出量および交換候補の圧縮機構部3の回転速度とに基づいて交換候補の圧縮機構部3の運転費用を演算することができる。その詳細についても後述する。
【0032】
図3に、演算部18の構成を示す。
【0033】
図3に示すように、演算部18は、空気演算部40、モータ4の回転速度と圧縮空気の吐出量に関する情報などの現在搭載されている圧縮機構部3の性能の情報が格納された第1のデータベース20、交換候補の圧縮機構部3の回転速度と圧縮空気の吐出量に関する情報などの交換候補の圧縮機構部3の性能・費用の情報が格納された第2のデータベース22、交換候補の空気冷却器5の冷却性能に関する情報などの交換候補の空気冷却器5の性能・費用の情報が格納された第3のデータベース23等を備える。
【0034】
空気演算部40は、図3に示すように、空気冷却器の冷却能力演算部21、圧縮機構部3の交換後における空気冷却器5の下流側の温度T3’演算部43、温度T3’が圧縮空気の許容最高温度Tdmaxより低いか否かを判定する判定部44、効果演算部45、処理部46、圧縮機構部運転上限演算部47、空気冷却器の必要仕様演算部48で構成される。
【0035】
演算部18は、空気冷却器の冷却能力演算部21において、まずデータ収集部17により収集された各種データと、第1のデータベース20に記録された現在搭載されている圧縮機構部3に関する情報を基にして、冷却能力演算部21において空気冷却器5の冷却熱量を演算する。
【0036】
次に、温度T3’演算部43において、冷却能力演算部21により演算された空気冷却器5の冷却熱量と、第2のデータベース22に記録された交換候補の圧縮機構部3に関する情報に基づいて、交換候補の圧縮機構部3に交換した後の空気冷却器5の下流側における圧縮空気の空気温度T3’を、空気圧縮機1が品質保証すべき全ての運転条件について予測演算する。
【0037】
更に、判定部44において、温度T3’演算部43において予測演算された空気冷却器5の下流側における空気温度T3’に対して、全ての運転条件においてあらかじめ設定された所定の最高温度(例えば100℃)との大小関係を演算し、空気冷却器5の交換の必要性、あるいは交換後の圧縮機構部3の運転条件の制限が必要かどうかを判定する。
【0038】
収まるようであれば、効果演算部45において、第1のデータベース20および第2のデータベース22の各々に記録された情報の比較により、圧縮機構部3の交換による省エネ効果や電気代削減効果、および圧縮機構部3の交換に要する費用を表示装置19に出力表示する。
【0039】
ここで、圧縮機構部3の交換により圧縮空気量が増加するため、空気用冷却ファン6の回転速度が増加する場合には、それによる空気用冷却ファン6の消費電力増加量を先述の圧縮機構部3の交換による省エネ効果から差し引く。
【0040】
これに対し、空気用冷却ファン6の回転速度が最大値の条件においても、交換候補の圧縮機構部3に交換した後の空気冷却器5の下流側における空気温度が所定の最高温度を上回る場合、処理部46は、2つの表示内容を表示選択可能するように2系統の演算処理を行うよう処理する。
【0041】
1つ目の演算処理および表示内容は、圧縮機構部運転上限演算部47において、空気冷却器5の下流側における空気温度が上限温度以下となる交換候補の圧縮機構部3の上限回転速度(上限負荷率)を第2のデータベース22より探索し、その条件における省エネ効果や電気代削減効果、および圧縮機構部3の交換に要する費用を出力表示する。
【0042】
2つ目の演算処理および表示内容は、空気冷却器の必要仕様演算部48において、空気冷却器5の下流側における空気温度が上限温度以下となる空気冷却器5の交換候補を第3のデータベース23に記録された情報から探して示すとともに、当該交換候補の空気冷却器5に交換した場合の交換候補の空気冷却器5の下流側における圧縮空気の温度を第2のデータベース22および第3のデータベース23に記録された情報に基づいて演算し、上限値との大小関係を演算して、交換の可否を求めるとともに、空気冷却器5も交換する場合に得られる省エネ効果や電気代削減効果、および圧縮機構部3・空気冷却器5の交換に要する費用を演算、出力表示する。
【0043】
次いで、圧縮機構部3の省エネ性能の演算方法について説明する。瞬時の省エネ性能は、空気圧縮機への総入力電力L[W]と吐出空気量Qair[m/min]とにより、以下の比入力η[W/(m/min)]で算出する。
【0044】
【数1】
【0045】
第1のデータベース20には、予めモータ4の電流値および回転速度と入力電力との関係が実装されている。これにより、効果演算部45、圧縮機構部運転上限演算部47、あるいは必要仕様演算部48により、第1の回転速度検出部11により検出されたモータ4の回転速度および電流値を基に、モータ4の入力電力を演算可能である。
【0046】
空気用冷却ファン6についても、同様に、空気冷却器の必要仕様演算部48により、第3のデータベース23に実装された電流値および回転速度と入力電力との関係から、入力電力を演算可能である。
【0047】
圧縮機構部3を回転駆動するモータ4と空気用冷却ファン6それぞれの入力電力の総和が、空気圧縮機1の総入力電力Lである。
【0048】
吐出空気量Qairは、第1のデータベース20に実装された、図4に示す圧縮機構部3の回転速度と吐出空気量との関係から冷却能力演算部21において演算する。空気圧縮機1の吐出空気量は、特に外気温度、吸込圧力、および吐出圧力の影響を強く受けることから、第1の温度センサ13、第1の圧力センサ9、第2の圧力センサ10、および第1の回転速度検出部11の出力値を基に、第1のデータベース20に実装された圧縮機構部3の回転速度と吐出空気量との関係より演算する。
【0049】
年間電気代X[¥](運転費用)については、効果演算部45、圧縮機構部運転上限演算部47、あるいは必要仕様演算部48において、年間総吐出空気量Q[m]、比入力η、および契約電力料金A[¥/kWh]の積により下式(2)から算出できる。
【0050】
【数2】
【0051】
また、交換候補の圧縮機構部3の比入力ηは、圧縮機構部3の交換前に評価済みであることから、式(2)を使用して、圧縮機構部3の交換による電気代削減効果を演算することが可能になる。
【0052】
また、この電気代削減効果から、電力消費量の削減量やその削減量により達成されるCO削減量などの各種省エネ効果を求めることができる。
【0053】
冷却能力演算部21における空気冷却器5の冷却熱量qair[W]の演算方法を説明する。
【0054】
冷却熱量qairは、第2の圧力センサ10と第2の温度センサ14の出力値を基に演算した圧縮空気の密度ρair[kg/m]と比熱cair、前述の方法で取得した吐出空気量Qair[m/min]、および第2の温度センサ14と第3の温度センサ15の出力値の差から下式の式(3)により算出する。なお、第1のデータベース20には、圧縮空気の物性値が実装されており、第2の圧力センサ10と第2の温度センサ14の出力値を基に圧縮空気の密度ρair[kg/m]と比熱cair[J/(kg・K)]の演算が可能である。
【0055】
【数3】
【0056】
第3のデータベース23には、空気圧縮機1の新品当時における、図5に示す吐出空気量と空気用冷却ファン6の回転速度との関係が、圧力比条件ごとに実装されている。そこで、監視装置16は、定期的(例えば1か月おき)に、吐出空気量と空気用冷却ファン6の回転速度の関係を実機使用時の監視データを基に評価することが望ましい。
【0057】
図6に、圧力比7.0の条件における、吐出空気量と空気用冷却ファン6の回転速度との関係を示す。破線は新品当時の仕様であり、実線は製品を一定期間使用した後の評価結果(点群)およびそれらの値から演算した近似線である。空気冷却器5の経年劣化により冷却効率が低下し、空気用冷却ファン6の最大回転速度に達する吐出空気量の条件が低下する。
【0058】
図7に、図6と同様の条件における空気用冷却ファン6の回転速度と式(3)により算出される冷却熱量との関係を示す。空気用冷却ファン6の最大回転速度における空気冷却器5の冷却熱量が、経年劣化後の空気冷却器5の最大冷却能力である。圧縮機構部3を新品またはより高性能なものに交換した場合に、第3のデータベース23に実装される,図7に示す空気冷却器5の最大冷却能力から演算される、吐出空気温度の最大値が、製品の品質水準、すなわち上限温度を上回ることが予想される際は、以下に示すようにする。
【0059】
すなわち、圧縮機構部3の上限回転速度(上限負荷率)を下げる、空気冷却器5を第3のデータベース23に登録されたより高効率なものに交換する、または空気用冷却ファン6をより高性能なものに交換する方法に分けて、それぞれの場合の省エネ効果や電気代削減効果とその交換に要する費用を表示装置19に出力表示させる。
【0060】
以上により、空気圧縮機1の圧縮機構部3を新品またはより高性能なものに交換する際、吐出空気量の増大により圧縮空気の供給温度が製品の品質水準である上限温度以下となるか否か推定し、上限温度以上となる場合には事前に対策とそれを考慮した省エネ効果を推定することで、品質水準を満足させながら、顧客に省エネ効果と費用を提示することが可能となる。
【0061】
なお、第1の回転速度検出部11および第2の回転速度検出部12は、いずれもパルス信号などにより回転速度を直接検出するものだけでなく、インバータの指令周波数を基に回転速度を推定したり、空気圧縮機1の運転条件とモータ4や空気用冷却ファン6の入力電流値や電力の検出値を基に演算したりする間接的な検出方法でも良い。
【0062】
また、空気冷却器5については、本実施例のように空冷方式だけでなく、水冷方式であっても良い。この場合、本実施例における空気用冷却ファン6は、冷却水流量を制御する電磁バルブなどに代わり、その開度が全開状態において、空気冷却器5の最大冷却熱量を判断する。
【0063】
次に、本実施例の効果について説明する。
【0064】
上述した本発明の第1実施例の空気を圧縮する空気圧縮機1は、モータ4と、モータ4の回転により空気を圧縮する圧縮機構部3と、圧縮機構部3により圧縮された圧縮空気を冷却する空気冷却器5と、圧縮機構部3における圧縮空気の状態量を検出する状態量検出部と、空気圧縮機1の状態を監視する監視装置16と、を備え、監視装置16は、状態量検出部で検出された圧縮空気の状態量に基づいて空気冷却器5の冷却熱量を演算し、冷却熱量から圧縮機構部3を交換した場合における空気冷却器5の運転条件を演算し、運転条件に基づいて圧縮機構部3を交換した場合の運転費用を演算し、運転費用に基づいて圧縮機構部3を交換した場合の交換費用および省エネ効果を演算し、交換費用および省エネ効果の演算結果を表示装置19に表示させる。
【0065】
通常の機械では性能向上に伴い排熱が減少する傾向にあるのに対し、実施例で例示する空気圧縮機1のような気体圧縮機では、性能向上(すなわち圧縮空気量の増加)により排熱が増加する傾向があることから、部品のアップグレードを単純に実行する場合に、省エネ効果などの費用対効果が想定通り得られるか否かが不明である。
【0066】
これに対し、本発明によれば、気体圧縮機の種々の状態量を基に、経年変化した圧縮空気用の冷却器の冷却能力を推定することが可能となり、圧縮機構部3を新品またはより高性能なものに交換する際に、冷却能力が必要能力を満足するか否かを空気圧縮機1を分解調査せずに判断することができるようになる。これにより、空気圧縮機1を分解せずとも、圧縮機構部3のアップグレードによる省エネ効果や電気料金削減効果等の各種効果を従来に比べてより正確に見積もることが可能となる。
【0067】
例えば、気体圧縮機を構成し、特に電力消費量に与える影響の大きい圧縮機構部を、新品または新品よりも高性能なものに交換した際に、交換による省エネ効果または消費電力の削減効果に加えて、圧縮空気の供給温度を推定することやその品質水準の達成可否を判断することができるようになる。
【0068】
また、モータ4の回転速度と圧縮空気の吐出量に関する第1のデータベース20を更に備え、状態量検出部は、モータ4へ投入する電流値、およびモータ4の回転速度を検出し、監視装置16は、状態量検出部で検出された電流値および回転速度と、第1のデータベース20から検索した圧縮空気の吐出量と、に基づいて交換前の圧縮機構部3の運転費用を演算するため、交換による運転費用の差分もより正確に求めることができ、空気圧縮機1のユーザに交換により得られる効果の情報をより多く提供することができる。
【0069】
更に、状態量検出部は、空気冷却器5の上流側における圧縮空気の温度および圧力、空気冷却器5の下流側における圧縮空気の温度を検出し、監視装置16は、状態量検出部で検出された空気冷却器5の上流側における圧縮空気の温度および圧力、空気冷却器5の下流側における圧縮空気の温度に基づいて冷却熱量を演算することで、正確な冷却熱量の演算を実現することができる。
【0070】
また、交換候補の圧縮機構部3の回転速度と圧縮空気の吐出量に関する第2のデータベース22を更に備え、監視装置16は、交換前の圧縮機構部3の吐出量と、第2のデータベース22から検索した吐出量および交換候補の圧縮機構部3の回転速度とに基づいて交換候補の圧縮機構部3の運転費用を演算することにより、交換後の運転条件についても評価結果に反映させることができ、より適切な交換の可否などの判断の材料の提供をすることができるようになる。
【0071】
更に、監視装置16は、交換候補の圧縮機構部3に交換した後の、空気冷却器5の下流側における圧縮空気の温度を予測し、予め設定された上限値との大小関係を演算することで、圧縮機構部3の交換に伴う空気冷却器5の交換の効果についても反映することができ、更に適切な交換の可否などの判断の材料の提供を実現することができる。
【0072】
また、交換候補の空気冷却器5の冷却性能に関する第3のデータベース23を更に備え、監視装置16は、交換候補の空気冷却器5に交換した場合の、交換候補の空気冷却器5の下流側における圧縮空気の温度を演算し、上限値との大小関係を演算することにより、交換候補の空気冷却器5に交換しても問題がないか否かを判定することができ、より正確な省エネ効果や電気料金削減効果等を求めることができる。
【0073】
<第2実施例>
本発明の第2実施例の気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法について図8乃至図10を用いて説明する。なお、本実施例は第1実施例と同様に空気圧縮機に関するものであり、第1実施例と同じ個所については、同じ記号を付して説明する。
【0074】
図8に示す本実施例の空気圧縮機1Aは、第1実施例の空気圧縮機1に加えて、圧縮機構部3の内部に潤滑油を供給するための構成を設けたこと、および潤滑油冷却器25に関する潤滑油演算部32を追加したことにある。
【0075】
圧縮機構部3への潤滑油の供給の目的は、摺動部の潤滑、内部の微小すき間の封止、および圧縮空気の冷却である。
【0076】
圧縮機構部3内に供給された潤滑油は、吐出空気に混入した状態で圧縮機構部3から吐出され、遠心分離器24に流入する。
【0077】
遠心分離器24は、圧縮機構部3により圧縮された圧縮空気と圧縮機構部3に供給された液体とを分離する。
【0078】
遠心分離器24において分離された圧縮空気は、圧縮空気配管8に流入し、空気冷却器5にて所定の温度まで冷却された後、外部の圧縮空気消費機器(図に示さず)に供給される。
【0079】
遠心分離器24にて分離された潤滑油は、潤滑油冷却器25に流入し、所定の温度まで冷却された後、潤滑油フィルタ26を通って圧縮機構部3に再度流入する。遠心分離器24、潤滑油冷却器25、潤滑油フィルタ26、および圧縮機構部3は、潤滑油配管27により接続される。
【0080】
圧縮空気配管8と同様に、潤滑油冷却器25の上流側における液体の温度および圧力、潤滑油冷却器25の下流側における液体の温度を検出するために、状態量検出部として、潤滑油冷却器25においても、上流側と下流側にそれぞれ第4の温度センサ28および第5の温度センサ29を備え、また潤滑油冷却器25に冷却風を送風する潤滑油冷却ファン30とその回転速度および電流値を検出する第3の回転速度検出部31を備える。
【0081】
監視装置16Aの構成を図9に示す。監視装置16Aは各種センサの出力値を収集するデータ収集部17A、収集されたデータを基に省エネ性能などを演算する演算部18A、および演算部18Aの演算結果(省エネ効果、圧縮機構部3の交換により得られる費用削減効果)を出力表示する表示装置19により構成される。
【0082】
データ収集部17Aは、第1の圧力センサ9、第2の圧力センサ10、第1の回転速度検出部11、第2の回転速度検出部12、第1の温度センサ13、第2の温度センサ14、第3の温度センサ15に加えて、第4の温度センサ28、第5の温度センサ29、第3の回転速度検出部31からの出力値の入力を受け付ける部分である。
【0083】
本実施例の監視装置16Aでは、第1実施例の監視装置16の演算処理を実施することに加えて、状態量検出部で検出された液体の状態量に基づいて潤滑油冷却器25の冷却熱量を演算し、冷却熱量から圧縮機構部3を交換した場合における潤滑油冷却器25の運転条件を演算し、運転条件に基づいて圧縮機構部3を交換した場合の運転費用を演算し、運転費用に基づいて圧縮機構部3を交換した場合の交換費用および省エネ効果を演算し、交換費用および省エネ効果の演算結果を表示装置19に表示させる処理を実行する。
【0084】
図10に本実施例の演算部18Aの構成を示す。演算部18Aは、空気冷却器5の冷却熱量から圧縮機構部3の交換による省エネ効果等を演算する空気演算部40、第1のデータベース20、第2のデータベース22、第3のデータベース23に加えて、潤滑油冷却器25から圧縮機構部3の交換による省エネ効果等を演算する潤滑油演算部32、交換候補の潤滑油冷却器25の冷却性能に関する情報を格納する第4のデータベース41を更に備えている。
【0085】
また、本実施例では、監視装置16Aは、状態量検出部で検出された潤滑油冷却器25の上流側における液体の温度および圧力、潤滑油冷却器25の下流側における液体の温度に基づいて冷却熱量を演算することができる。また、交換候補の圧縮機構部3に交換した後の、潤滑油冷却器25の下流側における液体の温度を予測し、予め設定された上限値との大小関係を演算することができる。更に、交換候補の潤滑油冷却器25に交換した場合の、交換候補の潤滑油冷却器25の下流側における液体の温度を演算し、上限値との大小関係を演算することができる。
【0086】
潤滑油演算部32は、図10に示すように、潤滑油冷却器の冷却能力演算部33、圧縮機構部3の交換後の潤滑油冷却器25の下流側の温度T5’演算部34、温度T5’が潤滑油の許容最高温度Tomaxより低いか否かを判定する判定部35、効果演算部36、処理部37、圧縮機構の運転上限演算部38、潤滑油冷却器25の必要仕様演算部39等で構成される。
【0087】
これら各部の処理は、潤滑油演算部32の機能が空気冷却器5に関する空気演算部40と異なる点は、第1実施例にて説明した空気演算部40の冷却対象媒体が圧縮空気から潤滑油に置き換わるのみであることから、説明は省略する。
【0088】
その他の構成・動作は前述した第1実施例の気体圧縮機、気体圧縮機の監視装置、および気体圧縮機の監視方法と略同じ構成・動作であり、詳細は省略する。
【0089】
本実施例のような給油式の空気圧縮機1Aにおいては、潤滑油の酸化劣化を防ぐ観点から、圧縮空気だけでなく潤滑油に対しても上限温度に関する品質水準が定められている。
【0090】
圧縮機構部3を新品または新品より高性能なものに交換した場合、吐出空気量が増大するため、高温の吐出空気と熱交換する潤滑油の温度は上昇しやすくなり、搭載されている潤滑油冷却器25のままでは、上限温度を超過する懸念がある。
【0091】
そこで、本実施例における潤滑油演算部32により、空気圧縮機1Aの圧縮機構部3を新品またはより高性能なものに交換する際、吐出空気量の増大により潤滑油の最高温度が製品の品質水準である上限温度以下となるか否か推定し、上限温度以上となる場合には事前に対策とそれを考慮した省エネ効果を推定することで、品質水準を満足させながら、顧客に省エネ効果と費用を提示することが可能となる。
【0092】
<その他>
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
【符号の説明】
【0093】
1,1A…空気圧縮機
2…吸込フィルタ
3…圧縮機構部
4…モータ
5…空気冷却器(気体冷却器)
6…空気用冷却ファン
7…吐出フィルタ
8…圧縮空気配管
9…第1の圧力センサ(状態量検出部)
10…第2の圧力センサ(状態量検出部)
11…第1の回転速度検出部(状態量検出部)
12…第2の回転速度検出部(状態量検出部)
13…第1の温度センサ(状態量検出部)
14…第2の温度センサ(状態量検出部)
15…第3の温度センサ(状態量検出部)
16,16A…監視装置(監視部)
17,17A…データ収集部
18,18A…演算部
19…表示装置
20…第1のデータベース
21…冷却能力演算部
22…第2のデータベース
23…第3のデータベース
24…遠心分離器(分離部)
25…潤滑油冷却器(液体冷却器)
26…潤滑油フィルタ
27…潤滑油配管
28…第4の温度センサ(状態量検出部)
29…第5の温度センサ(状態量検出部)
30…潤滑油冷却ファン
31…第3の回転速度検出部(状態量検出部)
32…潤滑油演算部
33…冷却能力演算部
34…演算部
35…判定部
36…効果演算部
37…処理部
38…運転上限演算部
39…必要仕様演算部
40…空気演算部
41…第4のデータベース
43…演算部
44…判定部
45…効果演算部
46…処理部
47…圧縮機構部運転上限演算部
48…必要仕様演算部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10