(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-10-07
(45)【発行日】2025-10-16
(54)【発明の名称】光送受信システム、光送信装置、及び光受信装置
(51)【国際特許分類】
H04B 10/516 20130101AFI20251008BHJP
H04B 10/60 20130101ALI20251008BHJP
【FI】
H04B10/516
H04B10/60
(21)【出願番号】P 2021207957
(22)【出願日】2021-12-22
【審査請求日】2024-06-11
【国等の委託研究の成果に係る記載事項】(出願人による申告)令和2年度、 国立研究開発法人新エネルギー・産業技術総合開発機構、「ポスト5G情報通信システム基盤強化研究開発事業/ポスト5G情報通信システムの開発/ポスト5G情報通信システムにおけるテラビット光伝送システムの研究開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】110004370
【氏名又は名称】弁理士法人片山特許事務所
(72)【発明者】
【氏名】永沼 友浩
【審査官】後澤 瑞征
(56)【参考文献】
【文献】特開2020-191548(JP,A)
【文献】特開2009-239555(JP,A)
【文献】特表2008-533830(JP,A)
【文献】特開2016-122910(JP,A)
【文献】特開平10-022930(JP,A)
【文献】米国特許出願公開第2017/0126327(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/40 - 10/69
(57)【特許請求の範囲】
【請求項1】
電気的なデータ信号を光信号に変換して送信する光送信装置と、
前記光送信装置から光伝送路を介して入力される前記光信号を受信して前記データ信号に変換する光受信装置とを有し、
前記光送信装置は、
前記データ信号の周波数帯域のうち、帯域のパワーの上向きのピークが高周波数側にある第1係数と、前記データ信号の周波数帯域のうち、前記ピークより低周波数側の一部の帯域で周波数が低くなるに従って帯域のパワーが増加する第2係数とに基づき、前記光送信装置内で生ずる損失を補償する第1補償部を有し、
前記光受信装置は、
前記第2係数とは逆の増幅特性を有する第3係数に基づき、前記光伝送路内で生ずる損失を補償する第2補償部を有する、
ことを特徴とする光送受信システム。
【請求項2】
電気的なデータ信号を光信号に変換して送信する光送信装置と、
前記光送信装置から光伝送路を介して入力される前記光信号を受信して前記電気的なデータ信号に変換する光受信装置とを有し、
前記光送信装置は、
前記電気的なデータ信号に対して前記光送信装置内で生ずる損失を第1補償係数に基づき補償する第1補償部と、
前記第1補償部に対して前記第1補償係数を設定する第1設定部とを有し、
前記第1設定部は、前記光送信装置内で生ずる損失が補償されるように、前記電気的なデータ信号の周波数帯域のうち、高周波数側の帯域のパワーを増幅するための第1係数と、前記電気的なデータ信号の信号品質が所定値以上となるように、前記電気的なデータ信号の周波数帯域のうち、低周波数側の帯域のパワーを増幅するための第2係数とに基づいて前記第1補償係数を生成し、
前記光受信装置は、
前記電気的なデータ信号に対して前記光伝送路内で生ずる損失を第2補償係数に基づき補償する第2補償部と、
前記第2補償部に対して前記第2補償係数を設定する第2設定部とを有し、
前記第2設定部は、前記光伝送路内で生ずる損失が補償されるように、前記電気的なデータ信号を増幅するための第3係数と、前記第2係数とは逆の増幅特性に基づき前記電気的なデータ信号を増幅するための第4係数とに基づいて前記第2補償係数を生成する、
ことを特徴とする光送受信システム。
【請求項3】
前記第1補償部は、デジタル形式の前記電気的なデータ信号をアナログ形式の前記電気的なデータ信号に変換する変換部の上限値以下に前記電気的なデータ信号のパワーを抑制する、
ことを特徴とする請求項2に記載の光送受信システム。
【請求項4】
前記光送信装置は、前記第2係数を前記光受信装置に送信し、
前記第2設定部は、前記光受信装置が受信した前記第2係数に基づいて前記第4係数を生成する、
ことを特徴とする請求項2又は3に記載の光送受信システム。
【請求項5】
前記光送信装置は、前記電気的なデータ信号より低いボーレートの第1信号を用いて前記第2係数を前記光受信装置に送信する、
ことを特徴とする請求項2から4のいずれか1項に記載の光送受信システム。
【請求項6】
前記光送信装置は、前記電気的なデータ信号より低い多値度の第2信号を用いて前記第2係数を前記光受信装置に送信する、
ことを特徴とする請求項2から5のいずれか1項に記載の光送受信システム。
【請求項7】
前記光送信装置は、送信周波数が変調された第3信号を用いて前記第2係数を前記光受信装置に送信する、
ことを特徴とする請求項2から5のいずれか1項に記載の光送受信システム。
【請求項8】
前記第1設定部は、前記電気的なデータ信号のボーレート及び変調方式の少なくとも一方に応じて前記第1係数を決定し、
前記第2設定部は、前記電気的なデータ信号のボーレート及び変調方式の少なくとも一方に応じて前記第3係数を決定する、
ことを特徴とする請求項2から7のいずれか1項に記載の光送受信システム。
【請求項9】
前記第1設定部は、前記電気的なデータ信号のボーレート及び変調方式の少なくとも一方に応じて前記第1係数と前記第2係数の両方を決定し、
前記第2設定部は、前記電気的なデータ信号のボーレート及び変調方式の少なくとも一方に応じて前記第3係数と前記第4係数の両方を決定する、
ことを特徴とする請求項8に記載の光送受信システム。
【請求項10】
光伝送路を介して入力される光信号を受信して電気的なデータ信号に変換する光受信装置に、前記電気的なデータ信号を前記光信号に変換して送信する光送信装置であって、
前記電気的なデータ信号に対して前記光送信装置内で生ずる損失を第1補償係数に基づき補償する第1補償部と、
前記第1補償部に対して前記第1補償係数を設定する第1設定部とを有し、
前記第1設定部は、前記光送信装置内で生ずる損失が補償されるように、前記電気的なデータ信号の周波数帯域のうち、高周波数側の帯域のパワーを増幅するための第1係数と、前記電気的なデータ信号の信号品質が所定値以上となるように、前記電気的なデータ信号の周波数帯域のうち、低周波数側の帯域のパワーを増幅するための第2係数とに基づいて前記第1補償係数を生成し、
前記光受信装置は、
前記電気的なデータ信号に対して前記光伝送路内で生ずる損失を第2補償係数に基づき補償する第2補償部と、
前記第2補償部に対して前記第2補償係数を設定する第2設定部とを有し、
前記第2設定部は、前記光伝送路内で生ずる損失が補償されるように、前記電気的なデータ信号を増幅するための第3係数と、前記第2係数とは逆の増幅特性に基づき前記電気的なデータ信号を増幅するための第4係数とに基づいて前記第2補償係数を生成する、
ことを特徴とする光送信装置。
【請求項11】
電気的なデータ信号を光信号に変換して送信する光送信装置から、光伝送路を介して入力される前記光信号を受信して前記電気的なデータ信号に変換する光受信装置であって、
前記光送信装置は、
前記電気的なデータ信号に対して前記光送信装置内で生ずる損失を第1補償係数に基づき補償する第1補償部と、
前記第1補償部に対して前記第1補償係数を設定する第1設定部とを有し、
前記第1設定部は、前記光送信装置内で生ずる損失が補償されるように、前記電気的なデータ信号の周波数帯域のうち、高周波数側の帯域のパワーを増幅するための第1係数と、前記電気的なデータ信号の信号品質が所定値以上となるように、前記電気的なデータ信号の周波数帯域のうち、低周波数側の帯域のパワーを増幅するための第2係数とに基づいて前記第1補償係数を生成し、
前記光受信装置は、
前記電気的なデータ信号に対して前記光伝送路内で生ずる損失を第2補償係数に基づき補償する第2補償部と、
前記第2補償部に対して前記第2補償係数を設定する第2設定部とを有し、
前記第2設定部は、前記光伝送路内で生ずる損失が補償されるように、前記電気的なデータ信号を増幅するための第3係数と、前記第2係数とは逆の増幅特性に基づき前記電気的なデータ信号を増幅するための第4係数とに基づいて前記第2補償係数を生成する、
ことを特徴とする光受信装置。
【発明の詳細な説明】
【技術分野】
【0001】
本件は光送受信システム、光送信装置、及び光受信装置に関する。
【背景技術】
【0002】
デジタルコヒーレント光通信においては、DSP(Digital Signal Processor)を用いて、光送信装置や光受信装置、光伝送路で発生する信号性能を劣化させる要因を補償することで光信号の伝送特性を向上させている。信号性能を劣化させる要因としては、例えば帯域特性に起因するシンボル間干渉、スキュー、波長分散などがある。
【0003】
補償を実施する際に用いる手法としては、光送信装置や光受信装置、光伝送路で発生する性能劣化要因の逆特性を例えば主信号の信号特性に適用することで性能劣化要因を相殺する手法が挙げられる。光送信装置内の帯域特性に起因するシンボル間干渉の補償であれば、光送信装置内の性能劣化要因の逆特性をDSP内の予等化回路で信号特性に適用する手法がある。なお、信号特性に伝送路周波数特性の逆特性を乗算する手法は知られている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、光送信装置内のDSPの後段には、DAC(Digital Analogue Converter)が配置されるが、DACが出力できる電気的な信号の信号強度(以下、パワーと記載)の特性には上限値がある。このため、仮に信号がこの上限値以上のパワーを含む場合には、そのパワー部分の信号の波形がDACの上限値に抑えられて変形し、信号の性能劣化が発生する。これにより、光信号の伝送特性が劣化する。このような信号の性能劣化の発生を抑制する場合、信号のパワーを性能劣化が発生しない程度にまで全体的に低減してからDACに入力することが想定される。
【0006】
しかしながら、信号のパワーを低減しても、信号の性能劣化が発生することがある。例えば、DACでは量子化雑音や熱雑音といった雑音が生じる。このため、DACを通過した信号には雑音が重畳される。すなわち、信号は雑音によって性能が劣化する。この劣化の度合いは信号のパワーに対する雑音のパワーの比率であるSNR(Signal to Noise Ratio)によって相違する。SNRが十分に高い場合には信号の性能劣化は無視できるが、信号のパワーを低減するとSNRが低下し、信号の性能が劣化する。したがって、結果的に光信号の伝送特性が劣化する。
【0007】
そこで、1つの側面では、光信号の伝送特性を向上する光送受信システム、光送信装置、及び光受信装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
1つの実施態様では、光送受信システムは、電気的なデータ信号を光信号に変換して送信する光送信装置と、前記光送信装置から光伝送路を介して入力される前記光信号を受信して前記データ信号に変換する光受信装置とを有し、前記光送信装置は、前記データ信号の周波数帯域のうち、帯域のパワーの上向きのピークが高周波数側にある第1係数と、前記データ信号の周波数帯域のうち、前記ピークより低周波数側の一部の帯域で周波数が低くなるに従って帯域のパワーが増加する第2係数とに基づき、前記光送信装置内で生ずる損失を補償する第1補償部を有し、前記光受信装置は、前記第2係数とは逆の増幅特性を有する第3係数に基づき、前記光伝送路内で生ずる損失を補償する第2補償部を有する。
【0009】
1つの実施態様では、光送受信システムは、電気的なデータ信号を光信号に変換して送信する光送信装置と、前記光送信装置から光伝送路を介して入力される前記光信号を受信して前記電気的なデータ信号に変換する光受信装置とを有し、前記光送信装置は、前記電気的なデータ信号に対して前記光送信装置内で生ずる損失を第1補償係数に基づき補償する第1補償部と、前記第1補償部に対して前記第1補償係数を設定する第1設定部とを有し、前記第1設定部は、前記光送信装置内で生ずる損失が補償されるように、前記電気的なデータ信号の周波数帯域のうち、高周波数側の帯域のパワーを増幅するための第1係数と、前記電気的なデータ信号の信号品質が所定値以上となるように、前記電気的なデータ信号の周波数帯域のうち、低周波数側の帯域のパワーを増幅するための第2係数とに基づいて前記第1補償係数を生成し、前記光受信装置は、前記電気的なデータ信号に対して前記光伝送路内で生ずる損失を第2補償係数に基づき補償する第2補償部と、前記第2補償部に対して前記第2補償係数を設定する第2設定部とを有し、前記第2設定部は、前記光伝送路内で生ずる損失が補償されるように、前記電気的なデータ信号を増幅するための第3係数と、前記第2係数とは逆の増幅特性に基づき前記電気的なデータ信号を増幅するための第4係数とに基づいて前記第2補償係数を生成する。
【発明の効果】
【0010】
光信号の伝送特性を向上することができる。
【図面の簡単な説明】
【0011】
【
図2】
図2(a)は送信側DSPの一例を示すブロック図である。
図2(b)は受信側DSPの一例を示すブロック図である。
【
図3】
図3は第1実施形態に係る送信側制御部の一例を示すブロック図である。
【
図4】
図4は第1実施形態に係る第1テーブルの一例である。
【
図5】
図5は第1実施形態に係る光送信装置の動作の一例を示すフローチャートである。
【
図6】
図6は第1係数の正規化例を説明する図である。
【
図7】
図7は増幅目標値の正規化例を説明する図である。
【
図8】
図8は第2係数の生成例を説明する図である。
【
図9】
図9は第1係数と第2係数の重畳例を説明する図である。
【
図10】
図10は光送信装置からの出力信号の一例を説明する図である。
【
図11】
図11(a)はDACの上限値の一例を説明する図である。
図11(b)はクリッピングの一例を説明する図である。
図11(c)はスケーリングの一例を説明する図である。
【
図12】
図12は第1実施形態に係る受信側制御部の一例を示すブロック図である。
【
図13】
図13第1実施形態に係る第2テーブルの一例である。
【
図14】
図14は第1実施形態に係る光受信装置の動作の一例を示すフローチャートである。
【
図15】
図15は第3係数と第4係数の重畳例を説明する図である。
【
図16】
図16は光受信装置からの出力信号の一例を説明する図である。
【
図17】
図17は第2実施形態に係る送信側制御部の一例を示すブロック図である。
【
図19】
図19は第2実施形態に係る光送信装置の動作の一例を示すフローチャートである。
【
図20】
図20は第2実施形態に係る受信側制御部の一例を示すブロック図である。
【
図21】
図21は第2実施形態に係る光受信装置の動作の一例を示すフローチャートである。
【
図22】
図22は第3実施形態に係る送信側制御部の一例を示すブロック図である。
【
図23】
図23は第3実施形態に係る第1テーブルの一例である。
【
図24】
図24は第3実施形態に係る光送信装置の動作の一例を示すフローチャートである。
【
図25】
図25は第3実施形態に係る受信側制御部の一例を示すブロック図である。
【
図26】
図26は第3実施形態に係る第2テーブルの一例である。
【
図27】
図27は第3実施形態に係る光受信装置の動作の一例を示すフローチャートである。
【発明を実施するための形態】
【0012】
以下、本件を実施するための形態について図面を参照して説明する。
【0013】
(第1実施形態)
図1に示すように、光送受信システムSTは、光送信装置100と光受信装置200とを有する。光送信装置100と光受信装置200は光伝送路300を介して互いに接続されている。
【0014】
まず、光送信装置100の詳細について説明する。光送信装置100は、送信側DSP(以下、TxDSPと記載)110と、DAC120と、CDM(Coherent Driver Modulator)130と、ITLA(Integrable Tunable Laser Assembly)140と、送信側制御部150とを有する。DAC120は変換部の一例である。ITLA140は光源の一例である。送信側制御部150は第1設定部の一例である。
図2(a)に示すように、TxDSP110は、フレーマ111と、FEC(Forward Error Correction)符号化回路112と、予等化回路113とを有する。予等化回路113は第1補償部の一例である。
【0015】
フレーマ111はデジタル形式である電気的なクライアント信号をクライアントネットワークから受信する。クライアント信号は、例えばイーサネット(登録商標)信号である。クライアント信号は主信号であってもよいし、伝送特性等を調整するパラメータのみを含む制御信号であってもよい。フレーマ111はクライアント信号をクライアントネットワークから受信し、OTU(Optical channel Transport Unit)フレームに変換してFEC符号化回路112に出力する。したがって、FEC符号化回路112にはフレーマ111からOTUフレームが入力される。
【0016】
FEC符号化回路112は、OTUフレームの誤り訂正符号の一例としてFECを生成して、OTUフレームに挿入する。FEC符号化回路112は、OTUフレームを電気的なデータ信号として予等化回路113に出力する。なお、FEC符号化回路112と予等化回路113との間にマッピング回路を設けてもよい。マッピング回路は送信側制御部150から設定されたボーレート(Baud Rate)と変調方式(具体的には多値変調方式)に従ってデジタル変調処理を行うことにより、OTUフレームのビットデータをシンボルにマッピングする。マッピング回路は、デジタル変調処理で得た電気的なデータ信号を予等化回路113に出力する。
【0017】
予等化回路113は、データ信号に対し、光送信装置100内で生ずる各種の損失を後述する第1補償係数に基づき予め補償する。例えば、予等化回路113は、スキュー補償や帯域特性補償などを行う。予等化回路113は、補償後のデータ信号をDAC120に出力する。
【0018】
なお、詳細は後述するが、予等化回路113はデータ信号に対してスケーリングを行う。スケーリングはDAC120の上限値以下にデータ信号のパワー(例えば振幅レベル)を抑制する処理である。具体的には、スケーリングはDAC120の上限値以下にデータ信号のパワーを全体的に下げる処理である。これにより、データ信号のパワーがDAC120の上限値を超える場合に、DAC120の上限値にデータ信号のパワーが部分的に張り付くクリッピングを回避することができる。
【0019】
図1に戻り、DAC120はデータ信号をデジタル形式からアナログ形式に変換してCDM130に出力する。CDM130は、光変調器、偏波ビームスプリッタ、及び偏波ビームコンバイナなどを有する。CDM130は、ITLA140から入力された送信光をH偏波及びV偏波に分離して、データ信号により光変調する。CDM130は、H偏波及びV偏波の変調光を合波することにより光信号を生成して光伝送路300に出力する。このように、光送信装置100はデータ信号を光信号に変換して光受信装置200に向けて送信する。
【0020】
送信側制御部150は、プロセッサとメモリとを含み、
図1に示すように、TxDSP110、CDM130、及びITLA140の各動作を制御する。プロセッサは例えばCPU(Central Processing Unit)を含んでいる。TxDSP110の動作を制御する際には、送信側制御部150は、
図2(a)に示すように、フレーマ111、FEC符号化回路112、及び予等化回路113の動作を制御する。送信側制御部150は、操作端末10(
図1参照)からの制御に従い、フレーマ111、FEC符号化回路112、及び予等化回路113に各種の設定を行う。操作端末10はPC(Personal Computer)であってもよいし、スマート端末(例えばタブレット端末等)であってもよい。送信側制御部150は、フレーマ111にラインレートを設定し、FEC符号化回路112にFECの冗長度を設定する。
【0021】
また、送信側制御部150は上述した第1補償係数を生成し、予等化回路113に対して第1補償係数を設定する。送信側制御部150はこの第1補償係数を第1係数と第2係数とに基づいて生成する。具体的には、送信側制御部150はこの第1補償係数を第1係数と第2係数とを互いに重畳することにより生成する。第1係数はデータ信号の周波数帯域のうち、高周波数側の帯域のパワーを増幅するための係数である。第1係数により光送信装置100内で生ずる損失(例えば帯域特性に起因するシンボル間干渉)を補償することができる。一方、第2係数はデータ信号の周波数帯域のうち、低周波数側の帯域のパワーを増幅するための係数である。第2係数によりデータ信号の信号品質(具体的にはSNR)を光信号の伝送性能の劣化を回避する所定値以上にすることができる。
【0022】
次に、光受信装置200の詳細について説明する。
図1に示すように、光受信装置200は、受信側DSP(以下、RxDSPと記載)210と、ADC(Analogue Digital Converter)220と、ICR(Integrated Coherent Receiver)230と、ITLA240と、受信側制御部250とを有する。ITLA240は光源の一例である。受信側制御部250は第2設定部の一例である。
【0023】
ICR230には、光送信装置100から送信され、光伝送路300を経由した光信号が入力される。ICR230は、偏波ビームスプリッタ及び光-電気変換器などを有する。ICR230は、光信号をH偏波及びV偏波の各成分に分離して、ITLA240から入力された局発光により光信号を受信し、電気的なデータ信号に変換してADC220に出力する。すなわち、光受信装置200は光送信装置100から光伝送路300を介して入力される光信号を受信してデータ信号に変換する。ADC220は、データ信号をアナログ形式からデジタル形式に変換してRxDSP210に出力する。
【0024】
図2(b)に示すように、RxDSP210は、固定等化回路211と、適応等化回路212と、FEC復号化回路213と、デフレーマ214とを有する。固定等化回路211は第2補償部の一例である。
【0025】
固定等化回路211は、データ信号に対し、光送信装置100や光受信装置200、光伝送路300で生じた損失を後述する第2補償係数に基づき固定的に補償する。例えば、固定等化回路211は、波長分散補償、スキュー補償、及び帯域特性補償を行う。固定等化回路211は、補償後のデータ信号を適応等化回路212に出力する。
【0026】
適応等化回路212は、データ信号に対し、光伝送路300上で発生する偏波モード分散や偏波依存性損失により生じた光信号の波形歪みを動的なパラメータに基づいて適応的に補償する。適応等化回路212は補償後のデータ信号をOTUフレームとしてFEC復号化回路213に出力する。なお、適応等化回路212とFEC復号化回路213との間にデマッピング回路を設けてもよい。デマッピング回路はデマッピング処理することによりシンボルを検出してビットデータに変換し、データ信号からOTUフレームを復調する回路である。
【0027】
FEC復号化回路213は、OTUフレームからFECを取り出してデータ誤り訂正を行う。FEC復号化回路213は、OTUフレームをデフレーマ214に出力する。デフレーマ214はFEC復号化回路213からOTUフレームを受信し、クライアント信号に変換してクライアントネットワークに送信する。
【0028】
受信側制御部250は、プロセッサとメモリとを含み、
図1に示すように、RxDSP210、ICR230、及びITLA240の各動作を制御する。RxDSP210の動作を制御する際には、受信側制御部250は、
図2(b)に示すように、固定等化回路211、適応等化回路212、FEC復号化回路213、及びデフレーマ214の動作を制御する。受信側制御部250は、操作端末10(
図1参照)からの制御に従い、固定等化回路211、適応等化回路212、FEC復号化回路213、及びデフレーマ214に各種の設定を行う。
【0029】
また、受信側制御部250は上述した第2補償係数を生成し、固定等化回路211に対して第2補償係数を設定する。受信側制御部250はこの第2補償係数を第3係数と第4係数とに基づいて生成する。具体的には、受信側制御部250はこの第2補償係数を第3係数と第4係数とを互いに重畳することにより生成する。第3係数はデータ信号を増幅するための係数である。第3係数により光受信装置200内や光伝送路300内で生ずる損失を補償することができる。第4係数は第2係数とは逆の増幅特性に基づきデータ信号を増幅(即ち減衰)するための係数である。第4係数により信号品質を一時的に改善することを目的に採用した第2係数を相殺させることができる。
【0030】
このように、第2係数に基づき光送信装置100側で低周波数側の帯域のパワーを増幅して、データ信号の信号品質を所定値以上とし、光受信装置200側で第2係数とは逆の増幅特性を有する第4特性に基づきデータ信号の信号品質を元に戻すため、信号全体の特性改善を図ることができる。
【0031】
次に、
図3から
図11を参照して、第1実施形態に係る送信側制御部150の詳細について説明する。
【0032】
まず、
図3に示すように、送信側制御部150は、第1テーブル151、モード設定部152、及び目標設定部153を含んでいる。また、送信側制御部150は、第1選択部154、第1生成部155、及び第1重畳部156を含んでいる。第1テーブル151は、
図4に示すように、動作モード番号、ボーレート、変調方式、及び第1係数を互いに関連付けて含んでいる。第1テーブル151における動作モード番号は光送信装置100の動作モードを識別する識別子である。動作モード番号が指定されると、指定された動作モード番号に関連付けられたボーレート、変調方式、及び第1係数を決定することができる。これにより、指定された動作モード番号に応じたボーレート、変調方式、及び第1係数で光送信装置100を動作させることができる。なお、動作モード番号を設けずに、ボーレート及び変調方式の少なくとも一方を指定し、指定したボーレート及び変調方式の少なくとも一方に応じて第1係数を決定してもよい。
【0033】
図5に示すように、モード設定部152は操作端末10からの制御に従い動作モード番号を自身に設定する(ステップS1)。動作モード番号が設定されると、目標設定部153は操作端末10からの制御に従い増幅目標値を自身に設定する(ステップS2)。増幅目標値は増幅させる低周波数側の帯域のパワーの目標値である。ステップS1とS2の処理は同じタイミングであってもよいし、異なるタイミングであってもよい。
【0034】
増幅目標値が設定されると、第1選択部154はモード設定部152に設定された動作モード番号に応じた第1係数をボーレート及び変調方式と共に第1テーブル151から選択する(ステップS3)。第1選択部154は選択したボーレート、変調方式、及び第1係数を第1重畳部156に出力する。第1係数については、第1選択部154は第1生成部155にも出力する。第1選択部154から第1係数が出力されると、第1生成部155は目標設定部153に設定された増幅目標値と第1係数とに基づいて第2係数を生成する(ステップS4)。
【0035】
具体的には、
図6に示すように、まず、第1生成部155は第1係数の特性を正規化する。正規化は第1係数における最大パワーを「0(ゼロ)」とするように第1係数の特性を全体的に下げる処理である。DAC120の上限値とするように正規化するようにしてもよい。第1係数の特性を正規化すると、第1生成部155は周波数成分ごとにパワー「0」を基準とした相対的な減衰量を算出する。
【0036】
次に、
図7に示すように、第1生成部155は第1係数に対する正規化と同様に増幅目標値の特性を正規化する。具体的には、第1生成部155は第1係数の特性の減衰量と同じ減衰量で増幅目標値の特性を周波数成分毎に全体的に減衰する。これにより、パワー「0」より低い正規化後の増幅目標値の特性を得る。正規化後の増幅目標値の特性を得ると、第1生成部155は正規化後の増幅目標値と正規化後の第1係数との差分(正規化後の増幅目標値-正規化後の第1係数)を周波数成分毎に算出する。ここで、正規化後の増幅目標値が正規化後の第1係数以下となった場合(即ち差分≦0)には、第1生成部155は正規化後の増幅目標値として正規化後の第1係数を採用する。これにより、第1生成部155は高周波側に正規化後の第1係数を部分的に含む正規化後の増幅目標値の特性を得る。なお、正規化後の増幅目標値が正規化後の第1係数を上回っている周波数帯域(即ち差分>0)を、本明細書では低周波数帯域と記載する。
【0037】
次に、
図8に示すように、第1生成部155は差分から第1係数を差し引いて(即ち差分-正規化前の第1係数)、第2係数を生成する。言い換えれば、第1生成部155は差分から第1係数を差し引いた特性を第2係数の特性として生成する。
【0038】
なお、第2係数の特性がパワー「0」を下回る場合、第1生成部155は第2係数の特性をパワー「0」に固定する。仮に第2係数の特性がパワー「0」を下回ると、第2係数によるデータ信号の信号品質が所定値未満となる可能性がある。第2係数の特性をパワー「0」に固定することで、この可能性を回避することができる。第1生成部155は生成した第2係数を第1重畳部156に出力する。なお、操作端末10は第1生成部155にアクセスして第2係数を参照したり、第1生成部155から第2係数を取得したりすることができる。
【0039】
図5に戻り、第1重畳部156は、第1選択部154から出力された第1係数と、第1生成部155から出力された第2係数を重畳する(ステップS5)。第1重畳部156は第1係数と第2係数を互いに重畳することにより上述した第1補償係数を生成する。第1補償係数を生成すると、第1重畳部156は第1補償係数をTxDSP110の予等化回路113に設定し(ステップS6)、処理を終了する。
【0040】
これにより、
図9に示すように、例えばデータ信号が主信号であって、光送信装置100の帯域幅が主信号に対して不足している場合に、主信号に対し、第1係数と第2係数を重畳することにより生成した第1補償係数を適用することができる。ここで、第1係数は帯域のパワーの上向きのピークが高周波数側にあり、光送信装置100内で生ずる帯域特性に起因するシンボル間干渉等の損失を補償する。一方、第2係数は第1係数のピークより低周波数側の一部の帯域で周波数が低くなるに従って帯域のパワーが増加し、スケーリングに起因する低周波帯域側での信号品質の低下を補償する。したがって、第2係数の特性は光送信装置100の帯域幅で相殺されずに残存し、
図10に示すように、残存した第2係数が主信号に適用された出力信号が光信号として光送信装置100から出力される。なお、第1重畳部156は第1選択部154から出力されたボーレート及び変調方式をTxDSP110のマッピング回路(不図示)に設定する。設定されたボーレート及び変調方式は主信号の送信に用いられる。
【0041】
ここで、
図11(a)乃至(c)を参照して、上述したクリッピング及びスケーリングについて説明する。
【0042】
まず、
図11(a)に示すように、DAC120には出力できる電気的なデータ信号のパワーに上限値がある。例えば第1係数補償後の主信号の特性がこの上限値以上になる場合、
図11(b)に示すように、上限値以上の主信号部分はその本来の特性に関わらずに、その上限値に張り付くクリッピングが発生する。クリッピングによって主信号の特性が元の特性と比べて変化するため、主信号の信号品質が劣化する。
【0043】
クリッピングを回避するために、
図11(c)に示すように、予等化回路113内で主信号の特性をクリッピングが発生しない水準にまでパワーを低減するスケーリングを行ってからDAC120に入力することも想定される。しかしながら、スケーリング後の主信号はDAC120の雑音との関係で主信号の伝送性能が劣化する場合がある。具体的には、低周波帯域において、スケーリング前の主信号であれば、主信号とDAC120の雑音とのSNRは主信号の伝送性能の劣化を無視できる程度に十分に高い値を確保することができる。ところが、スケーリング後の主信号の場合、主信号とDAC120の雑音とのSNRは低下して主信号の伝送性能が劣化する。このため、本実施形態では、主信号といったデータ信号の低周波帯域の特性を第2係数により改善している。
【0044】
次に、
図12から
図16を参照して、第1実施形態に係る受信側制御部250の詳細について説明する。
【0045】
まず、
図12に示すように、受信側制御部250は、第2テーブル251、モード設定部252、及び係数設定部253を含んでいる。また、受信側制御部250は、第2選択部254、第2生成部255、及び第2重畳部256を含んでいる。第2テーブル251は、
図13に示すように、動作モード番号、ボーレート、変調方式、及び第3係数を互いに関連付けて含んでいる。第2テーブル251における動作モード番号は光受信装置200の動作モードを識別する識別子である。動作モード番号が指定されると、指定された動作モード番号に関連付けられたボーレート、変調方式、及び第3係数を決定することができる。これにより、指定された動作モード番号に応じたボーレート、変調方式、及び第3係数で光受信装置200を動作させることができる。なお、動作モード番号を設けずに、ボーレート及び変調方式の少なくとも一方を指定し、指定したボーレート及び変調方式の少なくとも一方に応じて第3係数を決定してもよい。
【0046】
図14に示すように、モード設定部252は操作端末10からの制御に従い動作モード番号を自身に設定する(ステップS11)。動作モード番号が設定されると、係数設定部253は操作端末10からの制御に従い第2係数を自身に設定する(ステップS12)。なお、第2係数の設定については、操作端末10が送信側制御部150に対する設定を終えた後に、操作端末10が送信側制御部150(具体的には第1生成部155)から第2係数を取得すればよい。操作端末10を光送信装置100から光受信装置200に接続し直すことにより、操作端末10は第2係数を係数設定部253に設定することができる。ステップS11とS12の処理は同じタイミングであってもよいし、異なるタイミングであってもよい。
【0047】
モード設定部252に動作モード番号が設定されると、第2選択部254は設定された動作モード番号に応じた第3係数をボーレート及び変調方式と共に第2テーブル251から選択する(ステップS13)。
図15に示すように、第3係数は第1係数のピークより低周波数側の一部の帯域で周波数が低くなるに従って帯域のパワーが減少する。第2選択部254は選択したボーレート、変調方式、及び第3係数を第2重畳部256に出力する。
【0048】
係数設定部253に第2係数が設定されると、第2生成部255は第2係数に基づいて第4係数を生成する(ステップS14)。具体的には、
図15に示すように、第2生成部255は第2係数の特性とは逆の増幅特性に基づいて第4係数を生成する。言い換えれば、第2生成部255は第2係数の特性とは逆の増幅特性を第4係数の特性として生成する。第2生成部255は生成した第4係数を第2重畳部256に出力する。なお、ステップS13とS14の処理は同じタイミングであってもよいし、異なるタイミングであってもよい。
【0049】
図14に戻り、第2重畳部256は、第2選択部254から出力された第3係数と、第2生成部255から出力された第4係数を重畳する(ステップS15)。第2重畳部256は第3係数と第4係数を互いに重畳することにより上述した第2補償係数を生成する。第2補償係数を生成すると、第2重畳部256は第2補償係数をRxDSP210の固定等化回路211に設定し(ステップS16)、処理を終了する。
【0050】
これにより、
図15に示すように、例えばデータ信号が主信号であって、光受信装置200の帯域幅が主信号に対して不足している場合に、主信号に対し、第3係数と第4係数を重畳することにより生成した第2補償係数を適用することができる。第3係数により光受信装置200内や光伝送路300内で生ずる帯域特性に起因するシンボル間干渉等の損失を補償することができる。第4係数により信号品質を一時的に改善することを目的に採用した第2係数を相殺させることができる。したがって、
図16に示すように、第2補償係数が主信号に適用された出力信号がクライアント信号として光受信装置200から出力される。なお、第2重畳部256は第2選択部254から出力されたボーレート及び変調方式をRxDSP210のデマッピング回路(不図示)に設定する。
【0051】
以上、第1実施形態によれば、DAC120が出力できる電気的な信号のパワーの特性に上限値がある場合に、スケーリングといった正規化を実施しても、低周波帯域において信号品質が低下せず、光信号の伝送特性を向上することができる。
【0052】
(第2実施形態)
次に、
図17乃至
図21を参照して、本件の第2実施形態について説明する。上述した第1実施形態では、送信側制御部150で第2係数を生成し、操作端末10を介してその第2係数を受信側制御部250で利用して第4係数を生成することを説明した。第2実施形態では、送信側制御部150で生成した第2係数を光送信装置100から光受信装置200に送信し、受信した第2係数を受信側制御部250で利用して第4係数を生成する。
【0053】
まず、
図17乃至
図19を参照して、第2実施形態に係る送信側制御部150の構成及び動作について説明する。なお、
図17において、第1実施形態に係る送信側制御部150と同様の構成には同一符号を付し、その説明を省略する。
【0054】
図17に示すように、第2実施形態に係る送信側制御部150は、情報生成部157をさらに含む点で第1実施形態と相違する。情報生成部157は、
図18に示すように、周波数変調設定部161、多値度設定部162、ボーレート設定部163、及び統合部164を含んでいる。
【0055】
第1生成部155は生成した第2係数を統合部164に出力する。周波数変調設定部161は、操作端末10からの制御に従い、送信周波数の周波数変調の使用の有無を自身に設定する。多値度設定部162は、操作端末10からの制御に従い、主信号に用いる多値度より低い多値度を自身に設定する。ボーレート設定部163は、操作端末10からの制御に従い、主信号に用いるボーレートより低いボーレートを自身に設定する。なお、これらの各種設定は、動作モード番号の設定や増幅目標値の設定と同じタイミングであってもよいし、異なるタイミングであってもよい。
【0056】
統合部164は、周波数変調設定部161に周波数変調を使用する旨が設定されている場合、周波数変調を使用する旨とボーレート設定部163に設定されたボーレートのいずれか一方又は両方の情報と第2係数の情報とを統合した送信情報を生成する。統合部164は、周波数変調設定部161に周波数変調を使用しない旨が設定されている場合、多値度設定部162に設定された多値度とボーレート設定部163に設定されたボーレートのいずれか一方又は両方の情報と第2係数の情報とを統合した送信情報を生成する。
【0057】
統合部164は生成した送信情報をTxDSP150の予等化回路113に出力する。予等化回路113は、送信情報に基づき、送信情報を含む電気的な制御信号を生成し、DAC120に出力する。これにより、主信号とは異なる設定の制御信号が光送信装置100から送信される。このため、光受信装置200は制御信号と主信号とを識別することができる。なお、周波数変調を使用する場合、周波数変調がQPSK(Quadrature Phase Shift Keying)といった位相変調と両立しないため、多値度の利用を回避している。
【0058】
図19に示すように、第1重畳部156がステップS6の処理を実行すると、情報生成部157は上述したように送信情報を生成し(ステップS21)、予等化回路113に出力する。予等化回路113は送信情報を含む制御信号を生成し(ステップS22)、DAC120に出力する。CDM130はDAC120に出力された制御信号に基づいて制御信号に応じた光信号に変換し、光受信装置200に向けて送信する(ステップS23)。このように、光送信装置100は制御信号を光受信装置200に送信する。
【0059】
次に、
図20及び
図21を参照して、第2実施形態に係る受信側制御部250の構成及び動作について説明する。なお、
図20において、第1実施形態に係る受信側制御部250と同様の構成には同一符号を付し、その説明を省略する。
【0060】
第2実施形態に係る受信側制御部250は、情報抽出部257をさらに含む点で第1実施形態と相違する。情報抽出部257は、光受信装置200(具体的にはICR230)が受信した光信号に応じた制御信号に基づいて固定等化回路211でデジタル復調した後の送信情報を抽出する。情報抽出部257は抽出した送信情報から第2係数を第2生成部255に出力する。これにより、第1実施形態と同様に、第2生成部255は第2係数に基づいて第4係数を生成することができる。
【0061】
図21に示すように、第2選択部254がステップS13の処理を実行すると、ICR230は制御信号に応じた光信号を受信する(ステップS31)。ICR230が光信号を受信すると、情報抽出部257は光信号に応じた制御信号から送信情報を抽出し(ステップS32)、第2係数を第2生成部255に出力する(ステップS33)。これにより、第2生成部255はステップS14の処理を実行することができる。
【0062】
以上、第2実施形態によれば、光送信装置100で生成した第2係数を光受信装置200に改めて設定し直さなくても、光受信装置200は光送信装置100から送信された第2係数に基づいて第4係数を生成することができる。このため、操作端末10を操作する設定担当者の設定負担を抑えることができる。また、光受信装置200による第2係数の設定処理を省略することで処理負荷を抑えることができる。
【0063】
(第3実施形態)
次に、
図22乃至
図27を参照して、本件の第3実施形態について説明する。上述した第1実施形態では、送信側制御部150で第2係数を生成し、操作端末10を介してその第2係数を受信側制御部250で利用して第4係数を生成することを説明した。第3実施形態では、送信側制御部150で第2係数を生成せずに、第1係数に初期設定で事前(例えば装置製造時等)に関連付けた第2係数を利用する。また、受信側制御部250では第2係数に基づいて第4係数を生成せずに、第3係数に初期設定で事前に関連付けた第4係数を利用する。
【0064】
まず、
図22乃至
図24を参照して、第3実施形態に係る送信側制御部150の構成及び動作について説明する。なお、
図22において、第1実施形態に係る送信側制御部150と同様の構成には同一符号を付し、その説明を省略する。
【0065】
図22に示すように、第3実施形態に係る送信側制御部150は、目標設定部153と第1生成部155を含まずに、第3選択部158をさらに含む点で第1実施形態と相違する。また、
図23に示すように、第3実施形態に係る第1テーブル151は第1係数に第2係数を関連付けている点で第1実施形態と相違する。第3選択部158はモード設定部152に設定された動作モード番号に応じた第2係数を第1テーブル151から選択する。第3選択部158は選択した第2係数を第1重畳部156に出力する。これにより、第1重畳部156は、第1選択部154から出力された第1係数と、第3選択部158から出力された第2係数を重畳することができる。すなわち、第1重畳部156は第1補償係数を生成することができる。
【0066】
図24に示すように、第1選択部154がステップS3の処理を実行すると、第3選択部158は上述したように第2係数を選択し(ステップS41)、第1重畳部156に出力する。これにより、第1重畳部156はステップS5の処理を実行することができる。
【0067】
次に、
図25乃至
図27を参照して、第3実施形態に係る受信側制御部250の構成及び動作について説明する。なお、
図25において、第1実施形態に係る受信側制御部250と同様の構成には同一符号を付し、その説明を省略する。
【0068】
図25に示すように、第3実施形態に係る受信側制御部250は、係数設定部253と第2生成部255を含まずに、第4選択部258をさらに含む点で第1実施形態と相違する。また、
図26に示すように、第3実施形態に係る第2テーブル251は第3係数に第4係数を関連付けている点で第1実施形態と相違する。第4選択部258はモード設定部252に設定された動作モード番号に応じた第4係数を第2テーブル251から選択する。第4選択部258は選択した第4係数を第2重畳部256に出力する。これにより、第2重畳部256は、第2選択部254から出力された第3係数と、第4選択部258から出力された第4係数を重畳することができる。すなわち、第2重畳部256は第2補償係数を生成することができる。
【0069】
図27に示すように、第2選択部254がステップS13の処理を実行すると、第4選択部258は上述したように第4係数を選択し(ステップS51)、第2重畳部256に出力する。これにより、第2重畳部256はステップS15の処理を実行することができる。
【0070】
以上、第3実施形態によれば、光送信装置100に対する増幅目標値の設定を実施しなくても、動作モード番号に応じて第2係数を特定して第1係数との重畳利用することができる。また、光受信装置200に対する第2係数の設定を実施しなくても、動作モード番号に応じて第4係数を特定して第3係数との重畳利用することができる。このため、操作端末10を操作する設定担当者の設定負担を抑えることができる。また、光送信装置100による増幅目標値の設定処理を省略し、光受信装置200による第2係数の設定処理を省略することで処理負荷を抑えることができる。
【0071】
以上、本発明の好ましい実施形態について詳述したが、本発明に係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0072】
ST 光送受信システム
100 光送信装置
113 予等化回路(第1補償部)
150 送信側制御部(第1設定部)
200 光受信装置
211 固定等化回路(第2補償部)
250 受信側制御部(第2設定部)