(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-01-13
(54)【発明の名称】パターン化薄膜の照明による局所加熱のための方法およびシステム
(51)【国際特許分類】
C12M 1/34 20060101AFI20220105BHJP
C12M 1/00 20060101ALI20220105BHJP
C12Q 1/68 20180101ALI20220105BHJP
【FI】
C12M1/34 Z
C12M1/00 A
C12Q1/68
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021520337
(86)(22)【出願日】2019-10-15
(85)【翻訳文提出日】2021-05-31
(86)【国際出願番号】 US2019056398
(87)【国際公開番号】W WO2020081612
(87)【国際公開日】2020-04-23
(32)【優先日】2018-10-16
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】520356364
【氏名又は名称】クリプトス バイオテクノロジーズ,インコーポレイテッド
(74)【代理人】
【識別番号】100137969
【氏名又は名称】岡部 憲昭
(74)【代理人】
【識別番号】100104824
【氏名又は名称】穐場 仁
(74)【代理人】
【識別番号】100121463
【氏名又は名称】矢口 哲也
(72)【発明者】
【氏名】ソ,オースティン
(72)【発明者】
【氏名】ソン,ジュン ホ
【テーマコード(参考)】
4B029
4B063
【Fターム(参考)】
4B029AA07
4B029BB20
4B029FA12
4B029FA15
4B029GA08
4B029GB03
4B029GB04
4B063QA11
4B063QQ42
4B063QQ52
4B063QR32
4B063QR55
4B063QR62
4B063QS25
4B063QS34
4B063QS36
(57)【要約】
本開示は、ハウジング部品と、ハウジング部品によって画定された反応室と、反応室を画定するハウジング部品の内向面の一部に一致する光吸収層であって、光吸収層が複数の不連続領域を備える、光吸収層とを含む様々な反応容器構成を記載する。エネルギー源は、不連続領域を加熱して最終的に反応室内の溶液を加熱するように、光吸収層の不連続領域のうちの1つまたは複数に光を導いてもよい。
【選択図】
図7A
【特許請求の範囲】
【請求項1】
ハウジング部品と、
前記ハウジング部品によって画定された反応室と、
前記反応室を画定する前記ハウジング部品の内向面の一部に一致する光吸収層であって、前記光吸収層が複数の不連続領域を含む、光吸収層と
を含む反応容器と、
前記光吸収層の前記複数の不連続領域のうちの1つまたは複数の不連続領域において前記ハウジング部品の少なくとも一部を介して光を導くように構成された第1のエネルギー源と
を備える反応容器システム。
【請求項2】
前記ハウジング部品が、前記複数の不連続領域のうちの2つ以上の異なる不連続領域の間で溶液を導くように構成された流路を画定する、請求項1に記載の反応容器システム。
【請求項3】
前記複数の不連続領域が、前記流路の異なるセグメントに一致し、前記流路の異なるセグメントに沿って配置される、請求項2に記載の反応容器システム。
【請求項4】
前記光吸収層が、前記ハウジング部品の前記内向面上にめっきされた薄い金属膜を含む、請求項1~3のいずれか一項に記載の反応容器システム。
【請求項5】
前記反応容器システムが第2のエネルギー源をさらに備え、前記複数の不連続領域のうちの第1の不連続領域が前記第1のエネルギー源から光を受け取るように構成され、前記複数の不連続領域のうちの第2の不連続領域が前記第2のエネルギー源から光を受け取るように構成される、請求項1~4のいずれか一項に記載の反応容器システム。
【請求項6】
前記第1のエネルギー源が、近赤外光または紫外線A光を放出するように構成された発光ダイオードである、請求項1~5のいずれか一項に記載の反応容器システム。
【請求項7】
前記複数の不連続領域の各不連続領域が、前記反応室内に配置された溶液と直接接触している、請求項1~6のいずれか一項に記載の反応容器システム。
【請求項8】
第1の不連続領域が、第2の不連続領域から第1の距離だけ離間している、請求項1~7のいずれか一項に記載の反応容器システム。
【請求項9】
前記第1の不連続領域は、前記反応容器システム内の溶液が前記第1の不連続領域と前記第2の不連続領域との間を流れることを物理的障壁によって阻害されないように、前記第2の不連続領域に流体的に結合される、請求項8に記載の反応容器システム。
【請求項10】
前記第1のエネルギー源は、前記第1のエネルギー源からの光の大部分が前記第2の不連続領域に向かうよりも前記第1の不連続領域に向かうように、オフセット位置に配置される、請求項8または9に記載の反応容器システム。
【請求項11】
第1の不連続領域と第2の不連続領域との間に位置する反射器要素をさらに備え、前記反射器要素は、前記第1のエネルギー源からの光の一部を前記第1の不連続領域に向けて反射するように構成される、請求項1~10のいずれか一項に記載の反応容器システム。
【請求項12】
第1の不連続領域と第2の不連続領域との間に位置する反射器要素をさらに備え、前記反射器要素は、前記第1のエネルギー源からの光の大部分が前記第2の不連続領域に向かうよりも前記第1の不連続領域に向かうように、オフセット位置に配置される、請求項1~11のいずれか一項に記載の反応容器システム。
【請求項13】
溶液を受け入れるための入口ポートと、
前記入口ポートに接続され、前記入口ポートを通して前記溶液を流す流路と、
複数の不連続領域を含む光吸収層であって、前記不連続領域の各々は、前記流路のセグメントに隣接し、前記不連続領域は、エネルギー源からの光エネルギーを吸収するように構成される、光吸収層と、
反応容器から前記溶液を除去するための出口ポートと
を備える反応容器。
【請求項14】
前記流路の少なくとも一部が、前記反応容器内に蛇行パターンで配置される、請求項13に記載の反応容器。
【請求項15】
前記不連続領域が、前記反応容器の対向する端部付近の前記反応容器の単一表面上に配置される、請求項13または14に記載の反応容器。
【請求項16】
前記流路が、前記溶液の一部を第1の不連続領域に隣接する前記流路の第1のセグメントから第2の不連続領域に隣接する前記流路の第2のセグメントに導くように構成され、前記第1の不連続領域が、前記溶液の一部が前記第1のセグメント内にあるときに前記溶液の一部に第1の熱量を伝達するように構成され、前記第2の不連続領域が、前記溶液の一部が前記第2のセグメント内にあるときに前記溶液の一部に第2の熱量を伝達するように構成される、請求項13~15のいずれか一項に記載の反応容器。
【請求項17】
前記流路が、前記第1のセグメントと前記第2のセグメントとの間に介在セグメントを含み、前記介在セグメントは、前記溶液の一部が前記介在セグメント内にあるときに前記溶液の一部を冷却させるように構成される、請求項16に記載の反応容器。
【請求項18】
前記第1の不連続領域は第1の金属膜を含み、前記第2の不連続領域は第2の金属膜を含み、前記第1の金属膜は前記第2の金属膜よりも厚く、前記第1の熱量は前記第2の熱量よりも大きい、請求項16または17に記載の反応容器。
【請求項19】
前記第1の不連続領域は第1の金属膜を含み、前記第2の不連続領域は第2の金属膜を含み、前記第1の金属膜は第1の温度プロファイルを有する第1の組成物から構成され、前記第2の金属膜は第2の温度プロファイルを有する第2の組成物から構成され、前記第1の熱量は前記第2の熱量よりも大きい、請求項16~18のいずれか一項に記載の反応容器。
【請求項20】
第1の不連続領域と第2の不連続領域との間に位置する反射器要素をさらに備え、前記反射器要素は、前記エネルギー源からの前記光エネルギーの大部分が前記第2の不連続領域に向かうよりも前記第1の不連続領域に向かうように、オフセット位置に配置される、請求項16~19のいずれか一項に記載の反応容器。
【請求項21】
前記複数の不連続領域が、前記流路の異なるセグメントに一致し、前記流路の異なるセグメントに沿って配置される、請求項13~20のいずれか一項に記載の反応容器。
【請求項22】
前記光吸収層が、前記反応容器の内向面上に堆積された薄い金属膜を含む、請求項13~21のいずれか一項に記載の反応容器。
【請求項23】
前記流路の第1のセグメントが第1の平均断面積を有し、第2のセグメントが第2の平均断面積を有し、前記溶液が前記第2のセグメントよりもゆっくりと前記第1のセグメントを通って流れるように前記第1の平均断面積が前記第2の平均断面積よりも大きい、請求項13~22のいずれか一項に記載の反応容器。
【請求項24】
反応室内に溶液を受け入れるための入口ポートであって、前記反応室が外周を形成する1つまたは複数の壁によって画定される、入口ポートと、
前記外周内に配置された複数の不連続領域を含む光吸収層であって、前記不連続領域は、エネルギー源からの光エネルギーを吸収するように構成され、前記不連続領域は、前記溶液が物理的障壁によって前記不連続領域間を流れることを阻害されないように流体的に結合される、光吸収層と、
前記反応容器から前記溶液を除去するための出口ポートと
を備える反応容器。
【請求項25】
前記光吸収層は、前記不連続領域が前記溶液と直接接触するように構成されるように、前記反応容器の内向面上に堆積された薄い金属膜を含む、請求項24に記載の反応容器。
【請求項26】
前記溶液が前記不連続領域に直接接触しないように前記光吸収層を覆う基板をさらに備える、請求項24または25に記載の反応容器。
【請求項27】
前記複数の不連続領域は、第1の不連続領域と第2の不連続領域とを含み、前記第1の不連続領域は第1の金属膜を含み、前記第2の不連続領域は第2の金属膜を含み、前記第1の金属膜は前記第2の金属膜よりも厚く、それにより前記第1の不連続領域は前記第2の不連続領域とは異なる温度プロファイルを有する、請求項24~26のいずれか一項に記載の反応容器。
【請求項28】
前記複数の不連続領域は、第1の不連続領域と第2の不連続領域とを含み、前記第1の不連続領域は第1の金属膜を含み、前記第2の不連続領域は第2の金属膜を含み、前記第1の金属膜は第1の温度プロファイルを有する第1の組成物から構成され、前記第2の金属膜は第2の温度プロファイルを有する第2の組成物から構成され、前記第1の温度プロファイルは前記第2の温度プロファイルとは異なる、請求項24~27のいずれか一項に記載の反応容器。
【請求項29】
前記反応容器が、上部ハウジング部品と下部ハウジング部品とによって少なくとも部分的に画定され、前記複数の不連続領域が、前記上部ハウジング部品の内向面上に堆積された複数の上部不連続領域と、前記下部ハウジング部品の内向面上に堆積された複数の下部不連続領域とを含む、請求項24~28のいずれか一項に記載の反応容器。
【請求項30】
特定の上部不連続領域が特定の下部不連続領域に直接対向して配置され、それにより、前記特定の上部不連続領域および前記特定の下部不連続領域が閾値温度まで加熱されると、前記溶液の一部の分子が前記特定の上部および下部不連続領域によって画定される領域内に熱的に閉じ込められる、請求項29に記載の反応容器。
【請求項31】
前記複数の不連続領域のうちの第1の不連続領域が、1つまたは複数のヌクレオチド配列に結合するように構成されている、請求項24~30のいずれか一項に記載の反応容器。
【請求項32】
前記第1の不連続領域が、弱い共有結合相互作用を介して前記ヌクレオチド配列に結合するように構成されている、請求項31に記載の反応容器。
【請求項33】
前記第1の不連続領域が金膜を含み、前記弱い共有結合相互作用がAu-チオール結合を含む、請求項32に記載の反応容器。
【請求項34】
反応容器を動作させる方法であって、前記方法が、
前記反応容器の入口ポートを介して前記反応容器内に溶液を受け入れるステップと、
前記溶液を、光吸収層の複数の不連続領域にわたって前記反応容器を通して流すステップと、
前記光吸収層の前記複数の不連続領域のうちの第1の不連続領域に第1の光を導き、前記第1の光からのエネルギーを前記第1の不連続領域によって吸収させるステップと、
前記第1の不連続領域に隣接する前記溶液の一部を加熱するステップと
を含む、方法。
【請求項35】
第2の光からのエネルギーを第2の不連続領域によって吸収させるために、前記第2の光を前記第2の不連続領域に導くステップをさらに含む、請求項34に記載の方法。
【請求項36】
前記第1の光は第1の光源からの光であり、前記第2の光は第2の光源からの光であり、前記第2の光源は前記第1の光源よりも低い電力レベルに設定される、請求項35に記載の方法。
【請求項37】
前記第1の光および前記第2の光は第1の光源からの光であり、前記第1の光源は、前記第2の不連続領域よりも前記第1の不連続領域に近接するように配置される、請求項35に記載の方法。
【請求項38】
前記第1の不連続領域および前記第2の不連続領域は、前記反応容器の第1の内向領域に沿って配置される、請求項35~37のいずれか一項に記載の方法。
【請求項39】
前記第1の不連続領域および前記第2の不連続領域は、前記溶液が物理的障壁によって前記不連続領域間の流れを阻害されないように流体的に結合される、請求項35~38のいずれか一項に記載の方法。
【請求項40】
前記溶液を前記反応容器を通して流すステップが、前記溶液を、前記第1の不連続領域に隣接する第1のセグメントと前記第2の不連続領域に隣接する第2のセグメントとを有する流路を通して流すステップを含み、前記第1の不連続領域は前記第2の不連続領域から離間している、請求項35~38のいずれか一項に記載の方法。
【請求項41】
前記反応容器は、上部ハウジング部品および下部ハウジング部品によって少なくとも部分的に画定され、前記複数の不連続領域は、前記上部ハウジング部品の内向面上に堆積された複数の上部不連続領域と、前記下部ハウジング部品の内向面上に堆積された複数の下部不連続領域とを含む、請求項34~40のいずれか一項に記載の方法。
【請求項42】
特定の上部不連続領域が特定の下部不連続領域に直接対向して配置される請求項41に記載の方法であって、前記方法がさらに、
前記特定の上部不連続領域を第1の閾値温度に到達させるために、前記第1の光を前記特定の上部不連続領域に向けるステップと、
前記特定の下部不連続領域を第2の閾値温度に到達させるために、第2の光を前記特定の下部不連続領域に向けるステップと、
その結果、前記溶液の一部の分子が、前記特定の上部不連続領域および前記特定の下部不連続領域によって画定される領域内に熱的に閉じ込められるステップと
を含む、方法。
【請求項43】
弱い共有結合相互作用を介して前記第1の不連続領域に1つまたは複数のヌクレオチド配列を結合させるステップをさらに含む、請求項34~42のいずれか一項に記載の方法。
【請求項44】
前記第1の不連続領域が金膜を含み、前記弱い共有結合相互作用がAu-チオール結合を含む、請求項43に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]関連出願の相互参照
本出願は、2018年10月16日に出願された「METHOD AND SYSTEM FOR LOCALIZED HEATING BY ILLUMINATION OF PATTERNED THIN FILMS」と題する米国仮特許出願第62/746,490号の優先権を主張し、その開示は、あらゆる目的のためにその全体が参照により本明細書に組み込まれる。
【背景技術】
【0002】
[0002]反応容器は、ポリメラーゼ連鎖反応(PCR)およびDNA配列決定などの操作を含み得るDNA鎖に対する様々な操作を行うために使用されることが多い。ポリメラーゼ連鎖反応(PCR)は、臨床検査室、農業科学、環境科学および法医学の分野において不可欠な技術となっている。PCRは、特定の核酸標的配列を増幅するために、熱サイクル、または2つまたは3つの別個の温度間の反復温度変化を必要とする。そのような熱サイクルを達成するために、従来のベンチトップ型サーマルサイクラーは、一般に、ペルチェ素子によって電力供給される金属加熱ブロックを使用する。残念なことに、反応容器内で材料を熱サイクルさせるこの方法は、所望よりも遅くなり得る。少なくともこれらの理由から、熱サイクルの速度および/または信頼性を改善する代替手段が望ましい。
【発明の概要】
【課題を解決するための手段】
【0003】
[0003]本開示は、反応容器と共に使用するのに適した方法、システム、および装置に関する。
【0004】
[0004]反応容器システムが開示されており、反応容器であって、ハウジング部品と、ハウジング部品によって画定された反応室と、反応室を画定するハウジング部品の内向面の一部に一致する光吸収層であって、複数の不連続領域を含む光吸収層とを含み得る、反応容器と、光吸収層の複数の不連続領域のうちの1つまたは複数の不連続領域においてハウジング部品の少なくとも一部を介して光を導くように構成された第1のエネルギー源(例えば、例えば可視光、赤外光、紫外線A光などを放射するように構成された発光ダイオード)とを含む。いくつかの実施形態では、反応容器のハウジング部品は、複数の不連続領域のうちの2つ以上の異なる不連続領域の間に溶液を導くように構成された流路を画定してもよい。いくつかの実施形態では、複数の不連続領域は、流路の異なるセグメントに一致してもよく、流路の異なるセグメントに沿って配置されてもよい。いくつかの実施形態では、光吸収層は、ハウジング部品の内向面上に形成または堆積(例えば、めっき)された薄い金属膜を含んでもよい。
【0005】
[0005]いくつかの実施形態では、反応容器アセンブリは、第2のエネルギー源をさらに含んでもよい。複数の不連続領域のうちの第1の不連続領域は、第1のエネルギー源から光を受け取るように構成されてもよく、複数の不連続領域のうちの第2の不連続領域は、第2のエネルギー源から光を受け取るように構成されてもよい。
【0006】
[0006]いくつかの実施形態では、複数の不連続領域の各不連続領域は、反応室内に配置された溶液と直接接触してもよい。
【0007】
[0007]いくつかの実施形態では、第1の不連続領域は、第2の不連続領域から第1の距離だけ離間していてもよい。いくつかの実施形態では、第1の不連続領域は、反応容器システム内の溶液が第1の不連続領域と第2の不連続領域との間を流れることを物理的障壁によって阻害されないように、第2の不連続領域に流体的に結合されてもよい。いくつかの実施形態では、第1のエネルギー源は、第1のエネルギー源からの光の大部分が第2の不連続領域に向かうよりも第1の不連続領域に向かうように、オフセット位置に配置されてもよい。いくつかの実施形態では、反応容器アセンブリは、第1の不連続領域と第2の不連続領域との間に位置する反射器要素を含んでもよく、反射器要素は、第1のエネルギー源からの光の一部を第1の不連続領域に向けて反射するように構成される。
【0008】
[0008]いくつかの実施形態では、反応容器は、溶液を受け入れるための入口ポートと、入口ポートに接続され、入口ポートを通して溶液を流す流路と、複数の不連続領域を含む光吸収層であって、不連続領域の各々は、流路のセグメントに隣接し、不連続領域は、エネルギー源からの光エネルギーを吸収するように構成される、光吸収層とを含み得る。反応容器はまた、反応容器から溶液を除去するための出口ポートを含み得る。
【0009】
[0009]いくつかの実施形態では、流路の少なくとも一部は、反応容器内に蛇行パターンで配置される。不連続領域は、反応容器の対向する端部付近の反応容器の単一表面上に配置されてもよい。いくつかの実施形態では、流路は、第1の不連続領域に隣接する流路の第1のセグメントから第2の不連続領域に隣接する流路の第2のセグメントに溶液の一部を導くように構成されてもよく、第1の不連続領域は、溶液の一部が第1のセグメント内にあるときに溶液の一部に第1の熱量を伝達するように構成されてもよく、第2の不連続領域は、溶液の一部が第2のセグメント内にあるときに溶液の一部に第2の熱量を伝達するように構成されてもよい。流路は、第1のセグメントと第2のセグメントとの間に介在セグメントを含んでもよく、介在セグメントは、例えば、溶液の一部が介在セグメント内にあるときに溶液の一部を冷却させるように構成されてもよい。いくつかの実施形態では、第1の不連続領域は第1の金属膜を含んでもよく、第2の不連続領域は第2の金属膜を含んでもよく、第1の金属膜は第2の金属膜よりも厚くてもよく、第1の熱量は第2の熱量よりも大きくてもよい(例えば、より厚い第1の金属膜はより多くの光エネルギーを吸収し得るため)。いくつかの実施形態では、第1の金属膜は、第1の温度プロファイルを有する第1の組成物であってもよく、第2の金属膜は、第2の温度プロファイルを有する第2の組成物であってもよい。これらの実施形態では、第1の熱量は、第2の熱量よりも大きくてもよい(例えば、組成の違いに起因して)。
【0010】
[0010]いくつかの実施形態では、流路の第1のセグメントは第1の平均断面積を有してもよく、第2のセグメントは第2の平均断面積を有してもよく、第1の平均断面積は第2の平均断面積よりも大きい。これらの実施形態では、溶液は、第2のセグメントよりもゆっくりと第1のセグメントを通って流れる場合がある。
【0011】
[0011]いくつかの実施形態では、反応容器は、溶液を反応室に受け入れるための入口ポートであって、反応室は、外周を形成する1つまたは複数の壁によって画定され得る、入口ポートと、外周内に配置された複数の不連続領域を含む光吸収層であって、不連続領域は、エネルギー源からの光エネルギーを吸収するように構成されてもよく、不連続領域は、溶液が物理的障壁によって不連続領域間の流れを阻害されないように流体的に結合されてもよい、光吸収層とを含み得る。いくつかの実施形態では、反応容器はまた、反応容器から溶液を除去するための出口ポートを含み得る。
【0012】
[0012]いくつかの実施形態では、光吸収層は、不連続領域が溶液と直接接触するように構成されるように、反応容器の内向面上に形成または堆積(例えば、めっき)された薄い金属膜を含んでもよい。他の実施形態では、溶液が不連続領域に直接接触しないように、基板が光吸収層を覆ってもよい。
【0013】
[0013]いくつかの実施形態では、複数の不連続領域は、第1の不連続領域と第2の不連続領域とを含んでもよく、第1の不連続領域は第1の金属膜を含み得、第2の不連続領域は第2の金属膜を含み得、第1の金属膜は第2の金属膜よりも厚い。これらの実施形態では、第1の不連続領域は、第2の不連続領域とは異なる温度プロファイルを有し得る(例えば、より厚い第1の金属膜は、より多くの光エネルギーを吸収し得るため)。いくつかの実施形態では、第1の金属膜は、第1の温度プロファイルを有する第1の組成物であってもよく、第2の金属膜は、第2の温度プロファイルを有する第2の組成物であってもよい。これらの実施形態では、第1の温度プロファイルは、第2の温度プロファイルとは異なり得る(例えば、組成の違いに起因して)。
【0014】
[0014]いくつかの実施形態では、反応容器は、上部ハウジング部品および下部ハウジング部品によって少なくとも部分的に画定されてもよく、複数の不連続領域は、上部ハウジング部品の内向面上に形成または堆積された複数の上部不連続領域と、下部ハウジング部品の内向面上に形成または堆積された複数の下部不連続領域とを含んでもよい。特定の上部不連続領域は、特定の下部不連続領域に直接対向して配置され得、それにより、特定の上部不連続領域および下部不連続領域が閾値温度まで加熱されると、溶液の一部の分子が特定の上部不連続領域および下部不連続領域によって画定される領域内に熱的に閉じ込められ得る。いくつかの実施形態では、上部不連続領域および下部不連続領域は、異なる閾値温度を有してもよい。他の実施形態では、上部不連続領域および下部不連続領域は、同じ閾値温度を有してもよい。
【0015】
[0015]いくつかの実施形態では、複数の不連続領域のうちの第1の不連続領域は、1つまたは複数のヌクレオチド配列に結合するように構成され得る。いくつかの実施形態では、第1の不連続領域は、弱い共有結合相互作用を介してヌクレオチド配列に結合するように構成され得る。例えば、第1の不連続領域は金膜を含み得、弱い共有結合相互作用はAu-チオール結合を含み得る。
【0016】
[0016]いくつかの実施形態では、反応容器を動作させる方法は、反応容器の入口ポートを介して反応容器内に溶液を受け入れることと、溶液を光吸収層の複数の不連続領域にわたって反応容器を通して流すことと、光吸収層の複数の不連続領域のうちの第1の不連続領域に第1の光を導き、第1の光からのエネルギーを第1の不連続領域によって吸収させることと、第1の不連続領域に隣接する溶液の一部を加熱すること(例えば、溶液が第1の不連続領域の近くを流れる際の伝導または対流を介して)とを含み得る。
【0017】
[0017]いくつかの実施形態では、本方法は、第2の光からのエネルギーを第2の不連続領域によって吸収させるために、第2の光を第2の不連続領域に導くことをさらに含み得る。いくつかの実施形態では、第1の光は第1の光源からの光であってもよく、第2の光は第2の光源からの光であってもよい。第2の光源は、第1の光源よりも低い電力レベルに設定されてもよい。いくつかの実施形態では、第1の光源は、第2の不連続領域よりも第1の不連続領域に近接するように配置されてもよい。いくつかの実施形態では、第1の不連続領域および第2の不連続領域は、反応容器の第1の内向領域に沿って配置されてもよい。第1の不連続領域および第2の不連続領域は、溶液が不連続領域間を流れることを物理的障壁によって阻害されないように、流体的に結合されてもよい。
【0018】
[0018]いくつかの実施形態では、溶液を反応容器を通して流すことは、溶液を、第1の不連続領域に隣接する第1のセグメントと第2の不連続領域に隣接する第2のセグメントとを有する流路を通して流すことを含み得る。第1の不連続領域は、第2の不連続領域から離間していてもよい。
【0019】
[0019]いくつかの実施形態では、反応容器は、上部ハウジング部品および下部ハウジング部品によって少なくとも部分的に画定されてもよく、複数の不連続領域は、上部ハウジング部品の内向面上に形成または堆積された複数の上部不連続領域と、下部ハウジング部品の内向面上に形成または堆積された複数の下部不連続領域とを含んでもよい。これらの実施形態のいくつかでは、特定の上部不連続領域は、特定の下部不連続領域に直接対向して配置されてもよい。これらの実施形態では、第1の光が特定の上部不連続領域に向けられて、特定の上部不連続領域を第1の閾値温度に到達させてもよく、第2の光が特定の下部不連続領域に向けられて、特定の下部不連続領域を第2の閾値温度に到達させてもよく、それにより、溶液の一部の分子が、特定の上部不連続領域および下部不連続領域によって画定される領域内に熱的に閉じ込められ得る。
【0020】
[0020]いくつかの実施形態では、1つまたは複数のヌクレオチド配列は、弱い共有結合相互作用を介して第1の不連続領域に結合し得る。例えば、第1の不連続領域は金膜を含み得、弱い共有結合相互作用はAu-チオール結合を含み得る。
【0021】
[0021]本発明の他の態様および利点は、記載された実施形態の原理を例として示す添付の図面と併せて以下の詳細な説明から明らかになるであろう。
【0022】
[0022]本開示は、添付の図面と併せて以下の詳細な説明によって容易に理解され、同様の参照番号は同様の構造要素を示す。
【図面の簡単な説明】
【0023】
【
図1A】記載された実施形態での使用に適した例示的な反応容器を示す図である。
【
図1B】記載された実施形態での使用に適した別の例示的な反応容器を示す図である。
【
図1C】空隙領域が、隣接する例示的な反応容器間の熱の横方向伝達を低減する堅牢な障壁を確立する方法を示す図である。
【
図2】例示的な反応容器の概略断面側面図および反応室を閉じることができる方法を示す図である。
【
図3A】例示的な反応容器の断面側面図および光吸収層を不連続領域に分離することができる方法を示す図である。
【
図3B】エネルギー源のアレイによって照射されている例示的な反応容器の断面側面図である。
【
図3C】エネルギー源のアレイによって照射されている例示的な反応容器の断面側面図である。
【
図3D】光吸収層の不連続領域間に異なるサイズの間隙を有する例示的な反応容器の一部の熱プロファイルの断面側面図である。
【
図3E】反応室の少なくとも一部を画定する対向する内向面上に不連続領域を有する例示的な反応容器の断面側面図である。
【
図4A】蛇行流路の形態をとる反応室を有する例示的な反応容器の概略斜視図である。
【
図4C】共形不連続領域を有する光吸収層を含む例示的な反応容器の別の実施形態を示す図である。
【
図4D】
図4Cに示す反応容器などの例示的な反応容器の横断面である。
【
図4E】
図4Cに示す反応容器などの例示的な反応容器の横断面である。
【
図4F】
図4Cに示す反応容器などの例示的な反応容器の横断面である。
【
図5A】2つの不連続領域で構成された光吸収層を有するハウジング部品を含む例示的な反応容器を示す図である。
【
図5B】不連続領域の一方が他方の不連続領域よりも多くのエネルギーをエネルギー源から受け取るように、エネルギー源を2つの不連続領域の一方に向かってオフセットすることができる方法を示す図である。
【
図5C】
図5Aおよび
図5Bに示す例示的な反応容器の上面図であり、例示的な反応容器が、2つの不連続領域の間で溶液を交互に導くための流路を含むことができる方法を示す図である。
【
図6】単一のPCRサイクルに関連する様々なステップを明確に示す、反応容器の例示的な温度プロファイルを示す図である。
【
図7A】複数の不連続領域を備えた光吸収層を有する反応容器におけるハイブリダイゼーションおよび固相PCR操作の例を示す図である。
【
図7B】複数の不連続領域を備えた光吸収層を有する反応容器におけるハイブリダイゼーションおよび固相PCR操作の例を示す図である。
【
図7C】複数の不連続領域を備えた光吸収層を有する反応容器におけるハイブリダイゼーションおよび固相PCR操作の例を示す図である。
【
図7D】光吸収層の不連続領域に結合した一本鎖DNAにDNAの一本鎖が結合している固相PCRの別の例を示す図である。
【
図8】反応容器を動作させるための例示的な方法800を示す図である。
【発明を実施するための形態】
【0024】
[0042]以下の詳細な説明では添付の図面を参照し、図面は説明の一部を形成し、説明された実施形態による特定の実施形態を例示として示す。これらの実施形態は、記載された実施形態を当業者が実施できるように十分に詳細に記載されているが、これらの例は限定するものではなく、他の実施形態を使用することができ、記載された実施形態の精神および範囲から逸脱することなく変更を行うことができることが理解される。
【0025】
[0043]マイクロ流体システムまたはデバイスは、化学および生物学において広く使用されている。そのようなデバイスでは、流体が輸送、混合、分離、または他の方法で処理される。多くのマイクロ流体デバイスでは、様々な用途が毛細管力を使用する受動流体制御に依存している。他の用途では、流体の指向性輸送のために外部作動手段(例えば、回転駆動装置)が使用される。「能動的マイクロ流体」とは、マイクロポンプまたはマイクロバルブなどの能動的(マイクロ)構成要素による作動流体の定義された操作を指す。マイクロポンプは、流体を連続的に供給するか、または投与に使用される。マイクロバルブは、圧送される液体の流れ方向または移動モードを決定する。実験室で通常行われるプロセスは、効率および移動度を向上させ、かつ試料および試薬の体積を減少させるために、単一チップ上で小型化することができる。マイクロ流体構造は、マイクロ空気圧システム、すなわち、オフチップ流体を取り扱うためのマイクロシステム(液体ポンプ、ガスバルブなど)、およびナノリットル(nl)およびピコリットル(pl)体積をオンチップで取り扱うためのマイクロ流体構造を含むことができる(NguyenおよびWereley「Fundamentals and Applications of Microfluidics」Artech House,2006)。
【0026】
[0044]マイクロ流体技術の進歩は、酵素分析(例えば、グルコースおよび乳酸アッセイ)、DNA分析(例えば、ポリメラーゼ連鎖反応およびハイスループットシーケンシング)、およびプロテオミクスのための分子生物学的手順に革命をもたらしている。マイクロ流体バイオチップは、検出などのアッセイ動作、ならびに試料前処理および試料調製をワンチップに統合する(HeroldおよびRasooly、編集者「Lab-on-a-Chip Technology:Fabrication and Microfluidics」Caister Academic Press,2009、HeroldおよびRasooly、編集者「Lab-on-a-Chip Technology:Biomolecular Separation and Analysis」Caister Academic Press,2009)。バイオチップの新たな適用分野は、臨床病理学、特に疾患の即時ポイントオブケア診断である。さらに、いくつかのマイクロ流体ベースのデバイスは、生化学的毒素および他の危険な病原体について空気/水試料の連続サンプリングおよびリアルタイム試験が可能である。
【0027】
[0045]現在、多くの種類のマイクロ流体アーキテクチャが使用されており、開放型マイクロ流体、連続流マイクロ流体、液滴ベースのマイクロ流体、デジタルマイクロ流体、紙ベースのマイクロ流体、およびDNAチップ(マイクロアレイ)が含まれる。
【0028】
[0046]開放型マイクロ流体では、システムの少なくとも1つの境界が除去され、流体を空気または別の界面(すなわち、液体)にさらす(Berthierら、Open microfluidics、Hoboken,NJ:Wiley,Scrivener Publishing,2016、Pfohlら、Chem Phys Chem.4:1291-1298,2003、Kaigalaら、Angewandte Chemie International Edition.51:11224-11240,2012)。開放型マイクロ流体の利点には、介入のための流動液体へのアクセス可能性、より大きな液体-気体表面積、および最小の気泡形成が含まれる(Berthierら、Open microfluidics、Hoboken,NJ:Wiley,Scrivener Publishing,2016、Kaigalaら、Ange.Chemie Int.Ed.51:11224-11240,2012、Liら、Lab on a Chip 17:1436-1441)。開放型マイクロ流体の別の利点は、開放型システムを表面張力駆動流体流と統合する能力であり、これにより蠕動ポンプまたはシリンジポンプなどの外部ポンピング方法の必要性が排除される(Casavantら、Proc.Nat.Acad.Sci.USA 110:10111-10116,2013)。開放型マイクロ流体デバイスはまた、フライス加工、熱成形、および熱エンボス加工によって製造するのに安価である(Guckenbergerら、Lab on a Chip、15:2364-2378、2015、Truckenmullerら、J.Micromechanics and Microengineering、12:375-379、2002、Jeonら、Biomed.Microdevices 13:325-333,2010、Youngら、Anal.Chem.83:1408-1417,2011)。さらに、開放型マイクロ流体は、毛細管流に有害であり得るデバイス用のカバーを糊付けまたは接着する必要性を排除する。開放型マイクロ流体の例には、開路マイクロ流体、レールベースのマイクロ流体、紙ベース、および糸ベースのマイクロ流体が含まれる(Berthierら、Open microfluidics、Hoboken、NJ:Wiley、Scrivener Publishing、2016、Casavantら、Proc.Nat.Acad.Sci.USA 110:10111-10116,2013、Bouaidatら、Lab on a Chip 5:827,2005)。
【0029】
[0047]連続流マイクロ流体は、微細加工された流路を通る連続液体流の操作に基づく(Nguyenら、Micromachines、8:186、2017、AntfolkおよびLaurell、Anal.Chim.Acta 965:9-35,2017)。液体流の作動は、外部圧力源、外部機械式ポンプ、一体型機械式マイクロポンプ、または毛細管力と動電機構の組み合わせのいずれかによって実施される。連続流デバイスは、多くの明確で単純な生化学用途および化学分離などの特定のタスクに有用であるが、高度な柔軟性または流体操作を必要とするタスクにはあまり適していない。連続流システムにおけるプロセス監視能力は、ナノリットル範囲までの分解能を提供する微小電気機械システム(MEMS)技術に基づく高感度マイクロ流体流量センサによって達成することができる。
【0030】
[0048]液滴ベースのマイクロ流体は、低いレイノルズ数および層流レジームを有する非混和性相の不連続体積の流体を操作する(Shembekarら、Lab on a Chip 8:1314-1331、2016、Zhao-Miaoら、Chinese J.Anal.Chem.45:282-296,2017の総説を参照)。微小液滴は、好都合に流体の微小体積(μl~fl)の操作を可能にし、良好な混合、カプセル化、選別、および感知を提供し、高スループット用途に適している(Chokkalingamら、Lab on a Chip 13:4740-4744,2013)。
【0031】
[0049]閉路連続流システムの代替としては、開放構造が挙げられ、不連続の独立して制御可能な液滴がエレクトロウェッティングを使用して基板上で操作される。不連続の単位体積の液滴を使用することにより(Chokkalingamら、Appl.Physics Lett.93:254101,2008)、マイクロ流体機能は、繰り返される基本動作のセット、すなわち1単位の距離にわたって1単位の流体を移動させることに低減され得る。この「デジタル化」方法は、マイクロ流体バイオチップ設計のための階層的な細胞ベースのアプローチの使用を容易にする。したがって、デジタルマイクロ流体は、柔軟でスケーラブルなシステムアーキテクチャおよび高いフォールトトレラントを提供する。さらに、各液滴を独立して制御することができるため、これらのシステムは動的再構成可能性も有し、それによってマイクロ流体アレイ内の単位セルのグループは、バイオアッセイのセットの同時実行中にそれらの機能を変更するように再構成することができる。あるいは、液滴を、限定されたマイクロ流体流路内で操作することができる。デジタルマイクロ流体のための1つの一般的な作動方法は、誘電体上のエレクトロウェッティング(EWOD)である(NelsonおよびKim、J.Adhesion Sci.Tech.,26:12-17,1747-1771,2012に総説されている)。エレクトロウェッティングを使用したデジタルマイクロ流体パラダイム内で、多くのラボオンチップ用途が実証されている。しかしながら、最近では、磁力(ZhangおよびNguyen,Lab on a Chip 17.6:994-1008,2017)、表面弾性波、オプトエレクトロウェッティング、機械的作動(Shemeshら、Biomed.Microdevices 12:907-914,2010)などを使用して、液滴操作のための他の技術も実証されている。
【0032】
[0050]紙ベースのマイクロ流体(Berthierら、Open Microfluidics、John Wiley&Sons、Inc.、pp.229-256,2016)は、多孔質媒体中の毛細管浸透の現象に依存している。紙などの多孔質基材における流体浸透を二次元および三次元で調整するために、マイクロ流体デバイスの細孔構造、濡れ性および幾何学的形状を制御することができるが、液体の粘度および蒸発速度はさらに重要な役割を果たす。そのようなデバイスの多くは、生物学的反応が起こる出口に水溶液を受動的に輸送する親水性紙の疎水性バリアを特徴とする(Galindo-Rosales「Complex Fluid-Flows in Microfluidics」Springer,2017)。
【0033】
[0051]初期のバイオチップは、DNAマイクロアレイ、例えばAffymetrix製のGeneChip DNAアレイの着想に基づいており、これは、DNA分子(プローブ)がアレイ状に固定されたガラス、プラスチックまたはシリコン基板のピースである。DNAマイクロアレイと同様に、タンパク質アレイは、多数の異なる捕捉剤、例えばモノクローナル抗体が、チップ表面に堆積されるアレイである。捕捉剤は、生物学的試料、例えば血液中のタンパク質の存在および/または量を決定するために使用される。総説については、例えば、Bumgarner,Curr.Protoc.Mol.Biol.101:22.1.1-22.1.11,2013を参照されたい。
【0034】
[0052]マイクロアレイに加えて、バイオチップは、二次元電気泳動、トランスクリプトーム分析、およびPCR増幅のために設計されている。他の用途には、タンパク質およびDNA、細胞分離、特に血球分離、タンパク質分析、細胞生存率分析および微生物捕捉を含む細胞操作および分析のための様々な電気泳動および液体クロマトグラフィー用途が含まれる。
【0035】
[0053]反応容器は、ポリメラーゼ連鎖反応(PCR)およびDNA配列決定を含む、DNA鎖に対する様々な種類の操作を行うために使用されることが多い。反応容器は、先に列挙したマイクロ流体アーキテクチャの1つまたは複数を組み込むことができるが、反応容器はマイクロ流体デバイスよりも大きくすることができ、そのため、上記のマイクロ流体アーキテクチャのいずれも組み込むことができない場合があることを理解されたい。反応容器の動作は、多くの場合、反応容器内の温度を急速に変化させる必要性を含む。例えば、DNA鎖を含有するPCR動作溶液は、反応容器によって画定された反応室内に配置される。様々な異なる種類のDNAを分解および/または構築するために、溶液を熱サイクルさせるために加熱要素が使用される。残念ながら、溶液を熱サイクルさせる従来の手段は、しばしば所望よりも遅く、反応容器内の反応室の特定の領域の温度を変化させることができない。
【0036】
[0054]この問題に対する1つの解決策は、光吸収層によって吸収される任意の光において50~90%のフォトニックエネルギーの吸収を可能にする光吸収特性を有する光吸収層を反応容器の反応室内に配置することである。エネルギー源は、光吸収層に光を導くように構成することができ、これは、光吸収層に導かれた光の光子からエネルギーを効率的に吸収する。フォトニックエネルギーの吸収は、光吸収層の温度を急速に上昇させる。次いで、光吸収層によって受け取られたこのエネルギーは、熱伝導によって反応室内の溶液に伝達される。
【0037】
[0055]いくつかの実施形態では、光吸収層は不連続領域に分割される。光吸収層を不連続領域に分割することの利点は、(1)不連続領域を異なる形状および厚さにパターン化することにより、反応容器の反応室内で特定の空間加熱プロファイルを達成することが可能になる、(2)光学センサは、反応室内の溶液の読取り値を、不連続領域間の間隙を介して取得することができる、および(3)エネルギー源のアレイを使用して、光吸収層の不連続領域の各々に異なる量のエネルギーを加えることができ、それにより、反応室の第1の領域内の溶液が、反応室の第2の領域内の溶液とは実質的に異なる温度を有することを可能にすることである。
【0038】
[0056]これらおよび他の実施形態は、
図1A~
図6Dを参照して以下に説明される。しかしながら、当業者であれば、これらの図に関して本明細書で与えられる詳細な説明は説明目的のためのものにすぎず、限定として解釈されるべきではないことを容易に理解するであろう。以下の説明では添付の図面を参照し、図面は本明細書の一部を形成し、本発明を実施し得る特定の実施形態を例示として示す。「上部」および「下部」などの用語は、説明されている図の向きを参照して使用される。本発明の実施形態の構成要素は、いくつかの異なる向きに配置することができるため、これらの用語は例示の目的で使用されており、限定することを意図するものではない。
【0039】
[0057]
図1Aは、記載された実施形態での使用に適した例示的な反応容器100の斜視図を示す。特に、反応容器100は、反応室104を画定する光学的に透明な材料から形成されたハウジング部品102を含む。反応室104は実質的に円形の幾何学的形状を有するものとして示されているが、示されている反応室104の形状は限定的であると解釈されるべきではなく、楕円形、菱形、および長方形などの他の形状も可能であることを理解されたい。いくつかの実施形態では、ハウジング部品102を形成する光学的に透明な材料は、反応容器100を加熱するために使用される光の波長のみに対して光学的に透明であり得る。例えば、光学的に透明な材料は、光の可視、赤外または紫外周波数のみを選択するために光学的に透明であり得る。反応室104は、反応室104内で加熱される液体を囲む第2のハウジング部品(図示せず)によって閉じることができる。このようにして、反応室104内の液体溶液中のDNA鎖は、急速な熱サイクルを受けることができ、溶液の任意の気化部分の少なくとも一部は、その後、熱サイクルの間または熱サイクルが完了した後に液化して溶液に戻ることができる。光吸収層106は、反応室104の内向面上に形成または堆積(例えば、めっき)され得るか、そうでなければ接着され得る。光吸収層106は、良好な光吸収特性を有し、反応室104内に配置された任意の液体と直接接触することができる。例えば、光吸収層106は、光吸収層106に入射するフォトニックエネルギーの約50~90%を吸収するように構成することができる。いくつかの実施形態では、光吸収層106は、元素状金、クロム、チタン、ゲルマニウム、または例えば金-ゲルマニウム、金-クロム、金-チタン、金-クロム-ゲルマニウムおよび金-チタン-ゲルマニウムなどの金合金から形成された金属膜とすることができる。いくつかの実施形態では、光吸収層106は、元素状金、クロム、チタン、ゲルマニウム、または例えば金-ゲルマニウム、金-クロム、金-チタン、金-クロム-ゲルマニウムおよび金-チタン-ゲルマニウムなどの金合金から形成された多層金属膜とすることができる。光吸収層106は、約5~200nmの厚さを有することができる。ハウジング部品102はまた、入口流路108および出口流路110を画定し、入口流路108と出口流路110は、様々な化学物質、プライマー、DNA鎖および他の生物学的材料を反応室104に出入りさせるために使用することができる。いくつかの実施形態では、ハウジング部品152は、約7mm×14mmの寸法を有することができる。しかしながら、このサイズは変化し得ることを理解されたい。いくつかの実施形態では、ハウジング部品の最大寸法は、500ミクロン未満であってもよい。
【0040】
[0058]
図1Bは、別の例示的な反応容器150の斜視図を示す。反応容器150は、反応容器100と同様に、ハウジング部品152と、反応室104と、光吸収層106と、入口流路108と、出口流路110とを含む。デバイスハウジング152は、空隙領域154および156を含む収容能力をもつ幅広の中央領域を含む。空隙領域154および156は、隣接する反応容器への熱の横方向伝達を妨げるために空のままにすることができる。いくつかの実施形態では、空隙領域154および156を通る熱の伝達は、空隙領域154および156から空気を除去することによってさらに低減することができる。いくつかの実施形態では、ハウジング部品152の直径は、約5mmとすることができる。しかしながら、このサイズは変化し得ることを理解されたい。例えば、ハウジング部品152の直径は、2mm~15mmの間で変化し得る。
【0041】
[0059]
図1Cは、ハウジング部品152の形状が反応容器150をハニカムまたは六角形のパターンに緊密に詰め込むことを可能にする方法を示す。
図1Cはまた、空隙領域154および156が、隣接する反応容器150間の熱の横方向伝達を低減する堅牢な障壁を確立することができる方法を示す。反応容器150の直径が約5mmである場合、反応室104は約10ulの溶液を保持することができ、800umの深さを有することができる。一般に、これらのデバイスは、200~1500umの深さで2.5μl~500μlを保持するように構成される。
【0042】
[0060]
図2は、例示的な反応容器100の概略断面側面図を示し、ハウジング部品102によって画定された反応室104を、キャップの形態をとることができるハウジング部品202によって閉じることができる方法を示す。いくつかの実施形態では、ハウジング部品102および202は、汚染を防止し、反応室104内の圧力などの他の要因の制御を可能にするために、一緒に封止することができる。
図2はまた、光吸収層106上に光を投射するように構成されたエネルギー源204を示す。エネルギー源204によって投射される光の周波数は変化し得る。いくつかの実施形態では、エネルギー源204は、450nmの波長、890mWの電力および700mAの電流を有する光を放射するように構成された発光ダイオードの形態をとることができる。いくつかの実施形態では、発光ダイオードは、近赤外または紫外(例えば、紫外線A)光を放射するように構成されてもよい。光吸収層106がエネルギー源によって照射されると、高温の金属表面と反応室104内に配置されたより低温の周囲溶液との間に大きな温度差が生じ、周囲の溶液が加熱される。エネルギー源が光吸収層106の照射を停止すると、結果として生じる光吸収層106の急速冷却は、加熱された溶液の急速冷却を促進するのに役立つ。
【0043】
[0061]
図3Aは、例示的な反応容器100の断面側面図を示し、光吸収層106を不連続領域302,304および306に分離する方法を示す。これらの不連続領域は、1つまたは複数の内向面(例えば、内向面301)の上に重ね合わされてもよい。いくつかの実施形態では、これらの不連続領域は、反応室104内に目標量のエネルギーを確立するのに役立つように設定することができる。領域302,304および306の間の間隙は、反応室104の底面全体にわたって延在する光吸収層と比較して、エネルギー源204から光を受ける総表面積を減少させる。領域302,304および306の間の間隙のサイズの増減を使用して、反応室104へ入力されるエネルギーを調整することができる。反応室104内の溶液と接触する総面積も減少し、それにより、不連続領域302,304および306から溶液への熱の伝達効率が低下する。領域302,304および306の間の間隙はまた、反応室104内の溶液の光学的監視を可能にする。領域302,304および306の間の間隙は、サイズが均一でなくてもよく、反応室104内のいくつかの領域が他の領域よりも実質的に多く加熱されることを可能にする。いくつかの実施形態では、1つまたは複数の不連続領域は、異なる加熱プロファイルを可能にするために異なる寸法を有することができる。例えば、
図3Aに示すように、不連続領域306は、不連続領域302および304よりも厚くすることができ、それにより、熱を不連続領域306に近接した反応室104に引き込むことができる効率を高める。結果として、他がすべて等しい(例えば、不連続領域が同じ組成を有すると仮定する)場合、この例の不連続領域306は、エネルギー源204からより多くのエネルギーを吸収し、その結果、所与の期間にわたって不連続領域302および304よりも速いまたは大きな温度上昇を経験する可能性がある。いくつかの実施形態では、1つまたは複数の不連続領域は、異なる組成を有してもよく、異なる温度プロファイルを可能にする。例えば、
図3Aを参照すると、不連続領域302は、元素状金から形成された金属膜であってもよく、不連続領域304および306は、多層金属膜から形成された金属膜であってもよい(代替的または追加的に、これらの領域は、金合金または他の適切な材料から形成されてもよい)。これらの実施形態では、他がすべて等しい(例えば、均一な寸法を仮定する)場合、不連続領域302および304は、第1の速度でエネルギー源204からエネルギーを吸収する可能性があり、不連続領域306は、第2の速度でエネルギー源204からエネルギーを吸収する可能性がある。当業者には明らかであるように、本明細書に開示される反応容器の不連続領域は、微調整された加熱制御を可能にし、従来の反応容器と比較して柔軟性の向上およびより多くの用途を可能にする。
図3A~
図3Dに示す反応容器は、3つの不連続領域(302,304,306)のみを示しているが、本開示は、その寸法および組成が本明細書に記載のように変更され得る任意の数の不連続領域を想定している。
【0044】
[0062]本明細書に記載の不連続領域(例えば、
図3Aの不連続領域302,304および306)は互いに分離されているが、少なくとも本開示の目的のために、それらは同じ表面(例えば、
図3Aの内向面301)の上に重ね合わされるという点で、依然として同じ単一層の一部である。さらに、不連続領域の厚さおよび/または高さは変化し得るが、本開示の目的のために、不連続領域は、それにもかかわらず、同じ単一層の一部であり得る。層の部分は、異なる厚さおよび/または高さを有し得る。例えば、
図3Aを参照すると、不連続領域306の厚さは他の不連続領域(例えば、不連続領域302および304)の厚さとは異なるが、3つの不連続領域302,304および306はすべて同じ層の一部であると考えられ得る。
【0045】
[0063]
図3Bは、エネルギー源308のアレイによって照射されている別の例示的な反応容器100の断面側面図を示す。いくつかの実施形態では、反応容器を加熱するために複数のエネルギー源が使用され得る。いくつかの実施形態では、複数のエネルギー源は、
図3Bに示すようにアレイ状に配置されてもよい。
図3Bを参照すると、複数のエネルギー源308の使用は、エネルギー源308が不連続領域302,304および306のみにエネルギーを集中させることを可能にすることによって、不連続領域302,304および306の間のハウジング部品102の領域で散逸される光の量を低減することができる。不連続エネルギー源308の使用はまた、各不連続領域のより均一な加熱および全体的により効率的な加熱を可能にし得る。これは、各エネルギー源からのエネルギーが、1つまたは複数の対応する不連続領域に集束するように最適化され得、それによって、対応する不連続領域がエネルギー源から最適量のエネルギーを受け取ることを保証するためであり得る。例えば、
図3Bを参照すると、エネルギー源308-1は、エネルギー源308-1からのエネルギーの散逸を最小限に抑えながら、不連続領域302全体がエネルギー源308-1から最大量のエネルギーを受け取るように、不連続領域302に焦点を合わせることができる。いくつかの実施形態では、エネルギー源308は、不連続領域302,304または306の1つを特異的に標的とするための特殊な集束光学系を含んでもよい。いくつかの実施形態では、エネルギー源308のアレイの各エネルギー源308は、反応室104内に所望の勾配の熱を生成するように別々に制御することができる。この程度の制御は、例えば、異なる種類の生体物質が不連続領域302,304および306に近接してまたはその上に直接付着される場合に有用であり得る。エネルギー源308を個別に制御することができるため、特定の不連続領域に関連する生体物質を、カスタマイズされた加熱プロファイルに従って加熱することができる。例えば、不連続領域306に近接する生物学的材料は、不連続領域302および304に近接する生物学的材料よりも実質的に低い変性温度を有し得る。このように、エネルギー源308-1および308-2は、エネルギー源308-3よりも高い電力レベルで動作する場合があり、両方の種類の生体物質について所望の変性温度を達成することを可能にし得る。
【0046】
[0064]
図3Cは、エネルギー源308のアレイによって照射されている例示的な反応容器100の断面側面図を示す。
図3Cは、反応室104を複数のより小さい反応室104-1、104-2および104-3に分割するために、ハウジング部品202がハウジング部品102の突起または隆起部305と交わる複数の突起または隆起部303を含むことができる方法を示す。このようにして、反応室104内の溶液を分離することができ、不連続領域302,304および306によって可能にされる断熱をさらに改善する。ハウジング部品202および102の両方が、それぞれの突起303および305を含んで示されているが、いくつかの実施形態では、突起303は、ハウジング部品102の平坦な内向面全体に延びることができ、または突起305は、ハウジング部品202の平坦な内向面全体に延びることができることを理解されたい。いくつかの実施形態では、反応容器100は、突起303の異なる構成を有する複数の異なるハウジング部品202を含むことができる。例えば、突起がないハウジング部品202は、単一の反応室104で反応を実行することを可能にすることができ、その後の実験または操作では、突起303を有する図示のハウジング部品202は、反応室を図示のように複数のより小さい反応室に分割することができる。いくつかの実施形態では、突起303および305は、異なるサイズの反応室を画定するような形状および寸法であってもよい。例えば、
図3Cを参照すると、突起303および305は、反応室104-2が反応室104-1および104-3よりも小さくなるような形状および寸法である。反応室のサイズの制御を使用して、反応室の温度プロファイルに影響を与えてもよい。例えば、比較的小さな反応室(例えば、104-2)は、比較的大きな反応室(例えば、104-1および104-3)よりも速く加熱され得る。いくつかの実施形態では、エネルギー源308のエネルギーレベルも変化させて、反応室の温度プロファイルに影響を与えてもよい。例えば、
図3Cに示すように、エネルギー源308-2は、エネルギー源308-1および308-3よりも低い電力レベルで動作し得る。
【0047】
[0065]いくつかの実施形態では、ハウジング部品202は、異なるサイズの反応室104を画定する突起303の構成を含み得る。例えば、ハウジング部品202は、不連続領域302および304の両方を含む1つの反応室と、不連続領域306のみを含む別の反応室とを画定するただ1つの突起303を含み得る。いくつかの実施形態では、ハウジング部品102の突起305の構成は、同様の効果のために調整されてもよい。例えば、ハウジング部品102は、不連続領域302および304の両方を含む1つの反応室と、不連続領域306のみを含む別の反応室とを画定するただ1つの突起305を含み得る。いくつかの実施形態では、突起303および305は互いに対応してもよい。先の例に基づき、ハウジング部品202は1つの突起303を含み得、ハウジング部品102は1つの突起305を含み得、突起303および305は、不連続領域302および304の両方を含む1つの反応室と、不連続領域306のみを含む別の反応室とを画定する。突起303および/または305は、隣接する反応室104間の溶液の通過を防止するのに役立つ封止要素をそれらの遠位端部に含むことができることを理解されたい。
【0048】
[0066]
図3Dは、光吸収層の不連続領域302,304および306の間に異なるサイズの間隙を有する例示的な反応容器の一部の熱プロファイルの断面側面図を示す。特に、ハウジング部品102は、ラベル102-1、102-2、102-3および102-4によって区別される4つの異なる不連続領域構成で示されている。これらの構成は、不連続領域302,304および306に隣接する溶液の部分で生じるエネルギーまたは温度変化の量を示す2組の輪郭を示す。特に、これらの描写は、隣接する不連続領域間の間隙サイズを調整することにより、溶液を含む反応室の加熱プロファイルを変化させることができる方法を示している。ハウジング部品102-4は、大きな単一の不連続領域のみ、あるいは単一の不連続領域を効果的に形成するように互いに当接接触している領域302,304および306で構成された不連続領域を示す。不連続領域302,304および306を当接接触させて配置すると、ハウジング部品102-4の中央部分に最大の加熱領域が生じるが、いくつかの実施形態では、ハウジング部品102の周辺端部が所望の温度を下回る可能性があることに留意されたい。
【0049】
[0067]
図3Eは、反応室104の少なくとも一部を画定する対向する内向面301および309(例えば、上部ハウジング部品202および下部ハウジング部品102)上の不連続領域302~307を有する例示的な反応容器100の断面側面図を示す。図示の例では、不連続領域302~307はエネルギー源204からエネルギーを受け取り、不連続領域302~307を加熱し、それによって反応室104内に配置された溶液の温度を上昇させる。図示されているように、不連続領域302~307は、内向面301および309上にめっきされ、あるいは形成され、あるいは堆積されてもよい。あるいは、いくつかの実施形態では、不連続領域302~307は、ハウジング部品(例えば、上部ハウジング部品202および下部ハウジング部品102)の内部または外部に配置されてもよい。
図3Eを参照するいくつかの実施形態では、熱は反応室104全体にわたって経時的に拡散し得るが、この拡散は、不連続領域302~307に隣接する溶液の部分(例えば、加熱領域311,312および313内)が周囲の溶液よりも高い温度に加熱され得る期間が存在するように十分に遅い。いくつかの実施形態では、これらの部分は、円筒形、凹状円筒形、凸状円筒形、球形などであってもよい。いくつかの実施形態では、加熱領域(例えば、加熱領域311,312および313)と周囲領域との間の温度勾配は、加熱領域内の分子の熱閉じ込めをもたらし得る。例えば、加熱領域311,312および313の間に物理的障壁がなくても、温度差がこれらの領域から周囲の溶液への分子の拡散を阻害する可能性があり、その結果、各加熱領域内の分子はそれぞれの領域内に熱的に閉じ込められていると言える。このようにして、加熱領域311,312、および313は、異なる反応を実行するために使用され得るサブ室を形成し得る。いくつかの実施形態では、この熱閉じ込めは、上部ハウジング部品202および下部ハウジング部品102の不連続領域を少なくとも閾値温度まで加熱することによって引き起こされ得、閾値温度は、反応容器100内に熱閉じ込めを引き起こすことが知られている所定の温度であり得る。例えば、不連続領域303は第1の閾値温度まで加熱されてもよく、不連続領域302は第2の閾値温度まで加熱されてもよい。場合によっては、第1および第2の閾値温度は同じまたは実質的に同じであってもよい。他の場合には、第1および第2の閾値温度は異なっていてもよい。
【0050】
[0068]
図4Aは、ハウジング部品402を含む例示的な反応容器400の概略斜視図を示す。ハウジング部品402は、反応容器400内に配置された溶液の局所加熱のためにエネルギー源408からの光放射を受け取るように構成された複数の不連続領域406に分配された光吸収層を含む。いくつかの実施形態では、光吸収層は、不連続領域406に対応する部分を除いてハウジング部品402によって隠されたすべての部分を有する連続した非不連続層であってもよい。他の実施形態では、光吸収層は、ハウジング部品402の上または内側に配置された不連続領域406に対応する不連続部分であってもよい。図示のように、ハウジング部品402は、溶液が不連続領域406の各々を通って流れることができる蛇行流路の形態をとる反応室を有してもよい。蛇行流路410を通る溶液の流れは、ポンプ、重力、またはウィッキング構造を含む多くの方法で促進することができる。不連続領域406の各々は、
図3Bに示す構成と同様に、それ自体のそれぞれのエネルギー源408を用いて構成することもできることを理解されたい。
【0051】
[0069]
図4Bは、光吸収層を形成するいくつかの不連続領域406-1~406-8を有する例示的な反応容器400の上面図を示す。
図4Bは、第1の方向で蛇行流路410を通る溶液の流れの方向を示しているが、蛇行流路410を通る溶液の流れは、第1の方向とは反対の第2の方向に移動することができることを理解されたい。例えば、ポンプ機構を含む実施形態では、蛇行流路410を通る溶液の流れを反応中の様々な時点で反転させて、流路410内に配置された溶液の所望の熱加熱プロファイルを達成することができる。いくつかの実施形態では、一本鎖DNAを、不連続領域406-1~406-8のうちの1つまたは複数の上に配置された結合剤に付着させることができ、流路410に沿って伝導されている溶液内の生体物質が、不連続領域406-1~406-8で溶液に伝達された熱によって生成された様々な温度で一本鎖DNAと相互作用することを可能にする。いくつかの実施形態では、不連続領域406-1~406-8によって吸収される熱は、本明細書に開示される機構のいずれかによって(例えば、不連続領域の組成、不連続領域の厚さ、対応する光源のパワーレベル、対応する光源の位置などを変えることによって)変化し得る。いくつかの実施形態では、溶液が流路410の部分を通過する速度は、流路の幅および/または深さを増加させることによって変えることができる。流路の一部の幅および/または深さを増加させることにより、その部分に沿った流路の断面積Aが増加する。したがって、他がすべて等しい場合、その部分を通る流れの速度は低下する。例えば、溶液は、比較的大きい平均断面積を有する流路の部分と比較して、比較的小さい平均断面積を有する流路の部分を通ってより迅速に流れることがある。非圧縮性流体の連続性方程式(ほとんどの溶液にほぼ適用される)A
1v
1=A
2v
2によれば、断面積が比較的低いA
1から比較的高いA
2に増加する場合、補償するために速度を低下させなければならない(すなわち、v
1からv
2)。例えば、
図4Bを参照すると、流路セグメント412は増加した幅を有し、それにより、不連続領域406-1と406-2との間(および不連続領域406-2と406-3との間)で冷却される必要がある溶液の速度が減少し、時間が増加し、溶液が不連続領域406-2で費やす時間がさらに増加する。不連続領域406-1~406-8によって吸収される熱を調整すること、および/または溶液が不連続領域406-1~406-8の各々および不連続領域406-1~406-8の間で費やす時間を調整することは、調整されたマルチステップ反応を可能にし得る。例えば、以下に説明するように、PCRは複数のステップを必要とし、各ステップは、溶液に必要な温度範囲(加熱および冷却を必要とする)を指定し、さらに溶液が必要な温度範囲に留まる時間量を指定する。
【0052】
[0070]
図4Cは、共形不連続領域414を有する光吸収層を含む例示的な反応容器400の別の実施形態を示す。
図4Cに示すように、共形不連続領域414は、流路410のセグメントの形状に概ね一致する。共形不連続領域は、エネルギー源からのエネルギーが流路410の特定のセグメントを標的とすることを可能にする。そのような実施形態では、連続する不連続領域間の流路410のセグメントの長さを増減することができる(同様に、共形不連続領域414に関連する流路410のセグメントの長さを増減することができる)。例えば、セグメント410-1(不連続領域414-1と414-2との間に配置された流路410のセグメント)またはセグメント410-2(不連続領域414-2と414-3との間に配置された流路410のセグメント)を通って流れる溶液は、溶液がセグメント410-3(不連続領域414-3と領域414-4との間に配置された流路410のセグメント)を通過するときよりも冷却される時間が短い。これは、図示のように、セグメント410-1および410-2がセグメント410-3よりも短く、したがって、加熱された不連続領域間の流路410を通る流れの間に冷却される機会が少ないという事実に起因し得る。別の例として、溶液は、領域414-1に沿って流れる場合、領域414-2に沿って流れる場合よりも長い時間加熱される(例えば、図示のように、不連続領域414-1は不連続領域414-2よりも長いため)。前述のように、
図4Cに示す実施形態の不連続領域は、それぞれの温度プロファイルを変更するように修正されてもよく(例えば、それらの組成、それらの厚さおよび他の寸法などを変えることによって)、または1つまたは複数のエネルギー源から異なる量のエネルギーを受け取ってもよい(例えば、対応するエネルギー源を異なるレベルに設定することによって)。また、前述のように、
図4Cに示す実施形態の流路410は、流れを変更するように修正されてもよい(例えば、流路の断面積Aを変化させることによって)。また、前述のように、不連続領域414の各々は、共有エネルギー源、それ自体の専用エネルギー源、または不連続領域414のサブセットを照射するエネルギー源によってサポートされ得る。反応室は、
図1A~
図3Bに示されるような単一の室、
図3Cに示されるような分割された反応室、および
図4A~
図4Cの流路としての文脈で説明されているが、他の反応室構成も可能であることを理解されたい。例えば、反応室は、2つの平板間に配置された一連の接着剤流路によって画定された内部容積の形態をとることができ、または単に反応容器基板上の位置から構成され得る。一般に、反応室は、それに沿って様々な反応を開始することができる反応容器によって画定される任意の流体経路であると考えることができる。特定の実施形態では、流体経路は、環境に対して閉鎖/封止または開放され得る。
【0053】
[0071]
図4D~
図4Fは、
図4Cに示す反応容器などの例示的な反応容器の横断面を示す。
図4Dは、不連続領域414-2、414-4、414-6、および414-8が流路410のセグメント(例えば、セグメント410-2a、410-2b、410-4a、410-4b、410-6a、410-6b、410-8a、410-8b)の下に配置される第1の例を示す。図示のように、エネルギー源408は、流路410の対応するセグメント(例えば、不連続領域の真上のセグメント)内の溶液を加熱するように、不連続領域にエネルギーを向けてもよい。
図4Eは、不連続領域414-2、414-4、414-6、および414-8が、流路410の側面を加熱する側方部分(例えば、側方部分415-1、415-2)を含む、第2の例を示す。図示のように、いくつかの実施形態では、側方部分は、傾斜したエネルギー源409から光を受け取るように構成された傾斜ランプを有してもよい。図示の実施形態では、側方部分は、各不連続領域について流路410のセグメントの外側部分に沿って配置されている。例えば、図示のように、側方部分415-1は、セグメント410-2aの外側面に沿って配置され、側方部分415-2は、セグメント410-2bの外側面に沿って配置される。他の実施形態では、側方部分は、流路410の各セグメントの両方の側方サービスに沿って配置されてもよい。例えば、側方部分は、セグメント410-2aの両方の側方サービスに沿って配置されてもよい。
図4Fは、不連続領域414-2、414-4、414-6、および414-8が流路410のセグメントに重なる上部をさらに含む第3の例を示す。この図示の例では、不連続領域の底部は、エネルギー源408-1から光を受け取るように構成され、不連続領域の上部は、エネルギー源408-2から光を受け取るように構成され、不連続領域の側部は、エネルギー源409から光を受け取るように構成されている。本明細書の他の箇所に開示されているように、不連続領域の各々によって吸収されるエネルギーは、例えば、可変電力レベルを有する多数のエネルギー源を有すること、不連続領域の寸法または組成を変えること、または任意の他の適切な手段によって変えることができる。
【0054】
[0072]
図5Aは、2つの不連続領域504-1および504-2で構成された光吸収層を有するハウジング部品502を含む例示的な反応容器500を示す。いくつかの実施形態では、不連続領域504-1および504-2は、単一のエネルギー源506によって駆動することができ、不連続領域504-1および504-2の各々が同様の量のエネルギーを受け取ることを可能にする。他の実施形態では、本明細書の他の箇所で説明するように、複数のエネルギー源を使用することができる。
図5Bは、不連続領域504-1が不連続領域504-2よりも多くのエネルギーをエネルギー源506から受け取るように、エネルギー源506を不連続領域504-1に向かってオフセットすることができる方法を示す。不連続領域504-1と504-2との間のエネルギーのこの分散は、任意選択の反射器要素508によって、より大きくすることができ、反射器要素は、不連続領域504-2に到達する光の量をさらに制限し、図示のようにエネルギー源506によって放射された光の一部を不連続領域504-1に向けて反射することによって不連続領域504-1に到達する光を増加させることができる。いくつかの実施形態では、反射器要素508の位置は、同様の効果のために変更され得る。例えば、エネルギー源506は、不連続領域504-1と504-2との間の中間点に配置されてもよいが、反射器要素508は、エネルギー源506からの光の大部分が不連続領域504-2から遮断される(例えば、代わりに不連続領域504-1に向かって反射される)ように、不連続領域504-2の近くに配置されてもよい。いくつかの実施形態では、反射器要素508は、エネルギー源506からの光エネルギーの分布を変化させるように傾斜させることができる。例えば、反射器要素508は、エネルギー源506から受け取る光の量をさらに増加させるために、不連続要素504-1に向かって傾斜してもよい。
【0055】
[0073]
図5Cは、例示的な反応容器500の上面図、および不連続領域504-1と504-2との間で溶液を交互に導くための流路510を含むことができる方法を示す。いくつかの実施形態では、不連続領域504-1および504-2は、両方が同じ温度にあるように同じ量のエネルギーを受け取ることができる。
図5Cを参照すると、このタイプの加熱構成では、流路510を通って流れる溶液は、時間T
1-に不連続領域504-1から、時間T
2に不連続領域504-1と504-2との間に配置された流路510の一部を通過し、次いで時間T
3に不連続領域504-2を通過する。このようにして、流路510によって運ばれる溶液は、時間T
1の第1の温度から時間T
2の第2の温度に、次いで時間T
3の第1の温度に戻り、循環する。他の実施形態では、不連続領域504-1および504-2は、不連続領域504のうちの1つに対して関連するエネルギー源をオフセットすること、不連続領域504の各々のための専用のエネルギー源を含むこと、不連続領域504のうちの1つを構成する光吸収層の一部の厚さを増減すること、光吸収層の組成を変えることなどによって、異なる量のエネルギーを受け取ることができる。不連続領域504-1および504-2で異なる量のエネルギーを供給するようにシステムを構成することにより、流路510を通って流れる溶液は、流路510の一端から他端に流れる際に、より多様な温度に達することができる。
図5Cに示されている実施形態は、2つの不連続領域504-1および504-2のみを示しているが、本開示は、任意の数の不連続領域(例えば、不連続領域504-1と504-2との間に配置された第3の温度に設定された第3の不連続領域)を有する同様の実施形態を企図している。記載された加熱モデルは、マルチステップ反応(例えば、PCR用)に特に適し得る。
【0056】
[0074]例示的なPCR反応
【0057】
[0075]PCRは、DNA鎖(DNA標的)の特定の領域を増幅する。ほとんどのPCR法は、0.1キロ塩基対~10キロ塩基対(kb)のDNA断片を増幅する。増幅産物の量は、反応中の利用可能な基質によって決定され、反応が進行するにつれて制限されるようになる。基本的なPCRセットアップは、増幅するためのDNA標的領域を含むDNA鋳型と、新しいDNA鎖を重合する酵素であるDNAポリメラーゼ(耐熱性Taqポリメラーゼは、高温のDNA変性プロセス中に無傷のままである可能性がより高いため、特に一般的である)と、DNA標的のセンス鎖およびアンチセンス鎖の各々の3’末端に相補的な2つのDNAプライマー(DNA標的領域に相補的な特定のプライマーは事前に選択され、多くの場合、実験室で特注で作製されるか、または市販の生化学供給業者から購入される)と、デオキシヌクレオシド三リン酸またはdNTPと、DNAポリメラーゼの最適な活性および安定性のための適切な化学的環境を提供する緩衝液と、典型的にはマグネシウム(Mg)またはマンガン(Mn)イオンである二価カチオン(Mg2+が最も一般的であるが、より高いMn2+濃度はDNA合成中のエラー率を増加させるため、Mn2+をPCR媒介DNA突然変異誘発に使用することができる)と、典型的にはカリウム(K)イオンである一価カチオンとを含むいくつかの構成要素および試薬を必要とする。
【0058】
[0076]反応は、一般に、サーマルサイクラー中の小さな反応室(0.2~0.5ml容量)中で10~200μlの体積で行われ、サーマルサイクラーは反応管を加熱および冷却して、反応の各ステップで必要な温度を達成する。薄肉の反応管は、迅速な熱平衡を可能にするために良好な熱伝導性を可能にする。
【0059】
[0077]
図6は、単一のPCRサイクルに関連する様々なステップを明確に示す、反応容器の例示的な温度プロファイルを示す。典型的には、PCRは、サイクルと呼ばれる一連の20~40回の反復温度変化から構成され、各サイクルは一般に2つまたは3つの個別の温度ステップから構成される。サイクルの前に、しばしば、非常に高い温度(>90℃[194°F])での単一の温度ステップがあり、その後、最終製品の延長または短時間の貯蔵のために最後に一度保持される。各サイクルで使用される温度およびそれらが適用される時間の長さは、DNA合成に使用される酵素、反応中の二価イオンおよびdNTPの濃度、ならびにプライマーの融解温度(Tm)を含む様々なパラメータに依存する。ほとんどのPCR法に共通する個々のステップは以下の通りである。
【0060】
[0078](1)初期化:このステップは、ホットスタートPCRによる熱活性化を必要とするDNAポリメラーゼにのみ必要である。これは、反応室を94~96℃(201~205°F)の温度に、または極めて熱安定性のポリメラーゼが使用される場合は98℃(208°F)の温度に加熱することから構成され、その後1~10分間保持される。このステップは
図6には示されていない。
【0061】
[0079](2)変性:このステップは最初の定期的なサイクル事象であり、反応室を94~98℃(201~208°F)に20~30秒間加熱することから構成される。これは、相補的な塩基間の水素結合を切断することによって二本鎖DNA鋳型のDNA融解または変性を引き起こし、2つの一本鎖DNA分子をもたらす。
【0062】
[0080](3)アニーリング:次のステップで、反応温度を50~65℃(122~149°F)に20~40秒間下げ、プライマーを各一本鎖DNA鋳型にアニーリングすることを可能にする。反応混合物には典型的には、標的領域を含有する2つの一本鎖相補体のそれぞれに1つずつ、2つの異なるプライマーが含まれる。プライマーは、それ自体が一本鎖配列であるが、標的領域の長さよりもはるかに短く、各鎖の3’末端の非常に短い配列のみを補完する。アニーリングステップの正しい温度が重要であり、その理由は、この温度が効率および特異性に強く影響するためである。この温度は、プライマーと鎖とのハイブリダイゼーションを可能にするのに十分低くなければならないが、ハイブリダイゼーションが特異的であるのに十分に高くなければならず、すなわち、プライマーは鎖の完全に相補的な部分にのみ結合しなければならず、他のどこにも結合してはならない。温度が低すぎると、プライマーが不完全に結合することがある。高すぎると、プライマーが全く結合しないことがある。典型的なアニーリング温度は、使用されるプライマーのTmより約3~5℃低い。相補的塩基間の安定な水素結合は、プライマー配列が鋳型配列と非常に密接にマッチする場合にのみ形成される。このステップの間に、ポリメラーゼはプライマーと鋳型のハイブリッドに結合し、DNA形成を開始する。
【0063】
[0081](4)延長/伸長:このステップの温度は、使用されるDNAポリメラーゼに依存する。Taq(Thermus aquaticus)ポリメラーゼの熱安定性DNAポリメラーゼの最適な活性温度は約75~80℃(167~176°F)であるが、この酵素では72℃(162°F)の温度が一般的に使用される。このステップでは、DNAポリメラーゼは、鋳型に5’から3’方向に相補的な遊離dNTPを反応混合物から添加し、dNTPの5’-リン酸基を新生(伸長)DNA鎖の末端の3’-ヒドロキシ基と縮合させることによって、DNA鋳型鎖に相補的な新しいDNA鎖を合成する。伸長に必要な正確な時間は、使用されるDNAポリメラーゼと増幅するDNA標的領域の長さの両方に依存する。経験則として、最適温度では、ほとんどのDNAポリメラーゼは毎分1000塩基を重合する。最適条件下(すなわち、基質または試薬の制限による制限がない場合)では、各延長/伸長ステップにおいて、DNA標的配列の数は2倍になる。各連続サイクルで、元の鋳型鎖とすべての新しく生成された鎖が次の伸長ラウンドのための鋳型鎖になり、特定のDNA標的領域の指数関数的(幾何学的)増幅をもたらす。
【0064】
[0082]変性、アニーリングおよび伸長のプロセスは、単一のサイクルを構成する。DNA標的を数百万コピーに増幅するには、複数のサイクルが必要である。所与のサイクル数の後に形成されるDNAコピーの数を計算するために使用される式は2nであり、nはサイクル数である。
【0065】
[0083](5)最終伸長:この単一のステップは任意であるが、残りの一本鎖DNAが完全に伸長されることを確実にするために、最後のPCRサイクルの5~15分後に70~74℃(158~165°F)(PCRで使用されるほとんどのポリメラーゼの最適な活性に必要な温度範囲)の温度で実施される。
【0066】
[0084](6)最終保持:最終ステップは、反応室を不定時間4~15℃(39~59°F)に冷却し、PCR産物の短期保存に使用することができる。
【0067】
[0085]PCRが予想されるDNA標的領域(アンプリマーまたはアンプリコンと呼ばれることもある)の生成に成功したかどうかを確認するために、アガロースゲル電気泳動をPCR産物のサイズ分離に使用することができる。PCR産物のサイズ(複数可)は、PCR産物と一緒にゲル上を走る既知のサイズのDNA断片を含む分子量マーカーであるDNAラダーとの比較によって決定される。他の化学反応と同様に、PCRの反応速度および効率は、制限因子の影響を受ける。したがって、PCRプロセス全体を、反応の進行に基づいて3つの段階にさらに分けることができる。
【0068】
[0086](1)指数関数的増幅:各サイクルで、生成物の量を2倍にする(100%の反応効率を仮定)。30サイクル後、DNAの単一コピーを最大10億コピーまで増加させることができる。反応は非常に高感度であり、微量のDNAのみが存在しなければならない。
【0069】
[0087](2)平準化段階:DNAポリメラーゼが活性を失うにつれて、およびdNTPおよびプライマーなどの試薬の消費がそれらを制限するようになるにつれて、反応は遅くなる。
【0070】
[0088](3)プラトー:試薬および酵素の枯渇により、これ以上生成物が蓄積しない。
【0071】
[0089]装填および封止すると、システムは熱サイクルによって増幅生成物を生成し得る。熱サイクルは、反応混合物を変性温度で変性時間インキュベートし、続いて混合物をアニーリング温度でアニーリング時間インキュベートし、さらに続いて混合物を伸長温度で伸長時間インキュベートする、1つまたは複数のサイクルを含み得る。システムは、前述のように1つまたは複数の光源を使用することによって反応ウェルのウェルを加熱し得る。光源と反応ウェルとの間のレンズによる集束光も使用され得る。埋め込まれたレンズを使用して、反応容器/ウェルに組み込まれた蛍光色素からの発光を集束させてもよい。試料および試薬を冷却するために、1つまたは複数の光源を冷却時間の間オフにしてもよい。場合によっては、反応ウェルのウェル内の試薬および試料の冷却のために、前述のように流体循環流路を使用してもよい。
【0072】
[0090]試料の増幅は、変性サイクルと、アニーリングサイクルと、伸長サイクルとを含む1つまたは複数の熱サイクルを実施するために、前述のシステムを使用して実施され得る。増幅反応が検出可能な結果を増幅産物の形態でもたらし得る時間は、標的核酸、試料、使用される試薬およびPCRのためのプロトコルに応じて異なり得る。場合によっては、増幅プロセスは1分未満で行われ得る。場合によっては、増幅プロセスは約1分~約40分で行われ得る。場合によっては、増幅プロセスは少なくとも約1分で行われ得る。場合によっては、増幅プロセスは最大で約40分で行われ得る。場合によっては、増幅プロセスは、約1分~約5分、約1分~約10分、約1分~約15分、約1分~約20分、約1分~約25分、約1分~約30分、約1分~約35分、約1分~約40分、約5分~約10分、約5分~約15分、約5分~約20分、約5分~約25分、約5分~約30分、約5分~約35分、約5分~約40分、約10分~約15分、約10分~約20分、約10分~約25分、約10分~約30分、約10分~約35分、約10分~約40分、約15分~約20分、約15分~約25分、約15分~約30分、約15分~約35分、約15分~約40分、約20分~約25分、約20分~約30分、約20分~約35分、約20分~約40分、約25分~約30分、約25分~約35分、約25分~約40分、約30分~約35分、約30分~約40分、約35分~約40分で行われ得る。場合によっては、増幅プロセスは、約1分、約5分、約10分、約15分、約20分、約25分、約30分、約35分、または約40分で行われ得る。
【0073】
[0091]場合によっては、熱サイクルを5回~40回繰り返すことにより試料の増幅を行ってもよい。場合によっては、熱サイクルを少なくとも5回繰り返してもよい。場合によっては、熱サイクルは最大で60回繰り返されてもよい。場合によっては、熱サイクルは、5回、10回、15回、20回、25回、30回、35回、40回、45回、50回、55回または60回繰り返されてもよい。
【0074】
[0092]熱サイクルは、熱サイクル時間内に完了し得る。場合によっては、熱サイクル時間は、サイクル当たり2秒~60秒の範囲であり得る。場合によっては、熱サイクルは約2秒~約60秒で完了し得る。場合によっては、熱サイクルは少なくとも約2秒で完了し得る。場合によっては、熱サイクルは最大で約60秒で完了し得る。場合によっては、熱サイクルは、約2秒~約5秒、約2秒~約10秒、約2秒~約20秒、約2秒~約40秒、約2秒~約60秒、約5秒~約10秒、約5秒~約20秒、約5秒~約40秒、約5秒~約60秒、約10秒~約20秒、約10秒~約40秒、約10秒~約60秒、約20秒~約40秒、約20秒~約60秒、または約40秒~約60秒で完了し得る。場合によっては、熱サイクルは、約2秒、約5秒、約10秒、約20秒、約40秒、または約60秒で完了し得る。
【0075】
[0093]変性サイクルの温度および時間は、同定される特性試料、使用される試薬および増幅プロトコルに依存し得る。変性サイクルは、約80℃~約110℃の範囲の温度で行われてもよい。変性サイクルは、少なくとも約80℃の温度で行われてもよい。変性サイクルは、最大約110℃の温度で行われてもよい。変性サイクルは、約80℃~約85℃、約80℃~約90℃、約80℃~約95℃、約80℃~約100℃、約80℃~約105℃、約80℃~約110℃、約85℃~約90℃、約85℃~約95℃、約85℃~約100℃、約85℃~約105℃、約85℃~約110℃、約90℃~約95℃、約90℃~約100℃、約90℃~約105℃、約90℃~約110℃、約95℃~約100℃、約95℃~約105℃、約95℃~約110℃、約100℃~約105℃、約100℃~約110℃、または約105℃~約110℃の温度で行われてもよい。変性サイクルは、約80℃、約85℃、約90℃、約95℃、約100℃、約105℃、または約110℃の温度で行われてもよい。
【0076】
[0094]場合によっては、変性サイクルの時間は約1秒未満であり得る。場合によっては、変性サイクルの時間は最大で約100秒であり得る。場合によっては、変性サイクルの時間は、約0秒~1秒、約1秒~約5秒、約1秒~約10秒、約1秒~約20秒、約1秒~約40秒、約1秒~約60秒、約1秒~約100秒、約5秒~約10秒、約5秒~約20秒、約5秒~約40秒、約5秒~約60秒、約5秒~約100秒、約10秒~約20秒、約10秒~約40秒、約10秒~約60秒、約10秒~約100秒、約20秒~約40秒、約20秒~約60秒、約20秒~約100秒、約40秒~約60秒、約40秒~約100秒、または約60秒~約100秒であり得る。場合によっては、変性サイクルの時間は、約1秒未満、約5秒未満、約10秒未満、約20秒未満、約40秒未満、約60秒未満、または約100秒未満であり得る。
【0077】
[0095]アニーリングおよび伸長サイクルの温度および時間は、同定される試料の特性、使用される試薬および増幅プロトコルに依存し得る。アニーリングおよび/または伸長サイクルは、約40℃~約70℃の温度で行われてもよい。アニーリングおよび/または伸長サイクルは、少なくとも約40℃の温度で行われてもよい。アニーリングおよび/または伸長サイクルは、最大約70℃の温度で行われてもよい。アニーリングおよび/または伸長サイクルは、約40℃~約45℃、約40℃~約50℃、約40℃~約55℃、約40℃~約60℃、約40℃~約65℃、約40℃~約70℃、約45℃~約50℃、約45℃~約55℃、約45℃~約60℃、約45℃~約65℃、約45℃~約70℃、約50℃~約55℃、約50℃~約60℃、約50℃~約65℃、約50℃~約70℃、約55℃~約60℃、約55℃~約65℃、約55℃~約70℃、約60℃~約65℃、約60℃~約70℃、または約65℃~約70℃の温度で行われてもよい。アニーリングおよび/または伸長サイクルは、約40℃、約45℃、約50℃、約55℃、約60℃、約65℃、または約70℃の温度で行われてもよい。
【0078】
[0096]場合によっては、アニーリングおよび/または伸長サイクルの時間は、約1秒未満であり得る。場合によっては、アニーリングおよび/または伸長サイクルの時間は、最大で約60秒であり得る。場合によっては、アニーリングおよび/または伸長サイクルの時間は、約0秒~1秒、約1秒~約5秒、約1秒~約10秒、約1秒~約20秒、約1秒~約40秒、約1秒~約60秒、約5秒~約10秒、約5秒~約20秒、約5秒~約40秒、約5秒~約60秒、約10秒~約20秒、約10秒~約40秒、約10秒~約60秒、約20秒~約40秒、約20秒~約60秒、または約40秒~約60秒であり得る。場合によっては、アニーリングおよび/または伸長サイクルの時間は、約1秒未満、約5秒未満、約10秒未満、約20秒未満、約40秒未満、または約60秒未満であり得る。
【0079】
[0097]場合によっては、変性サイクルとアニーリングおよび/または伸長サイクルとの間に、冷却サイクルが行われ得る。場合によっては、冷却サイクルは約1秒~約60秒行われ得る。場合によっては、冷却サイクルは少なくとも約1秒行われ得る。場合によっては、冷却サイクルは最大で約60秒行われ得る。場合によっては、冷却サイクルは、約1秒~約5秒、約1秒~約10秒、約1秒~約20秒、約1秒~約30秒、約1秒~約40秒、約1秒~約50秒、約1秒~約60秒、約5秒~約10秒、約5秒~約20秒、約5秒~約30秒、約5秒~約40秒、約5秒~約50秒、約5秒~約60秒、約10秒~約20秒、約10秒~約30秒、約10秒~約40秒、約10秒~約50秒、約10秒~約60秒、約20秒~約30秒、約20秒~約40秒、約20秒~約50秒、約20秒~約60秒、約30秒~約40秒、約30秒~約50秒、約30秒~約60秒、約40秒~約50秒、約40秒~約60秒、または約50秒~約60秒行われ得る。場合によっては、冷却サイクルは、約1秒、約5秒、約10秒、約20秒、約30秒、約40秒、約50秒、または約60秒行われ得る。
【0080】
[0098]増幅産物の検出は、増幅プロセスの様々な段階で行われ得る。場合によっては、増幅産物の検出は、増幅プロセスの最後に行われてもよい。場合によっては、増幅産物の検出は、熱サイクル中に行われてもよい。あるいは、場合によっては、検出は各熱サイクルの最後に行われてもよい。本明細書中に記載される検出方法に加えて、増幅産物の検出は、ゲル電気泳動、キャピラリー電気泳動、配列決定、ショートタンデムリピート分析および他の公知の方法を使用して行われ得る。
【0081】
[0099]
図7A~
図7Cは、複数の不連続領域を備えた光吸収層を有する反応容器700におけるハイブリダイゼーションおよび固相PCR操作の例を示す。
図7Aは、格子パターンで配置された不連続領域704のアレイを含む光吸収層702を有する反応容器700の上面図を示す。反応容器700は、溶液が反応室709に流入し反応室709から流出することを可能にするように構成された入口ポート706および出口ポート708を含む。いくつかの実施形態では、反応室709は、異なる不連続領域704を分離する物理的障壁を含まなくてもよい。代わりに、
図7Aの例示的な実施形態を参照すると、溶液が様々な不連続領域704と接触するように、入口ポート706を介して反応室709の内面を越えて、反応容器700に溶液を流してもよい。溶液は、出口ポート708を介して反応容器700から出てもよい。反応室709が物理的障壁によって分離される必要がないそのような実施形態は、物理的に分離された反応室709を有する反応容器と比較した場合に比較的複雑でなく、費用効果が高いという点で有利であり得る。物理的障壁によって分離されていない単一の室を有する反応容器によって与えられる単純さは、故障および/または欠陥の減少、ならびに製造および組み立てのための労力およびコスト要件の低減につながり得る。他の実施形態では、反応容器700内に複数の反応室が存在し得るように、不連続領域704のうちの1つまたは複数は、物理的障壁によって(例えば、上部ハウジング部品および/または下部ハウジング部品から延びる1つまたは複数の突起によって、または本明細書の他の箇所に開示されているような任意の他の適切な機構によって)1つまたは複数の他の不連続領域704から分離され得る。いくつかの実施形態では、反応室709は、対向する側(例えば、上部内向面に沿っておよび下部内向面に沿って形成または堆積される)に不連続領域を含んでもよい。これらの実施形態のいくつかでは、(本明細書の他の箇所に記載されているような)熱閉じ込めの概念を使用して、溶液の部分が互いに分離され得る。いくつかの実施形態では、不連続領域704に関連する結合領域の表面積は変化してもよい。例えば、第1の不連続領域704は、第2の不連続領域704よりも小さい表面積を有してもよい。その結果、第1の不連続領域704の温度プロファイルは、第2の不連続領域704の温度プロファイルと異なってもよい。さらに、第2の不連続領域704は、より大きな表面積を有することにより、第1の不連続領域704よりも多くの配列に結合することができ、例えば、第2の不連続領域704に結合した配列を優先して増幅プロセスをゆがめるために使用することができる。いくつかの実施形態では、本明細書の他の箇所に開示されるように、不連続領域704の温度プロファイルは、不連続領域704に送達される光エネルギーの量を変化させることによって(例えば、不連続領域704に対応するエネルギー源のエネルギーレベルを変調することによって)、および/または不連続領域704によって吸収される光エネルギーの量を変化させることによって(例えば、不連続領域704の組成および厚さなどの特性を調整することによって)、さらに変化させることができる。
【0082】
[0100]いくつかの実施形態において、反応容器の1つまたは複数の不連続要素は、1つまたは複数のヌクレオチド配列に結合され得る。例えば、
図7Bに示す例を参照すると、各不連続要素704は、例えば弱い共有結合相互作用(例えば、Au-チオール)によって結合された固有のプローブまたはプライマー配列710~713を有する。図示のように、標的分子710’、711’および713’を含む溶液は、不連続領域704の上に流されてもよい。標的分子710’、711’および713’は、不連続領域704に結合した配列(すなわち、配列710、711および713)に相補的な配列であり得るが、標的分子715’は、不連続領域704に結合した配列に相補的でなくてもよい。いくつかの実施形態では、標的分子710’、711’、713’および715’は、検出目的のために標識することができる。
【0083】
[0101]いくつかの実施形態では、溶液が不連続領域704を横切って流れるとき、不連続領域704に結合した配列に相補的な溶液中の標的分子は、それらの配列とハイブリダイズし得る。
図7Cは、標的分子が表面に結合したそれらの相補的配列のみとハイブリダイズする方法を示す。例えば、
図7Cに示すように、標的分子710’、711’および713’は、それぞれの相補配列710,711および713とハイブリダイズし、相補配列710,711および713はそれら自体がそれぞれの不連続領域704に結合している。したがって、標的分子710’、711’および713’は、それぞれの相補配列を介して不連続領域704に結合するようになる。相補的配列を有しない標的分子(例えば、標的分子715’)はハイブリダイズせず、したがって溶液中で結合しないままであり得る。これらの未結合分子は、溶液を反応容器から流出させる際に、反応容器から離脱し得る(例えば、漠然とした7Aを参照すると、出口ポート708を介して)。同様に、溶液中に相補的標的分子を有さない不連続領域704に結合した配列はハイブリダイズしない。例えば、
図7Cに示すように、配列712はハイブリダイズしていないままである。前述のように、いくつかの実施形態では、標的分子は、検出目的のために標識され得る。例えば、標的分子は蛍光標識され得る。溶液が反応容器に流入し流出すると(ハイブリダイゼーションに十分な時間が与えられた後)、検出機構を使用して、標識された標的分子の存在が検出され得る。例えば、検出機構は、標的分子に結合した蛍光標識を励起するように設計された光源と、蛍光標識の存在を検出するためのカメラデバイスとを含み得る。この例では、蛍光光源を反応容器上で光らせてもよく、各不連続領域で得られた蛍光強度を使用して、所与の標的分子の有無を検出することができる。例えば、
図7Cを参照すると、溶液を(標的分子715’などの未結合標的分子と共に)反応容器から離脱させた後に、不連続領域704で適切な光源を光らせると、すべての結合標的分子の蛍光標識が蛍光を発することができる。カメラは、配列710,711および713に関連する不連続領域704に対応する領域が閾値強度を超えて蛍光を発する一方で、配列712に関連する不連続領域704に対応する領域は(蛍光標識を有する標的分子がないために)閾値強度を超えて蛍光を発しないことを検出し得る。
【0084】
[0102]標的分子と不連続領域に結合した配列とのハイブリダイゼーションに続いて、固相PCRを実施して個別のアンプリコンの集団を作製することができ、次にこれをDNAに結合する分子を介して検出することができ、この分子の存在を検出するために使用することができる(例えば、蛍光および/または電気化学シグナルを介して)。固相PCRは、DNAを増幅するために自由に拡散するプライマーの代わりに、不連続領域上の表面結合プライマーを使用する。これは、核酸増幅を不連続領域上の二次元表面に限定し、したがって、単一の反応容器システムにおけるDNA増幅および検出の容易な並列化および高多重化を可能にする。あるいは、アンプリコンを配列決定して、分子の存在を同定することができる。
【0085】
[0103]
図7Dは、各不連続領域704が弱い共有結合相互作用(例えば、Au-チオール)によって結合された固有のプライマー配列711’を有する別の例を示す。図示のように、標的分子711、710’を含む溶液は、不連続領域704上を流れることができる。標的分子711,710’は、固有のプライマー配列711’に相補的なアダプタ部分711と、第2の部分(例えば、DNA分子またはRNA分子の一部)とを含み得る。例えば、アダプタ部分711は、DNA分子であり得る第2の部分710’にライゲーションされるアダプタ(固有のプライマー配列711’に結合するように構成される)であり得る。この例では、アダプタ部分711は、標的DNA分子に対して外来であり得る。ハイブリダイゼーションに続いて、固相PCRを実施して、別個のアンプリコンの集団を作製することができ、次にこれを配列決定して分子の存在を同定することができる。
【0086】
[0104]当業者には明らかなように、本明細書に記載の加熱機構は、従来のシステムと比較して優れた性能および機能性を提供する。例えば、反応室を収容する反応容器内で(例えば、反応室内または反応室に隣接して)光吸収層(例えば、
図7Aの不連続領域704で構成される層)を使用して反応室を加熱することは、反応容器の外部にヒーターを有する従来のシステムよりも著しく効率的であり、迅速である。これは一部には、これらの従来のシステムとは異なり、開示された加熱機構は、反応室内の溶液に到達するために熱エネルギーが複数の材料層を貫通することを必要としないためである。開示された加熱機構はまた、ハウジングに放散される熱の量が最小限に抑えられ、それによって熱のより均一な送達が保証されるため、より均一な加熱を保証する。また、本明細書の他の箇所に開示されているように、各不連続領域に送達される光エネルギーの量が制御され得るため(例えば、不連続領域に対応するエネルギー源のエネルギーレベルを調節することによって)、および/または各不連続領域によって吸収される光エネルギーの量が制御され得るため(例えば、不連続領域の組成および厚さなどの特性を調整することによって)、開示された加熱機構は、より制御された加熱を可能にする。このレベルの制御は、異なる温度要件を有するプライマーが使用される用途に特に有用であり得る。例えば、
図7Bを参照すると、プライマー710はハイブリダイゼーションのために第1の温度を必要とし得るが、プライマー711はハイブリダイゼーションのために第2の温度を必要とし得る。本開示の加熱機構は、プライマー710が結合された不連続領域704が第1の温度に加熱され、プライマー711が結合された不連続領域704が第2の温度に加熱されることを確実にすることによって、この差異に容易に対応することができる。
【0087】
[0105]
図8は、反応容器を動作させるための例示的な方法800を示す。この方法は、ステップ810で開始され得、溶液は、反応容器の入口ポートを介して反応容器内に受け入れられ得る。ステップ820において、溶液を光吸収層の複数の不連続領域にわたって反応容器の周りに流すことができる。ステップ830において、第1の光を、光吸収層の複数の不連続領域のうちの第1の不連続領域に向けてもよく、第1の光からのエネルギーを第1の不連続領域によって吸収させる。ステップ840において、第1の不連続領域に隣接する溶液の一部が加熱され得る。
図8には示されていないが、本開示は、例えば、異なるステップに異なる温度を使用するマルチステップ反応で使用され得る不連続領域の冷却(例えば、第1の光を発する光源をオフにすることによる)も企図していることを理解されたい。
特定の実施形態では、適切な場合には、
図8の方法の1つまたは複数のステップが繰り返され得る。本開示は、
図8の方法の特定のステップを特定の順序で発生するものとして説明および図示しているが、本開示は、任意の適切な順序で発生する
図8の方法の任意の適切なステップを企図している。さらに、本開示は、
図8の方法の特定のステップを含む、反応容器を動作させるための例示的な方法を説明および図示しているが、本開示は、任意の適切なステップを含む、反応容器を動作させるための任意の適切な方法を想定しており、任意の適切なステップは、必要に応じて、
図8の方法のステップのすべてまたは一部を含むか、またはいずれも含まなくてもよい。さらに、本開示は、
図8の方法の特定のステップを実行する特定の構成要素、デバイス、またはシステムを説明および図示しているが、本開示は、
図8の方法の任意の適切なステップを実行する任意の適切な構成要素、デバイス、またはシステムの任意の適切な組み合わせを想定している。
【0088】
[0107]前述の説明では、説明の目的のために、記載された実施形態の完全な理解を提供するために特定の命名法を使用した。しかしながら、記載された実施形態を実施するために特定の詳細が必要とされないことは、当業者には明らかであろう。したがって、特定の実施形態の前述の説明は、例示および説明の目的で提示されている。それらは、網羅的であること、または記載された実施形態を開示された正確な形態に限定することを意図するものではない。上記の教示を考慮すると、多くの修正および変形が可能であることが当業者には明らかであろう。
【国際調査報告】