IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レバント パワー コーポレイションの特許一覧

特表2022-505326サスペンションシステムを動作させるための方法及び装置
<>
  • 特表-サスペンションシステムを動作させるための方法及び装置 図1
  • 特表-サスペンションシステムを動作させるための方法及び装置 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-01-14
(54)【発明の名称】サスペンションシステムを動作させるための方法及び装置
(51)【国際特許分類】
   B60G 17/015 20060101AFI20220106BHJP
   B60G 17/0165 20060101ALI20220106BHJP
   B60C 23/00 20060101ALI20220106BHJP
【FI】
B60G17/015 B
B60G17/0165
B60C23/00 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021521299
(86)(22)【出願日】2019-10-18
(85)【翻訳文提出日】2021-05-27
(86)【国際出願番号】 US2019057000
(87)【国際公開番号】W WO2020081977
(87)【国際公開日】2020-04-23
(31)【優先権主張番号】62/747,805
(32)【優先日】2018-10-19
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】512321121
【氏名又は名称】クリアモーション,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ブレマー,ラヴァーン マイケル
(72)【発明者】
【氏名】テイラー,マシュー ジョー
(72)【発明者】
【氏名】アンダーソン,ザッカリー マーティン
【テーマコード(参考)】
3D301
【Fターム(参考)】
3D301AA16
3D301AA17
3D301AB21
3D301DA26
3D301DA38
3D301DB27
3D301EA40
3D301EA73
3D301EB02
3D301EB12
3D301EC01
3D301EC05
3D301EC08
(57)【要約】
本開示は、タイヤのセットとアクティブサスペンションシステムとを有する車両を動作させる方法を検討する。この方法は、路面に沿って走行するように車両を動作させることと、スマートタイヤアセンブリを用いて、タイヤのセットのうち少なくとも1つのタイヤに関連した1以上の物理量の大きさを検知することと、検知した1以上の物理量の大きさに少なくとも部分的に基づいて、車両のアクティブサスペンションシステムを制御することと、を含む。
【選択図】 図2
【特許請求の範囲】
【請求項1】
スマートタイヤアセンブリであって、
タイヤと、
前記タイヤに一体化された1以上のセンサと、を備え、
前記1以上のセンサは前記タイヤの1以上の物理量の大きさを検知するように構成されている、スマートタイヤアセンブリと、
アクティブサスペンションシステムであって、
アクチュエータと、
前記アクチュエータを制御するように構成されたコントローラと、を備え、
前記コントローラは、前記タイヤに一体化された前記1以上のセンサと通信する、アクティブサスペンションシステムと、を備える車両。
【請求項2】
前記タイヤに一体化された前記1以上のセンサは、前記検知した1以上の物理量の前記大きさに対応する出力を発生するように構成され、前記コントローラは、前記出力を受信すると共に、前記受信した出力に少なくとも部分的に基づいてコマンドパラメータを発生するように構成されている、請求項1に記載の車両。
【請求項3】
前記出力は、電圧、電流、光信号、及び電磁信号のうち少なくとも1つを含む、請求項2に記載の車両。
【請求項4】
前記タイヤの前記1以上の物理量は、前記タイヤの空気圧、タイヤ接触面の面積及び/又は形状、前記タイヤに作用する接触力、滑り、トレッド深さ、及び前記道路の付着特性のうち少なくとも1つを含む、請求項1に記載の車両。
【請求項5】
前記コントローラは、前記アクチュエータが加える力を制御するように構成されているか、又は前記アクチュエータの長さを制御するように構成されている、請求項1に記載の車両。
【請求項6】
前記コマンドパラメータは、コマンド力、コマンドトルク、コマンド電流、又はコマンド位置/長さである、請求項1に記載の車両。
【請求項7】
タイヤと、1以上の物理量の大きさを検知するように構成された1以上のセンサと、を含むスマートタイヤアセンブリを、車両に取り付けることと、
アクチュエータと、前記アクチュエータを制御するように構成されたコントローラと、を含むアクティブサスペンションシステムを、前記車両内に設置することと、
前記アクティブサスペンションシステムの前記コントローラを、前記スマートタイヤアセンブリの前記1以上のセンサと通信状態に置くことと、を含む方法。
【請求項8】
前記タイヤに一体化された前記1以上のセンサは、前記検知した1以上の物理量の前記大きさに対応する出力を発生するように構成され、前記コントローラは、前記出力を受信すると共に、前記受信した出力に少なくとも部分的に基づいてコマンドパラメータを発生するように構成されている、請求項7に記載の方法。
【請求項9】
前記タイヤの前記1以上の物理量は、前記タイヤの空気圧、タイヤ接触面の面積及び/又は形状、前記タイヤに作用する接触力、滑り、トレッド深さ、及び前記道路の付着特性のうち少なくとも1つを含む、請求項1に記載の方法。
【請求項10】
前記コントローラは、前記アクチュエータが加える力を制御するように構成されているか、又は前記アクチュエータの長さを制御するように構成されている、請求項1に記載の方法。
【請求項11】
前記コマンドパラメータは、コマンド力、コマンドトルク、コマンド電流、又はコマンド位置/長さである、請求項1に記載の方法。
【請求項12】
タイヤのセットとアクティブサスペンションシステムとを有する車両を動作させる方法であって、
路面に沿って走行するように前記車両を動作させることと、
スマートタイヤアセンブリを用いて、前記タイヤのセットのうち少なくとも1つのタイヤに関連した1以上の物理量の大きさを検知することと、
前記検知した1以上の物理量の前記大きさに少なくとも部分的に基づいて、前記車両の前記アクティブサスペンションシステムを制御することと、を含む方法。
【請求項13】
前記タイヤの前記1以上の物理量は、前記タイヤの空気圧、タイヤ接触面の面積及び/又は形状、前記タイヤに作用する接触力、滑り、トレッド深さ、前記道路の付着特性のうち少なくとも1つを含む、請求項12に記載の方法。
【請求項14】
前記アクティブサスペンションシステムを制御することは、前記アクティブサスペンションシステムのアクチュエータによって加えられる垂直力を制御することを含む、請求項12に記載の方法。
【請求項15】
前記アクチュエータは油圧アクチュエータである、請求項14に記載の方法。
【請求項16】
前記スマートタイヤアセンブリ内に一体化された1以上のセンサによって出力を発生することと、
前記アクティブサスペンションシステムのコントローラによって前記出力を受信することと、を含む、請求項12~15のいずれか1項に記載の方法。
【請求項17】
前記出力は、電圧、電流、光信号、又は電磁信号である、請求項16に記載の方法。
【請求項18】
前記アクティブサスペンションシステムの前記コントローラによって、前記受信した出力に少なくとも部分的に基づいてコマンドパラメータを決定すること、
を含み、前記コマンドパラメータは、コマンド力、コマンドトルク、コマンド電流、又はコマンド位置/長さである、請求項16に記載の方法。
【請求項19】
前記コマンドパラメータはコマンド力であり、前記方法は更に、前記車両の車体及び/又は前記車両の車輪もしくは車輪アセンブリに前記コマンド力を加えるように前記アクティブサスペンションシステムのアクチュエータを動作させることを含む、請求項18に記載の方法。
【請求項20】
前記コマンド力を加えるように前記アクチュエータを動作させることは、
前記コマンド力に基づいてコマンドトルクを決定することと、
前記アクチュエータのポンプのロータに前記コマンドトルクを加えるように電気モータを動作させることと、を含む、請求項19に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
開示される実施形態は、路面不連続(discontinuities)の効果を軽減するための、ダンパ及びサスペンションアクチュエータを含むサスペンションシステム並びにそれらの制御に関する。
【背景技術】
【0002】
車両のサスペンションシステムは、道路によって誘発される外乱(disturbance)から乗員を少なくとも部分的に保護し、横方向、縦方向、及び垂直方向等の走行に伴う加速の効果を軽減することを目的としている。車両のためのアクティブサスペンションシステムは、従来のパッシブサスペンションシステムに伴う既知のトレードオフのいくつかを克服する。
【発明の概要】
【0003】
いくつかの実施形態において、車両は、タイヤと、このタイヤに一体化された1以上のセンサと、を含むスマートタイヤアセンブリを含むことができる。1以上のセンサは、1以上の物理量(例えば、タイヤの空気圧、接触面の面積及び/又は形状、タイヤに関連する接触力(例えば、縦方向、横方向、及び垂直方向(法線方向)の負荷)、滑り(slippage)(例えば、縦方向滑り、スリップ率、及び/又はスライドスリップ角)、トレッド深さ、道路の付着特性(例えば、道路の粗さ、摩擦係数))の大きさを検知するように構成できる。また、車両は、アクチュエータ(例えば、油圧アクチュエータ、電気アクチュエータ、電気機械アクチュエータ)と、このアクチュエータを制御するように構成された(例えば、アクチュエータが加える力を制御するように構成された、アクチュエータの長さを制御するように構成された)コントローラと、を有するアクティブサスペンションシステムも含むことができる。この実施形態において、コントローラは1以上のセンサと通信状態(例えば電気通信、無線通信)であり得る。更に、1以上のセンサは、検知した1以上の物理量の大きさに対応する出力(例えば、電圧、電流、光信号、電磁信号)を発生するように構成できる。コントローラは、この出力を受信すると共に、受信した出力に少なくとも部分的に基づいて、コマンドパラメータ(例えば、コマンド力、コマンドトルク、コマンド電流、コマンド位置/長さ)を発生するように構成できる。
【0004】
いくつかの実施形態において、車両のスマートタイヤアセンブリは、タイヤと、1以上の物理量(例えば、タイヤの空気圧、接触面の面積及び/又は形状、タイヤに作用する接触力(例えば、縦方向、横方向、及び垂直方向(法線方向)の負荷)、滑り(例えば、縦方向滑り及び/又はスライドスリップ角)、トレッド深さ、道路の付着特性(例えば、道路の粗さ、摩擦係数))の大きさを検知するように構成された1以上のセンサと、を含むことができる。また、車両は、アクチュエータ(例えば、油圧アクチュエータ、電気アクチュエータ、電気機械アクチュエータ)と、このアクチュエータを制御するように構成された(例えば、アクチュエータが加える力を制御するように構成された、アクチュエータの長さを制御するように構成された)コントローラと、を有するアクティブサスペンションシステムも含むことができる。この実施形態の車両のアクティブサスペンションシステムのコントローラは、スマートタイヤアセンブリの1以上のセンサと通信状態であり得る。
【0005】
いくつかの実施形態において、車両は、スマートタイヤアセンブリとアクティブサスペンションシステムとを含むことができる。この実施形態において、スマートタイヤアセンブリは1以上のセンサを含むことができ、センサは、車両が路面に沿って走行している時に、車両の少なくとも1つのタイヤ又は複数のタイヤのセットに関連した1以上の物理量(例えば、タイヤの空気圧、接触面の面積及び/又は形状、タイヤに作用する接触力(例えば、縦方向、横方向、及び垂直方向(法線方向)の負荷)、滑り(例えば、縦方向滑り及び/又はスライドスリップ角)、トレッド深さ、道路の付着特性(例えば、道路の粗さ、摩擦係数))の大きさを検知する。コントローラを用いて、検知した1以上の物理量の大きさに少なくとも部分的に基づいて車両のアクティブサスペンションシステムを制御することができる。一態様に従って、本明細書はスマートタイヤアセンブリを含む車両を開示する。スマートタイヤアセンブリは、タイヤと、このタイヤに一体化された1以上のセンサと、を含み、1以上のセンサは、タイヤの1以上の物理量の大きさを検知するように構成されている。車両は、アクティブサスペンションシステムも含む。アクティブサスペンションシステムは、アクチュエータと、このアクチュエータを制御するように構成されたコントローラと、を含み、コントローラは、タイヤに一体化された1以上のセンサと通信する。
【0006】
いくつかの実施例において、タイヤに一体化された1以上のセンサは、検知した1以上の物理量の大きさに対応する出力を発生するように構成され、コントローラは、この出力を受信すると共に、受信した出力に少なくとも部分的に基づいてコマンドパラメータを発生するように構成されている。いくつかの例において、出力は、電圧、電流、光信号、及び電磁信号のうち少なくとも1つを含む。
【0007】
いくつかの実施例において、タイヤの1以上の物理量は、タイヤの空気圧、タイヤ接触面の面積及び/又は形状、タイヤに作用する接触力、滑り、トレッド深さ、及び道路の付着特性のうち少なくとも1つを含む。
【0008】
いくつかの実施例において、コントローラは、アクチュエータが加える力を制御するように構成されているか、又はアクチュエータの長さを制御するように構成されている。
【0009】
いくつかの実施例において、コマンドパラメータは、コマンド力、コマンドトルク、コマンド電流、又はコマンド位置/長さである。
【0010】
別の態様に従って、本明細書は、タイヤと、1以上の物理量の大きさを検知するように構成された1以上のセンサと、を含むスマートタイヤアセンブリを車両に取り付けることを含む方法を開示する。方法は、アクチュエータと、アクチュエータを制御するように構成されたコントローラと、を含むアクティブサスペンションシステムを車両内に設置することも含む。方法は、アクティブサスペンションシステムのコントローラを、スマートタイヤアセンブリの1以上のセンサと通信状態に置くことも含む。
【0011】
いくつかの実施例において、タイヤに一体化された1以上のセンサは、検知した1以上の物理量の大きさに対応する出力を発生するように構成され、コントローラは、出力を受信すると共に、受信した出力に少なくとも部分的に基づいてコマンドパラメータを発生するように構成されている。
【0012】
いくつかの実施例において、タイヤの1以上の物理量は、タイヤの空気圧、タイヤ接触面の面積及び/又は形状、タイヤに作用する接触力、滑り、トレッド深さ、及び道路の付着特性のうち少なくとも1つを含む。いくつかの例において、コントローラは、アクチュエータが加える力を制御するように構成されているか、又はアクチュエータの長さを制御するように構成されている。
【0013】
いくつかの実施例において、コマンドパラメータは、コマンド力、コマンドトルク、コマンド電流、又はコマンド位置/長さである。
【0014】
別の態様に従って、本明細書は、タイヤのセットとアクティブサスペンションシステムとを有する車両を動作させる方法を開示する。方法は、路面に沿って走行するように車両を動作させることを含む。方法は、スマートタイヤアセンブリを用いて、タイヤのセットのうち少なくとも1つのタイヤに関連した1以上の物理量の大きさを検知することも含む。方法は、検知した1以上の物理量の大きさに少なくとも部分的に基づいて、車両のアクティブサスペンションシステムを制御することも含む。
【0015】
いくつかの実施例において、タイヤの1以上の物理量は、タイヤの空気圧、タイヤ接触面の面積及び/又は形状、タイヤに作用する接触力、滑り、トレッド深さ、道路の付着特性のうち少なくとも1つを含む。
【0016】
いくつかの実施例において、アクティブサスペンションシステムを制御することは、アクティブサスペンションシステムのアクチュエータによって加えられる垂直方向の力を制御することを含む。
【0017】
いくつかの実施例において、アクチュエータは油圧アクチュエータである。
【0018】
いくつかの実施例において、方法は、スマートタイヤアセンブリ内に一体化された1以上のセンサによって出力を発生することと、アクティブサスペンションシステムのコントローラによって出力を受信することと、も含む。
【0019】
いくつかの実施例において、出力は、電圧、電流、光信号、又は電磁信号である。
【0020】
いくつかの実施例において、方法は、アクティブサスペンションシステムのコントローラによって、受信した出力に少なくとも部分的に基づいてコマンドパラメータを決定することも含み、コマンドパラメータは、コマンド力、コマンドトルク、コマンド電流、又はコマンド位置/長さである。
【0021】
いくつかの実施例において、コマンドパラメータはコマンド力であり、方法は更に、車両の車体及び/又は車両の車輪もしくは車輪アセンブリにコマンド力を加えるようにアクティブサスペンションシステムのアクチュエータを動作させることを含む。
【0022】
いくつかの実施例において、コマンド力を加えるようにアクチュエータを動作させることは、コマンド力に基づいてコマンドトルクを決定することを含む。また、コマンド力を加えるようにアクチュエータを動作させることは、アクチュエータのポンプのロータにコマンドトルクを加えるように電気モータを動作させることも含む。
【0023】
前述の概念、及び以下で検討する追加の概念は、任意の適切な組み合わせで構成することができ、本開示はこの点に関して限定されないことは認められよう。更に、本開示は、図示及び/又は記載される正確な構成、変形、構造、特徴、実施形態、態様、方法、利点、改良、及び手段に限定されないことは理解されよう。また、様々な構成、変形、構造、特徴、実施形態、態様、方法、及び手段は、システムもしくは方法において単独で用いるか、又は他の構成、変形、構造、特徴、実施形態、態様、方法、及び手段と組み合わせて用いることができる。更に、本開示の他の利点及び新規の特徴は、種々の非限定的な実施形態の以下に述べる詳細な説明を添付図面と共に検討すれば明らかになるであろう。
【0024】
本明細書及び参照により含まれる文献が相反する及び/又は矛盾する開示を含む場合、本明細書が支配するものとする。参照により含まれる2つ以上の文献が相互に相反する及び/又は矛盾する開示を含む場合、発効日が遅い方の文献が支配するものとする。
【図面の簡単な説明】
【0025】
図1】アクティブサスペンションシステムコントローラと通信状態にあるスマートタイヤを含む車両の一実施形態を示す。
図2】アクティブサスペンションを用いる例示的な車両の一部の概略図である。
【発明を実施するための形態】
【0026】
路面に沿って走行する車両は、路面の高度変化、不連続、隆起(bumps)、又はくぼみ(depression)に起因した垂直方向の変位及び/又は加速を受けることがある。更に、車両は、前後方向の加速(例えばブレーキをかけること及び/又は速さの変化に起因する)、又は横方向の加速(例えば方向転換に起因する)を受けることもある。車両のいずれの方向の加速も、結局は、車両/道路界面すなわち車両のタイヤにおいて1以上の力を加えることを利用するはずである。このような力が存在しない場合、車両は絶対基準系においていずれの方向にも加速することができない。
【0027】
従来、乗客の快適さと車両のハンドリングを改善するため、道路の衝撃又は慣性的に誘発される外乱を軽減するアクティブサスペンションシステムが用いられている。一方で、パッシブシステムは、快適さとハンドリングとのトレードオフを行う必要がある。例示的なアクティブサスペンションシステム及びそのコンポーネントの様々な態様が、参照により全体が本願に含まれる米国特許第10,040,330号に記載されている。
【0028】
例示的なアクティブサスペンションシステムでは、1以上のアクチュエータ(例えば、車両の各コーナに1つずつ)を用いて、車両のばね下質量(例えば車輪又は車輪アセンブリ)に対して車両のばね上質量(例えば車体又はシャーシ)をアクティブに上昇又は下降させることができる。様々な制御システムが使用され得る。例えば「スカイフック(skyhook)」制御システムは、隆起や道路穴のような道路の状況又は特徴部(features)にもかかわらず、車体の絶対垂直移動を最小限に抑えるように設計できる(例えば、乗員の快適さを向上させる「スムーズな」乗り心地を生じる)。これに対し、「グラウンドフック(groundhook)」制御システムは、地面又は路面に対する車体の相対垂直移動を最小限に抑えるように設計できる(従って、車両の乗員は、実際のハンドリング及び/又は知覚されるハンドリングの向上により、いっそう明確に道路と「つながっていると感じられる」)。
【0029】
アクティブサスペンションシステムの例示的な制御システムでは、1以上のセンサ出力のセットをコントローラにより受信することができる。コントローラは、特定のスキーム(例えばグラウンドフック制御、スカイフック制御、又はそれらの組み合わせ)を実行して、1以上のアクチュエータコマンドを決定することができる。センサ出力は、例えば、車体の加速、車輪又は車輪アセンブリの加速、アクティブサスペンションシステムのアクチュエータの伸張及び/又は圧縮の程度、アクティブサスペンションシステムのばねによって加えられるばね力に対応し得る。1又は複数のアクチュエータコマンドは、例えば、コマンド力(例えば線形の力もしくはトルク)、コマンド位置、又は他の任意の適切なコマンドパラメータに対応し得る。例えばスカイフック制御システムでは、加速度センサ(例えば加速度計)を用いて車体の加速を決定できる。加速度センサの出力をコントローラに提供することができ、コントローラは加速度センサの出力に少なくとも部分的に基づいてコマンド力を決定できる。コントローラは次いで、車両のコンポーネントにコマンド力を加えることをアクティブサスペンションシステムのアクチュエータに命令することができる。
【0030】
コントローラを用いて、絶対基準系における車両のばね上質量及び/又はばね下質量の運動を制御するようにアクティブサスペンション(又はセミアクティブ)システムの動作を制御することができる。これらのコントローラは、例えば車両のばね上質量及び/又はばね下質量に接続され得る多種多様なセンサから信号を受信できる。これらのセンサは、例えば車両のコンポーネントの変位又は加速のような様々なタイプの入力に反応することができる。代替的に又は追加的に、これらのセンサは様々なタイプのアクチュエータ入力に反応できる。
【0031】
これらのセンサの位置のため、これらに対する入力は、センサと道路/タイヤ界面における力との間に介在するコンプライアンス又はダンピングによって影響を受ける可能性がある。例えば、車両のばね上又はばね下質量に配置されたセンサに対する入力は、道路/タイヤ界面に存在し得る1又は複数の力によって減衰する及び/又は位相を外れる信号を生成することがある。
【0032】
発明者等は、「スマートタイヤ」又は「インテリジェントタイヤ」におけるように、車両のタイヤに埋め込むか又は他のやり方で組み込むことができるセンサを用いると、セミアクティブ及びアクティブサスペンションシステムの有効応答を著しく改善できることを認識した。本明細書で記載されるように、車両のタイヤに又はタイヤ内部に(道路/タイヤ界面に又はその近傍に)1以上のセンサを配置すると、ばね上質量に配置された及び/又はばね下質量の(タイヤ/道路界面から)更に遠位の他の部分に配置されたセンサよりも、例えば道路/タイヤ界面における力及び/又は加速を正確、高速、及び/又は完全に表現することが可能となる。
【0033】
「スマートタイヤ」及び「インテリジェントタイヤ」という用語は、タイヤ又はタイヤコンポーネント(例えばタイヤ壁、タイヤトレッド)及び/又はタイヤ/道路界面に関連した1以上の物理量についての情報を収集することができるタイヤアセンブリを指すため、本明細書において交換可能に用いられる。このような物理量は例えば、タイヤ空気圧、接触面の面積及び/又は形状、接触力(例えば、縦方向、横方向、及び垂直方向(法線方向)の接触力)、滑り(例えば、縦方向滑り及び/又はスライドスリップ角)、トレッド深さ、局所又は平均応力、局所又は平均歪み、速さ、及び/又はタイヤの変位、及び/又は道路の付着特性(例えば、道路の粗さ、摩擦係数)を含み得る。スマートタイヤは、1以上の「スマートタイヤセンサ」を含み得る。本明細書で用いる場合、「スマートタイヤセンサ」は、タイヤ内に位置する及び/又はタイヤの任意の部分に取り付けられるかもしくは埋め込まれ、このような物理量に関する情報を収集できるセンサである。
【0034】
本発明者等は更に、1以上のスマートタイヤセンサを用いて、アクティブサスペンションシステムの動作を制御するためのデータを収集する利点を認識した。具体的には、このようなタイヤベースのセンサは、タイヤと路面との相互作用に関する物理量の大きさをいっそう信頼性高くかつ正確に検出及び報告することができる。検知された物理量は、アクティブサスペンションシステム又はこのシステムのアクチュエータの1つを制御するコントローラに対する入力とすることができる。
【0035】
例えば、スマートタイヤセンサは、路面によってタイヤに与えられる垂直接触反応力を検知できる。コントローラは、スマートタイヤからの出力を受信し、受信したセンサデータに基づいてアクティブサスペンションシステムの1以上のコンポーネント(例えばアクチュエータ、モータ、ポンプ等)を制御することができる。コントローラは例えば、この情報に基づいて1以上のコマンドパラメータのセットを決定できる。様々な実施形態において、1以上のコマンドパラメータのセットは、コマンド力(例えばアクチュエータから要求される力)、コマンドトルク(例えばアクティブサスペンションシステムの電気モータによって与えられるトルク)、コマンド電流(例えばアクティブサスペンションシステムの電気モータに印加される電流)、又はコマンド位置(例えばアクチュエータの望ましい位置もしくは長さ)を含み得る。いくつかの実施形態では、次いでアクティブサスペンションシステムのコンポーネントが1以上のコマンドパラメータのセットを適用することができる(例えば、アクチュエータが車体又は車輪アセンブリにコマンド力を加える、電気モータがコマンドトルクを加える、アクチュエータがコマンド位置に到達するまで後退又は伸張する等)。
【0036】
ある例示的な状況において、車両は、例えば道路穴のようなくぼみを有する路面を走行し得る。道路穴は、所与の時点で自動車の車輪の1つだけが道路穴を横断するような寸法を有し得る。車両のタイヤが道路穴を横断し始めると、タイヤは少なくとも瞬間的に路面との接触を失う可能性がある。その時点で、垂直接触反応力はゼロまで又は実質的にゼロまで低下し得る。従って、実質的にゼロに等しい接触力、又は垂直接触力の急激な低下を用いて、車両のタイヤが道路穴に遭遇したか又は空中に浮いた正確な時点を決定することができる。いくつかの実施形態及び/又は特定の状況下において、自動車は、例えば知覚されるハンドリング又は実際のハンドリングを最大化するように道路に沿って進むことが望ましい場合がある。そのような状況下では、アクティブサスペンションシステムは例えば、垂直接触力を増大させるためタイヤを道路穴の中へ押し下げるように制御され得る(例えば、アクティブサスペンションシステムのアクチュエータは、車両の車輪又は車輪アセンブリに下向きの力を加えると共に車体に上向きの力を加えるように命令され得る)。あるいは、道路穴対応戦略は、車輪が道路穴を横断している間の道路穴へのタイヤの貫入を最小限に抑えるように実施され得る。道路穴戦略は、道路穴と相互作用しているタイヤがこれを「ジャンプ」できるように車両の1以上のコーナに力を加えることを含み得る。
【0037】
代替的に又は追加的に、特定の実施形態では、スマートタイヤによって収集された情報を用いて、例えば路面粗さ、路面不連続(例えば道路穴もしくは隆起)、又は道路を覆う物(例えば雪、水、氷、及び/又は油)のような路面特性を、いっそう効果的に(例えば、ばね上質量に位置する、もしくはタイヤ以外のばね下質量の部分に位置するセンサに比べて正確に及び/又は迅速に)検出及び/又は識別することができる。決定された路面特性に基づいて、1以上の制御パラメータ(例えば、利得値、重量、又は制御システムで使用される他のパラメータ)を修正することができる。例えば粗さの大きい路面では、「secondary ride(二次的乗り心地)」(例えば、路面の粗さから車体へのエネルギ伝達)に対する効果を少なくとも部分的に軽減するため、サスペンション応答を弱めることが望ましい場合がある。代替的に又は追加的に、特定の実施形態では、スマートタイヤによって収集された情報は、タイヤと路面との摩擦及び/又は摩擦係数を決定するよう効果的に使用され得る。決定された摩擦及び/又は摩擦係数に少なくとも部分的に基づいて、アクティブサスペンションシステムを制御することができる(例えば、摩擦係数が小さく、かつブレーキが要求される場合、アクティブサスペンションシステムは静止摩擦を増大させるため車両の車輪に下向きの力を加えることができる)。
【0038】
図1は、スマートタイヤアセンブリ103と、1以上のアクチュエータ109を含むアクティブサスペンションシステムとの双方を含む、例示的な車両107の一部を示す。スマートタイヤアセンブリ103は、タイヤ、路面、及び/又はタイヤと路面との相互作用に関連した1以上の物理量の大きさを検知できる1以上のセンサを含む。検知される物理量は、タイヤの空気圧、接触面の面積及び/又は形状、接触力(例えば、縦方向、横方向、及び垂直方向(法線方向)の負荷)、滑り(例えば、縦方向滑り及び/又はスライドスリップ角)、トレッド深さ、及び/又は道路の付着特性(例えば、道路の粗さ、摩擦係数)のうち1以上を含み得る。1以上のスマートタイヤは、アクティブサスペンションシステムの第1のコントローラ101と通信状態であり得る。特定の実施形態において、通信は電気通信を介したものであり得る。特定の実施形態では、当技術分野で既知の技術に従って通信は無線通信であり得る。特定の実施形態において、スマートタイヤは、任意の数の中間コンポーネントを介してアクティブサスペンションシステムの第1のコントローラ101と通信できる(例えば、スマートタイヤは中央車両コントローラと通信状態であり、中央車両コントローラはアクティブサスペンションシステムの第1のコントローラと通信状態であり得る)。特定の実施形態において、アクティブサスペンションシステムの第1のコントローラ101は、中央車両コントローラ内に一体化される、及び/又は複数の分散型プロセッサを含むことができる。特定の実施形態において、第1のコントローラはアクティブサスペンションアクチュエータに不可欠なもの(integral)であり得る。いくつかの実施形態では、1以上のスマートタイヤセンサからの情報は、CANバス又は無線送信器/受信器の組み合わせ等の様々な通信チャネルを介して、1以上のコントローラ間で共有又は交換することができる。代替的に又は追加的に、スマートタイヤセンサデータを受信するコントローラは、他のセンサから直接に又は間接的に受信した他のセンサからのデータを用いたセンサフュージョン技術を適用することができる。
【0039】
図示されている実施形態において、スマートタイヤアセンブリ103は、検知した1以上の物理量の大きさに基づいて出力105(例えば電磁信号)を発生する。図示されている実施形態において、アクティブサスペンションシステムの第1のコントローラ101は、スマートタイヤから出力105を受信するように構成できる。例示の実施形態では、アクティブサスペンションシステムの第1のコントローラ101は、受信した出力105に基づいて第1のコマンドパラメータを決定するように構成できる。特定の実施形態では、第1のコマンドパラメータはコマンド力とすることができ、コントローラは、車体111及び/又は車両の車輪もしくは車輪センブリにコマンド力を加えるようにアクティブサスペンションシステムのアクチュエータ109を制御するよう構成できる。特定の実施形態では、アクティブサスペンションシステムは更に、第1のコントローラと通信状態の第2のコントローラ(図示せず)も含み得る。第2のコントローラは、第1のコマンドパラメータを受信し、第1のコマンドパラメータに基づいて第2のコマンドパラメータを決定することができる。例えば、第2のコントローラはコマンド力をコマンドトルクに変換することができる。コマンドトルクは、(例えば電気モータによって)アクチュエータのポンプに与えられた場合、アクチュエータにコマンド力を加えさせるトルクに対応する。あるいは、第2のコントローラはコマンド力をコマンド電流に変換することができる。コマンド電流は、アクチュエータのモータに印加された場合、アクチュエータにコマンド力を加えさせる電流に対応する。
【0040】
特定の実施形態において、第1のコントローラ101は車両の車輪に対して遠隔に配置され、第2のコントローラは車両の車輪に対して近傍に配置され得る。特定の実施形態において、第1のコントローラ101及び第2のコントローラは、単一のハードウェアユニット又は複数ユニットのセット(例えば、単一のプロセッサ又は分散型プロセッサのセット)内に一体化され、このハードウェアユニット又は複数ユニットのセットにおいて実行される別個のソフトウェアモジュールに対応し得る。第2のコントローラは任意選択的とすることができ、特定の実施形態では、第1のコントローラ101は第2のコントローラを必要とすることなくアクティブサスペンションシステム又はそのアクチュエータ109を直接制御できる。
【0041】
図2aは、例示的な車両の一部の概略図を示す。例示的な車両は、ばね上質量201(例えば、車体及び上部マウント209aを含み得る)と、ばね下質量203(例えば、タイヤ213、車輪、車輪アセンブリ、ばね受け(spring seat)、及び/又はブレーキアセンブリを含み得る)と、を含むことができる。ばね下質量201及びばね上質量203は、サスペンションシステム205によって物理的に移動可能に結合され得る。いくつかの実施形態において、サスペンションシステム205はアクティブサスペンションシステムであり、ばね上質量の一部とばね下質量との間に配置されたばね要素207(例えばコイルばね及び/又は空気ばね)及びアクチュエータ209を含むことができる。アクチュエータ209はアクティブサスペンションコントローラ211によって制御され得る。他の実施形態において、サスペンションシステム205はセミアクティブサスペンションシステムであり、ばね上質量201の一部とばね下質量203との間に配置されたばね要素及び可変制御可能ダンパを含み得る。
【0042】
ばね下質量203は、回転可能部分(例えば、タイヤ213、車輪、及び/又は車輪ハブを含み得る)と、静的部分215(例えば、ばね受け、ブッシング209a、及び/又はブレーキアセンブリ(図示せず))と、を含み得る。ばね下質量203の回転可能部分は、エラストマ材料で構成できるタイヤ213を含み得る。当技術分野において既知のように、タイヤ213は、コンプライアンス要素(図2でばね要素217a~217bのセットとして概略的に図示されている)及び/又はダンピング要素(図2でダンピング要素219a~219bのセットとして概略的に図示されている)を提供し得る。車両が移動している時、タイヤ213を含むばね下質量203の回転可能部分は、ばね上質量及びばね下質量203の静的部分215に対して回転することができる。車両のタイヤ213が路面221の特徴部(例えば隆起又はくぼみ)に遭遇した場合、タイヤ213に運動エネルギが与えられる可能性がある。この運動エネルギは最初に、ばね下質量203の回転可能部分の垂直運動及び/又はタイヤ213の一部の圧縮もしくは変形を生じ得る。垂直運動エネルギは、タイヤ213のばね及び/又はダンパ要素を介してばね下質量203の静的部分215へ伝達され、この結果、ばね下質量203の静的部分215の垂直変位又は運動が発生し得る。ばね下質量203の静的部分215の垂直運動は次いで、サスペンションシステム205を介してばね上質量201へ伝達され、この結果、ばね上質量201の垂直変位又は運動が発生し得る。
【0043】
車両のばね上質量201の垂直運動に対する路面特徴部221の効果を評価するため、一連の伝達関数を考慮することができる。タイヤモデル(タイヤダイナミクスを説明する)は、路面の変位がどのように路面からタイヤ213のばね-ダンパシステムを介してばね下質量203の静的部分215へ伝達されるかを説明できる。タイヤモデルは極めて非線形である可能性があり、例えば、タイヤ圧、回転車輪速さ、車両速度、タイヤの角度位置、スリップ比、タイヤ歪み(せん断歪み及び法線方向歪みを含む)等を含む多種多様な量に依存し得る。サスペンション伝達関数は、ばね下質量203の静的部分215の垂直変位又は運動がどのようにばね下質量203の静的部分215からサスペンションシステム205を介してばね上質量201へ伝達されるかを説明できる。アクティブサスペンションシステムを用いて、例えばサスペンションシステムにおけるダンピングを変動させることにより、又はサスペンションシステムのアクチュエータを用いて能動的に力を加えることにより、伝達関数を動的に変動させることができる。
【0044】
アクティブサスペンションシステムは、ばね下質量203の静的部分215に搭載された1以上のセンサ223(例えば加速度計及び/又は慣性運動ユニット(IMU:inertial motion unit))に基づいて制御することができる。しかしながら、前述のタイヤダイナミクスに起因して、ばね下質量203の静的部分215の垂直変位/運動は路面221の垂直変位を有効に反映しない場合がある。例えばタイヤダイナミクスに起因して、タイヤ213が路面特徴部221(例えば隆起又は道路穴)に遭遇する時点と、その結果として生じるばね下質量203の静的部分215の垂直変位又は運動との間には、時間遅延が存在し得る。同様に、例えばタイヤ213のコンプライアンスに起因して、路面特徴部221の寸法と、その結果として生じるばね下質量203の静的部分215の垂直変位との間には、大きさの非線形の変動が存在し得る。従って、ばね下質量203の静的部分215に搭載され、ばね下質量の静的部分の垂直変位/運動を検出するように構成されたセンサは、タイヤダイナミクスを適正に説明しないことがあり、タイヤ213が遭遇する路面変位の間接的な及び/又は遅延した測定しか得られない可能性がある。こういった場合、ばね下質量203の静的部分215の測定された垂直変位/運動と路面の変位とを相互に関連付けるため、タイヤモデルを用いて適切なタイヤ伝達関数を推定することができる。同様に、タイヤモデルを用いて、アクティブサスペンションのアクチュエータがばね下質量203の静的部分215に与えた力とタイヤ/路面界面における力とを相互に関連付けることができる。しかしながら、タイヤダイナミクスの極めて非線形かつ複雑な性質を考慮すると、このようなモデルは複雑であり、正確に実施するのが難しい可能性がある。
【0045】
本発明者等は、タイヤ自体に及び/又はタイヤに近接して搭載された、及び/又はタイヤ自体及び/又はタイヤ/道路界面に関連した物理量を検出するように構成された1以上のセンサ225a~225bを含むスマートタイヤアセンブリ213aを利用することによって、車両/路面界面のいっそう直接的で正確な及び/又は効果的な測定値を取得できることを認識した。特定の実施形態において、スマートタイヤアセンブリは、タイヤ213内及び/又はタイヤ壁内に分散させた、タイヤ213内の1以上の位置で歪みを検出するように構成された歪みセンサのセットを含むことができる。タイヤ213の歪みは、タイヤ/路面221の界面における力に直接関連付けることができる。例えば、タイヤが路面の隆起に遭遇した場合、タイヤ213は圧縮され、結果としてタイヤ213で測定される法線方向歪みが増大し得る。参照により内容が全体的に本願に含まれる米国特許第9,815,343号は、タイヤの1以上の位置で歪みを測定するために使用できる歪みセンサ等の様々なタイヤセンサを開示している。特定の実施形態では、ばね上質量及び/又はばね下質量に取り付けたセンサだけを利用するコントローラに比べ、スマートタイヤセンサを用いることで、システム待ち時間を低減すると共に、車両運動のグラウンドフック又はスカイフック制御の改善を達成することができる。例えばいくつかの適用例では、例えば、タイヤの1以上の位置における歪み、タイヤ上の1以上のポイントの加速、接触面の大きさ、スリップ角等に関する情報を直接取得するスマートタイヤセンサを使用することにより、車輪コントローラを用いて接触面力を低減することができる。また、隆起及び道路穴を横断すること等の道路イベントに関するいっそう直接的な情報を収集することにより、少なくとも部分的にスマートタイヤセンサの利用に起因する待ち時間の低減を用いて、車体制御を改善することができる。例えば、タイヤにおけるスリップ角及び法線方向負荷に関するデータの使用を利用して、例えば車体コントローラによる車体の能動的制御に起因して誘発されるヨー外乱(yaw disturbance)を推定することができる。この推定によって、コントローラは、制御方法を切り換える(すなわちスカイフック制御戦略からグラウンドフック制御戦略へ)か、又は、望ましくないヨー外乱が予測されない場合はスカイフックベースの制御方法を維持することができる。
【0046】
いくつかの実施例では、スマートタイヤセンサからのデータを道路推定アルゴリズム又はシステムに対する入力として使用することができる。いくつかの例において、データはタイヤの接触面における法線方向負荷変動に関連し得る。例えば、法線方向負荷変動の検出は、システムにエラーを招く恐れのある道路イベント(例えば、高速で運転しているため道路穴を「スキップする」)に応じた不注意な力コマンドがアクティブサスペンションアクチュエータに送信されることを防止するのに役立ち得る。別の例では、法線方向負荷変動の検出によって、アクティブサスペンションシステムは法線方向負荷変動を低減するようにアクチュエータを調整できる。これにより、タイヤ振動が最小限に抑えられるので、道路推定アルゴリズムからの出力の信頼性を増すことができる。いくつかの例において、データはタイヤにおける縦方向スリップに関連し得る。タイヤにおける縦方向スリップがわかると、道路推定アルゴリズムと相互作用している位置特定アルゴリズムによる位置推定の精度を高めることができる。例えばタイヤがスリップしている場合、タイヤは回転しておらず、最初に推定された位置には存在しないことがある。いくつかの例において、データはタイヤ圧及び法線方向負荷変動に関連し得る。このようなデータを入力として受信することにより、道路推定アルゴリズムはタイヤ偏向/タイヤばね定数(tire spring rate)の推定値を計算することができる。タイヤ偏向/タイヤばね定数の推定値によって、タイヤに対する法線方向負荷変動を低減するためコントローラがタイヤばね定数を考慮に入れてアクティブサスペンションシステムのアクチュエータを調整できるようにすることで、いっそう正確な道路推定が可能となり得る。これにより、タイヤ振動が最小限に抑えられるので、道路推定アルゴリズムからの出力の信頼性を増すことができる。道路推定アルゴリズム及び位置特定アルゴリズムの例示的な実施形態が、参照により全体が本願に含まれる米国特許出願公報第2019/0079539号に図示及び記載されている。
【0047】
特定の実施形態において、スマートタイヤアセンブリの1以上のセンサ225a~225bは、アクティブサスペンションシステムのコントローラ211と通信状態であり得る。特定の実施形態において、通信は無線電磁信号227を介して実行され得る。いくつかの実施形態において、通信は1以上のケーブルを含み得る。いくつかの実施形態において、1以上のスマートタイヤセンサは、例えば電磁放射によって無線で電力を供給され得る。特定の実施形態において、アクティブサスペンションシステムコントローラ211は、スマートタイヤセンサアセンブリの1以上のセンサにより測定されるタイヤ213の法線方向歪みの変動に応答して、アクティブサスペンションシステムのアクチュエータ209を制御するように構成できる。いくつかの実施形態において、アクティブサスペンションシステムは、タイヤの実質的に一定の法線方向歪みを維持するように構成できる。タイヤが路面の隆起に遭遇する例では、タイヤが圧縮されるにつれてタイヤの法線方向歪みが増大し得る。この増大に応答して、アクティブサスペンションシステムは、タイヤの負荷を除去して以前の歪みレベルを回復させるため、ばね下質量に上向きの垂直方向の力を能動的に加えることができる。このようにして、タイヤに与えられるエネルギは車体への到達を妨げられ、結果として乗車経験の改善が得られる。
【0048】
別の実施形態において、アクティブサスペンションシステムコントローラは、スマートタイヤアセンブリ、ばね下質量の静的部分に搭載された1以上のセンサ223(例えば、加速度計、変位センサ、IMU)、及び/又はばね上質量に搭載された1以上のセンサ229(例えば、加速度計、変位センサ、IMU)と通信状態であり得る。特定の実施形態において、アクティブサスペンションシステムコントローラはタイヤモデルにアクセスできる。タイヤモデルは、例えばルックアップテーブルの形態をとり得る。タイヤモデルは、車輪の角度位置、車輪速度、歪み比、法線方向歪み、法線方向の力、接触面の特性、及び/又はタイヤ圧のうち1以上を含む、1以上のタイヤパラメータの関数として、タイヤ伝達関数を記述することができる。スマートタイヤアセンブリによって1以上のタイヤパラメータを決定し、アクティブサスペンションシステムコントローラに伝達することができる。アクティブサスペンションシステムコントローラ211は、スマートタイヤアセンブリから受信した情報と、ばね下質量の静的部分に搭載された1以上のセンサ及び/又はばね上質量に搭載された1以上のセンサからの入力とに基づいて、アクティブサスペンションシステム205のアクチュエータ209を制御するように構成できる。
【0049】
特定の実施形態において、スマートタイヤアセンブリは、タイヤ内の空気圧を決定するように構成された1以上のセンサの第1のセットと、タイヤの接触面の大きさ及び/又は形状を決定するように構成された1以上のセンサの第2のセットと、を含み得る。接触面の大きさ及びタイヤ内の空気圧に基づいて、タイヤに作用する垂直力の推定値を得ることができる。特定の実施形態において、アクティブサスペンションシステムコントローラは、車両のタイヤに作用する推定垂直力に基づいて、及び/又は第1のレベルから更に高いか又は更に低い第2のレベルへの垂直力の大きさの所望の変化に基づいて、アクティブサスペンションシステムのアクチュエータを制御するように構成できる。上記で検討したように、タイヤで直接センサを用いて垂直力を決定すると、複雑なタイヤダイナミクスを説明することができ、これによって、ばね下質量の他の部分又はばね上質量に配置されたセンサを用いて取得できるよりも、所与の時点のいっそう直接的かつ正確な垂直力の決定が可能となる。
【0050】
特定の実施形態において、スマートタイヤアセンブリは、タイヤのトレッド深さを決定するように構成された1以上のトレッド深さセンサを含み得る。特定の実施形態において、アクティブサスペンションシステムコントローラは、決定されたトレッド深さに基づいてアクティブサスペンションシステムのアクチュエータを制御するように構成できる。例えば、トレッド深さが閾値深さ未満であると判定された場合、タイヤは、操作(例えばブレーキ又はステアリング操作)を処理するため充分な静止摩擦を達成できない可能性がある。特定の実施形態において、車両のアクティブサスペンションシステム又はアクティブ安定システムは、所与のタイヤの小さい静止摩擦(例えば不充分なトレッド深さによって生じる)を補償するため、車両の他のタイヤに優先的に負荷をかけてこれら他のタイヤの静止摩擦を増大させることができる。
【0051】
代替的に又は追加的に、スマートタイヤセンサを用いて、マップ作成の目的のため路面の詳細情報を収集することができる。本発明者等は、ばね上質量(例えば車体)又はばね下質量のタイヤ以外の部分(例えば車輪アセンブリ)に搭載されたセンサだけを用いると、デジタルマップの生成に望ましい充分なレベルのデータ忠実度(data fidelity)が得られない可能性があることを認識した。いくつかの実施形態では、スマートタイヤアセンブリを用いて、デジタルマップの生成に用いられる高い忠実度のデータを収集することができる。更に、いくつかの実施形態では、高い忠実度のスマートタイヤセンサデータを収集し、車両の位置特定のため以前に収集したデータと比較することができる。「Road Surface Based Vehicle Control」と題し、2017年9月13日に出願された、連続番号第16/130,311号の米国特許出願は、少なくとも部分的に路面情報に基づいて車両の位置を決定するためのシステム及び方法を記述し、その内容は参照により全体が本願に含まれる。
【0052】
スマートタイヤアセンブリのセンサは、多種多様な技術を用いてタイヤ及び/又は路面に関連した物理量を検知することができる。特定の実施形態では、1以上の加速度計のセットをタイヤ内に一体化することができる。特定の実施形態において、スマートタイヤは、タイヤ内に一体化された力センサ(例えば容量式力センサ)を含み得る。特定の実施形態において、スマートタイヤは、タイヤ内及び/又はタイヤの外面上に分散した複数のファイバを含み得る。これらの実施形態において、スマートタイヤは、タイヤ及び/又は路面に関連した1以上の物理量の大きさを決定するため、複数のファイバの一部の相対的な偏向を検知することができる。特定の実施形態において、スマートタイヤは、タイヤの変形を決定することができるタイヤの周りに分散させた複数の圧電素子を含み得る。特定の実施形態において、スマートタイヤアセンブリは、タイヤ全体に均一に又は不均一に分散させた歪みゲージセットを含み得る。スマートタイヤの例としては、例えば、Cole, D. J. and Cebon, D., 1989年, A capacitive strip sensor for measuring dynamic type forces(Proc. of the Second International Conference on Road Traffic Monitoring, ロンドン, 38~42), Cole, D. J. and Cebon, D., 1992年, Performance and application of a capacitive strip tyre force sensor(Proc of IEEE Conference on Road Traffic Monitoring, ロンドン, 123~132), Yi, J. 2008年, A piezo-sensor-based “smart tire” system for mobile robots and vehicles(IEEE/ASME transactions on mechatronics, 13(1), 95~103頁), Pasterkamp, W. R. and Pacejka, H. B.1997年, The tire as a sensor to estimate friction(Vehicle System Dynamics, 27, 409~422), Pohl, A., Steindl, R. and Reindl, L,1999年, The “intelligent tire” utilizing passive SAW sensors measurement of tire friction(IEEE Transactions on Instrumentation and Measurement, 48(6), 1041~1046), Ray, L. R. 1997年, Nonlinear tire force estimation and road friction identification(Simulation and experiments. Automatics, 33(10), 1819~1833), Braghin, F., Brusarosco, M., Cheli, F., Cigada, A., Manzoni, S., and Mancosu, F.(2006年), Measurement of contact forces and contact patch features by means of accelerometers fixed inside the tire to improve future car active control(Vehicle System Dynamics, 44(sup1), 3~13)を参照のこと。
【0053】
本明細書で用いる場合、「コントローラ」は、これに関連付けられた回路及び/又はソフトウェアと共に、1以上の集積回路(例えばプロセッサ等)を意味すると理解され、これらはまとめて、入力を受信し、入力に基づいてコマンド信号を決定し、コマンド信号をターゲットコンポーネントに伝達及び/又は提供するように構成されている。複数のコントローラが1以上のハードウェアコンポーネントを共有し得ることは理解されよう。例えば、複数のコントローラを、単一のプロセッサ上で実行される別個のソフトウェアモジュールとして実施することができる。
図1
図2
【国際調査報告】