IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アカーテース パワー,インク.の特許一覧

特表2022-505465対向ピストンエンジンの母材ボアシリンダブロック
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-01-14
(54)【発明の名称】対向ピストンエンジンの母材ボアシリンダブロック
(51)【国際特許分類】
   F02F 1/00 20060101AFI20220106BHJP
   B22C 9/24 20060101ALI20220106BHJP
   B22D 29/00 20060101ALI20220106BHJP
   B22C 9/10 20060101ALI20220106BHJP
   B33Y 10/00 20150101ALI20220106BHJP
   B33Y 80/00 20150101ALI20220106BHJP
   F02B 75/28 20060101ALI20220106BHJP
   F02F 1/10 20060101ALI20220106BHJP
   F02F 1/42 20060101ALI20220106BHJP
【FI】
F02F1/00 Q
B22C9/24 A
B22D29/00 F
B22C9/10 G
B33Y10/00
B33Y80/00
F02B75/28
F02F1/10 D
F02F1/42 A
F02F1/42 B
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021521507
(86)(22)【出願日】2019-11-07
(85)【翻訳文提出日】2021-06-16
(86)【国際出願番号】 US2019060205
(87)【国際公開番号】W WO2020101994
(87)【国際公開日】2020-05-22
(31)【優先権主張番号】16/189,129
(32)【優先日】2018-11-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】506405644
【氏名又は名称】アカーテース パワー,インク.
(74)【代理人】
【識別番号】110000659
【氏名又は名称】特許業務法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】ピア,アンドリュ,ピー.
(72)【発明者】
【氏名】コジェウニク,ジョン,ジェイ.
(72)【発明者】
【氏名】ヴァセク,ゲリー,エー.
【テーマコード(参考)】
3G024
4E093
【Fターム(参考)】
3G024AA02
3G024AA09
3G024AA11
3G024AA22
3G024CA05
3G024FA14
3G024FA15
3G024GA01
4E093QA01
4E093QB03
4E093QC02
(57)【要約】
対向ピストン内燃エンジンの母材ボアシリンダブロックは、3Dプリント造形による鋳造用中子を使用して形成された冷却流路を備える。この鋳造用中子は、セラミックの部分を含み得る。母材ボアシリンダブロックは複数のシリンダを備え得、各シリンダは冷却流路、具体的には本シリンダの中央部を包囲している冷却流路と、それらの冷却流路内の乱流誘発機構と、を含む。
【選択図】図5E
【特許請求の範囲】
【請求項1】
対向ピストン内燃エンジンの母材ボアシリンダブロックであって、
ボア表面及び長手方向軸線を有するシリンダボアを含むシリンダと、
前記シリンダボアの前記長手方向軸線に沿って、前記シリンダの中間部に位置する燃焼領域と、
前記シリンダの外側部分の前記燃焼領域を包囲している冷却ジャケット部分であって、該冷却ジャケットが冷却機構を包囲している、冷却ジャケット部分と、を備え、
前記母材ボアシリンダブロックが、少なくとも1つのプリント造形による中子を使用して、前記冷却機構を画定するように、単一種の金属又は金属合金から鋳造されている、対向ピストン内燃エンジンの母材ボアシリンダブロック。
【請求項2】
長手方向に分離された吸気ポート及び排気ポートをさらに備え、ポートがそれぞれ、
前記母材ボアシリンダブロックにおいて、前記シリンダのそれぞれの円周に沿って配置された隣り合うポート開口部の列と、
隣り合うポート開口部の各対の間にあるポートブリッジと、を含む、請求項1に記載の母材ボアシリンダブロック。
【請求項3】
前記排気ポートの少なくとも1つのポートブリッジを介して冷媒を導くための冷却流路をさらに備える、請求項2に記載の母材ボアシリンダブロック。
【請求項4】
前記母材ボアシリンダブロックが単一の金属鋳物から製造されている、請求項1から3のいずれか一項に記載の母材ボアシリンダブロック。
【請求項5】
前記ポート開口部が、前記母材ボアシリンダブロック内の鋳造機構である、請求項4に記載の母材ボアシリンダブロック。
【請求項6】
前記冷却機構が、ペグ、壁、リッジ、リブ、又は前記シリンダの外壁から生じる他の突起部のいずれかを含み、冷却流体用の冷媒流路を形成するように構成されている、請求項1に記載の母材ボアシリンダブロック。
【請求項7】
前記冷却機構が約5mmの間隔を含む、請求項6に記載の母材ボアシリンダブロック。
【請求項8】
前記シリンダボアが、1つ又はそれ以上の機械加工された機構を備える、請求項1に記載の母材ボアシリンダブロック。
【請求項9】
前記排気プレナムが、前記シリンダのすべての排気ポート開口部が前記シリンダの内部から開口している排気プレナム室である、請求項2に記載の母材ボアシリンダブロック。
【請求項10】
シリンダブロックを備える、対向ピストンエンジンであって、
前記シリンダブロックは、
シリンダボア、ボア表面、及び長手方向軸線を有する少なくとも1つのシリンダと、
前記シリンダボアの前記長手方向軸線に沿って、前記少なくとも1つのシリンダの中間部に位置する燃焼領域と、
前記シリンダの外側部分の前記燃焼領域を包囲している冷却ジャケットであって、前記スリーブが冷媒流路を包囲している、冷却ジャケットと、
前記少なくとも1つのシリンダにおいて、長手方向に分離された吸気ポート及び排気ポートであって、ポートがそれぞれ、前記シリンダブロックにおいて、前記シリンダボアから吸気プレナム及び排気プレナムまでそれぞれ、円周方向に間隔を置いて配置された隣り合うポート開口部の列、及び該隣り合うポート開口部の各対の間にあるポートブリッジを含む、長手方向に分離された吸気ポート及び排気ポートと、を備え、
前記シリンダブロックが、少なくとも1つのプリント造形による中子を使用して、前記冷媒流路を画定するように、単一種の金属又は金属合金から鋳造されている、対向ピストンエンジン。
【請求項11】
対向ピストンの各対が、前記ポートを横切って移動し、かつ前記ポートを開閉するように構成され、さらに、前記ピストンがそれぞれの上部中央位置に近づいたときに、前記ピストンの端面間の前記燃焼領域内に燃焼室が画定される、請求項10に記載の対向ピストンエンジン。
【請求項12】
対向ピストンエンジンのシリンダブロックを製造する方法であって、
ボアを有する少なくとも1つのシリンダを含むシリンダブロック用のプリント造形による鋳造用中子を製造することであって、前記シリンダが、前記ボア内に対向して配置された一対のピストンを収容するように構成されている、ことと、
前記プリント造形による鋳造用中子を使用して、前記シリンダブロック用の金型装置を作成することと、
前記金型装置を使用して、金属を前記シリンダブロックへと鋳造することと、
前記金型装置を除去することとを、含む、方法。
【請求項13】
前記シリンダが、前記シリンダの長手方向軸線に沿って分離された吸気ポート及び排気ポートを備え、ポートがそれぞれ、前記シリンダブロックにおいて、前記シリンダボアから前記エンジンの吸気プレナム及び前記エンジンの排気プレナムまでそれぞれ、円周方向に間隔を置いて配置された隣り合うポート開口部の列、及び隣り合うポート開口部の各対の間にあるポートブリッジを含む、請求項12に記載の方法。
【請求項14】
鋳造用中子を製造することが、3Dプリント技術を用いることを含む、請求項12に記載の方法。
【請求項15】
前記金型装置が、セラミック中子部と、一つ又はそれ以上の砂中子構成要素と、を含む、請求項12に記載の方法。
【請求項16】
前記金型装置を除去することが、苛性剤又は酸を使用して前記セラミック中子部を溶解することを含む、請求項15に記載の方法。
【請求項17】
前記鋳造用中子の前記セラミック中子部が、前記シリンダの中間部の近傍に、前記金属シリンダブロック内に冷却流路を形成している機構を含む、請求項15に記載の方法。
【請求項18】
対向ピストン内燃エンジンのシリンダブロックであって、
ボア表面及び長手方向軸線を有するシリンダボアを含む少なくとも1つのシリンダと、
前記シリンダボアの前記長手方向軸線に沿って、前記少なくとも1つのシリンダのそれぞれの中間部に位置する燃焼領域と、
前記少なくとも1つのシリンダの外側部分の前記燃焼領域を包囲している冷却ジャケットであって、該冷却ジャケットが、タービュレータ列を含む冷却機構を包囲している、冷却ジャケットと、を備え、
前記冷却ジャケットと冷却機構とが前記シリンダブロックで一体の鋳造機構であり、前記シリンダブロックが、3Dプリント造形による中子を使用して製造されている、対向ピストン内燃エンジンのシリンダブロック。
【請求項19】
ボア表面及び長手方向軸線を有するシリンダボアと、
前記シリンダボアの前記長手方向軸線に沿って、前記シリンダの中間部に位置する燃焼領域と、
前記シリンダの外側部分の前記燃焼領域を包囲している冷却ジャケットであって、該冷却ジャケットが冷却機構を包囲している、冷却ジャケットと、を備え、前記冷却ジャケットと冷却機構とが前記シリンダに一体化された鋳造機構であり、前記冷却ジャケット内の前記冷却機構が、3Dプリント造形による中子を使用して製造されている、対向ピストン内燃エンジン用のシリンダ。
【請求項20】
ボア表面及び長手方向軸線を有するシリンダボアを含む少なくとも1つのシリンダと、前記シリンダボアの前記長手方向軸線に沿って、前記少なくとも1つのシリンダのそれぞれの中間部に位置する燃焼領域と、前記少なくとも1つのシリンダの外側部分の前記燃焼領域を包囲している冷却ジャケットと、を備える対向ピストン内燃エンジンの母材ボアシリンダブロック用の鋳造用中子であって、
前記鋳造用中子が、
少なくとも1つの砂部分、及び
前記燃焼領域の前記少なくとも1つのシリンダの外側部分で、前記冷却ジャケットによって包囲される冷却機構を形成するように構成された、少なくとも1つのセラミック部分を含み、
前記鋳造用中子が3Dプリント造形によって形成されている、対向ピストン内燃エンジンの母材ボアシリンダブロック用の鋳造用中子。
【発明の詳細な説明】
【技術分野】
【0001】
(連邦政府資金による研究の記載)
本プロジェクト契約者(PAH:Project Agreement Holder)の発明は、ニュージャージー米国陸軍契約司令部(ACC-NJ:U.S.Army Contracting Command-New Jersey)により日本航空機製造株式会社に対して授与された契約番号W15KQN-14-9-1002の下で、米国政府の支援を受けてなされたものである。米国政府は、本発明に関して一定の権利を有する。
【0002】
本技術分野は、対向ピストン内燃エンジンを含む。より詳細には、本技術分野は、1つ又はそれ以上のシリンダがシリンダブロックとの一体化部品としてその内部に鋳造されている、対向ピストンエンジンの母材ボアシリンダブロックの構造に関する。より詳細には、本分野は、3Dプリントによって製造された鋳造用中子(キャスティングコア、casting core)を使用して、対向ピストンエンジンの母材ボアシリンダブロックを鋳造することに関する。本分野は、シリンダの機構を形成するための1つ又はそれ以上のセラミック鋳造用中子を含む、中子の組み合わせを使用することを含み得る。
【背景技術】
【0003】
2ストロークの対向ピストン内燃エンジンでは、シリンダボア内で反対方向に移動する動作を行うために配置された一対のピストンを有する、少なくとも1つのポート付きシリンダが設けられている。このシリンダ内のピストンの往復摺動運動は、ボアによって案内される。
【0004】
ピストンは、ボア内でそれぞれの上部中央(TC:top center)位置と下部中央(BC:bottom center)位置との間で、互いに対向する方向に往復運動する。1ストロークでピストンは互いに接近して、ボアの中間部におけるそれらの端面間に燃焼室を形成する。後続のストロークでは、ピストンは燃焼に応答して離隔する。中間部における燃焼室は、ピストンがシリンダのTC位置を通過するときにピストンの端面間に画定され、その際、ピストン端面とボア表面とが燃焼室境界線をもたらす。この中間部は、エンジン動作中に発生する最高レベルの燃焼温度及び燃焼圧力に耐えており、また、この中間部に燃料噴射器、バルブ、及び/又はセンサなどの装置用の開口部を設けている場合は、その強度が低下し、とりわけ燃料開口部やバルブ開口部を通じて亀裂が生じやすくなる。
【0005】
ユニフロー掃気対向ピストンエンジンでは、シリンダ構造は、シリンダの第1の端部近傍にある吸気ポートと、シリンダの第2の端部近傍にある排気ポートとを含み得る。これらのポートはそれぞれ、通常シリンダの円周に沿って配置された開口部の列を含んでもよく、その際、ブリッジ(「バー」とも呼ばれる)が隣り合うポート開口部を分離している。シリンダを退出する排気ガスは流入空気よりもはるかに高温であるため、対向ピストンエンジンのシリンダの排気ポートで発生する温度は通常、同じシリンダの吸気ポートで発生する温度よりも高くなる。このため、排気ポート及びこの排気ポート内のブリッジに隣接する領域は、吸気ポートに隣接する領域と比較して冷却手段を別途必要とする。
【0006】
冷却装置を有するシリンダの現行の対向ピストン構造は、シリンダの外面に沿って冷却流体(「冷媒」)を導く1つ又はそれ以上のスリーブを有する湿式ライナと、冷媒が流れる排気ポートブリッジに沿った、又はこれを通る機械加工された流路とを含む。ライナ/スリーブアセンブリを搭載している代表的なシリンダ構造については、特許文献1で教示されている。
【発明の概要】
【発明が解決しようとする課題】
【0007】
現在、対向ピストンエンジンのシリンダブロックは、シリンダライナが保持されるシリンダ筒を有する一体型支持構造内に組み込まれるブロック部分を鋳造して機械加工することにより、製造されている。通常そのようなシリンダブロックは、スリーブを装着したシリンダライナが筒内に挿入されるようにする、分離された複数の部分を含む。冷媒流を閉じ込めるOリングなどの流体シールが、ライナに装着されている。このシリンダブロック部分は、ライナ/スリーブアセンブリ及び流体シールが所定の位置にある状態では、通常ねじ付きファスナによって接合されている。そのようなシリンダブロック構造については、特許文献2で教示されている。部品数を低減し、製造工程を最小限に抑え、かつ製造コストを削減するように、単一部品として形成される対向ピストンエンジンの一体型シリンダブロックを設けることが望ましいのは、明らかである。これら及び他の望ましい目的は、シリンダブロック内に鋳造され、エンジンが動作するときにシリンダの効果的な熱管理が確実に行われるようにする冷媒流路を画定している機構を有するシリンダを備える、対向ピストンエンジンの母材ボアシリンダブロックを作製することによって達成される。母材ボアシリンダブロック構造は、シリンダライナ又はシリンダスリーブを含まない。
【課題を解決するための手段】
【0008】
対向ピストンエンジンの母材ボアシリンダブロックは、シリンダブロック構成部品の一部又はすべてに3Dプリント造形による鋳造用中子を使用することで製造されてもよく、その結果、複雑な形状を可能にし、かつ場合によっては製造コストをも削減しながら、接合が必要となる部品及び部分の数を最小限に抑えることができる。母材ボアシリンダブロックを製造する方法、及び3Dプリント造形による鋳造用中子を作成する方法も提示している。好ましくは、母材ボアシリンダブロックは、単一種の金属又は金属合金から鋳造される。
【0009】
いくつかの実施形態では、対向ピストンエンジンの母材ボアシリンダブロックは、ボア表面及び長手方向軸線を有するボアを含む少なくとも1つのシリンダと、シリンダの排気ポートと吸気ポートとの間に位置し、この長手方向軸線に沿って延在する中間部と、シリンダの中間部における燃焼領域を包囲している冷却ジャケットと、を備える。本明細書で使用する場合、「燃焼領域」という用語は、シリンダにおいて、燃料と空気との混合物が燃焼する環状部分を指す。ピストンが燃焼領域内のそれらのTC位置を通過するときに、これらのピストンの端面間に燃焼室が画定又は形成される。燃焼領域の構造において、この燃焼領域が燃焼圧力に耐えることができるようにし、なおかつ、燃焼室から漏れる燃焼熱を効果的に除去することができるようになっている。
【0010】
以下の機構は、母材ボアシリンダブロックのシリンダにおいて、任意の適切な組み合わせで設けられ得る。本シリンダは、長手方向に分離された吸気ポート及び排気ポートを備えていてもよい。これらの吸気ポート及び排気ポートは、母材ボアシリンダブロックの吸気プレナム及び排気プレナムにそれぞれ配置された、ポート開口部を含んでいてもよい。各ポートにおいて、それぞれのポート開口部を隣り合うポート開口部からポートブリッジが分離している。排気ポートの少なくとも1つのポートブリッジを通る冷却流路が設けられてもよい。母材ボアシリンダブロックは単一の金属鋳物から製造され得、この場合ポート開口部は鋳造機構となる。本シリンダの他の冷却機構は、ペグ、壁、リッジ、リブ、又は本シリンダの外壁から生じる他の突起部のいずれかを含んでいてもよい。これらの冷却機構は、冷却流体用の冷媒流路を形成するように構成され得る。冷却機構間の間隔を1.5mm~10mmの範囲内、例えば約5mmとすることができる。母材ボアシリンダブロックは、1つ又はそれ以上の機械加工された機構をさらに備え得る。いくつかの実施形態では、母材ボアシリンダブロックは、本シリンダのすべての吸気ポート開口部が本シリンダの内部から開口している吸気プレナム室と、本シリンダのすべての排気ポート開口部が本シリンダの内部から開口している排気プレナム室と、を備えていてもよい。いくつかの実施形態では、対向ピストン内燃エンジンの母材ボアシリンダブロックは、複数のシリンダを備えていてもよい。
【0011】
いくつかの関連態様では、対向ピストンエンジンは、単一種の金属又は金属合金から鋳造される母材ボアシリンダブロックを備える。この母材ボアシリンダブロックは、シリンダボア、ボア表面、及び長手方向軸線を有する少なくとも1つのシリンダを備える。本シリンダブロックの燃焼領域は、シリンダボアの長手方向軸線に沿って、少なくとも1つのシリンダの中間部に位置している。母材ボアシリンダブロックは、燃焼領域を包囲している冷却ジャケットを備える。本シリンダの冷却機構はこの冷却ジャケットによって包囲されている。本シリンダの吸気ポートは、本シリンダの排気ポートから長手方向に分離されている。吸気ポートは母材ボアシリンダブロックにおいて、母材ボアシリンダブロックの吸気プレナムへの開口部を含み、また排気ポートは母材ボアシリンダブロックにおいて、母材ボアシリンダブロックの排気プレナムへの開口部を含む。
【0012】
別の関連態様では、対向ピストンエンジンの母材ボアシリンダブロックを製造する方法が本明細書に記載されている。本方法は、母材ボアシリンダブロック用の鋳造用中子を製造することと、この鋳造用中子を使用して、母材ボアシリンダブロック用の金型装置を作成することと、この金型装置に金属を鋳込むことと、母材ボアシリンダブロックが使用可能になった時点で、この金型装置を除去することとを含む。本方法は、対向ピストン、すなわち2ストロークのユニフロー掃気内燃エンジンの母材ボアシリンダブロックに適用され得る。
【0013】
本方法のための鋳造用中子を製造することは、3Dプリント技術を用いることを含んでいてもよい。本方法では、この鋳造用中子は、セラミック中子部と、1つ又はそれ以上の砂中子構成要素と、を含み得る。本方法において金型装置を除去することは、苛性剤又は酸を使用してセラミック中子部を溶解することを含み得る。本方法のいくつかの実施形態では、鋳造用中子のセラミック中子部は、本シリンダの中間部の近傍に、金属シリンダブロック内に冷却流路を形成している機構を含み得る。
【図面の簡単な説明】
【0014】
図1】シリンダを示すために部分的に切り取られた対向ピストンエンジンの一部を示し、「従来技術」と適切に表示されている。
【0015】
図2】スリーブの一部がライナから切り取られている、図1の対向ピストンエンジンのシリンダライナアセンブリの側面図であり、「従来技術」と適切に表示されている。
【0016】
図3A】スリーブとライナとが分離された状態を示す、図2のシリンダライナアセンブリの分解図であり、「従来技術」と適切に表示されている。
【0017】
図3B図2のシリンダライナアセンブリの断面図であり、「従来技術」と適切に表示されている。
【0018】
図4A】3Dプリント造形による鋳造用中子を使用して製造された、対向ピストンエンジンの例示的なシリンダ構造を示す。
【0019】
図4B】特定の冷却機構を示す図4Aのシリンダの一部を示す図である。
図4C】この冷却機構の一部を成形する鋳造用中子部の図である。
【0020】
図5A】冷却機構を有する複数の対向ピストンエンジンのシリンダを備える、母材ボアシリンダブロックの図を示す。
図5B】冷却機構を有する複数の対向ピストンエンジンのシリンダを備える、母材ボアシリンダブロックの図を示す。
【0021】
図5C図5A及び図5Bの母材ボアシリンダブロックの鋳造用中子を示す。
図5D図5A及び図5Bの母材ボアシリンダブロックの鋳造用中子を示す。
【0022】
図5E図5C及び図5Dに示す鋳造用中子の分解図である。
【0023】
図5F図5A及び図5Bに示す母材ボアシリンダブロックの特定の冷却機構用の、鋳造用中子を示す。
【0024】
図6】対向ピストンエンジンの母材ボアシリンダブロック又は母材ボアエンジンブロックを製造するための方法を示す。
【発明を実施するための形態】
【0025】
本明細書に記載し、かつ図示している母材ボアシリンダブロックは、改良された対向ピストンエンジンをもたらしている。他の態様は、以下に記載している新規な製造手段及び製造方法を用いることによって実行可能となる、対向ピストンエンジンのエンジンの実施形態を含む。
【0026】
図1は、同様に組み立てられた3つのシリンダ14、15、及び16を有するシリンダブロック12を備える、従来技術による対向ピストンエンジン10を示す。シリンダライナ20が支持されている、ブロック内に形成されたシリンダ筒18を含むシリンダ16の構造を示すために、シリンダブロック12の一部が取り外されている。エンジン10は、2つのクランクシャフト22及び23を含む。シリンダライナ20は、第1のライナ端部27の近傍にある吸気ポート25と、第2のライナ端部31の近傍にある排気ポート29と、これら吸気ポートと排気ポートとの間に位置する中間部34と、を含む。吸気ポート25と排気ポート29とは、それぞれ吸気プレナムと排気プレナムとに開口している。排気プレナムは、本シリンダブロックにおけるすべてのシリンダの排気ポートからのすべての排気ガスを収容する排気室であってもよい。
【0027】
図2図3A、及び図3Bは、ボアを有するライナと、このライナのそれぞれの端部近傍にある長手方向に変位する吸気ポート及び排気ポートとを備える、従来技術による対向ピストンエンジンのシリンダ構造を示す。図1及び図3Aに示すように、ライナ20上に圧縮スリーブ40が収容されている。燃料が燃焼室内に直接噴射されるように、燃料噴射器45がシリンダの側壁を貫通してボス46内に支持されている。
【0028】
図2図3A、及び図3Bは、ライナ20において吸気ポート25から中間部34まで延在している部分を緊密に包囲して補強している圧縮スリーブ40を有するライナ20を備える、従来技術によるシリンダ16の構造の詳細を示す。図2及び図3Bから分かるように、中間部34は、ボア内に対向して配置された一対のピストンの端面が互いに極めて接近するときに燃焼室が形成される、トップリング反転領域41を含む。圧縮スリーブ40は、それ自体とライナの外面42との間に略環状のジャケットを画定するように形成され、液体冷媒がここを通って、吸気ポートの近傍から排気ポートに向かって軸方向に流れることができる。中間部34の強度は、中間部34と圧縮スリーブ40との間に延在するペグ52の環状グリッド50によって補強されている。グリッド50は、燃焼時の高圧や高温にさらされる中間部34を緊密に包囲している。ペグ52は、ライナの中間部34を圧縮スリーブ40に対して支持している。グリッド50はまた、中間部34を横切って延在する環状の乱流冷媒流路を画定している。
【0029】
ライナの外面42と圧縮スリーブ40との間には、略環状空間55が形成されている。この空間は、ライナの中間部34において吸気ポート25に最も近接している側を包囲している。ライナの外面42と圧縮スリーブ40との間には、別の略環状空間59が形成されている。この空間は、ライナの中間部34において排気ポート29に最も近接している側に当接している。これらの空間55及び59は、グリッド50によって画定された冷媒流路を介して互いに流体連通している。圧縮スリーブ40に形成された1つ又はそれ以上の冷媒入口ポート61が、環状空間55上に配置され、かつこれと流体連通しており、また、圧縮スリーブに形成された1つ又はそれ以上の冷媒出口ポート63が、環状空間59上に配置され、かつこれと流体連通している。
【0030】
図2及び図3Aのように、グリッドペグ52は、噴射器ノズル、及びバルブなどがボス46によって位置決めされ、かつ支持されている中間部のセクタを緊密に包囲して補強するのに、十分な密度で設けられてもよい。有利には、これらグリッドペグ52間に複雑に入り組んだ隙間が存在することにより、ボス46それぞれの外面全体、及びボスと直接隣り合うライナの外面領域へと液体冷媒が行き渡るようになっている。
【0031】
対向ピストンエンジン10の動作中、シリンダ16は、圧縮スリーブ40とライナの外面42との間に画定されたジャケット内に液体冷媒(水性混合物など)を導入することによって冷却される。この冷媒は、シリンダブロック12内で環状空間55と流体連通している冷媒流路を通って圧送される。圧送された冷媒は、冷媒入口ポート61を経て環状空間55に進入し、これにより、冷媒はライナ20の中間部34に沿って外面42上を流れる。ポンプの圧力により液体冷媒がグリッド50を通って流れ、ここでペグ52は、中間部34を包囲し、中間部を横切る冷媒の乱流を生成するタービュレータ(層流を乱流にする装置)の環状迷路として機能している。この乱流は、中間部34上を流れる液体冷媒への熱伝達効率を高める。グリッド50を流れる冷媒の圧力によって、液体冷媒が中間部34から排気ポート29に向かって流れ、次いで環状空間59内に流れ込む。この冷媒は、環状空間59から、シリンダブロック12内に形成された戻り流路に向かい、この流路を通って流れる。いくつかの例では、冷媒は環状空間59から、排気ポートブリッジ70につながり、これらを越え、又は通る流路69(例えば、冷却流路)を通って送られてもよい。
【0032】
図2図3A、及び図3Bに示すような従来技術によるシリンダライナは、従来の鋳造技術及び/又は機械加工技術を用いて製造され得る。従来の鋳造プロセスは、砂中子、及び有機材料(例えば、植物油、穀物)、熱硬化性樹脂、低融点金属若しくは合金、粘土などの鋳物砂用粘結剤、又は特定の気体若しくは空気と接触すると固化する無機質粘結剤を生成することを含み得る。特定の気体と接触すると固化する粘結剤の例としては、二酸化炭素への曝露後に硬化するケイ酸ナトリウムが挙げられる。従来の材料を使用して、シリンダライナ及びシリンダブロック部分を鋳造するための金型の外側部分を形成することができる。シリンダライナ又はシリンダブロックの一部は、シリンダライナ及び/又はエンジンブロックを最終的に組み立てるための公知の技術若しくは手段を用いて、その後接合される個々の部品として鋳造され得る。
【0033】
母材ボアシリンダブロックの鋳造対向ピストンエンジンの母材ボアシリンダブロックは、3Dプリント造形による鋳造用中子を含む金型から単一の金属片として鋳造されてもよい。単一部品、モノリシック、又は一体の母材ボアシリンダブロックは、必要となる接合部及び接続部品(例えば、Oリング)が少なくなるため、互いに嵌合し合う多くの部品から製造されるシリンダブロックよりも有利となり得る。所望のタービュレータ(例えば、乱流生成機構)を形成することができない可能性のある従来の鋳造技術とは異なり、3Dプリント造形による鋳造用中子、具体的には一部にセラミックを使用している鋳造用中子を作成する場合は、必要な機構サイズやテクスチャを実現することができる。
【0034】
3Dプリント技術を用いて作成される鋳造用中子は、本明細書に記載の母材ボアシリンダブロックの形成にとりわけ適している。複雑なタービュレータ配列と、各シリンダの中間部及び排気ポートを包囲している構造(例えば、圧縮スリーブ、冷却水供給管路及び冷却水出口管路、ポートブリッジ冷却流路)とは、3Dプリント技術を用いてより好適に形成される。3Dプリント技術を用いて作成された鋳造用中子は、断片に分割していたものをコンピュータ支援設計ファイル(CADファイル)から一度に1層ずつ積み重ねられる。各断片は、固体材料(例えば、砂又はセラミック)の層や粘結剤のオーバーレイ層から構成されている。組み立てられたこれらの断片により、完成形態が作成される。セラミック又はセラミック部分を有する鋳造用中子の場合、キルン又は炉内で焼成する前のまだ固化していない間に、余剰粉末がセラミック本体から除去される。可塑性セラミック本体は、少なくとも1つのシェル及び中子構成要素で構成されたより大きな鋳造用金型の一部として使用される前に焼成され得る。未焼成状態のセラミック本体の強度が十分であれば、これを成形後に中子又は中子構成要素として使用することができる。鋳造用金型は、溶融金属が鋳込まれた後、その冷却時にこの溶融金属を成形する。いくつかの実施態様では、金属の冷却中にこの金型を回転させて、完成した金属製品の材料特性に作用させることができる。3Dプリント技術を用いて、砂中子又はハイブリッド鋳造用中子となる鋳造用中子を作成することができる。ハイブリッド鋳造用中子では、より大きな寸法や体積のものには砂を使用し、より微細な機構を有する中子の部分にはセラミックを使用している。
【0035】
砂部分及びセラミック部分を有するハイブリッド鋳造用中子は、完全な砂中子とは対照的に、シリンダが対向ピストンエンジンで使用されるときに液体冷媒(例えば、水)が内部を流れる乱流誘発機構の列を有する環状の冷却ジャケットを、圧縮スリーブの代わりに母材ボアシリンダブロックの内面が画定している形態の、上述の中間部を有するシリンダ用の中子の形成により適している可能性がある。ハイブリッド鋳造用中子は、これの一部をセラミックから作成することができ(すなわち、セラミック中子部)、またより微細な機構を形成することができるので、母材ボアシリンダブロックを形成する場合に有用である。セラミック中子の性質によって砂中子よりも耐久性が高まるので、より小さい機構を有する構造、又はより緊密な間隔で配置された構造は、より良好な寸法安定性をもって形成され得、ある部品の寸法を意図された寸法に確実に近似させることができる。全体を砂中子にする場合、溶融金属が金型に導入されると微細な機構が破損するか、又は当該プロセス中に中子が腐食するリスクがより高くなる。また、全体を砂中子にする場合、鋳造金属部品の表面テクスチャリングが砂粒子を反射するか、又は中子が鋳造部品から除去された後に、砂粒子が埋め込まれて一部残存するものとなる可能性がある。隣り合う機構間に隙間がほとんどないか、又は表面テクスチャリングが流体流れに悪影響を及ぼす可能性のある領域では、そのようなテクスチャリング又は表面を含むことが望ましくない場合がある。鋳造用セラミック中子(又は鋳造用中子においてセラミックである部分)は、最終的に苛性剤又は酸で浸出することによって除去されるため、鋳造部品の表面は、積極的な成形後加工を必要としないほど平滑なものとなる可能性が高くなる。
【0036】
シリンダ
図4Aは、本シリンダの中間部付近に冷却機構を形成するように、セラミック部分を有する3Dプリント造形による鋳造用中子を使用して製造された、対向ピストンエンジンの母材ボアシリンダブロックの例示的なシリンダ構造を示している。図4Bは、特定の冷却機構を有するシリンダの一部を、より詳細に可視化するように示している。図4Cは、図4Aに示すシリンダの特定の機構を製造するために使用できる、3Dプリント造形による鋳造用中子を示している。シリンダ120は、第1のシリンダ端部127(例えば、吸気端部)近傍に本シリンダの円周に沿って配置された、本シリンダの側壁を貫通している吸気ポート開口部125の1つ又はそれ以上の列から構成されている吸気ポートを備える。排気ポートは、ブリッジ130によって分離され、本シリンダの側壁を貫通して延在する排気ポート開口部129の1つ又はそれ以上の列を含む。図4A及び図4Bのように、排気ポート開口部129は、第2のシリンダ端部131(例えば、排気端部)近傍に、本シリンダの円周に沿って配置されている。シリンダ120の中央部分の中間部134は、吸気ポート125と排気ポートとの間にある。エンジンの動作中、ピストンが互いに最も接近すると、中間部134において、ピストンの隣り合う端面間に、燃料噴射ポート146を介して燃料が内部に噴射される燃焼室が画定される。
【0037】
本シリンダの中間部134は、本シリンダの燃焼領域を含む。冷却ジャケット壁140(図3A及び図3Bの圧縮リング40に対応する)を、本シリンダの中間部134を包囲した状態で示している。冷却ジャケット壁140は、母材ボアシリンダブロックと一体である。この冷却ジャケット壁140とシリンダ壁の中間部との間に画定されたジャケット空間に、ここでは円筒形ペグとして示している、流れる液体冷媒中に乱流を生成する機構が設けられている。図4Aでは、排気ポートブリッジの冷却流路169の一部も可視化されている。これらの冷却流路169は、母材ボアシリンダブロックの金型装置を作成するときに使用する、3Dプリント造形による鋳造用中子の流路用のものを使用しても製造され得る。
【0038】
ポートブリッジ130によって排気ポートを構成している開口部が分離されており、冷却流路169は各ポートブリッジにおいて、隣り合うポート開口部の各対の間に設けられ得、あるいは、例えば1ポートブリッジ置きに、個数をより少なくして設けられ得る。さらに、この冷却流路169がポートブリッジ内に配置されているものとして説明しているが、冷却流路は、ブリッジを通り、これらを越え、又はこれらにつながる通路として、あるいは本シリンダの冷却ジャケット壁に形成される、ブリッジに隣接する流体搬送切込みなどとして形成され得る。3Dプリント造形による鋳造用中子は、ブリッジを通り、かつこれらに隣接する流路の組み合わせを含むこれらの構造のいずれかに対応することができる。
【0039】
シリンダ120の中間部134を形成するために3Dプリント造形による鋳造用中子を使用することにより、燃焼領域内の本シリンダのホットスポット付近に、冷媒を導くためのファインピッチの機構を形成することができる。
【0040】
1~10mm程度の寸法又は離隔距離を有する機構を中間部134が含む形態のシリンダでは、鋳造用中子を、中間部134の全体又は一部において、砂の代わりにセラミック材料を有するものとすることができる。本明細書で使用している機構は、記載している本シリンダ及び鋳造用中子の構造、又は他と異なる属性若しくは態様である。シリンダの中間部134上にある機構は、タービュレータや冷却流体を搬送するための流路(例えば、管路)などの冷却機構を含み得る。
【0041】
図4Bでは、エンジン動作中に冷媒が流れるペグ152の環状列や、シリンダ120の排気側のポートブリッジを通る冷却流路への開口部169を視認することができる。エンジン動作中、冷媒はペグ152の周りを流れる他、さらに冷却流路を通って流れる。図4Cでは、ペグ152を成形している鋳造用中子部151を、シリンダ120とは別個に視認することができる。鋳造用中子部151を、燃料噴射ノズル(例えば、図4Bの燃料噴射ボス146)を収容する2つの開口部147、圧縮解放制動システム用バルブ又は燃焼制御自動化用センサを収容する開口部149、及び溶融金属を円筒形ペグに成形して、シリンダ120の中間部134に沿って、かつその周りに液体冷媒の乱流冷媒流を生成する開口部153(例えば、図4Bのペグ152)と、この中子セグメント151を鋳造用中子の他の部分又は母材ボアシリンダブロックの鋳造用金型に接続できるようにする機構171と、を有する形態で示している。この鋳造用中子部又はセグメント151は3Dプリント造形され得、従来の鋳造用中子製造に使用される比較的粗い砂の代わりに、セラミック材料を使用して作成されてもよい。
【0042】
母材ボアシリンダブロック
図5A及び図5Bは、図4A及び図4Bによる冷却機構を有する複数の対向ピストンエンジンシリンダ514、515、516、517を備える、母材ボアシリンダブロック500の図を示す。図5Aは、母材ボアシリンダブロック500の第1の側面を示し、図5Bはその反転側面図である。母材ボアシリンダブロック500は、吸気側クランクシャフトを支持しているクランクケース部510iと、排気側クランクシャフトを支持しているクランクケース部510eとで構成されたクランクケース部510、及びギアトレインハウジング520の一部を備える。クランクケース部510iと510eとの間には、4つのシリンダ514、515、516、517を示しており、各シリンダは、シリンダ内の対向ピストンそれぞれの上部中央位置を含む中間部570(すなわち、燃焼領域)を有する。図5A及び図5Bに示す母材ボアシリンダブロック500では、排気プレナム530の一部、吸気プレナム540の一部、本シリンダブロック500の吸気側の冷却流路550への開口部、及びシリンダブロック500の排気側の冷却流路560への開口部も可視化されている。動作中、母材ボアシリンダブロック500上にあるホットスポットを冷却するために、冷却流体が吸気側開口部を通って冷却流路550に流入し、シリンダ514、515、516、517の中間部570にあるタービュレータの列へと流れ、ポートブリッジを越えるか、又は通過し、その後排気側開口部560を通って流出する。
【0043】
図5C図5Eに示す3Dプリント造形による鋳造用中子装置575により、4つのシリンダ514、515、516、517の形成が可能となり、各シリンダはボアと、ボアの外側にあるホットスポット(例えば、排気ポートに隣接する燃焼領域)付近の冷却機構と、冷却機構を包囲している冷却ジャケットと、を含み、本シリンダのホットスポット付近で、熱を効率的に除去する乱流方式で冷媒が最適に流れるようにしている。各シリンダは、3Dプリント造形による鋳造用中子によって形成された、吸気ポート及び排気ポートをさらに有する。母材ボアシリンダブロックのシリンダを形成するために3Dプリント造形による中子を使用することは、いくつかの実施形態では、ポート及び冷却機構の正確な位置合わせ、機構サイズの制御、並びに別途機械加工を行うことなく、結果として得られる鋳造物をそのまま使用できるようにする表面粗さを実現する。すなわち、ポート開口部、冷却機構、及び冷却流体流路を、機構や流路の寸法が比較的微細である領域(例えば、1~10mm)に、3Dプリント造形による中子、具体的には、図4Cに見られる1つ又はそれ以上のセラミック部分を有する中子を使用して製造された、母材ボアシリンダブロック内の鋳造機構(すなわち、完成又は略完成した形態へと鋳造された構造)とすることができる。3Dプリント造形による鋳造用中子を使用して、単一種の金属又は金属合金をマルチシリンダブロックへと鋳造することができる。
【0044】
単一の3Dプリント造形による中子を使用してマルチシリンダ型母材ボアブロックを形成できることには、多くの潜在的な利点があり、そのいくつかについては本明細書でさらに述べている。マルチシリンダ型母材ボアブロックは、空気処理機構及び冷媒搬送機構が位置合わせされるという利点を有し得る。ここで位置合わせされる機構には、排気ポート及び吸気ポートと、これらのポートに隣接し、またこれらの間にある冷却流路(例えば、ポートブリッジを横切る)と、各シリンダの中間部付近にある冷却機構とが含まれ得る。シリンダブロックを形成するために単一の3Dプリント造形による中子を使用することの別の利点としては、シーリングが改良されて、漏れが減少していることが挙げられる。さらに、部品壁(例えば、シリンダ壁、乱流機構、管路)の均一性は、3Dプリント造形による鋳造用中子を使用してより良好に制御され得る。
【0045】
図5C及び図5Dは、図5A及び図5Bの母材ボアシリンダブロック500用の鋳造用中子装置575を示す。図5Cは、母材ボアシリンダブロック500内の4つのシリンダすべての鋳造用中子を示す立面図である。図5Dは、鋳造用中子装置575の側面図である。鋳造用中子装置575は、本シリンダブロックの吸気側クランクケース部用中子577i及び排気側クランクケース部用中子577eと、シリンダバレル(例えば、シリンダボア)中子578と、本シリンダブロックの吸気側及び排気側の両方の油室用中子579と、冷却アセンブリ用中子580と、を含む。冷却アセンブリ用中子580は、排気側冷却流路583、吸気側冷却流路584、及び各シリンダの中間部を包囲している冷却機構用の中子585を含む。これらの冷却機構において、中子585は、燃料噴射器用の各タービュレータ列の開口部586であり、また、圧縮ブレーキバルブ、及び圧力センサなどのための追加の開口部587である。吸気プレナム用中子590及び排気プレナム用中子592も、図5C及び図5Dに示している。
【0046】
図5Eは、図5C及び図5Dに示す鋳造用中子装置575の分解図である。クランクケース部用中子577i、577e及びシリンダバレル用中子578に加えて、油室用中子579、吸気プレナム用中子590、及び冷却アセンブリ用中子580を、図5Eにおいてより完全に視認することができる。さらに、排気ポート用中子596及び吸気ポート用中子597を示している。図5C及び図5Dのように、冷却アセンブリ580は、排気側冷却流路583、吸気側冷却流路584、及び各シリンダの中間部に乱流誘発機構を形成する中子を含む。図5Eは、冷却アセンブリ580を有する排気プレナム用中子592を示す。
【0047】
図5Fは、図5A及び図5Bに示す母材ボアシリンダブロックの冷却機構用の鋳造用中子を示している。排気プレナム用中子593及び排気ポート用中子596を、同様に図5Fに示している。排気プレナム用中子593の下方には、各シリンダの中間部用の中子部585がある。これらの中子部585は、円筒形タービュレータ588を列状に形成するための孔を含み、また、燃料噴射器586のタービュレータ列内に切れ目を含む。図5Fに示す鋳造用中子は、鋳造装置又は金型装置の外側部分で、本シリンダの中間部において、冷却ジャケットの外壁とシリンダの中間部のシリンダの外面との間にタービュレータを有する冷却ジャケットを形成することができる。上述したように、図5Fの鋳造用中子の機構(例えば、管路、流路、接合部を形成しているタービュレータ、チューブ又は溝を形成している特有の構造、穴又はオリフィス)は、セラミック、砂、又はセラミック材料と砂との両方の組み合わせで構成された3Dプリントを用いて、必要なサイズ及び表面条件を実現するように製造され得る。
【0048】
本明細書の全体を通して記載している機構は、母材ボアシリンダブロックあるいは鋳造用中子の顕著な、又は特有の属性若しくは態様となる構造である。これらの機構は、それらのサイズ、目的、位置、又は製造方式(すなわち、3Dプリント造形、鋳造、機械加工)に関して指定されてもよい。鋳造用中子の機構を使用して、鋳造金属製品に相補的な機構が作製され、このために、鋳造金属製品の機構の列間がファインピッチとなる小型の機構(例えば、シリンダブロック)では、ペグを製造するための孔、又は穴や流路を製造するための柱や壁を含む小型の相補的な機構を伴う鋳造用中子を必要とする。乱流を生成する冷却機構については、本明細書では円筒形ペグとして記載しているが、冷却機構は、ペグ、壁、リッジ、リブ、又はシリンダの外壁から生じる他の突起部のいずれかを含み得る。これらの冷却機構は、冷却流体用の冷媒流路を形成するように構成され得る。これらの冷却機構の形状は、形状の組み合わせとなることを含むように様々となり得る。冷却機構に使用することができる形状のいくつかは、円筒形ペグ、中でも以下の断面のいずれかを有するペグを含み、これらの断面はすなわち、長円形、楕円形、半月形、三角形、四葉形、平行四辺形、正方形、長方形、台形、不等辺四辺形、凧形、菱形、五角形、六角形、七角形、八角形、九角形、十角形、又は複合形状(すなわち、2つ又はそれ以上の単一形状が組み合わされた複合形状)である。また、冷媒流路は、乱流流路以外の構成を含んでもよい。例えば、ペグの代わりに、リッジ又はランドを形成して長尺状、渦巻き状、らせん状、波状、又は直線状の流路が画定されてもよい。上述したような母材ボアシリンダブロック用の、セラミック中子部を有するものを含む3Dプリント造形による鋳造用中子を使用すれば、冷却機構間により細密な間隔を設けることができる。いくつかの実施形態では、冷却機構間の間隔を、例えば約5mmなど、1.5~10.0mmとすることができる。本明細書に記載の母材ボアシリンダブロックは、すべて鋳放し形状を有し得、あるいは、とりわけ本シリンダボア内及びその付近に、鋳放し形状や機械加工形状を含み得る。
【0049】
対向ピストンエンジンの母材ボアシリンダブロックを製造するための例示的な方法600を、図6に示している。本方法では最初に、605にあるように、3Dプリント造形による、対向ピストンエンジンの母材ボアシリンダブロック用の鋳造用中子が作成される。鋳造用中子は、鋳造用中子用の3Dプリント造形による砂、セラミック、又は砂部分とセラミック部分との組み合わせを使用して、上述したように製造され得る。610にあるように、この3Dプリント造形による中子は、湯道、押湯、及び湯口用の中子、並びに金型装置を形成するための下型及び上型で組み立てられ得る。615にあるように、溶融金属は金型装置内に鋳込まれ、母材ボアシリンダブロックへと鋳造される。620にあるように、金属母材ボアシリンダブロックが使用可能になった時点で、鋳造用中子及び他の型材が除去され得る。鋳造用中子及び他の型材の除去は、セラミック材料を溶解するために浸出液を使用することと、砂中子部を洗い流すこととを含み得る。625にあるように、鋳造用中子及び金型を除去した後に、鋳バリ、湯道、及び押湯が最終鋳造部品から機械加工除去され得る。
【0050】
本明細書には、母材ボアシリンダブロックに含まれ得る他の多くの機構を示してはおらず、また記載もしていない。そのような機構は、典型的には、ブロック自体の全体にわたって潤滑油や冷媒などの流体を搬送するための様々な内部流路、穴、通路などを含むが、これらに限定されない。そのような機構は、設計上の選択事項であり、本開示の一部ではない。
【0051】
対向ピストンエンジンのシリンダブロックがライナ又はスリーブを有する(すなわち、「ライナ付き」又は「スリーブ付き」シリンダブロック)シリンダを備える場合、図4A及び図4Bに示す機構を有するシリンダライナが、3Dプリント造形による鋳造用中子を含む金型から単一の金属片として鋳造され得ることは明白である。単一部品、すなわち一体のシリンダライナは、必要となる接合部及び接続部品(例えば、Oリング)が少なくなるため、互いに嵌合し合う多くの部品から製造されるライナよりも有利であり得る。所望のタービュレータ(例えば、乱流生成機構)を形成することができない可能性のある従来の鋳造技術とは異なり、3Dプリント造形による鋳造用中子、具体的には一部にセラミックを使用している鋳造用中子を作成する場合は、必要な機構サイズやテクスチャを実現することができる。
【0052】
本明細書で上述した母材ボアシリンダブロックが1つ又はそれ以上のシリンダを有するものとして述べているが、母材ボアシリンダブロックがわずか1つのシリンダ用に、また2つ又はそれ以上のシリンダ用に、好ましくは3つのシリンダ用に製造され得ることを理解されたい。また、本開示では、エンジンブロックは、母材ボアシリンダブロックを含むエンジンの構成要素であり、他の構成要素をさらに含む場合がある。当業者であれば、母材ボアシリンダブロック又は母材ボアシリンダブロックの鋳造に関する方法の説明が、いかにエンジンブロックに対しても適用され得るかについて理解するであろう。当業者であれば、本明細書に記載している特定の実施形態が単なる例示にすぎず、本明細書の範囲から逸脱することなく様々な修正が可能であり、その中で行われ得ることを理解するであろう。
【先行技術文献】
【特許文献】
【0053】
【特許文献1】米国特許第8485147号明細書
【特許文献2】米国特許第9435290号明細書
図1
図2
図3A
図3B
図4A
図4B
図4C
図5A
図5B
図5C
図5D
図5E
図5F
図6
【国際調査報告】