IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルペリア・バルトゥッチ・ソチエタ・ペル・アツィオーニの特許一覧

特表2022-508555建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法
<>
  • 特表-建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法 図1
  • 特表-建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法 図2
  • 特表-建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法 図3
  • 特表-建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法 図4
  • 特表-建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法 図5
  • 特表-建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-01-19
(54)【発明の名称】建物を暖房するために流体ベクトル温度を制御するためのシステムおよび方法
(51)【国際特許分類】
   F24F 11/84 20180101AFI20220112BHJP
【FI】
F24F11/84
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021542288
(86)(22)【出願日】2019-07-19
(85)【翻訳文提出日】2021-05-18
(86)【国際出願番号】 IB2019056203
(87)【国際公開番号】W WO2020065417
(87)【国際公開日】2020-04-02
(31)【優先権主張番号】102018000009019
(32)【優先日】2018-09-28
(33)【優先権主張国・地域又は機関】IT
(81)【指定国・地域】
(71)【出願人】
【識別番号】521129222
【氏名又は名称】アルペリア・バルトゥッチ・ソチエタ・ペル・アツィオーニ
【氏名又は名称原語表記】ALPERIA BARTUCCI S.P.A.
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100189555
【弁理士】
【氏名又は名称】徳山 英浩
(74)【代理人】
【識別番号】100210701
【弁理士】
【氏名又は名称】萩原 義則
(72)【発明者】
【氏名】ルカ・バルボーニ
(72)【発明者】
【氏名】ジョルジャ・ファレッラ
(72)【発明者】
【氏名】ジョヴァンニ・バルトゥッチ
(72)【発明者】
【氏名】アレッサンドロ・フォンティ
(72)【発明者】
【氏名】フランチェスコ・コッキオーニ
(72)【発明者】
【氏名】アレッサンドロ・ベッリーニ
【テーマコード(参考)】
3L260
【Fターム(参考)】
3L260AA01
3L260AA04
3L260AA08
3L260AA09
3L260AB06
3L260BA03
3L260BA23
3L260CA32
3L260CA34
3L260CA39
3L260CB37
3L260EA04
3L260FA03
3L260FA10
3L260FB26
3L260FB32
(57)【要約】
本発明は、建物を暖房するためのシステム20に関する。このシステムは、キャリア流体を加熱するように適合された熱発生器23と、建物1に含まれる熱負荷に熱を伝達するのに適した少なくとも1つの放射要素21と、キャリア流体を熱発生器23から放射要素21に伝達するための送達導管251と、キャリア流体を放射要素21から熱発生器23に伝達するための戻り導管253と、送達導管251に沿って配置され、戻り導管253に接続された三方弁50であって、三方弁50は、送達導管251内のキャリア流体を戻り導管253内のキャリア流体に混合するように動作可能である、三方弁50と、キャリア流体の温度および建物1の外側の環境の温度を測定するように配置された複数の温度センサ90、95と、熱発生器23、三方弁50および温度センサ90、95に動作可能に接続された制御ユニット80と、を備える。
【特許請求の範囲】
【請求項1】
建物を暖房するためのシステム(20)であって、
-キャリア流体を加熱するように適合された熱発生器(23)と、
-建物(1)に含まれる熱負荷に熱を伝達するのに適した少なくとも1つの放射要素(21)と、
-前記キャリア流体を前記熱発生器(23)から放射要素(21)に伝達するための送達導管(251)と、
-前記キャリア流体を前記放射要素(21)から前記熱発生器(23)に伝達するための戻り導管(253)と、
-前記送達導管(251)に沿って配置され、前記戻り導管(253)に接続された三方弁(50)であって、前記三方弁(50)は、前記送達導管(251)内の前記キャリア流体を前記戻り導管(253)内の前記キャリア流体に混合するように動作可能である、三方弁(50)と、
-前記キャリア流体の温度および前記建物(1)の外側の環境の温度を測定するように配置された複数の温度センサ(90)と、
-前記熱発生器(23)、前記三方弁(50)および前記温度センサ(90)に動作可能に接続された制御ユニット(80)と、を備え、
前記制御ユニット(80)は、
a)前記送達導管(251)内の前記キャリア流体の流れの方向に関して、前記三方弁(50)の下流の前記送達導管(251)内の前記キャリア流体の温度(T)を取得し、
b)前記戻り導管(253)内の前記キャリア流体の流れの方向に関して、前記三方弁(50)の上流の前記戻り導管(253)内の前記キャリア流体の温度(T)を取得し、
c)前記建物(1)の外側の環境の温度(T)を取得し、
d)外部環境の前記温度(T)の関数として計算された前記システム(20)の簡略化されたモデルに基づいて、前記三方弁の下流の前記送達導管(251)内の前記キャリア流体の第1の目標温度(TW1)を推定し、
e)前記熱発生器(23)および前記三方弁(50)のうちの少なくとも1つを作動させて、前記三方弁(50)の下流の前記キャリア流体の前記温度(T)に周期的な摂動を生成し、
f)前記送達導管(251)内の前記キャリア流体の前記温度(T)と前記摂動に基づく前記戻り導管(253)内の前記キャリア流体の前記温度(T)との間の温度差(ΔT)に基づいて、前記三方弁(50)の下流の前記送達導管(251)内の前記キャリア流体の第2の目標温度(TW2)を決定し、
g)前記第1の目標温度(TW1)と前記第2の目標温度(TW2)を組み合わせて、総目標温度(TWT)を取得し、
h)前記熱発生器(23)および前記三方弁(50)のうちの少なくとも1つを作動させて、前記三方弁の下流の前記送達導管内の前記キャリア流体(T)を前記総目標温度(TWT)にもたらし、
i)前記送達導管(251)内の前記キャリア流体の前記温度(T)と前記戻り導管(253)内の前記キャリア流体の前記温度(T)との間の目標温度の差(ΔTOPT)に達するまで、ステップe)からh)を繰り返す、
ように構成される、
システム(20)。
【請求項2】
前記制御ユニット(80)は、摂動および観察、極値探索およびスライディングモードから選択されたモデルに基づかない制御を実施する前記第2の目標温度(TW2)を決定するように構成される、請求項1に記載のシステム(20)。
【請求項3】
前記制御ユニット(80)は、前記送達導管(251)内の前記キャリア流体の前記温度(T)と前記温度(T)の周期的摂動の摂動の関数としての前記温度(T)との間の前記温度差(ΔT)の最大点または最小点として前記目標温度差(ΔTOPT)の達成を識別するように構成される、請求項2に記載のシステム(20)。
【請求項4】
前記制御ユニットは、前記導管(251、253)内の前記キャリア流体の前記温度差(ΔT)と、前記建物(1)の外側の環境の前記温度(T)に適合した前記送達導管(251)内の前記キャリア流体の前記温度(T)との間の関係として簡略化されたモデルを定義する、請求項1に記載のシステム(20)。
【請求項5】
前記システムは、前記建物(1)が受ける日射(I)を測定するのに適した照射センサ(95)をさらに備え、前記制御ユニット(80)は、測定された日射量(I)に基づく前記システム(20)の前記簡略化されたモデルを変更するように構成される、請求項4に記載のシステム(20)。
【請求項6】
前記制御ユニット(80)は、前記キャリア流体の温度測定値(T、T)および外部環境の前記温度(TE)を格納し、そのような格納された測定値に基づいて前記システム(20)の前記簡略化されたモデルを定義するように構成される、請求項4に記載のシステム(20)、
【請求項7】
前記制御ユニット(80)は、外部エンティティ(100)に接続して気象情報を取得し、前記気象情報に基づく前記システム(20)の前記簡略化されたモデルに基づいて実行される前記第1の目標温度(TW1)の推定値を変更するように構成される、請求項4に記載のシステム(20)。
【請求項8】
前記制御ユニット(80)は、
-前記建物(1)の少なくとも1つの選択された部分(10)に関連する温度(TAmax、TAmin)を検出し、
-前記建物(1)の前記少なくとも1つの選択された部分(10)の温度(T)を許容値の範囲内に保つために、前記総目標温度(TWT)を第1の制限値(TWmax)に制限するか、前記総目標温度(TWT)を第2の制限値(TWmin)に上げるように構成される、請求項1ないし7のうちいずれか1項に記載のシステム(20)。
【請求項9】
前記制御ユニット(80)は、前記建物(1)の前記少なくとも1つの選択された部分(10)に関連する前記温度(TAmax)を測定するように適合されたさらなるセンサ(90D、90E)に接続されたコントローラ(85)を備え、
前記コントローラ(85)は、
-前記建物(1)の前記選択された部分(10)の前記温度(TAmax)をより高い閾値内に維持する、前記送達導管(251)内の前記キャリア流体(T)の温度の許容可能な最大値として第1の限界値(TWmax)を決定する、ように構成される、請求項8に記載のシステム(20)。
【請求項10】
前記さらなるセンサ(90D)によって測定された前記温度(TAmax)は、前記建物(1)の平均温度(TAM)よりも高い平均温度(
)を有する前記建物(1)の部分(10)に関連付けられる、請求項9に記載のシステム(20)。
【請求項11】
前記制御ユニットは、前記建物(1)の少なくとも1つの第2の選択された部分(10)に関連する第2の温度(TAmin)を測定するように適合された第2のさらなるセンサ(90E)に接続された第2のコントローラ(85)を備え、
前記コントローラ(85)は、
-前記建物(1)の前記選択された部分(10)の前記温度(TAmin)をより低い閾値内に維持する、前記送達導管(251)内の前記キャリア流体(T)の温度の許容可能な最小値として第2の限界値(TWmin)を決定する、ように構成される、請求項8に記載のシステム(20)。
【請求項12】
前記第2のさらなるセンサ(90E)によって測定された前記第2の温度(TAmin)は、前記建物(1)の平均温度(TAM)よりも低い平均温度(
)を有する前記建物(1)の第2の選択された部分(10)に関連付けられる、請求項11に記載のシステム(20)。
【請求項13】
前記制御ユニット(80)は、前記三方弁(50)に接続された弁コントローラ(86)を備え、
-前記三方弁(50)の動作条件を調整して、前記熱発生器(23)からの前記キャリア流体と前記戻り導管(253)内の前記キャリア流体を混合して、総目標温度(TWT)で前記三方弁(50)の下流の前記送達導管(251)内の前記キャリア流体を得る、ように構成される、請求項1ないし12のうちいずれか1項に記載のシステム(20)。
【請求項14】
前記制御ユニット(80)は、前記熱発生器(23)から出力される前記キャリア流体の温度(T)を測定するための前記送達導管(251)に接続された温度センサ(90A)と、前記熱発生器(23)、前記弁コントローラ(86)および前記温度センサ(90A)に接続された発生器コントローラ(87)とを備え、
前記発生器コントローラ(87)は、
-前記三方弁(50)が所望の動作条件にある状態で、総目標温度(TWT)で前記三方弁(50)の下流の前記送達導管(251)内の前記キャリア流体を得るように、前記熱発生器(23)の動作を調整して、前記熱発生器(23)から出力される前記キャリア流体の前記温度(T)を変更する、ように構成される、請求項1ないし13のうちいずれか1項に記載のシステム(20)。
【請求項15】
建物を暖房するためのシステム(20)を制御する方法であって、前記システムは、キャリア流体を加熱するように適合された熱発生器(23)と、建物(1)に含まれる熱負荷に熱を伝達するのに適した少なくとも1つの放射要素(21)と、前記キャリア流体を前記熱発生器(23)から前記放射要素(21)に伝達するための送達導管(251)と、前記キャリア流体を前記放射要素(21)から前記熱発生器(23)に伝達するための戻り導管(253)と、前記送達導管(251)に沿って配置され、前記戻り導管(25)に接続された三方弁(50)と、を備え、前記三方弁(50)は、前記送達導管(251)内の前記キャリア流体を前記戻り導管(253)内の前記キャリア流体に混合するように動作可能であり、前記方法は、
a)前記送達導管(251)内の前記キャリア流体の流れの方向に関して、前記三方弁(50)の下流の前記送達導管(251)内の前記キャリア流体の温度(T)を取得する(403)ステップと、
b)前記戻り導管(253)内の前記キャリア流体の流れの方向に関して、前記三方弁(50)の上流の前記戻り導管(253)内の前記キャリア流体の温度(T)を取得する(403)ステップと、
c)前記建物(1)の外側の環境の温度(T)を取得する(1101)ステップと、
d)外部環境の前記温度(T)の関数として計算された前記システム(20)の単純化されたモデルに基づいて、前記三方弁の下流の前記送達導管(251)内の前記キャリア流体の第1の目標温度(TW1)を推定する(1101)ステップと、
e)前記熱発生器(23)および前記三方弁(50)のうちの少なくとも1つを作動させて(1115、1117、1119;401)、前記三方弁(50)の下流の前記キャリア流体の前記温度(T)に周期的な摂動を生成するステップと、
f)前記摂動に基づく、前記送達導管(251)内の前記キャリア流体の前記温度(T)と前記戻り導管(253)内の前記キャリア流体の前記温度(T)との間の温度差(ΔT)に基づいて、前記三方弁(50)の下流の前記送達導管(251)内の前記キャリア流体の第2の目標温度(TW2)を決定する(1103;405、407、409、411、413)ステップと、
g)前記第1の目標温度(TW1)と前記第2の目標温度(TW2)を組み合わせて(1105)、総目標温度(TWT)を取得するステップと、
h)前記熱発生器(23)および前記三方弁(50)のうちの少なくとも1つを作動させて(1115、1117、1119)、前記三方弁の下流の前記送達導管内の前記キャリア流体(T)を前記総目標温度(TWT)にもたらすステップと、
i)前記送達導管(251)内の前記キャリア流体の前記温度(T)と前記戻り導管(253)内の前記キャリア流体の前記温度(T)との間の目標温度差(ΔTOPT)に達するまで、ステップe)からh)を繰り返すステップと、
を含むステップを提供する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建物の温度を制御するためのシステムの分野に言及する。特に、本発明は、例えば、住宅用建物のような建物を暖房するためのシステムに言及する。
【背景技術】
【0002】
現在の自動管理技術は、非常に効率的な温度制御システムの実施を可能にするか、既存の温度制御システムと関連付けてその性能を最適化できる。
【0003】
どちらの場合も、温度制御システムは、建物の1つまたは複数の部屋(例えば、建物の1つまたは複数の住宅ユニットおよび/またはその単一の部屋)で望ましい温度を確保するように管理され、システムのエネルギ消費を最小限に抑える。その結果、システムの運用コストとそのような温度制御システムの汚染排出物も最小限に抑えられ、明確な経済的および環境的利益が得られる。
【0004】
例えば、米国特許第8,200,344号明細書は、空気処理HVACシステムの制御プロセスを最適化する極値探索制御(ESC)を記載している。特に、システムの動作の急激な変化が検出されると、システムは、リセットされる。
【0005】
この場合、制御システムは、システムの動作が変更されるたびに、初期化とESCの実施手順を繰り返す。
【0006】
米国特許第8,200,345号明細書はまた、ESCに基づいてHVACシステムを制御するための方法を記載している。この場合、ESCアルゴリズムがシステムのダンパに物理的な動作限界に対応する動作条件を課すときに発生する、いわゆる「アクチュエータの飽和状態」を解決するための手順が説明されている(例えば、弁が完全に開いている、または閉まっている)。
【0007】
この場合、最適値への収束速度に影響を与えることなく、弁が限界作業状態になるのを回避するために、ESCの結果に制限がある。
【0008】
米国特許出願公開第2011/0276180号明細書は、システムの入力と出力との間の関係を決定するために自己最適化制御戦略を使用する処理回路を備えるプロセスを作動させるためのシステムを記載している。処理回路は、自己最適化制御戦略の使用から、学習した関係に基づいて動作する他の制御戦略に切り替えるように構成されている。
【0009】
この場合、ESCによって提供された結果に基づいて制御モデルを選択するために、その動作の準備段階でのみESCを使用するシステムが提案される。その結果、提案された制御システムは、実質的にゼロの適応能力を示す。
【0010】
米国特許出願公開第2016/0132027号明細書は、システムの出力信号を受信し、それに複数の入力制御信号を提供するように構成された通信インターフェースを含むESCスイッチングコントローラを記載している。コントローラは、出力信号から、入力制御信号のそれぞれについて対象の変数を参照する性能勾配を抽出するように構成された復調モジュールを備える。コントローラは、そのような性能勾配の以前の値の履歴を使用して抽出された性能勾配を安定化するように構成された安定化モジュールを備える。生成された値により、性能勾配がゼロに近づく。コントローラは、入力制御信号を摂動するように構成された信号の摂動モジュールを備え、それらのそれぞれに摂動信号を追加する。
【0011】
言い換えると、ESCの結果は、最適な結果への収束速度に影響を与えることなく、以前の反復に基づいて経験的に修正される。
【0012】
米国特許出願公開第2017/0176954号明細書は、摂動の発生器、通信インターフェース、位相遅延推定器、および帯域幅推定器を備える自己構成型ESCコントローラについて説明している。摂動信号発生器は、保存された摂動周波数で摂動信号を識別し、通信インターフェースを介してシステムの制御入力に供給する。推定器は、システムの出力信号を受信し、出力信号の位相遅延を推定し、したがって、位相遅延に基づいて帯域幅を推定する。次に、推定された帯域幅を使用して、保存されている摂動周波数を更新する。
【0013】
この場合、コントローラは、複雑な推定プロセスを実施して、ESCが全てのサイクルで使用する動作パラメータを調整し、動作の精度を向上させる。
【0014】
要約すると、上記の文献のHVACシステムは、ESCの動作のそれぞれの側面を最適化するために、毎回ESCコントローラの変形を実施する。しかしながら、実施されたコントローラのいずれも、最適値に到達することを単純化および高速化することを可能にせず、特に、最適値に迅速に到達するために必要な計算能力を増やすことなく、そのような最適値を決定するために必要な反復回数を大幅に削減する。
【0015】
Sava Marinkov、Bram de Jager、およびMaarten Steinbuchによる、「適応外乱フィードフォワードによる極値探索制御」IFAC Proceedings Volumes、Volume 47、Issue 3、2014、pages 383-388という題の記事は、ESCの収束の精度と速度を向上させることができる制御システムに適用される摂動を定義するために、摂動とESCの最適入力との間の静的マッピングを近似するための多変量および直交チェビシェフ多項式に基づく予測ブランチを含むESCについて説明している。特に、そのようなシステムは、電気エネルギを生成するためのタービンを制御するために使用される。
【0016】
言い換えれば、この記事は、ESCが使用する摂動を事前に推定して、特性パラメータの変動に対する応答時間が非常に速いことを特徴とするシステム、すなわち、タービンによってエネルギを生成するためのシステムの収束速度を上げるために最適なものを特定するESCを提案する。
【0017】
米国特許第9,982,903号明細書は、冷蔵庫、相互に別個の熱交換器、およびコントローラを備えるHVACシステムを記載している。冷蔵庫は、HVACシステムが機械的冷却状態で動作しているときに、冷却対象の負荷に機械的冷却を供給するように構成されている。熱交換器は、HVACシステムがフリークーリング状態で動作しているときにフリークーリングを提供するように構成されている。コントローラは、空気の外部温度を予測し、予測された温度が少なくとも最小期間閾値温度を下回った場合に、機械的冷却状態での動作からフリークーリングに切り替えるように構成されている。
【0018】
この場合、HVACシステムは、コントローラによって交互にアクティブ化される2つの気温調整回路を備え、これは、2つの回路のどちらをアクティブ化するのが最も有利かを予測しようとする。その結果、HVACシステムは、特に、かさばり、高価になる。さらに、両方のシステムで非アクティブから通常の動作に、またはその逆に移行するには、効率が最適値を下回る時間が必要である。最後に、システムを頻繁にアクティブ化してオフにすると、そのコンポーネントの摩耗が加速し、システムの耐用年数と効率が低下する可能性がある。
【0019】
結論として、出願人は、効率的に動作でき、特に、システムの消費を最小限に抑え、その堅牢性を確保できるが、同時に暖房される建物のサイズによる高い熱慣性にもかかわらず、建物の外部要因(温度および/または他の環境条件の変化)および/または内部要因(熱の必要性の変化)による変化に迅速に適応できる建物用の暖房システムの既知の解決策の欠如を発見した。
【発明の概要】
【0020】
本発明の目的は、先行技術の欠点を克服することである。
【0021】
特に、本発明の目的は、暖房される建物に関連する1つまたは複数の熱負荷の変化に迅速に適応でき、同時にシステムの効率的な動作を保証できる建物を暖房するためのシステムを有することである。
【0022】
本発明のさらなる目的は、建物を暖房するためのシステムを制御することを可能にし、暖房される1つまたは複数の熱負荷の変化に迅速に応答することを可能にし、システムの効率的な動作を保証する制御方法を有することである。
【0023】
本発明の他の目的は、1つまたは複数の熱負荷の変化に対するその高い応答速度および特に効率的な動作を保証するように、それを制御するために建物内に存在する暖房システムに関連付けることができる制御ユニットを有することである。
【0024】
本発明のこれらおよび他の目的は、本明細書の不可欠な部分を形成する添付の請求の範囲の特徴を組み込んだ装置を介して達成される。
【0025】
一実施形態では、システムは、キャリア流体を加熱するように適合された熱発生器と、建物に含まれる熱負荷に熱を伝達するのに適した少なくとも1つの放射要素と、熱発生器から放射要素にキャリア流体を伝達するための送達導管と、キャリア流体を放射要素から熱発生器に伝達するための戻り導管と、送達導管に沿って配置され、戻り導管に接続された三方弁と、を備え、三方弁は、送達導管内のキャリア流体を戻り導管内のキャリア流体に混合するように動作可能である。システムはまた、キャリア流体の温度および建物の外の環境の温度を測定するように配置された複数の温度センサと、熱発生器、三方弁および温度センサに動作可能に接続された制御ユニットと、を備える。制御ユニットは、次の方法でシステムを制御するように構成されている。導管内の流体の流れの方向に関して、三方弁の下流の送達導管内のキャリア流体の温度および三方弁の上流の戻り導管内のキャリア流体の温度が取得される。建物外の環境の温度も取得される。制御ユニットは、外部環境の温度の関数として計算されたシステムの簡略化されたモデルに基づいて、三方弁の下流の送達導管内のキャリア流体の第1の目標温度を推定する。さらに、制御ユニットは、熱発生器と三方弁のうちの少なくとも1つを作動させて、三方弁の下流のキャリア流体の温度に周期的な摂動を生成し、送達導管内のキャリア流体の温度と、前記摂動に基づく戻り導管内のキャリア流体の温度との間の温度差に基づいて、三方弁の下流の送達導管内のキャリア流体の第2の目標温度を決定する。第1の目標温度および第2の目標温度は、電子ユニットによって組み合わされて、総目標温度を取得し、これは、熱発生器および三方弁のうちの少なくとも1つを作動させて、三方弁の下流の送達導管内のキャリア流体を総目標温度にもたらす。コントロールユニットは、送達導管内のキャリア流体の温度と戻り導管内のキャリア流体の温度との間に目標温度差が達するまで、総温度の調整を繰り返す。
【0026】
そのような解決策のおかげで、送達導管内のキャリア流体の温度を調整して、出て行く導管および戻り導管内のキャリア流体の温度変化を最小限に抑えることが可能であり、すなわち、熱負荷に伝達される熱を最小限に抑えることができる。このようにして、システムの消費を効果的に削減することが可能であり、特に、暖房システムの最適な作業条件の達成は、特に、迅速かつ正確である。実際、第1の目標温度は、最適点に迅速に近づくことを可能にし、次に、迅速に収束する第2の目標温度を介して到達する。すなわち、反復回数が少なくなる。その結果、制御ユニットは、暖房システムによって暖房される建物の高い熱慣性にもかかわらず、熱発生器および三方弁の動作を最適な方法で調整できる。
【0027】
一実施形態では、制御ユニットは、摂動および観察、極値探索およびスライディングモードの中から選択されたモデルに基づかない制御を実施することによって第2の目標温度を決定するように構成される。
【0028】
このようにして、暖房システムの動作を最適化することを可能にする送達導管内のキャリア流体の温度は、システムの複雑なモデルを使用することなく、および/または多数の参照変数を取得することなく効率的に到達できる。
【0029】
特に、モデルに基づかない制御、好ましくは、極値探索制御を実施することにより、制御ユニットは、目標温度差の到達を、送達導管内のキャリア流体の温度と温度の周期的摂動の関数としての温度との間の温度差の最大点または最小点として識別できる。このように、制御ユニットは、低い計算能力で効率的に動作する。好ましくは、最適点に到達するための勾配の計算に基づく方法を使用する場合、勾配の推定は、フィルタリングおよび位相結合技術の両方で実行でき、あるいは、例えば、忘却係数の再帰的最小二乗法やカルマンフィルタを使用するなど、適応フィルタを使用して実行することもできる。
【0030】
一実施形態では、制御ユニットは、導管内のキャリア流体の温度差と、建物の外側の環境の測定された温度に適合された送達導管内のキャリア流体の温度との間の関係として簡略化されたモデルを定義する。
【0031】
このようにして、制御ユニットは、三方弁の下流の送達導管内のキャリア流体の第1の目標温度を迅速に特定できる。特に、建物の外気温にモデルを適合させることで、外気温の変化による熱負荷の変化を予測でき、建物の熱慣性の影響を低減する。
【0032】
さらに、暖房システムは、建物が受ける日射を測定するのに適した照射センサなど、環境要因を評価するための他のセンサを備えることができ、モデルの複雑さを大幅に増加させることなく、簡略化されたモデルのより正確な補正を取得できる。この場合、制御ユニットは、外部温度測定と組み合わせて、測定された日射量に基づいてシステムの簡略化されたモデルを変更するように構成されている。
【0033】
追加的または代替的に、制御ユニットは、キャリア流体の温度および外部温度の進行などのシステムの動作情報を定期的または継続的に格納できる。制御ユニットは、格納された情報の少なくとも一部の解析に基づいて簡略化されたモデルを定義する。
【0034】
このようにして、システムの実際の動作および/または建物が曝される環境条件に基づいて、簡略化されたモデルを更新できる。
【0035】
さらに、制御ユニットは、外部ユニットに接続して天気予報などの気象情報を取得し、取得した気象情報に基づいてシステムの簡略化されたモデルによる予測を変更するように構成できる。
【0036】
これにより、建物の熱慣性にもかかわらずシステムの速度をさらに上げることが可能になり、システムの測定外乱に対する堅牢性が向上する。例えば、温度測定値と予測温度を比較すると、システムの効率を低下させる可能性のある外乱によって不正確な測定値および/または妥協した測定値を検出できる。
【0037】
一実施形態では、制御ユニットは、建物の少なくとも1つの選択された部分に関連する温度を検出し、総目標温度を第1の限界値に制限するか、または総目標温度を第2の限界値に上げて、建物の少なくとも1つの選択された部分の温度を許容値の範囲内に維持するように構成される。
【0038】
このようにして、このさらなるレベルの確実性で、暖房システムが建物の一部を過度に高温または低温にしないことを保証して、ユーザの標準的な快適レベルを確保し、および/または建物の暖房に関連する基準が尊重されることを保証することが可能である。
【0039】
詳細には、制御ユニットは、建物の1つまたは複数の部分、または選択された部屋に関連する温度を測定するように適合されたセンサに接続されたコントローラを備えることができる。この場合、コントローラは、選択された部屋の温度をより高い閾値内に維持する、送達導管内のキャリア流体の温度の許容可能な最大値として第1の限界値を決定するように構成される。好ましくは、温度は、建物の平均温度よりも高い平均温度を有する部屋で測定される。
【0040】
二重の方法で、制御ユニットは、建物の他の選択された部屋に関連する温度を測定するように適合されたセンサに接続されたコントローラを備えることができる。この場合、コントローラは、選択された部屋の温度をより低い閾値より上に維持する、送達導管内のキャリア流体の温度の許容可能な最小値として第2の限界値を決定するように構成される。好ましくは、温度は、建物の平均温度よりも低い平均温度を有する部屋で測定される。
【0041】
一実施形態では、制御ユニットは、三方弁に接続された弁コントローラを備え、三方弁の動作条件を調整して、熱発生器からのキャリア流体と戻り導管内のキャリア流体を混合して、総目標温度で三方弁の下流の送達導管内のキャリア流体を得るように構成される。
【0042】
さらに、制御ユニットは、熱発生器から出力されるキャリア流体の温度を測定するために送達導管に接続された温度センサ、および発生器コントローラを備えることができる。発生器コントローラは、熱発生器、弁コントローラ、および温度センサに接続され、熱発生器の動作を調整して、熱発生器から出力されるキャリア流体の温度を変化させて、三方弁が所望の動作条件にある状態で、三方弁の下流の送達導管内のキャリア流体を総目標温度で得るように構成される。
【0043】
このようにして、制御ユニットは、2つの導管内のキャリア流体の温度差を最適化して、ボイラの消費(およびそのオンとオフのステップの制限)を削減するなど、三方弁の下流の送達導管内のキャリア流体の温度を所望の値に維持でき、同時に、好ましくは、熱負荷の変化に対する暖房システムの高い応答能力を確保するなど、三方弁を最適な動作条件に維持することができる。
【0044】
さらに、コントローラは、熱発生器の最適なオン/オフ切り替え条件を決定できる。これは、送達流体の所望の平均温度を保証するが、例えば、従来のボイラにおける活性化前の洗浄サイクルのエネルギの影響を考慮して、発生器のエネルギ消費を最小限に抑える。
【0045】
本発明の異なる態様は、暖房システムを制御するための対応する方法を提案する。この方法は、
a)送達導管内のキャリア流体の流れの方向に関して、三方弁の下流の送達導管内のキャリア流体の温度を取得するステップと、
b)戻り導管内のキャリア流体の流れの方向に関して、三方弁の上流の戻り導管内のキャリア流体の温度を取得するステップと、
c)建物の外の環境の温度を取得するステップと、
d)外部温度の関数として計算されたシステムの簡略化されたモデルに基づいて、三方弁の下流の送達導管内のキャリア流体の第1の目標温度を推定するステップと、
e)熱発生器および三方弁のうちの少なくとも1つを作動させて、三方弁の下流のキャリア流体の温度に周期的な摂動を生成するステップと、
f)前記摂動に基づく、送達導管内のキャリア流体の温度と戻り導管内のキャリア流体の温度との間の温度差に基づいて、三方弁の下流の送達導管内のキャリア流体の第2の目標温度を決定するステップと、
g)第1の目標温度と第2の目標温度を組み合わせて、総目標温度を取得するステップと、
h)熱発生器および三方弁のうちの少なくとも1つを作動させて、三方弁の下流の送達導管内のキャリア流体を総目標温度にもたらすステップと、
i)送達導管内のキャリア流体の温度と戻り導管内のキャリア流体の温度との間で目標温度差に達するまで、ステップe)からh)を繰り返すステップと、
を提供する。
【0046】
本発明のさらなる特徴および目的は、以下の説明からより明確になるであろう。
【図面の簡単な説明】
【0047】
本発明は、目的を説明するために提供され、限定されない目的のために提供され、添付の図面に示されるいくつかの例を参照して以下に説明される。これらの図面は、本発明の異なる態様および実施形態を示し、適切な場合、異なる図で類似している構造、構成要素、材料、および/または要素を示す参照番号は、類似の参照番号で示されている。
【0048】
図1】本発明の一実施形態に係る暖房システムが設置されている建物の基本的なスキームである。
図2】本発明の一実施形態に係る暖房システムのブロック図である。
図3図2の暖房システムの制御ユニットによって実施できる制御手順のフロー図である。
図4図3の制御手順に含まれるモデルに基づかない最適値を求めるための手順のフロー図である。
図5】本発明の実施形態に係る暖房システムの動作パラメータの進行のグラフを示している。
図6図2の暖房システムの制御ユニットによって実施できる代替の制御手順のフロー図である。
【発明を実施するための形態】
【0049】
本発明は様々な修正および代替の構成を受けることができるが、いくつかの好ましい実施形態が図面に示され、以下で詳細に説明される。しかしながら、本発明を図示された特定の実施形態に限定する意図はないが、逆に、本発明は、請求の範囲に定義される本発明の範囲に含まれる全ての修正、代替構造、および同等物を網羅することを意図することを理解されたい。
【0050】
「例えば」、「など」、「または」の使用は、特に明記されていない限り、限定されない非排他的な代替案を示す。「含む」の使用は、特に明記しない限り、「含むがこれに限定されない」ことを意味する。
【0051】
図1および図2を参照して、建物内の温度を制御するためのシステム、特に、本発明の実施形態に係る暖房システム20が実施されている建物1が説明されている。
【0052】
建物1は、互いに分離された建物の複数の部分を備え、簡潔にするために、以下、部屋10という用語で示される。部屋10は、相互に異なる形状および容積にでき、さらに、部屋10のグループは、建物内の異なる高さに配置できる。図1の例では、2つのレベルに配置された4つの部屋10が示されている。例えば、建物1は、住宅または商業ビルであり、部屋10のそれぞれは、異なるアパートまたはオフィス/商業企業に対応する。
【0053】
そのような部屋10のそれぞれの温度を調整するために、暖房システム20は、複数の放射要素21、例えば、ラジエータ、ファンコイル、ファンヒータ、放射床および/または天井パネルなどを備える。特に、各部屋10において、それぞれが配水ネットワーク25を介して、熱発生器23(例えば、ボイラ)と流体接続されている1つまたは複数の放射要素21を配置することが可能である。分配ネットワーク25は、暖房システム20内でのキャリア流体(例えば、水)の循環を可能にする。
【0054】
知られているように、キャリア流体は、熱発生器23によって加熱温度Tに加熱され、それが放射要素21に到達すると、一般に、建物10が配置されている外部環境30の外部温度Tとは異なる(例えば、より高い)所望の室温Tを得るために、部屋10に熱を放出する。換言すれば、部屋10の所望の室温Tと外部環境30の外部温度Tとの間の差は、放射要素21の熱負荷に対応する。有利には、暖房システム20は、例えば、太陽放射、風の有無、力および方向、および降水の有無などのような、熱負荷を決定するための他の環境要因を考慮できる。
【0055】
図2に見られるように、分配ネットワーク25は、送達導管251および戻り導管253を備える。送達導管251は、「熱い」キャリア流体の流れ(図2の矢印によって概略的に示される)が、熱発生器23から放射要素21に、そしておそらく、高温の衛生水用のボイラ/貯水槽のような暖房システム20の他の要素(図示せず)に移送されることを可能にする。他方、戻り導管253は、「冷たい」キャリア流体の流れ(図2の矢印によって概略的に示される)が、放射要素21から熱発生器23に移送されることを可能にする。
【0056】
有利には、分配ネットワーク25を介してキャリア流体を圧送するように適合されたポンプ40が、送達導管251上に配置される。
【0057】
さらに、戻り導管253と流体接続で結合されている三方弁50もまた、送達導管251上に配置されている。例えば、三方弁50は、送達導管251に沿って、熱発生器23とポンプ40との間に配置されている。三方弁50を作動させて、熱発生器から出力される「熱い」キャリア流体を、戻り導管253内の「冷たい」キャリア流体と混合して、送達導管251内のキャリア流体の流れの方向に関して、以下、混合キャリア流体として示される、三方弁50の下流の送達導管251内のキャリア流体の温度を調整する(特に、低くする)ことができる。
【0058】
好ましくは、サーモスタット弁60は、放射要素21によってそれが配置されている部屋10と交換される熱をユーザが調整できるように、各放射要素21の送達導管251上に配置されている。
【0059】
任意選択で、送達導管251および戻り導管253は、選択的に利用可能なキャリア流体のための熱発生器23への戻り経路を作るために、送達導管251および戻り導管253のそれぞれの端部を一緒に接続するバイパス弁70を介して流体接続で選択的に結合することができる。
【0060】
さらに、暖房システム20は、本文書の残りの部分に記載されるように、暖房システム20の動作を制御するために、少なくとも熱発生器23および三方弁50に動作可能に接続された電子制御ユニット80を備える。
【0061】
複数のセンサ90が制御ユニット80に接続されて、暖房システム20の動作情報および/または建物1の状態情報を提供する。考慮される例では、熱いキャリア流体の温度Tを測定するために、三方弁50の上流の送達導管251と結合された第1の温度センサ90Aが提供され、混合キャリア流体の温度Tを測定するために、三方弁50の下流の送達導管251と結合された第2の温度センサ90Bが提供され、および冷たいキャリア流体の温度Tを測定するために、好ましくは、三方弁50の上流の戻り導管253と結合された第3の温度センサ90Cが提供される。
【0062】
好ましくは、少なくとも1つのセンサ90Dは、建物全体1の平均温度TAMよりも高い平均室温
を有する部屋10に配置される。例えば、建物1の全ての部屋10の室温Tの平均として計算される。このような部屋10は、好ましくは、建物1内のその位置に基づいて選択される。例えば、建物1の中間の高さに配置され、周囲の壁が南に露出している部屋10は、他の部屋10と比較して、より高い平均室温
を有するであろう。おそらく、各部屋の平均温度は、システムの実施ステップ中に検出できる。好ましくは、より高い平均室温
を有する複数の部屋10(例えば、3つ)が選択され、センサ90Dがそれらのそれぞれに配置される。
【0063】
さらに、少なくとも1つのセンサ90Eが、建物1の平均温度TAMよりも低い平均室温
を有する部屋10に配置されている。また、この場合、部屋10は、好ましくは、建物1内のその位置に基づいて選択される。例えば、地上に配置され、周囲の壁が北に露出している部屋10は、他の部屋10と比較して、より低い平均室温
を有するであろう。おそらく、各部屋の平均温度は、システムの実施ステップ中に検出できる。好ましくは、より低い平均室温
を有する複数の部屋10(例えば、3つ)が選択され、センサ90Eがそれらのそれぞれに配置される。
【0064】
また、外部環境30の外部の温度Tを検出するための温度センサ90Fが存在する。好ましくは、暖房システム20はまた、他の環境パラメータを取得するための1つまたは複数のセンサを備える。例えば、建物1が受ける太陽放射Iを測定するために、照射センサ95を建物1に関連付けることができる。
【0065】
制御ユニット80は、(例えば、マイクロコントローラ、マイクロプロセッサ、ASIC、FPGAのうちの1つまたは複数を含む)処理モジュール81、メモリユニット83、および好ましくは、1つまたは複数の入力コントローラモジュール85および86、(例えば、PIDコントローラを含む)出力コントローラモジュール87を備える。一般に、制御ユニット80は、同期信号(クロック)を生成するための回路、入出力信号用の増幅器、電源回路などのような、1つまたは複数の補助回路(図示せず)を備えることができる。
【0066】
考慮される例では、処理モジュール81は、メモリユニット83、コントローラモジュール85および86、少なくともセンサ90B、90C、90Fおよび95と動作可能に結合されている。有利には、処理モジュール81はまた、適切なデータ伝送チャネル105を介して、外部電子エンティティ100(例えば、暖房システム20を管理する会社のサーバ)に動作可能に接続できる。
【0067】
さらに、第1の入力コントローラモジュール85は、建物1の平均温度TAMよりも高い平均室温
を有する部屋10の室温TAmaxを測定する温度センサ90Dに接続されている。
【0068】
同様に、第2の入力コントローラモジュール85は、建物1の平均温度TAMよりも低い平均室温
を有する部屋10の室温TAmaxを測定する温度センサ90Eに接続されている。
【0069】
コントローラ85が存在しない場合、センサ90Dおよび90Eは、処理モジュール81と動作可能に結合される。
【0070】
最後に、出力コントローラモジュール87は、温度センサ90A、熱発生器23、および三方弁50と動作可能に結合されている。
【0071】
図3のフロー図を参照して、本発明の一実施形態に係る暖房システム20の動作を次に説明する。
【0072】
一般に、制御ユニット80は、各部屋10を所望の室温Tにもたらしおよび/または維持するように暖房システム20の動作を調整するように構成され、熱発生器30の消費および/またはオン/オフサイクルを低減する。例えば、所望の室温Tは、サーモスタット(図示せず)を介して設定することができる。追加的または代替的に、1つまたは複数のデフォルトの室温Tをメモリ83に保存することができる。
【0073】
特に、制御ユニット80は、センサ90Fおよび95からそれぞれ外部温度Tおよび照射測定Iを取得し、それらを暖房システム20の簡略化されたモデル1101への入力として供給する。
【0074】
任意選択で、簡略化されたモデル1101は、処理モジュール81が外部エンティティ100から取得する、他の前述のセンサによって提供される入力測定値および/または天気予報に関連する情報(例えば、将来の期間内の予測温度および照射条件)を受信することができる。このような測定値と情報は、簡略化されたモデルまたはそれによって提供される結果を修正するために使用できる。
【0075】
有利には、簡略化されたモデル1101は、暖房システム20の設置ステップの終わりに定義され、メモリ83に格納され得る。追加的または代替的に、簡略化されたモデル1101は、メモリ83に格納された暖房システムの機能パラメータ、およびセンサ90A~90Cおよび/またはサーモスタット弁60によって取得された温度の測定値に基づいて定期的に定義または更新できる。
【0076】
好ましい実施形態では、簡略化されたモデル1101は、混合流体の温度Tと、外部温度Tおよび測定された照射Iの関数としての冷たいキャリア流体の温度Tと温度Tとの間の温度差ΔTとの関係fに基づいて定義できる(およびおそらく、他のセンサによって取得された、および/または外部エンティティ100によって提供された他の情報)。
【0077】
代替的に、出願人は、簡略化されたモデル1101のパラメータが、線形回帰によって、あるいは、例えば、非線形ARXのような非線形関数のクラス、またはスペクトル解析および相互相関に基づく方法または周波数解析のための他の方法によって定義され得ると決定した。
【0078】
さらに、出願人は、簡略化されたモデル1101が、暖房システム20の動作中に修正/更新され得、センサ90、95によって提供された実行された測定値をメモリ83に記録し、例えば、SARIMAXモデルを使用して、取得された測定値、より一般的には建物1の熱進行が受ける周期的/季節的性質を考慮に入れることができる簡略化されたモデル1101を取得するなど、入力変数としてそのような履歴データを使用できることを決定した。
【0079】
制御ユニット80によって作成された簡略化されたモデル1101は、三方弁50の下流の送達導管251内の混合キャリア流体をもたらす目標温度TW1を推定することを可能にする。検討した実施形態では、目標温度TW1は、2つの導管251および253内のキャリア流体の温度Tと温度Tとの間の温度差ΔTを、最適値ΔTOPTに向けることを可能にする。これは、1つまたは複数の部屋10において所望の室温Tを確保することが可能であり、熱いキャリア流体の温度Tを最小化し、および/または熱発生器23のスイッチオン/オフを最小化する。一実施形態では、簡略化されたモデル1101は、目標温度TW1を決定し、温度差ΔTの準最適値ΔTSOPTに到達することを可能にし、例えば、最適値ΔTOPTの75%~95%の間に含まれる。好ましくは、目標温度TW1は、外部温度Tおよび照射Iの値が一定であるか、または所定の許容範囲内にある限り、実質的に一定の値である。
【0080】
詳細には、簡略化されたモデル1101は、外部温度Tおよび測定された照射Iの関数として、温度Tと温度差ΔTとの間の関係f上の最適な作業点を特定する目標温度TW1を決定するように構成できる。例えば、最適な作業点は、関係fの角度係数、または一次導関数が、第1の値、例えば、最大値から第2の値、例えば、すなわち、関係fの「エルボー」でより低い値に変化する点として特定できる。
【0081】
簡略化されたモデル1101と並行して、制御ユニット80は、最適値ΔTOPTに到達し、導管251および253内のキャリア流体の温度TおよびTの変化に対して動的にそれを維持することを可能にするなど、可変目標調整温度TW2を決定することを目的とするモデルに基づかない制御手順1103を作成する。その測定値は、制御手順1103への入力で提供される。例えば、制御手順1103は、摂動および観察、極値探索およびスライディングモードの中から選択される手順を備える。好ましい実施形態では、制御手順1103は、極値探索制御手順を実施することを提供する。
【0082】
特に図4のフロー図を参照すると、制御手順1103は、例えば、正弦波方式で、周期的に可変調整温度TW2を供給する(ブロック401)ことを提供する。そのような調整温度TW2は、以下に説明するように、混合キャリア流体の温度Tに対応する摂動を引き起こすように、それぞれのコントローラ86および87を介して三方弁50および/または熱発生器23を作動させるための基準として使用される。
【0083】
続いて、制御手順1103は、調整温度TW2によって決定される摂動に対する暖房システム20の応答を識別するために、2つの導管251および253内のキャリア流体の温度Tおよび温度Tを監視(ブロック403)することを提供する。詳細には、手順1103は、最適値ΔTOPTに対応する最大点、あるいは最小点に到達したかどうかを検証する(決定ブロック405)。肯定的な場合(ブロック405の出力分岐Y)、調整温度TW2は、最適値ΔTOPTに到達することを可能にし、最適値ΔTOPTとは異なる温度差ΔTを決定する2つの導管251および253内のキャリア流体の温度TおよびTが変化するまで、それは変更されないままになる(ブロック407)。おそらく、許容範囲外、例えば、1つまたは複数の放射要素21とそれぞれの部屋10との間の熱交換の変化による。
【0084】
これとは異なり(ブロック405の出力分岐N)、手順1103は、最適値ΔTOPTに到達するために、調整温度TW2を上昇させる必要があるか(ブロック409の出力分岐Y)、または低下させる必要があるか(ブロック409の出力分岐N)を識別する(決定ブロック409)。その結果、ブロック403に戻る前に調整温度TW2の値を変更して(それぞれ、ブロック411で、ブロック413で、)、選択された変更に続く2つの導管251および253内のキャリア流体の温度測定値TおよびTの進行を監視する。
【0085】
図3のフロー図に戻ると、目標温度TW1と調整温度TW2を組み合わせて、総温度TWTを取得する。例えば、温度TW1とTW2を合計して(ノード1105を加算)、総温度TWTを取得する。
【0086】
好ましくは、制御ユニット80は、このようにして得られた総温度TWTが、1つまたは複数の部屋10の室温Tを許容温度範囲外にもたらさないことを検証するように構成される。例えば、制御ユニット80は、例えば、法的な制限に従って、システム20の消費を制限するため、および/またはシステム20の汚染/温室効果ガスの排出を制限するために、室温Tが18℃から22℃の間に含まれるか、18℃と22℃に等しいことを確認する。
【0087】
この動作は、センサ90Dおよび90Eに接続されたコントローラ85のおかげで実施される。詳細には、1つまたは複数の第1のコントローラ85、図3の例に1つ、は、それぞれのセンサ90D、図3の例に1つが見える、によって提供される室温測定Tを監視して、建物1の平均TAMよりも高い平均室温Tを有する1つまたは複数の部屋10における最大室温TAmaxを検出する。例えば、平均温度TAMは、1つまたは複数のセンサおよび/またはサーモスタットによってリアルタイムで提供される測定値に基づいて、処理モジュール81によって決定される。追加的または代替的に、1つまたは複数の平均温度TAMは、システム20の設置中および/またはその後に実行される、室温Tの経時的な解析に基づいて得られたメモリ83に格納することができる。
【0088】
第1のコントローラ85は、手順1107、例えば、PID制御、を実施して、温度TAmaxがより高い閾値、例えば、22℃、を超えて上昇しないことを保証する混合キャリア流体の温度Tの最大許容値TWmaxを決定する。
【0089】
許容最大値TWmaxは、総温度TWTと比較され(ブロック1109)、2つのより低い値が選択される。
【0090】
同様に、1つまたは複数の第2のコントローラ85、図3の例に1つ、は、センサ90E、図3の例に1つ、によって提供される室温測定値Tを監視して、建物1の平均温度TAMよりも低い平均室温Tを有する1つまたは複数の部屋10における最小室温TAminを検出する。
【0091】
第2のコントローラ85は、手順1111、例えば、PID制御、を実施して、温度TAminがより低い閾値、例えば、18℃、を下回らないことを保証する混合キャリア流体の温度Tの最小許容値TWminを決定する。
【0092】
最小許容値TWminは、ブロック1109によって出力で提供される温度、すなわち、総温度TWT、または許容最大値TWmaxと比較され(ブロック1113)、2つの大きい方の値が選択される。
【0093】
言い換えれば、制御ユニット80は、出力ブロック1113において、総温度TWT、特に、総温度TWTの中から選択された基準温度TWSP、許容最大値TWmaxまたは最小許容値TWminを提供する。
【0094】
基準温度TWFは、混合キャリア流体の温度Tと冷たいキャリア流体の温度Tとの間の温度差ΔTを変化させて、最適値ΔTOPTに到達するために使用される。この目的のために、制御ユニット80は、選択された基準温度TWFに基づいて、熱発生器23および三方弁50のうちの少なくとも1つを作動させる。特に、基準温度TWFは、弁50の下流の送達導管251内で混合キャリア流体を形成するために混合される熱いキャリア流体および冷たいキャリア流体の比率を変更するように、熱発生器23の制御を変更するため、および/または三方弁50の開口を変更するために使用できる。
【0095】
検討された例では、選択された基準温度TWFは、混合キャリア流体の温度Tの測定値も受信するコントローラ86への入力で提供される。コントローラ86は、基準温度TWFおよび混合キャリア流体(センサ90Bによって提供される)の現在の温度Tに基づいて三方弁50の開位置を決定する弁制御信号Sを生成する弁調整手順(ブロック1115)を実施する。弁制御信号Sは、混合キャリア流体の温度Tが選択された基準温度TWFに対応するように(すなわち、T=TWF)、温度Tの冷たいキャリア流体と温度Tの熱いキャリア流体との間の混合を調整する動作条件、または開放、を決定するために三方弁50に提供さる。
【0096】
このようにして、制御システム80は、三方弁50の下流の導管253内の混合キャリア流体の温度Tを迅速に変更することができ、システム20が、放射要素21に関連する熱負荷の変化に迅速に応答することを可能にする。
【0097】
制御システム80、特に、発生器コントローラ87はまた、三方弁50の動作条件に基づいて、熱発生器23から出力される熱いキャリア流体の温度Tを調整するための温度調整手順(ブロック1117)を実施する。特に、手順1117は、入力において弁制御信号Sを受信し、熱いキャリア流体の温度Tをもたらすことができる熱い基準温度値THSPを決定する。有利には、手順1117は、熱発生器23の消費を低減することを可能にする熱い基準温度値THSPを識別するように構成される。
【0098】
熱い基準温度値THSPは、例えば、ヒステリシスに基づいて、発生器コントローラ87によって実施される発生器調整手順(ブロック1119)への入力で提供される。発生器調整手順1119はまた、熱いキャリア流体の温度Tの測定値を入力で受信し、キャリア流体出力の温度Tを熱い基準温度値THSPにもたらすのに適した発生器制御信号Sを出力に提供するように構成される。
【0099】
好ましい実施形態では、熱い基準温度値THSPは、三方弁50を所望の動作条件に戻すことができるように決定される。例えば、出願人は、その下流の送達導管251内のキャリア流体が、80%の熱いキャリア流体および20%の冷たいキャリア流体を含む混合物によって与えられるように、三方弁50の所望の動作条件を特定した。出願人による解析は、三方弁50のそのような動作条件が、広いダイナミックに亘って混合キャリア流体の温度Tを効率的に変更することを可能にし、同時に、熱発生器23の効率的な動作を保証することを強調した。
【0100】
次に、図5のグラフを参照して、熱いキャリア流体の温度Tおよび三方弁50の動作条件の組み合わせ調整の例を説明する。
【0101】
最初に、弁制御信号Sは、図5に見られるように、三方弁50の所望の動作条件に対応する値SV0の周りで振動する。
【0102】
その結果、混合キャリア流体の温度Tは、第1の目標値TWSP0の近傍に達する。これらの条件では、図5に示されるように、温度差ΔTは、第1の最適値ΔTOPT0に近づき、このような値の周りで非常に抑制された方法で振動する。
【0103】
時間t0で、第2の目標値TWSP1への変更、例えば、第1の目標値TWSP0よりも低い、がある場合、弁調整手順1115は、弁制御信号Sをほぼ瞬時に変更し、熱いキャリア流体と冷たいキャリア流体の混合比率を変更して、混合キャリア流体の温度Tを実質的に第2の目標値TWSP0にもたらすようにする。図示の例では、弁制御信号Sは、三方弁50を作動させて、冷たいキャリア流体の比率を実質的に増加させ、熱いキャリア流体の比率を減少させ、したがって、混合キャリア流体の温度Tの値を減少させる。このようにして、温度差ΔTは、第2の最適値ΔTOPT1に迅速に到達する。
【0104】
三方弁50の動作条件の変化と実質的に並行して、発生器コントローラ87によって実施される温度調整手順1117は、熱い基準値THSPを動的に変化させる。熱い基準値THSPに基づいて、発生器調整手順1119は、三方弁50を所望の動作条件で動作させることを可能にする、検討した例における第1の温度値TH0よりも実質的に低い第2の温度値TH1で熱いキャリア流体を得るように、熱発生器23の動作を調整する。
【0105】
特に、熱いキャリア流体の温度Tの変化は、結果として、三方弁50の下流の混合キャリア流体の温度Tを変化させる。弁コントローラ86は、混合キャリア流体の温度Tのこの変化を検出し、結果として、弁制御信号Sを、所望の動作条件に対応する値SV0の周りの振動に戻るまで調整する(図5のランプの増加)。
【0106】
その結果、第2の時間t1で、熱発生器23は、第2の温度値TH1で熱いキャリア流体を提供し、したがって、熱発生器23の消費を低減し、一方、三方弁50は、所望の動作条件で動作し、暖房システム20の特に効率的な動作条件を得る。
【0107】
図6のフロー図は、本発明の代替の実施形態に係る暖房システム20の動作を示している。
【0108】
特に、暖房システム20は、コントローラ85を提供しない。この場合、動作は、最小室温TAminおよび最大室温TAmaxが制御ユニット80のコントローラモジュール81によって直接取得され、制御手順1103’の修正版への入力として提供されるという点で、上記のものとは異なる。詳細には、修正された制御手順1103’は、適用される摂動、すなわち、1つまたは複数の部屋10で到達する最小室温TAminよりも低い、または最大室温TAmaxよりも高い室温Tを回避するような調整温度TWを決定することを提供する。
【0109】
このように考案された本発明は、添付の請求の範囲の結果として、本発明に含まれる多くの修正および変形を受けることができる。
【0110】
例えば、暖房システム20は、三方弁の上流に配置された油圧分離器またはデカップラ、分配ネットワークにおける過圧/不足圧力を回避するための1つまたは複数の安全弁および/または通気弁、濾過モジュール、脱灰装置、スラッジ除去装置などの他のコンポーネントを備えることができる。
【0111】
一実施形態では、多くの三方弁を分配ネットワーク25に配置できる。例えば、三方弁は、建物の同じ部屋10に配置された放射要素のグループのように、各放射要素または放射要素21のグループに提供できる。この場合、制御ユニット80は、対応する室温Tに従って、各放射要素21、または放射要素21のグループとの間の入力および出力におけるキャリア流体の混合を制御するように構成される。
【0112】
さらに、制御手順1103に提供された入力を、例えば、ヒステリシスの追加などの非線形技術、またはデータ調整のためのオンラインヒューリスティックの使用、例えば、正規化、革新閾値、最大革新、端末制約などで処理することを妨げるものは何もない。このようにして、暖房システム20の最適な調整を決定し、それに従う際のシステムの信頼性を高めることが可能である。
【0113】
有利なことに、コントローラ85、86および87はまた、PIDパラメータなどのその動作パラメータの最適化方法および/またはアルゴリズムを実施できる。例えば、コントローラは、最適な調整またはチューニングを求めるための専用のラムダチューニング(lambda-tuning)方法または極値シーク(extremum seeking)制御を実施できる。
【0114】
さらに、コントローラ85、86、および87のうちの1つまたは複数を省略して、1つまたは複数の分散モジュールによって形成するか、またはそれらを単一の統合電子ユニットに処理モジュール81と一緒に実施できる。さらに、制御ユニット70の動作は、おそらくモデル予測制御を含む単一のソフトウェアブロックに属する命令を実行することによって実施できる。最後に、全ての詳細を他の技術的に同等の要素に置き換えることができる。
【0115】
結論として、使用される材料、ならびに偶発的な形状およびサイズは、この理由のために以下の請求項の保護の範囲から逸脱することなく、特定の実施要件に従って何であってもよい。
図1
図2
図3
図4
図5
図6
【国際調査報告】