(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-01-19
(54)【発明の名称】広ダイナミックレンジ電気モータ
(51)【国際特許分類】
H02K 7/108 20060101AFI20220112BHJP
H02K 7/20 20060101ALI20220112BHJP
H02K 16/00 20060101ALI20220112BHJP
【FI】
H02K7/108
H02K7/20
H02K16/00
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021544104
(86)(22)【出願日】2019-10-07
(85)【翻訳文提出日】2021-05-18
(86)【国際出願番号】 US2019055000
(87)【国際公開番号】W WO2020076701
(87)【国際公開日】2020-04-16
(32)【優先日】2018-10-07
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521145211
【氏名又は名称】ウッズ ホール オーシャナグラフィック インスティチューション
(74)【代理人】
【識別番号】100114775
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ビリングス,アンドリュー,エス.
【テーマコード(参考)】
5H607
【Fターム(参考)】
5H607BB01
5H607BB09
5H607BB14
5H607CC03
5H607DD02
5H607EE03
5H607EE11
5H607FF33
(57)【要約】
効率的な広ダイナミックレンジ電気モータシステムおよびその動作方法は、フレームと、少なくとも第1のダイナミックレンジを共に有する第1の回転子-固定子対および第2のダイナミックレンジを有する第2の回転子-固定子対とを含み、第1および第2の対は、出力シャフトの共通の中心軸の周りに回転するためにフレーム内に設置され、第1の軸の周りに回転するために設置され、第1および第2の対からトルクを伝達するように構成される。クラッチは、第1および第2の対の少なくとも1つを出力シャフトから分離するように構成され、それにより、少なくとも1つの分離対を確立し、少なくとも1つの分離対と出力シャフトとの間のトルク伝達を防ぐ。コントローラは、第1および第2の対に接続され、第1および第2の対への電力送達を制御するように構成される。
【選択図】
図3
【特許請求の範囲】
【請求項1】
電気モータシステムであって、
フレームと、
前記フレーム内に設置され、第1の軸の周りに回転するように構成されたシャフトと、
少なくとも、第1のダイナミックレンジを共に有する第1の回転子-固定子対、および第2のダイナミックレンジを有する第2の回転子-固定子対であって、前記第1および第2の対は、前記第1の軸の周りに回転するために前記フレーム内に設置され、トルクを前記シャフトに伝達するように構成される、第1の回転子-固定子対および第2の回転子-固定子対と、
前記第1および第2の対の少なくとも1つを前記シャフトから分離するように構成され、少なくとも第1の分離対を確立し、前記少なくとも1つの分離対と前記シャフトとの間のトルク伝達を防ぐ、クラッチと、
前記第1および第2の対に接続され、前記第1および第2の対への電力送達を制御するように構成されたコントローラと、
を備える、システム。
【請求項2】
出力機構をさらに備え、前記シャフトは、前記出力機構を駆動する、請求項1に記載のシステム。
【請求項3】
前記出力機構は、前記シャフトに直接接続される、請求項2に記載のシステム。
【請求項4】
前記出力機構は、油圧ポンプである、請求項2に記載のシステム。
【請求項5】
第3のダイナミックレンジを有する第3の回転子-固定子対をさらに備え、前記第3の対は前記コントローラに接続され、前記コントローラは、前記第3の対への電力送達を制御するようにさらに構成される、請求項1に記載のシステム。
【請求項6】
前記第3の対を前記シャフトから分離するように構成され、第2の分離対を確立し、前記第2の分離対からのトルク伝達を防ぐ、第2のクラッチをさらに備える、請求項5に記載のシステム。
【請求項7】
前記クラッチは、前記第2の対の回転子と固定子との間に位置し、前記第2の対の固定子を前記回転子から分離することによって前記第1の分離対を確立するように構成される、請求項1に記載のシステム。
【請求項8】
少なくとも前記回転子-固定子対がその中に配置されるハウジングをさらに備える、請求項1に記載のシステム。
【請求項9】
前記システムは、水中での使用に適合される、請求項8に記載のシステム。
【請求項10】
電気モータシステムのダイナミックレンジを拡大するための方法であって、
(a)フレームと、前記フレーム内に設置され、第1の軸の周りに回転するように構成されたシャフトと、前記フレーム内で回転するために設置され、トルクを前記シャフトに伝達するように構成された、少なくとも第1および第2の回転子-固定子対と、第1および第2のモータの少なくとも1つを前記シャフトから分離するように構成されたクラッチと、電力供給装置と、コントローラとを含むモータシステムを選択することであって、前記第1および第2のモータは、第1および第2のダイナミックレンジをそれぞれ有し、前記コントローラは、前記第1および第2の対に接続されることと、
(b)前記第1および第2のモータの少なくとも1つを用いて、前記モータシステムを第1の構成で動作させることと、
(c)前記クラッチを用いて前記第1および第2の対の少なくとも1つを前記シャフトから分離して、前記シャフトと少なくとも第1の分離対との間のトルク伝達を防ぐことによって前記第1の分離対を確立し、トルクを前記シャフトに伝達することができる第1の係合対を確立することと、
(d)前記第1の係合対を用いて、前記モータシステムを第2の構成で動作させることと、
を含む、方法。
【請求項11】
(e)前記第1および第2のモータを用いて、前記モータシステムを第3の構成で動作させるステップをさらに含む、請求項10に記載の方法。
【請求項12】
(i)前記モータシステムを出力機構に接続するステップをさらに含む、請求項10に記載の方法。
【請求項13】
前記出力機構は、前記シャフトに直接接続される、請求項12に記載の方法。
【請求項14】
前記モータシステムは、第3のダイナミックレンジを有する第3の回転子-固定子対をさらに備え、前記第3の対は前記コントローラに接続され、前記コントローラは、前記第3の対への電力送達を制御するようにさらに構成される、請求項10に記載の方法。
【請求項15】
前記モータシステムは、前記第3の対を前記シャフトから分離するように構成され、第2の分離対を確立し、前記シャフトと前記第2の分離対との間のトルク伝達を防ぐ、第2のクラッチをさらに備える、請求項14に記載の方法。
【請求項16】
前記クラッチは、前記第2の対の回転子と固定子との間に位置し、前記第2の対の固定子を前記回転子から分離することによって前記第1の分離対を確立するように構成される、請求項10に記載の方法。
【請求項17】
前記モータシステムはハウジングをさらに備え、少なくとも前記回転子-固定子対は前記ハウジング内に配置され、(ii)前記モータを水中で動作させるステップをさらに含む、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2018年10月7日に出願された米国仮出願第62/742,391号の優先権を主張する。上述の出願の内容全体が、参照により本明細書に組み込まれる。
【0002】
本発明は、電気モータシステムに関する。より具体的には、本発明は、ブラシレス直流電気モータ、および相互接続変速機のない複数のモータユニットを備えるモータシステムに関する。
【背景技術】
【0003】
電気モータは、電気エネルギーを機械エネルギーに変換する機械である。典型的には、電気モータは、磁場および巻線電流を生成して回転力を発生させることによって動作する。電気モータの電源は、電力網、インバータ、オルタネータ、もしくは他の発電機などの交流(AC)電源の形態、または例えば、電池、自動車の発電機、もしくは整流器などの直流(DC)電源からのいずれかである。
【0004】
大多数の電気モータは、固定子と回転子との間のエアギャップに原動力(すなわち、相対運動)を電磁的に発生させて、有用なトルクまたは直線力を生成する。回転子は、モータの固定子に対して回るように設定され、回転力であるトルクを発生させる。モータの機械出力(P
em)は、方程式#1および#2で示されるとおりに表され得る。方程式#1は、毎分回転数(rpm)での回転、およびフィートポンドでのトルクMを有し、単位は馬力となる。また、方程式#2は、SI単位を使用し、ラジアン毎秒で表されるシャフト角速度ω(小文字のギリシャ文字オメガ)での回転、およびニュートンメートルでのトルクMを有し、単位はワットとなる。
【数1】
【0005】
モータの効率は、機械出力P
mを入力電力P
eで割った方程式#3で示されるとおりに計算され得、エネルギー変換効率η(小文字のギリシャ文字イータ)として表され、通常、百分率で表される。機械出力は出力トルクMかける出力角速度に等しく、入力電力は入力電流かける入力電圧に等しく、結果として効率の方程式#4となり、任意の所与のモータの効率の導出を可能とする。
【数2】
【0006】
モータのサブセットは、ブラシレス電気モータである。ブラシレスDC電気(BLDC)モータは、電流パルスをモータ巻線に提供するコントローラを有し、したがってモータの速度およびトルクを制御する、DC電気で動く同期モータである。典型的には、BLDCモータは、永久磁石同期モータ(PMSM)と同様に構築されるが、スイッチトリラクタンスモータまたは誘導モータと同様の能力を有する。
【0007】
BLDCモータは、(回転子のrpm、または結果として生じる駆動シャフト回転速度によって測定される)モータの速度が増加するにつれて増加するトルク(出力)を生成する。
図2Aに示すように、破線252は、一般的に知られている単一のBLDCモータについて、シャフト速度に対する出力の結果の直線関係を示す。モータのダイナミックレンジは、本明細書では、モータの最大または最大付近出力範囲と定義される。モータはある条件(例えば、シャフト速度またはトルク)で動作しているが、モータは、出力が所与の状況に有用である場合に動的と見なされる。また、
図2Aに示すように、単一のBLDCモータはほとんどの場合、出力線252および262を有する2つの単一のモータによって示されるように、非常に狭いダイナミックレンジを有する。この例では、有用な出力は、最大出力の75%以上と見なされ、灰色のバー254および264で表される。
【0008】
BLDCモータのダイナミックレンジを拡大するための2つの一般的な方法が存在する。まず、供給される電圧を劇的に増加させて単一のBLDCモータのダイナミックレンジを増加させることができる。しかしながら、供給される電圧の増加は、モータ効率を下げ、電源を枯渇させる。電源が無制限(例えば、電源が電力網)の場合、消費電力の増加は大きな要素ではないが、電源が有限(例えば、電池)の場合、消費電力の増加は理想的ではなく、多くの場合、許容されない。
【0009】
ダイナミックレンジを拡大するための他の一般的な方法は、変速機を含めることである。変速機は、モータ、および動力の制御された適用を提供する他の動力伝達システムの構成要素である。典型的には、変速機という用語は、歯車および歯車列を使用して、回転源(例えば、モータ)から別の装置(例えば、従動シャフト)への速度およびトルク変換を提供するギヤボックスを指す。変速機は単一のモータと共に利用され、モータは特定の回転速度範囲、しばしば高回転速度での効率を有し、装置全体はより遅い速度を必要とする。変速機は、回転速度を低下または減少させ、トルクを増加させることができる。より遅い速度およびより高いトルクが、始動、または高出力要求作業に重要である。したがって、変速機を有する単一のBLDCモータは、単一のBLDCモータ単独より広いダイナミックレンジを有する。
【0010】
しかしながら、変速機は著しい欠点を有する。変速機の歯車間に力が加わるときの機械損失および摩擦損失がつきものである。また、変速機は、モータシステム全体の複雑さを増し、小さい、空間が限定されたシステムでのそれらの使用を制限する。特に、水中または浸漬モータは、空間、重量、および消費電力について厳しい要求を有する。
【0011】
単一のシャフトを回転させるために複数の電気モータを適用して出力の改善を得ることは、当該技術分野で一般的に知られており、Henderによる米国特許第3,799,284号、およびShafferによる米国特許出願第2012/0280585号に例示されている。そのような複数のモータシステムは、モータごとに1つの出力シャフトを使用し、次に、単一の回転シャフトに(例えば、歯車で)結合される。しかしながら、複数のモータおよび出力シャフトを有するシステムは、変速機システムと同様の複雑さおよび損失を有する。
【0012】
BLDCモータは、異なる出力対速度比を有する。低速度および高トルクを提供するモータ(例えば、始動モータ)が利用可能であり、高速度対低トルク比を提供するモータが利用可能である。伝統的に、装置は、特定の装置に最適な単一のモータを組み込んでおり、駆動シャフトの回転速度を変化させる変速機を提供する。しかしながら、その解決策は、効率が特定の使用領域でのみ得られる小さいダイナミックレンジを提供する。燃焼機関分野からの例は、自動車の幹線道路での運転である。
【0013】
したがって、供給電圧の増加に頼らず、モータの出力、空間、および重量の点で最大効率で動作する、単一の高ダイナミックレンジBLDCモータシステムを有することが望ましい。
【発明の概要】
【0014】
本発明の目的は、高ダイナミックレンジ電気モータシステムを提供し、そのようなシステムを、モータの出力、空間、および重量の点で最大効率で動作させることである。いくつかの実施形態では、高ダイナミックレンジ電気モータシステムは、電圧範囲限界内で動作する。
【0015】
本発明は、フレームと、フレーム内に設置され、第1の軸の周りに回転するように構成されたシャフトとを含む、電気モータシステムを特徴とする。システムは、少なくとも第1のダイナミックレンジを共に有する第1の回転子-固定子対および第2のダイナミックレンジを有する第2の回転子-固定子対をさらに含み、第1および第2の対は、第1の軸の周りに回転するためにフレーム内に設置され、トルクをシャフトに伝達するように構成される。クラッチは、第1および第2の対の少なくとも1つをシャフトから分離するように構成され、少なくとも第1の分離対を確立し、少なくとも1つの分離対とシャフトとの間のトルク伝達を防ぐ。コントローラは、第1および第2の対に接続され、第1および第2の対への電力送達を制御するように構成される。
【0016】
いくつかの実施形態では、システムは、出力機構をさらに含み、シャフトは、出力機構を駆動する。いくつかの実施形態では、出力機構は、シャフトに直接接続される。一実施形態では、出力機構は、油圧ポンプである。ある実施形態では、システムは、第3のダイナミックレンジを有する第3の回転子-固定子対をさらに含み、第3の対はコントローラに接続され、コントローラは、第3の対への電力送達を制御するようにさらに構成される。一実施形態では、第2のクラッチは、第3の対をシャフトから分離するように構成され、第2の分離対を確立し、第2の分離対からのトルク伝達を防ぐ。
【0017】
いくつかの実施形態では、クラッチは、第2の対の回転子と固定子との間に位置し、第2の対の固定子を回転子から分離することによって第1の分離対を確立するように構成される。いくつかの実施形態では、システムは、典型的には水密および/または耐圧のハウジングをさらに含み、その中に少なくとも回転子-固定子対が配置される。一実施形態では、システムは、水中での使用に適合される。
【0018】
本発明はまた、電気モータシステムのダイナミックレンジを拡大するための方法を特徴とし、(a)フレームと、フレーム内に設置され、第1の軸の周りに回転するように構成されたシャフトと、フレーム内で回転するために設置され、トルクをシャフトに伝達するように構成された、少なくとも第1および第2の回転子-固定子対と、第1および第2のモータの少なくとも1つをシャフトから分離するように構成されたクラッチと、電力供給装置と、コントローラとを含むモータシステムを選択するステップを含む。第1および第2のモータは、第1および第2のダイナミックレンジをそれぞれ有し、コントローラは、第1および第2の対に接続される。方法は、(b)第1および第2のモータの少なくとも1つを用いて、モータを第1の構成で動作させることと、(c)クラッチを用いて第1および第2の対の少なくとも1つをシャフトから分離して、シャフトと少なくとも1つの分離対との間のトルク伝達を防ぐことによって第1の分離対を確立し、トルクをシャフトに伝達することができる第1の係合対を確立することとをさらに含む。方法は、(d)第1の係合対を用いて、モータシステムを第2の構成で動作させることも含む。
【0019】
いくつかの実施形態では、方法は、(e)第1および第2のモータを用いて、モータシステムを第3の構成で動作させることをさらに含む。ある実施形態では、方法は、(i)モータを出力機構に接続することも含む。いくつかの実施形態では、出力機構は、シャフトに直接接続される。ある実施形態では、モータは、第3のダイナミックレンジを有する第3の回転子-固定子対をさらに備え、第3の対はコントローラに接続され、コントローラは、第3の対への電力送達を制御するようにさらに構成される。一実施形態では、モータシステムは、第3の対をシャフトから分離するように構成され、第2の分離対を確立し、シャフトと第2の分離対との間のトルク伝達を防ぐ、第2のクラッチをさらに備える。いくつかの実施形態では、クラッチは、第2の対の回転子と固定子との間に位置し、第2の対の固定子を回転子から分離することによって第1の分離対を確立するように構成される。一実施形態では、モータシステムは水密ハウジングをさらに備え、(ii)モータを水中で動作させるステップをさらに含む。
【0020】
定義
用語「モータ」および「回転子-固定子対」は、本明細書で使用される場合、適合した回転子および固定子を指す。回転子は、出力シャフトに取り付けられ、固定子によって駆動されると出力シャフトを回すことができる。固定子は、回転子と対をなし、回転子-固定子対を作り出し、回転子を回転させるように構成された磁場を提供し、したがって出力シャフトを回転させる。本発明によるシステムでは、2つ以上の回転子-固定子対が、以下で「中心軸」と定義される、出力シャフトを有する共通の軸の周りに回転するように構成される。
【0021】
用語「中心軸」は、本明細書では、出力シャフトの回転軸を指す。この軸は、典型的には、出力シャフトの長手方向軸でもあり、好ましくは、所与の実施形態に存在するモータ(すなわち、第1および第2のモータ)の中心軸である。
【0022】
用語「ダイナミックレンジ」は、本明細書では、設定された条件を超えるモータの動作範囲を指すのに使用される。例えば、
図2Aに示すように、一実施形態によるダイナミックレンジは、モータシステムの最大出力の75%以上と規定される。別の実施形態では、
図2Bおよび
図2Cに示すように、ダイナミックレンジは、モータシステムの効率の60%以上と規定される。
【0023】
用語「構成」は、モータ(すなわち、回転子-固定子対)の動作を指すのに使用される場合、本明細書では、モータの電力入力、回転速度、およびトルク出力を含む、モータの動作パラメータのセットを指す。
【0024】
以下では、本発明の好ましい実施形態が図面を参照してより詳細に説明される。
【図面の簡単な説明】
【0025】
【
図1A】本発明による、2つのモータを有するモータシステムの概略断面図である。
【
図1C】本発明による、モータを有するモータシステムのさらなる2つの実施形態の概略断面図である。
【
図1D】本発明による、モータを有するモータシステムのさらなる2つの実施形態の概略断面図である。
【
図2A】2つのトルク制御された従来の単一のモータ(破線)、および本発明の一実施形態による新規のデュアルモータシステムの代表的な出力曲線グラフであり、2つの一般的に知られているBLDCモータと、単一の駆動シャフトに結合された2つのBLDCモータおよびクラッチ機構を有する本発明の実施形態との出力対速度関係を示す。
【
図2B】あるトルク範囲にわたる3つの個々のモータ効率(
図2B)を、
図3に示す単一のシャフトに結合された3つのモータを有する本発明の実施形態(
図2C)と比較した、代表的な効率のグラフである。
【
図2C】あるトルク範囲にわたる3つの個々のモータ効率(
図2B)を、
図3に示す単一のシャフトに結合された3つのモータを有する本発明の実施形態(
図2C)と比較した、代表的な効率のグラフである。
【
図3】本発明の一実施形態による、3つのモータを有するモータシステムの概略断面図である。
【
図4】一実施形態による、2つのモータを有するモータシステムの断面図である。
【
図5A】
図4に示すシステムの構成要素の断面図である。
【
図5B】
図5Aに示すアンギュラ接触軸受エンドキャップの端面図である。
【
図5C】
図4に示すシステムの構成要素の断面図である。
【
図5D】
図4に示すシステムの構成要素の断面図である。
【
図5G】
図4に示すシステムの構成要素の断面図である。
【
図6】
図2Bおよび
図2Cのグラフで示す性能特性を有する
図3に示すシステムの動作の、1つの可能な方法のフローチャートである。
【発明を実施するための形態】
【0026】
概要
本発明は、複数の電気モータを選択することによって達成され得、各モータは、モータ速度および供給されるトルクのダイナミックレンジを有する。選択されたモータは、共通の駆動シャフトに適用される。駆動シャフトおよびモータは、可逆的に接続可能であり、その結果、単一のモータまたはモータのサブセットは、駆動シャフトに同時に力を加えることができる。得られるモータシステムは、シャフト速度に対する出力の広いダイナミックレンジを有する。
図2A~2Cは、本発明の動的性質を示す。
図2Aに、あるシャフト速度範囲にわたる、当該技術分野で知られている単一のモータと比較して拡張された本発明の出力の実証を示す。
図2Cは、提供されたトルク範囲にわたる、3つのモータを有する本発明の一実施形態の効率を、
図2Bの、本発明によって可能なように接続されていない3つの個々のモータと比較して示す。
【0027】
図2Aを見ると、実線272は、一般的に知られている単一のモータシステムの出力と比較した、本発明による2モータ式実施形態の、ある回転子速度範囲での出力を表す。デュアルモータ実施形態のダイナミックレンジ274は、破線252および262によって表され、各モータが、最大出力の75%以上と規定され、それぞれ灰色のバー254および264で表されるダイナミックレンジを有する、先行技術のモータよりも、はるかに広いシャフト速度範囲に広がる。
【0028】
複数のモータを単一のシャフトに組み合わせることは、本発明の実施形態が、異なるモータの異なる速度およびトルクでの効率を利用することを可能とする。3つの個々のモータの、それらのそれぞれのトルク出力に対してグラフ化された効率を
図2Bに示す。第1、第2、および第3のモータは、各自のシャフトで各々動作する場合、それぞれ282、286、および290の効率曲線を有する。これらのモータは、本明細書に記載されるように組み合わされ、2つのクラッチ機構116および126と共に単一の出力シャフト102に取り付けられてよく、適切なモータをその最も効率的なトルクおよび速度定格で用いて出力シャフト102を駆動することを可能とし、追加の歯車装置または変速機を一切使用せず、前述の歯車装置または変速機に関連する機械的損失のない、単一の効率曲線294をもたらす。
【0029】
図2Bおよび
図2Cに示すモータも、ダイナミックレンジを有すると表すことができる。1つのダイナミックレンジは、少なくとも60%の効率を有するとして
図2Bおよび
図2Cに規定され、示されている。第1、第2、および第3のモータは、それぞれ284、288、および292のダイナミックレンジを有する。一方、本発明に従って組み合わされたモータは、著しく広いダイナミックレンジ296を有する。
【0030】
可逆的な接続は、モータを駆動シャフトから電気機械的にデカップリングする(切り離す)ことによって、または駆動シャフトに組み込まれた機械的なクラッチ機構(例えば、スプラグクラッチ)によって達成され得る。モータおよびクラッチ制御は、電子コントローラによって提供される。次いで、モータシステムは、単一のモータをその最適な速度およびトルクダイナミックレンジで適用し、次いで、異なるモータを異なる最適な速度およびトルクダイナミックレンジで適用することによって、広いダイナミックレンジを達成する。モータシステムは、変速機を含まずに広いダイナミックレンジを達成し、システムの複雑さ、大きさ、および重量を抑える。
【0031】
少なくとも2つのモータ110および120を備える、一実施形態のシステム100が
図1Aに示され、各モータは異なる動的性能を有する。異なる動的性能を有するモータを指す1つの方法は、モータの効率的な速度を参照することである。例えば、Allied MotionのMF0127056-X0Xモータを備える第1のモータは、約333rpmの無負荷速度および約4900oz-in(オンス-インチ)のピークトルクを有するが、200rpmで約66.5%の効率であるため、本明細書では低速モータと呼ばれる。第2のモータは、その速度によって定義されるが、第1のモータとの関係でも定義される。したがって、MF0127092-X0Yを備える第2のモータは、約1950rpmの無負荷速度および約8400oz-inのピークトルクを有するが、1560rpmで約90%の効率であるため、本明細書では高速モータと呼ばれる。
【0032】
図1に示す実施形態では、モータ110は、低速回転子112および低速固定子114を有する。モータ110は、本明細書では単にクラッチと呼ばれるクラッチ機構116をさらに備える。クラッチという用語は、電磁デカップリング機構、および機械クラッチ(例えば、以下に記載するスプラグクラッチ)を含む、任意のクラッチ機構を指すことを理解すべきである。クラッチ116は、モータ110が出力シャフト(例えば、駆動シャフト)102から切り離されることを可能とし、モータ120がシャフト102を回転させるのに利用されることを可能とする。
【0033】
本発明は、複数のモータ(すなわち、回転子-固定子対)が同じシャフト102に取り付けられ、少なくとも1つのモータがクラッチ116を有する限り、多くの異なるモータおよび駆動シャフト配置で行われてよい。さらなる明示を
図1Cおよび
図1Dに示す。シャフト102cが中空であることを除いて上に記載された構成要素を有する、中空コアモータシステム100cを
図1Cに示す。シャフト102cは、依然として中心軸104の周りに回転し、回転子112は、クラッチ116によってシャフト102cから依然として分離されている。別の中空コア実施形態を
図1Dに示す。モータシステム100dは、シャフト102cの内部のフレームF、ならびにフレームFに強固に取り付けられた固定子114および124を有する。シャフト102cは、中心軸104の周りに回転し、クラッチ116および回転子122に接続される。回転子112は、クラッチ116に取り付けられる。これらの代替の実施形態は、本明細書の他の部分で詳細に記載されるのと同じ原理で動作し、本発明の範囲内であると見なされるべきである。
【0034】
モータ110、120
本発明は、共通のシャフト102上の少なくとも2つのモータを含むシステムを提供する。記載を簡単にするために、本明細書で使用される用語「モータ」は、しばしば出力シャフト102によって、原動力(トルク)を別の装置に供給する機械を指し、モータは、回転子および固定子を備える。回転子は、モータの可動部品を表し、出力シャフトに取り付けられ、固定子によって駆動されると前述の出力シャフトを回す。典型的には、回転子は、電流を流し、固定子の磁場と相互作用する導体を有し、それにより回転力を作り出す。次に、固定子は、回転子を取り囲み、典型的には静止している。固定子は、回転子に作用する磁場を生成するための巻線または永久磁石を有する。回転子および固定子は、適切かつ効率的な回転力を生成するように適合される。いくつかの実施形態では、回転子は、回転子、および存在する場合はクラッチを、シャフト上に物理的に位置付けるためのスペーサをさらに備える。
【0035】
本発明は、少なくとも2つのモータ、具体的には、適合した回転子-固定子対の2つのセットを提供する。簡単にするために、適合した回転子-固定子対は、第1および第2の対と呼ばれる。第1および第2の対は、典型的には、異なる速度-トルクダイナミックレンジを有する。異なる範囲を有することによって、対は互いを補完し、言い換えれば、第1の対は第1のタスクに効率的であるが、第2のタスクには効率的でなく、一方、第2の対は第2のタスクに効率的である。例えば、一実施形態では、第1のモータ110は、装置の始動(例えば、第1のタスク)のための低速高トルク用に選択され、第2のモータ120は、装置の動作(例えば、第2のタスク)のための高速低トルク用に選択される。第1および第2の対は、好ましくは市販のモータキットである。ほとんどの場合、市販のフレームレスBLDCモータキットである。
【0036】
回転子-固定子対は、共通の出力シャフト102の周りに、モータの各回転子が中心長手方向軸104の周りの出力シャフトの回転を駆動するように構成される。
【0037】
本発明の実施形態は、適切な数だけ回転子-固定子対を備えてよい。現在の好ましい実施形態は、第1のモータ110を作る低速対、および第2のモータ120を作る高速対の2対を備える。いくつかの実施形態は、3つ以上の回転子-固定子対を備え、例えば、3つの回転子-固定子対のシステムが例1に記載される。典型的には、2~10対が好ましい。11対以上を備える実施形態は本発明の範囲内であるが、より多くの回転子-固定子対の追加による全ダイナミックレンジの拡大は、対の数が増加するにつれて減少し、多数の対での有用性を下げる。
【0038】
出力シャフト102
モータ110、120の回転子112、122は、回転子の回転(すなわち、モータ出力)をシャフトに伝達し、生産的な仕事を行うために、出力シャフト102に接続される。出力シャフトは、モータ駆動シャフト、または単にシャフトとも呼ばれ、当該技術分野で周知である。いくつかの実施形態は、
図1Aに示すような可変径出力シャフトをさらに備える。
【0039】
クラッチ116
本発明は、クラッチ部品、および出力シャフト102から回転子-固定子対へのトルク伝達から、少なくとも1つの回転子-固定子対モータを分離、係合解除、またはその他の方法で除去する方法を提供し、一実施形態について、本明細書ではクラッチ機構116またはクラッチ116と呼ばれる。出力シャフト102は、少なくとも2つのモータに接続され、少なくとも1つのモータは、クラッチ機構116を有して構成され、それにより、クラッチ116は、対、より具体的には回転子を、出力シャフト102から係合解除してよく、その結果、高速の第2のモータ120がシャフト102を回す場合、クラッチ116は、低速の第1のモータ110の回転子112を回すシャフトの運動を防ぐ。クラッチ116は、任意の好適なデカップリング機構であってよい。クラッチ116は、機械的、電磁的、または物理的方法で、1つのモータを分離、またはその他の方法で除去してよい。クラッチは、単数形で、または2つ以上のクラッチを有する実施形態、例えば、第1のモータ110のクラッチ116およびモータ120のクラッチ126を備える
図3に示す実施形態では複数形で、言及され得る。いくつかの実施形態では、システムは複数のクラッチを備え、2つ以上のモータがクラッチを有する。他の実施形態では、複数のモータのすべてがクラッチを有し、例えば、
図3に示す実施形態のモータ130が、クラッチ136(図示せず)をさらに備えてよい。複数のクラッチを有する実施形態では、クラッチは、同じ構成であり、各モータを同じ方法で係合解除してよいか、または異なる構成であり、各モータを異なる方法で係合解除してよい。
【0040】
現在の好ましい実施形態では、クラッチ116は、スプラグクラッチを備える。スプラグクラッチは、非回転非対称の8の字形スプラグローラ(スプラグとも呼ばれる)を有する1方向フリーホイールクラッチである。回転力が正しい方向に加えられると、スプラグローラは、空転またはフリーホイール回転する。しかしながら、トルクが逆方向になると、スプラグローラは傾き、くさび形を生じ、フリーホイール回転を防ぎ、したがって、クラッチを通して回転力を伝達する。
【0041】
本明細書に記載されるようなクラッチ116は、オーバーランニングクラッチと同様に動作し、これは、従動シャフトが駆動シャフトより速く回転する場合、駆動シャフトを従動シャフトから係合解除する変速機内部の装置である。典型的なオーバーランニングクラッチは、2つのモータが同じ機械を駆動する場合に含まれる。重要なことに、これらのシステムでは、各モータは、各自の独立した駆動シャフトを有し、次いで共にかみ合わされて、両モータが単一の従動シャフトに作用する。ここで、本発明のクラッチ116は、モータを共通の駆動シャフト(出力シャフト)102から切り離し、別のモータが同じシャフトを推進することを可能とする。重要なことに、オーバーランニングクラッチと異なり、本発明は変速機を必要としない。いくつかの実施形態では、クラッチは、軸受、しばしば玉軸受を備える。
【0042】
コントローラC
システムの制御は、本明細書ではコントローラCと呼ばれる、相互接続された電子制御ボックスによって提供される。モータコントローラは当該技術分野で知られており、全体が参照により本明細書に組み込まれる、モータコントローラに関するHowardらによる米国特許第7,081,730号を参照されたい。コントローラCは、複数の回転子-固定子対を操作し、それらの状態(例えば、オン/オフ)、極性を制御し、(しばしばAC電気を受け取っている)電力供給装置を扱い、AC波形から正しいDC位相を対に供給することができなければならない。いくつかの実施形態では、コントローラCは、少なくともクラッチ116および電源PSをさらに制御する。本明細書に記載されるコントローラCは、複数の個々のコントローラ基板、単一のモータに接続された各基板、2つ以上のモータに接続された単一の基板、またはそれらの組み合わせを含んでよい。
【0043】
電源PS
本発明は、電気モータシステムを提供する。そのようなシステムは、電源PSに頼ることになる。典型的な電源は当該技術分野で知られており、電力網、電池または電池パック、(例えば、太陽、風力、波力、および/または熱エネルギーによって駆動される)発電機が挙げられる。いくつかの実施形態は、AC電気とDC電気との間の変換を行うインバータをさらに含む。他の実施形態では、コントローラCは、AC電気とDC電気との間の変換を行うように構成される。いくつかの実施形態では、コントローラは、コントローラ、および電源PSを通る経路の両方として働く。
【0044】
フレーム
本発明のほとんどの実施形態では、フレームFが、本発明のモータシステムを拘束および支持するために設けられる。フレームは、実施形態に応じて、任意の好適な材料であってよい。いくつかの実施形態では、フレームFはシステムを取り囲み、
図4に示すように、シャフト102を除いてシステム400を完全に包む。ある実施形態では、フレームは、クランプ、すなわち、長手方向開口を有する円筒形の材料の単一片によって固定子114および124を拘束し、例えば
図4に示すように、締結具406が、構造を締め付け、固定するのに使用される。他の実施形態では、フレームは、長手方向開口のない包囲シリンダを備え、固定子上に焼き嵌めされ、すなわち、シリンダは加熱されてフレームFの内部に固定子が置かれることを可能とし、シリンダが加えられた熱を失うと、固定子は適所に強固に保持される。いくつかの実施形態では、システム100は、システム100がフレームFによって取り囲まれることなく支持するために、フレームFに伸びる1つ以上の支持体106を有する。
【0045】
例1
次に、3つ以上の回転子-固定子対を有する実施形態を、具体例として説明する。
図3に、出力シャフト102、第1のモータ110、第2のモータ120、および第3のモータを有し、追加の変速機または歯車装置を必要とせず、それらに関連する損失のない、広いダイナミックレンジを有するモータシステムを可能とする、変速機のない直接駆動モータシステム300を示す。上に記載された2回転子-固定子モータ式システムと同様に、各モータは、好ましくは、既製の、市販のモータキットであり、異なるトルクおよび速度動作定格を各々有する。この例では、第1のモータ110は、機械の始動に効率的な低速高トルクモータであり、第2のモータ120は、始動より低トルクであるが依然として高速を必要としない場合に効率的な、中速および中トルクモータであり、第3のモータ130は、高速動作(例えば、巡航速度)で効率的な高速低トルクモータである。
【0046】
いくつかの実施形態は、フレームFは、
図4に点線で示すハウジング440などのハウジングにさらに取り付けられて補われるか、またはハウジングに置き換えられる。ハウジング440は、外部環境、ほとんどの場合、本発明のシステム400に通常なら有害である過酷な環境および/または流体環境から保護する、密閉された内部環境を提供する。典型的には、ハウジング440は、腐食、流体侵入(例えば、水密である)、圧力、電気(高電圧スパイクなど)、空気、および塵の少なくとも1つに対する保護を提供する。モータシステムに適したハウジングは、当該技術分野で周知である。典型的には、モータ110および120、クラッチ116、ならびにコントローラCは、ハウジング内にある。典型的には、さらなるモータを有する実施形態が、ハウジング440内に置かれることになる。出力シャフト102は、保護ハウジング440に広がり、システム400がハウジング440の外部の出力機構430に接続することを可能とする。好ましくは、シャフト102がハウジングの保護を損なうことなくハウジング440を出ることを可能とする機構、例えば、Oリングまたは他の周知の機構が、出力シャフト102の周りに置かれる。ハウジング440は、他の構造および機能部品(例えば、システム400からのデータおよび出力接続部)のためのさらなる接続部、ポート、またはその他の方法で保護された開口を有してよい。
【0047】
この例では、第1のモータ110および第2のモータ120の両方が、クラッチ機構116および126を備える。クラッチ116は、第1のモータ110をシャフト102から係合解除する一方、システムが第2のモータ120を動作させ、場合によっては第2のモータ120および第3のモータ130の両方を同時に動作させることを可能とする。コントローラCは、少なくともモータ110、120、および130に標準的な接続101を介して接続されて、動作を命令し、電力を提供する。クラッチ116および126は、コントローラCにさらに接続されてよい。さらに、クラッチ126はクラッチ116と共に、システム300がモータ110および120を分離して、モータシステム300を高速低トルクモータ130単独で動作させることを可能とする。
【0048】
例2
本発明のいくつかの態様は具体例に関連して論じられず、
図4および
図5A~5Hに示される。この例では、動的モータシステム400は、Allied MotionのMF0127シリーズのフレームレスモータからの、2つの回転子-固定子対モータを有する。低速高トルクのFM0127092が第1のモータ110であり、高速低トルクのFM0127056が第2のモータ120であり、各モータの仕様を表1に示す。クラッチ116は、McMaster-Carrから市販されているスプラグクラッチ6392K49であり、シャフト102の1方向係合を可能とする。この例のさらなる構成要素は、一次シャフト102、軸方向荷重クランプ407a、軸方向回転子クランプ407b、第1のモータ110のプレーン側回転子スペーサ408a、第2のモータ120のクラッチ側回転子スペーサ408b、中心軸スペーサ409、シリンダクランプ405、アンギュラ接触軸受411および関連するエンドキャップ410、ならびに玉軸受421および関連するエンドキャップ420を含む。
【0049】
軸方向荷重クランプ407a(例えば、シャフトカラー)は、軸受および関連する構成要素をシャフト102上に保持し、これらの構成要素をシステム400全体に対して位置付けながら、トルクおよび軸方向荷重下での滑りを防ぐ。回転子ならびに軸方向スペーサ408aおよび408bは、取り付けられた構成要素(例えば、回転子)が、システム400内で適切に位置合わせおよび芯出しされることを可能とする。軸方向回転子クランプ407bは、シャフト102への構成要素の適切な締結を確実にする。この例では、シリンダクランプ405は、構成要素の適切な締結を確実にし、この構成では、フレームFを置き換える。この実施形態では、クランプは、シャフト上に機械加工溝を備え、適切な構成要素を外部止め輪で締結する。
【0050】
アンギュラ接触軸受411は、システム400が、同時に作用する半径方向荷重および軸方向荷重である組み合わせ荷重に対応することを可能とする。アンギュラ接触軸受411は、内輪軌道および外輪軌道を、各軌道に対して軸受中心軸の方向に変位させている。アンギュラ接触軸受411の軸方向荷重支持能力は、接触角が増加するにつれて増加する。接触角は、それに沿って組み合わせ荷重が一方の軌道からもう一方の軌道に伝わる、半径方向平面内の玉と軌道との接触点を結ぶ線と、軸受中心軸に垂直な線との間の角度と定義される。この例では、軸受中心軸は中心軸104である。
【0051】
MarzocchiのALP歯車ポンプ430は、シャフト102に接続されてシステム400の負荷として働く。ポンプ430は、システム400の力の出力を測定する動力計(dyno)、および油圧出力機構として働く。
【表1】
【0052】
CopleyのXenus Plus XPL-230-40コントローラCが、第1のモータ110および第2のモータ120の両方を制御するために提供される(
図3)。このコントローラCは、コントローラCを無効にすることなく出力段を切り離すことを可能とする安全トルク遮断(STO)機能をさらに提供し、コントローラCへの簡易化された電力(すなわち、電気的)供給PSのための標準的な壁コンセントを有する。コントローラCは、トルク制御モードで動作し、標準的なrs-232ポートによってさらなるコントローラ(例えば、自律制御用)と通信してよい。
【0053】
使用分野
本発明は、モータを利用するほとんどの使用分野で利用され得る。本発明は、出力の少なくとも2つのステップもしくは構成を必要とするか、またはそれから利益を得ることができる使用に特に適合される。より具体的には、本発明は、例えば、小さい電池式の機械などの、利用可能な電力供給装置および空間が限定される場合での使用によく適している。本発明はまた、重量制限を有するシステムに役立つ。本発明は、ポンプ、車両、工作機械、手工具などに組み込まれてよい。本発明は、機械システム(例えば、ドリルビット)、または油圧もしくは空気圧アクチュエータを直接駆動するのに利用されてよい。
【0054】
使用分野の一例は、典型的な電動手工具への本発明の組み込みであろう。この例では、手工具は、典型的には、通常出力設定および高出力設定という2つの設定を有する。第1の回転子-固定子対110は、工具の通常出力設定時に回転力を提供することになる。高出力設定に切り替えられると、工具は、第2の回転子-固定子対120の使用に切り替わる。
【0055】
使用モード
次に、本発明の一実施形態の動作の1つの可能な方法を、
図6に示すステップとして詳述する。おおよそのモータシステムが、ステップ602でユーザによって選択される。この例では、選択されたモータは、
図3に示すモータシステム300であり、選択されたモータは、2つ以上のモータを有し、ユーザのニーズに適したダイナミックレンジを有する。モータシステム300の各モータは、所望の速度およびトルク範囲で効率的である。この例示的方法では、選択されたモータシステム300は、第1のモータ110、第2のモータ120、および第3のモータ130を有し、それぞれ第1、第2、および第3のダイナミックレンジを有し、各ダイナミックレンジは、組み合わされて、
図2Cに示すようなシステム300全体のダイナミックレンジ296を表す。第2および第3のモータ120および130は、クラッチ116および126をさらに備える。システム300は、電源PSに接続されたコントローラC、および出力シャフト102をさらに備える。
【0056】
選択されたモータは、出力機構430(例えば、機械爪を動作させる油圧ポンプ)に接続される(ステップ604)。モータシステム300は、第1のモータ110を第1のタスクで使用して動作する(ステップ606)。第1のタスクは、例えば、油圧ポンプを動作させて、機械爪に目的物を把持させることであってよく、しばしば低速高トルク出力を必要とする。システム300は、第1のタスク中、第1の速度範囲内で動作して、油圧ポンプに出力を送る。第1のモータをそのダイナミックレンジ内で動作させることは、モータシステム300の効率的な使用、および電源(例えば、電池)PSの効率的な引き出しをもたらす。
【0057】
モータシステム100がその第1のタスクを完了すると、システム100は、第2のタスク608を行ってよく、ほとんどの場合、シャフト102がより高速、より低トルクで動作することを必要とする。第2のタスクの例は、目的物を貯蔵するために、機械爪を把持点から収集容器に移動させることである。第2のタスクを成立させるために、コントローラCは、第2のモータ120に、シャフト102を第2の速度に推進するように命令し、
図6にステップ610で示される。クラッチ116は、第1のモータ110内で自動的に係合して第1のモータ110をシャフト102から分離し(ステップ612に示す)、第2のモータ120が回転子112を駆動すること防ぎ、ドラッグおよびシステム300の非効率を防ぐ。第2のタスク中、モータシステムは、第2のモータ120のダイナミックレンジ内で動作し得、ほとんどの場合、第2のモータを第2の速度範囲内で動作させ(ステップ610)、システム全体のダイナミックレンジを拡張し、単一のモータシステム、または変速機を有するモータシステムと比較して向上した効率を提供する。
【0058】
システム300は、第3のタスク614を行ってよく、タスクは、第3のモータ130のダイナミックレンジを利用する。第2のモータ120に切り替わる場合と同様に、コントローラCはステップ616を行い、第3のモータ130を第3の速度範囲内で動作させる。第2のモータ120内のクラッチ126は、第2のモータをシャフト102から自動的に係合解除する(ステップ618)。第3の速度範囲が第3のモータ130のダイナミックレンジ内にある場合、モータシステム300の全体効率は再び向上する。
【0059】
モータシステム300は、追加のタスク620を行ってよい。コントローラCは、ステップ622で、所望の動作が、第1、第2、または第3のモータのいずれかのダイナミックレンジ内であるかどうかを決定する。追加のタスクがモータのダイナミックレンジ内である場合、ステップ624で示すように、システム300は、各クラッチを係合または係合解除し、上に記載されたような適切なモータに電力を供給することになる。コントローラが、ステップ626で、所望の動作がモータのいずれのダイナミックレンジ内にもないと決定した場合、システム300は、その速度およびトルク構成での最高効率でモータを動作させ得る。この後、より低効率のタスクが完了し、システム300は、ステップ628のように、次のタスクの要件および係合する最良のモータを再び評価し、他のモータを係合解除することになる。
【0060】
本発明の特定の特徴がいくつかの図面には示されて他の図面には示されていないが、これは単に便宜上のためであり、各特徴を本発明に係る他の特徴のいずれかまたはすべてと組み合わせることができる。本発明の基本的な新規の特徴がその好ましい実施形態に適用されるものとして示され、説明され、指摘されているが、本発明の趣旨および範囲を逸脱することなく、例示されている装置の形態および詳細ならびにそれらの動作における種々の省略、置換および変更が当業者により行われ得ることが理解されるであろう。例えば、同じ結果を達成するために実質的に同じ方法で実質的に同じ機能を行うそれらの要素および/またはステップのすべての組み合わせが本発明の範囲内であることが明示的に意図されている。1つの記載されている実施形態からの要素を別の要素に置換することも完全に意図および想定されている。図面は必ずしも縮尺どおりではなく、それらは本質的に単に概念的なものであることも理解されるであろう。
【0061】
したがって、本明細書に添付されている特許請求の範囲によって示されているとおりにのみ限定されることが意図されている。他の実施形態を当業者であれば思い付き、それらは以下の特許請求の範囲に含まれる。
【国際調査報告】