(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-02-01
(54)【発明の名称】自動バイオリアクターでの使用のための細胞単離
(51)【国際特許分類】
C12M 3/06 20060101AFI20220125BHJP
C12M 1/00 20060101ALI20220125BHJP
【FI】
C12M3/06
C12M1/00 A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021533208
(86)(22)【出願日】2019-12-11
(85)【翻訳文提出日】2021-07-21
(86)【国際出願番号】 US2019065731
(87)【国際公開番号】W WO2020123655
(87)【国際公開日】2020-06-18
(32)【優先日】2018-12-11
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】512190365
【氏名又は名称】ロンザ ウォーカーズヴィル,インコーポレーテッド
(74)【代理人】
【識別番号】100107456
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【氏名又は名称】野田 雅一
(72)【発明者】
【氏名】マカフィー, エリカ
(72)【発明者】
【氏名】シー, ヤーリン
(72)【発明者】
【氏名】バンダパール, サマタ
(72)【発明者】
【氏名】アブラハム, エイタン
【テーマコード(参考)】
4B029
【Fターム(参考)】
4B029AA01
4B029AA24
4B029BB11
4B029CC01
4B029DF02
4B029DF04
4B029DF06
4B029HA06
4B029HA09
(57)【要約】
本開示は、自動化細胞工学システムで使用するためのカセットを提供し、自動化細胞工学システムは、自動処理のために標的細胞集団を捕捉するための細胞分離フィルタを含む。本開示はまた、標的細胞集団を分離する方法、ならびにカセットを使用し、かつ方法を行うための自動化細胞工学システムを提供する。
【選択図】
図2B
【特許請求の範囲】
【請求項1】
自動化細胞工学システムで使用するためのカセットであって、
(a)細胞試料入力部と、
(b)前記細胞試料入力部に流体接続された細胞分離フィルタと、
(c)前記細胞分離フィルタに流体接続された細胞培養チャンバと、
(d)前記細胞培養チャンバに流体接続された細胞試料出力部と、を含み、
前記カセットが、前記細胞分離フィルタの後の遠心分離器を含まない、カセット。
【請求項2】
前記細胞分離フィルタが、細胞集団を捕捉するマトリックスを含む、請求項1に記載のカセット。
【請求項3】
前記マトリックスが、標的細胞を捕捉する、請求項2に記載のカセット。
【請求項4】
前記細胞分離フィルタの後の廃棄物収集チャンバをさらに含む、請求項1~3のいずれか一項に記載のカセット。
【請求項5】
前記細胞分離フィルタに流体接続された細胞洗浄システムをさらに含む、請求項1~4のいずれか一項に記載のカセット。
【請求項6】
前記細胞分離フィルタに流体接続されたバックフラッシュシステムと、任意選択で、前記細胞分離フィルタと前記細胞培養チャンバとの間に位置する標的細胞集団保持チャンバと、をさらに含む、請求項1~5のいずれか一項に記載のカセット。
【請求項7】
1つ以上の流体経路をさらに含み、前記流体経路が、前記細胞培養チャンバ内の細胞を乱すことなく、前記細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす、請求項1~6のいずれか一項に記載のカセット。
【請求項8】
前記細胞培養チャンバが、低チャンバ高さを有する平坦な非可撓性チャンバである、請求項1~7のいずれか一項に記載のカセット。
【請求項9】
前記カセットが、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている、請求項1~8のいずれか一項に記載のカセット。
【請求項10】
前記バックフラッシュ培地が、抗凝固剤を含有する、請求項9に記載のカセット。
【請求項11】
pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサのうちの1つ以上をさらに含む、請求項1~10のいずれか一項に記載のカセット。
【請求項12】
1つ以上のサンプリングポートをさらに含む、請求項1~11のいずれか一項に記載のカセット。
【請求項13】
自動化細胞工学システムで使用するためのカセットであって、
(a)細胞試料入力部と、
(b)前記細胞試料入力部に流体接続された細胞分離フィルタであって、前記細胞分離フィルタが、免疫細胞を捕捉するマトリックスを含む、細胞分離フィルタと、
(c)前記免疫細胞を収容するように構成されたチャンバ体積を有する前記免疫細胞の活性化、形質導入、および/または伸長を行うための細胞培養チャンバと、
(d)前記細胞分離フィルタに流体接続されたバックフラッシュシステムと、
(e)前記細胞培養チャンバに流体接続された細胞試料出力部と、を含み、
前記カセットが、前記細胞分離フィルタの後の遠心分離器を含まない、カセット。
【請求項14】
前記細胞分離フィルタに流体接続された細胞洗浄システムをさらに含む、請求項13に記載のカセット。
【請求項15】
前記細胞培養チャンバに接続された1つ以上の流体経路をさらに含み、前記流体経路が、前記細胞培養チャンバ内の免疫細胞を乱すことなく、前記細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす、請求項13または14に記載のカセット。
【請求項16】
前記細胞分離フィルタの後の廃棄物収集チャンバをさらに含む、請求項13~15のいずれか一項に記載のカセット。
【請求項17】
前記細胞分離フィルタと前記細胞培養チャンバとの間に位置する免疫細胞保持チャンバをさらに含む、請求項13~16のいずれか一項に記載のカセット。
【請求項18】
前記細胞培養チャンバが、低チャンバ高さを有する平坦な非可撓性チャンバである、請求項13~17のいずれか一項に記載のカセット。
【請求項19】
前記カセットが、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている、請求項13~18のいずれか一項に記載のカセット。
【請求項20】
前記流体経路のうちの1つ以上が、チューブ構成要素を介した酸素化を可能にするシリコンベースの前記チューブ構成要素を含む、請求項13~19のいずれか一項に記載のカセット。
【請求項21】
自動処理のために標的細胞集団を調製する方法であって、前記方法が、
(a)前記標的細胞集団を含有する細胞試料を、自動化細胞工学システムのカセットに導入することと、
(b)前記細胞試料を細胞分離フィルタに通過させることと、
(c)前記細胞試料から前記標的細胞集団を、前記細胞分離フィルタのマトリックス上に捕捉することと、
(d)前記細胞分離フィルタをバックフラッシュすることと、
(e)前記標的細胞集団が自動処理を受けることができるように、前記細胞分離フィルタから前記標的細胞集団を移送することと、を含む、方法。
【請求項22】
前記移送することが、前記標的細胞集団が自動処理を受けることができるように、前記標的細胞集団を標的細胞集団保持チャンバ、形質導入システム、トランスフェクションのためのシステム、または細胞培養チャンバに移送することを含む、請求項21に記載の方法。
【請求項23】
前記形質導入システムが、エレクトロポレーションシステムである、請求項22に記載の方法。
【請求項24】
前記バックフラッシュの前に、前記細胞分離フィルタ上の前記捕捉された標的細胞集団を洗浄することをさらに含む、請求項21~23のいずれか一項に記載の方法。
【請求項25】
前記細胞分離フィルタを介して、前記細胞試料から不要な廃棄物を廃棄物収集チャンバに通過させることをさらに含む、請求項21~24のいずれか一項に記載の方法。
【請求項26】
前記細胞分離フィルタを介して前記細胞試料を前記通過させることが、重力濾過を介して行われる、請求項21~25のいずれか一項に記載の方法。
【請求項27】
前記方法が、前記標的細胞集団を前記細胞分離フィルタから前記移送した後の遠心分離を除外する、請求項21~26のいずれか一項に記載の方法。
【請求項28】
前記自動処理の後に、前記カセットから前記標的細胞集団を収集することをさらに含む、請求項21~26のいずれか一項に記載の方法。
【請求項29】
(a)密閉可能ハウジングと、
(b)前記密閉可能ハウジング内に包含されたカセットであって、前記カセットが、
i.細胞試料入力部、
ii.前記細胞試料入力部に流体接続された細胞分離フィルタ、
iii.前記細胞分離フィルタに流体接続された細胞培養チャンバ、および
iv.前記細胞培養チャンバに流体接続された細胞試料出力部であって、前記カセットが、前記細胞分離フィルタの後の遠心分離器を含まない、細胞試料出力部、を含む、カセットと、
(c)ユーザから入力を受信するためのユーザインターフェースと、を含む、自動化細胞工学システム。
【請求項30】
前記カセットの前記細胞分離フィルタが、細胞集団を捕捉するマトリックスを含む、請求項29に記載の自動化細胞工学システム。
【請求項31】
前記マトリックスが、標的細胞を捕捉する、請求項30に記載の自動化細胞工学システム。
【請求項32】
前記カセットが、前記細胞分離フィルタの後の廃棄物収集チャンバをさらに含む、請求項29~31のいずれか一項に記載の自動化細胞工学システム。
【請求項33】
前記カセットが、前記細胞分離フィルタに流体接続された細胞洗浄システムをさらに含む、請求項29~32のいずれか一項に記載の自動化細胞工学システム。
【請求項34】
前記カセットが、前記細胞分離フィルタに流体接続されたバックフラッシュシステムと、任意選択で、前記細胞分離フィルタと前記細胞培養チャンバとの間に位置する標的細胞集団保持チャンバと、をさらに含む、請求項29~33のいずれか一項に記載の自動化細胞工学システム。
【請求項35】
前記カセットが、1つ以上の流体経路をさらに含み、前記流体経路が、前記細胞培養チャンバ内の細胞を乱すことなく、前記細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす、請求項29~34のいずれか一項に記載の自動化細胞工学システム。
【請求項36】
前記カセットの前記細胞培養チャンバが、低チャンバ高さを有する平坦な非可撓性チャンバである、請求項29~35のいずれか一項に記載の自動化細胞工学システム。
【請求項37】
前記カセットの前記細胞培養チャンバが、バッグまたはハードチャンバである、請求項29~35のいずれか一項に記載の自動化細胞工学システム。
【請求項38】
前記カセットが、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている、請求項29~37のいずれか一項に記載の自動化細胞工学システム。
【請求項39】
前記バックフラッシュ培地が、抗凝固剤を含有する、請求項38に記載の自動化細胞工学システム。
【請求項40】
前記カセットが、pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサのうちの1つ以上をさらに含む、請求項29~39のいずれか一項に記載の自動化細胞工学システム。
【請求項41】
前記カセットが、1つ以上のサンプリングポートをさらに含む、請求項29~40のいずれか一項に記載の自動化細胞工学システム。
【請求項42】
コンピュータ制御システムをさらに含み、前記ユーザインターフェースが、前記コンピュータ制御システムに結合され、前記自動化細胞工学システムに命令を提供する、請求項29~41のいずれか一項に記載の自動化細胞工学システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、自動化細胞工学システムで使用するためのカセットを提供し、自動化細胞工学システムは、自動処理のために標的細胞集団を捕捉するための細胞分離フィルタを含む。本開示はまた、標的細胞集団を分離する方法、ならびにカセットを利用して方法を行うことができる自動化細胞工学システムを提供する。
【背景技術】
【0002】
先進的な細胞治療の臨床導入が加速されることが期待される中、これらの療法が世界中の患者に恩恵をもたらすための基礎的な製造戦略に注目が集まっている。細胞療法は、臨床的に大きな可能性を秘めているが、診療報酬に比べて製造コストが高いため、商業化には高い障壁となっている。したがって、費用対効果、プロセス効率、および産物の一貫性の必要性から、多くの細胞療法分野における自動化の取り組みが推進されている。
【0003】
療法のための細胞集団の生成には、種々のプロセスの自動化が必要となる。これには、これらの重要な療法を幅広い患者集団の翻訳のために、細胞の活性化、形質導入、伸長を商業製造プラットフォームに統合することが含まれる。
【0004】
加えて、自動細胞処理プラットフォームでは、細胞集団が外部環境に曝露される回数またはステップを限定して、汚染および他の問題を限定することが強く望まれている。自動化されたシステムに細胞試料を直接提供し得るプロセスが必要とされており、システムでは、任意の細胞単離または細胞濾過が自動化されたシステム内で行われるため、細胞が環境に曝露されるステップの総数を、種々の自動プロセス後の導入および収集に限定することができる。
[発明の概要]
【0005】
本明細書において、一部の実施形態では、自動化細胞工学システムで使用するためのカセットであって、細胞試料入力部と、細胞試料入力部に流体接続された細胞分離フィルタと、細胞分離フィルタに流体接続された細胞培養チャンバと、細胞培養チャンバに流体接続された細胞試料出力部と、を含む、カセットが提供される。好適には、カセットは、細胞分離フィルタの後の遠心分離器を含まない。
【0006】
追加の実施形態では、自動化細胞工学システムで使用するためのカセットであって、細胞試料入力部と、細胞試料入力部に流体接続された細胞分離フィルタであって、細胞分離フィルタが、免疫細胞を捕捉するマトリックスを含む、細胞分離フィルタと、免疫細胞を収容するように構成されたチャンバ体積を有する免疫細胞の活性化、形質導入、および/または伸長を行うための細胞培養チャンバと、細胞分離フィルタに流体接続されたバックフラッシュシステムと、細胞培養チャンバに流体接続された細胞試料出力部と、を含む、カセット。好適には、カセットは、細胞分離フィルタの後の遠心分離器を含まない。
【0007】
本明細書において、追加の実施形態では、自動処理のために標的細胞集団を調製する方法であって、方法が、標的細胞集団を含有する細胞試料を、自動化細胞工学システムのカセットに導入することと、細胞試料を細胞分離フィルタに通過させることと、細胞試料から標的細胞集団を、細胞分離フィルタのマトリックス上に捕捉することと、細胞分離フィルタをバックフラッシュすることと、標的細胞集団が自動処理を受けることができるように、細胞分離フィルタから標的細胞集団を移送することと、を含む、方法が提供される。
【0008】
また、本明細書では、密閉可能ハウジングと、密閉可能ハウジング内に包含されたカセットであって、カセットが、細胞試料入力部、細胞試料入力部に流体接続された細胞分離フィルタ、細胞分離フィルタに流体接続された細胞培養チャンバ、および細胞培養チャンバに流体接続された細胞試料出力部であって、カセットが、細胞分離フィルタの後の遠心分離器を含まない、細胞試料出力部、を含む、カセットと、ユーザから入力を受信するためのユーザインターフェースと、を含む、自動化細胞工学システムが提供される。
【図面の簡単な説明】
【0009】
【
図1】本明細書の実施形態に記載される、自動化細胞工学システムのカセットで実施され得る種々のステップを示す。
【
図2A】本明細書の実施形態による例示的なカセットを示す。
【
図2B】本明細書の実施形態による例示的な細胞分離フィルタを示す。
【
図2C】本明細書の実施形態による例示的な細胞分離フィルタを示す。
【
図3A】本明細書の実施形態による自動化細胞工学システムの画像を示す。
【
図3B】本明細書の実施形態による自動化細胞工学システムの画像を示す。
【
図4】本明細書の実施形態に記載される、例示的な細胞工学システムを包含するラボ空間を示す。
【
図5】本明細書の実施形態に記載される、自動化細胞工学システムのカセット内の細胞分離および単離のためのフローパスを示す。
【
図6A】ドナー1の全血細胞単離Ficollおよび細胞分離濾過方法を介した白血球単離後の細胞生存率(%)の比較を示す。
【
図6B】ドナー1の全血後の総細胞収率のFicollと細胞分離濾過処理との比較を示す。
【
図7A】Ficollおよび濾過方法を介した全血処理後の11日間の培養の総細胞収率を示す。
【
図7B】Ficollおよび濾過を介した全血処理後の重複T-25フラスコ培養物の平均培養生存率(%)を示す。
【
図8A】ドナー2の全血細胞単離Ficollおよび濾過方法を介した白血球単離後の細胞生存率(%)の比較を示す。
【
図8B】ドナー2の全血後の総細胞収率のFicollと濾過処理との比較を示す。
【
図9A】Ficollおよび濾過方法を介した白血球単離後のロイコパック(Leukopak)ドナー細胞生存率(%)の比較を示す。
【
図9B】全血Ficollおよび濾過処理後のロイコパックドナー総細胞収率の比較を示す。
【
図11】ドナー1の濾過およびFicoll単離された全血コレクション試料由来のCD3+CD4+T細胞とCD3+CD8+T細胞との割合を示す。
【
図12】ドナー2の濾過およびFicoll単離された全血コレクション試料由来のCD3+CD4+T細胞とCD3+CD8+T細胞との割合を示す。
【
図13】濾過およびFicoll単離されたロイコパックのコレクション試料由来のCD3+CD4+T細胞とCD3+CD8+T細胞との割合を示す。
【発明を実施するための形態】
【0010】
本明細書に示され、記載される特定の実施態様は、実施例であり、それ以外の場合は、いかなる方法でも本出願の範囲を限定することを意図しないことを理解されたい。
【0011】
本明細書で言及される公開特許、特許出願、ウェブサイト、会社名、および科学文献は、各々が参照により組み込まれることが具体的かつ個別に示されている場合と同じ程度に、参照によりそれらの全体が本明細書に組み込まれる。本明細書で引用される任意の参照と本明細書の特定の教示との間に任意の矛盾がある場合、後者のために解決されるものとする。同様に、本明細書で具体的に教示されている単語または語句の技術分野の定義と単語または語句の定義との間に任意の矛盾がある場合、後者のために解決されるものとする。
【0012】
本明細書で使用される場合、単数形「a」、「an」、および「the」は、内容が明示的に別様に示さない限り、それらが参照する用語の複数形も具体的に包含する。「約」という用語は、本明細書では、およそ、その領域内、おおよそ、またはその前後を意味するように使用される。「約」という用語が数値範囲とともに使用される場合、それは、記載された数値の上および下の境界を拡張することによってその範囲を修正する。一般に、「約」という用語は、本明細書では、数値を、記載された値の上下に20%の変動で修正するために使用される。
【0013】
本明細書で使用される技術用語および科学用語は、別段定義されない限り、本出願に関連する当業者によって一般的に理解されている意味を有する。本明細書では、当業者に既知の種々の方法論および材料が参照される。
【0014】
実施形態では、本明細書では、自動化細胞工学システムで使用するためのカセットが提供される。
図1は、密封された自動化システムにおいて種々のプロセスを行い得る例示的なカセット102を示しており、システムにより、種々の細胞試料および集団の生成が可能となる。かかるプロセスには、活性化、形質導入、伸長、濃縮、および収集/採取ステップが含まれ得る。
【0015】
本明細書に記載されるように、カセットおよび方法は、活性化、形質導入、伸長、濃縮、および採取などのステップを実施するための命令を好適に有する、完全に密封された自動化細胞工学システム300(
図3A、
図3Bを参照されたい)において好適に利用され、行われる。例えば、CAR T細胞を含む遺伝子改変免疫細胞の自動生成のための細胞工学システムが、2018年8月31日に出願された米国特許出願第16/119,618号に記載されており(その開示は参照によりその全体が本明細書に組み込まれる)、システムは、自動化細胞工学システム、COCOON、またはCOCOONシステムとも称される。
【0016】
例えば、ユーザは、細胞培養および試薬(例えば、活性化試薬、ベクター、細胞培養培地、栄養素、選択試薬など)、ならびに細胞産生のためのパラメータ(例えば、細胞の開始数、培地の種類、活性化試薬の種類、ベクターの種類、生成される細胞の数または用量など)で予め充填された自動化細胞工学システムを提供することができ、自動化細胞工学システムは、ユーザからさらなる入力なしに、CAR T細胞を含む遺伝子改変免疫細胞培養物を生成する方法を含む種々の自動化方法を行うことができる。一部の実施形態では、完全に密封された自動化細胞工学システムは、細胞培養物の非滅菌環境への曝露を低減することによって、細胞培養物の汚染を最小限に抑える。追加の実施形態では、完全に密封された自動化細胞工学システムは、ユーザの細胞の取り扱いを低減することによって、細胞培養物の汚染を最小限に抑える。
【0017】
本明細書に記載されるように、自動化細胞工学システム300は、カセット102を好適に含む。したがって、実施形態では、自動化細胞工学システムで使用するためのカセットが本明細書に提供される。本明細書で使用される場合、「カセット」は、大部分が自己完結型で、取り外し可能で、交換可能な自動化細胞工学システムの要素を指しており、システムには、本明細書に記載の方法の種々の要素を行うための1つ以上のチャンバが含まれ、好適には、細胞培地、活性化試薬、洗浄培地などのうちの1つ以上も含まれる。
【0018】
図2Aは、自動化細胞工学システムで使用するための例示的なカセット102を示している。実施形態では、カセット102は、細胞試料入力部202を含む。細胞試料入力部202は、カセット102への導入または充填の前に細胞試料が配置され得る、バイアルまたはチャンバとして
図2Aに示されている。他の実施形態では、細胞試料入力部202は、単純に、シリンジまたは血液バッグなどの細胞含有バッグが接続され得る滅菌ロックチューブ(例えばルアーロックチューブ接続など)であり得る。
【0019】
カセット102は、カセット内に位置し、細胞試料入力部202に流体接続された細胞分離フィルタ204をさらに含む。本明細書で使用される場合、「流体接続される」とは、カセット102を含むシステムの1つ以上の構成要素が、流体(ガスおよび液体を含む)が漏れるか、または体積を失うことなく構成要素間を通過することができるようにする好適な要素を介して接続されることを意味する。例示的な流体接続として、種々のチューブ、チャネル、およびシリコーンまたはゴムチューブ、ルアーロック接続などのような当該技術分野で既知の接続が挙げられる。流体接続された構成要素は、流体接続を依然として維持しながら、構成要素の各々の間に追加の要素も含み得ることを理解されたい。すなわち、流体接続された構成要素は、構成要素間を通過する流体もこれらの追加の要素を通過することができるように、追加の要素を含み得るが、そうする必要はない。
【0020】
カセット102は、細胞分離フィルタに流体接続された細胞培養チャンバ206をさらに好適に含む。細胞培養チャンバ206の特徴および使用例が本明細書に記載されている。
【0021】
実施形態では、カセット102は、細胞培養チャンバに接続された1つ以上の流体経路をさらに含む(
図2Aのカセット102の内部を参照)。カセット102には、細胞培養チャンバに流体接続された細胞試料出力部208も含まれる。本明細書に記載されるように、細胞試料出力部208は、患者におけるさらなる処理、保管、または潜在的な使用のいずれかのための種々の自動化手順に従って、細胞を採取するために利用される。流体経路の例としては、本明細書に記載するように、カセットの要素に栄養素、溶液などを提供する種々のチューブ、チャネル、キャピラリ、マイクロ流体要素などが挙げられる。
【0022】
本明細書に記載されるように、カセット102は、細胞分離フィルタ204の後の遠心分離器を明示的に除外している。「細胞分離フィルタの後の」には、遠心分離器が細胞分離フィルタの下流に含まれない実施形態、または遠心分離器が細胞分離フィルタ後のバックフラッシュの下流に含まれない実施形態が含まれる。本明細書に記載の種々の細胞分離フィルタおよび方法の使用により、遠心分離手順を介する追加の細胞分離および遠心分離器の使用は必要ないと判明した。ただし、実施形態では、カラム濾過、接線流濾過、および/または磁気濾過システムなどのさらなる濾過システムを利用することができる。
【0023】
例示的な実施形態では、細胞分離フィルタ204は、細胞集団、好適には標的細胞を捕捉するマトリックスを含む。好適なマトリックス材料としては、ガスプラズマで処理された種々の多孔質媒体が挙げられる。多孔質媒体は、天然もしくは合成繊維もしくは織物材料であってもよいか、または焼結粉末材料であってもよい。例示的なマトリックス材料としては、例えば、米国特許第4,701,267号、同第4,936,998号、同第4,880,548号、同第4,923,620号、同第4,925,572号、および同第5,679,264号に開示されているものが挙げられ、これらの各々の開示は、参照によりそれらの全体が本明細書に組み込まれる。本明細書で使用される場合、「標的細胞集団」または「標的細胞」は、所望のサブセットの細胞を指し、この「標的細胞集団」または「標的細胞」は、残りの標的細胞集団が他の細胞型をほとんど含まないように、デブリまたは他の汚染物質を含むより大きな細胞集団から分離される。例示的な標的細胞集団としては、免疫細胞、癌細胞などが挙げられる。
【0024】
例示的な細胞分離フィルタは、好適には、免疫細胞の捕捉を可能にするマトリックスを含む。すなわち、マトリックスが、マトリックス上またはマトリックス内に免疫細胞を維持する。本明細書で使用される場合、「免疫細胞」は、好塩基球、好酸球、好中球、白血球などを含み、肥満細胞、樹状細胞、自然殺傷細胞、B細胞、T細胞などのような細胞を含む。本明細書に記載されるように、カセットおよび細胞分離フィルタを好適に使用して、全血細胞試料または白血球形成試料(白血球が全血から分離される試料)を含む細胞試料から免疫細胞を分離する。
【0025】
図2Bおよび
図2Cは、本明細書に記載のカセットおよび方法で使用するための例示的な細胞分離フィルタを示している。
図2Bは、サルベージ血液(ヘモネティクス、マサチューセッツ州ブレーンツリー)のための白血球フィルタおよび
図2Cのシリンジフィルタ(PALLアクロディスク(ACRODISC)(登録商標)、PALL Laboratory、ニューヨーク州ポートワシントン)を示している。
【0026】
追加の実施形態では、カセット102は、細胞分離フィルタ204の後に、分離フィルタに流体接続された廃棄物収集チャンバ510(
図2Aのカセット102内に包含される)を好適に含む。カセットのフローパス内の廃棄物収集チャンバ510の例示的な位置が
図5に示されている。廃棄物収集チャンバ510は、細胞分離フィルタを通過する廃棄物がさらなる処理または処分のいずれかのために保持され得るように、好適に、後続または下流に位置決めされる(すなわち、細胞分離フィルタの後に流体接続される)。収集され得る廃棄物は、これには、望ましくない細胞、全細胞または溶解細胞のいずれか、ならびに血液成分、ならびに濾過されている細胞試料内の潜在的な汚染物質を好適に含み得る。廃棄チャンバ510は、カセット102内の固体チャンバもしくはバッグの形態であってもよく、またはカセットの外部にあるが、チューブおよびサンプリングポートなどの流体経路を介して接続されるバッグもしくはチャンバであってもよい。
【0027】
実施形態では、カセット102は、カセット102内(すなわち、
図2Aに示される構造内)に好適に包含され、分離フィルタ204に流体接続される細胞洗浄システム512を含む。
図5に示されるように、細胞洗浄システム512は、分離フィルタ204への直接流体経路を可能にするために、カセット102の種々の入力ポートの1つに接続され得る。実施形態では、細胞洗浄システム512は、カセット内に包含される容器またはバッグであり、カセットは、細胞洗浄培地を好適に含む。細胞洗浄培地は、細胞分離フィルタからカセットの別の部分に標的細胞集団を移送する前に、標的細胞集団および分離フィルタを洗浄し、任意の望ましくない廃棄細胞または標的細胞集団からの汚染を除去するために好適に使用される。細胞洗浄システム512はまた、カセット102の外側に含まれ得る。さらなる実施形態では、細胞洗浄システム512を使用して、標的細胞集団保持チャンバ内に保持されている細胞を洗浄することができる。
【0028】
追加の実施形態では、カセット102は、バックフラッシュシステム514(カセット102の内部に好適に位置しているため、
図2では図示せず)を含むが、これは、カセットのためのフローパスの要素として
図5に示されている。細胞洗浄システム512と同様に、バックフラッシュシステム514は、好適には、カセット内に包含される容器またはバッグであり、カセット102の種々の入力ポートのうちの1つ以上に接続して、分離フィルタ204への直接流体経路を可能にし得る。バックフラッシュシステム514はまた、カセットの外部に含まれ得る。本明細書に記載されるように、バックフラッシュシステム514は、バックフラッシュシステム内に包含されるバックフラッシュ培地を細胞分離フィルタ204内に、またはその上に逆の方法で導入して、分離フィルタによって捕捉された細胞を、フィルタから、保持チャンバまたは細胞培養チャンバを含むカセットの別のセクションに移送し得るように、分離フィルタ204に好適に流体接続される。
【0029】
カセット102はまた、細胞分離フィルタと細胞培養チャンバとの間に位置する標的細胞集団保持チャンバ516(カセット102内に位置するため、
図2では図示せず)をさらに任意選択で含み得る。
図5は、カセットのためのフローパス中の標的細胞集団保持チャンバ516の例示的な位置を示している。標的細胞集団保持チャンバ516は、好適には、カセット内に位置するリザーバまたは好適なチャンバであり、ここで、分離フィルタ204上で捕捉された標的細胞集団がカセットの中に入り、次いで、捕捉された細胞が、標的細胞集団保持チャンバ516に移送するためにバックフラッシュシステム514を介してバックフラッシュされる。
【0030】
本明細書に記載されるように、種々のチューブ要素を含み得る流体経路は、細胞培養チャンバ内の細胞を乱すことなく、細胞培養チャンバを含むカセットの種々の部分への再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配を好適にもたらす。カセット102はまた、本明細書に記載されるように、カセットを通過する流体を駆動するための1つ以上のポンプ520および蠕動ポンプを含む関連チューブ、ならびに種々の流体経路を通過する流れを制御するための1つ以上の弁522をさらに含む(流体経路内の例示的な位置については、
図5を参照されたい)。
【0031】
例示的な実施形態では、
図2Aに示すように、細胞培養チャンバ206は、平坦な非可撓性チャンバ(すなわち、プラスチックなどの実質的に非可撓性の材料から作製される)であり、チャンバは、容易に屈曲または湾曲することはない。非可撓性チャンバの使用により、細胞が実質的に乱れていない状態に維持することが可能になる。
図2Aに示されるように、細胞培養チャンバ206は、免疫細胞培養物が細胞培養チャンバの底部全体に拡散することを可能にするように配向される。
図2Aに示されるように、細胞培養チャンバ206は、床またはテーブルと平行な位置に好適に維持され、細胞培養物が乱されていない状態に維持され、細胞培養チャンバの底部の大きな領域全体に細胞培養物が拡散することが可能となる。実施形態では、細胞培養チャンバ206の全体的な厚さ(すなわち、チャンバの高さ)は、約0.5cm~約5cm程度と低い。好適には、細胞培養チャンバは、約0.50ml~約300ml、より好適には約50ml~約200mlの容量を有するか、または細胞培養チャンバは、約180mlの容量を有する。低チャンバ高さ(5cm未満、好適には4cm未満、3cm未満、または2cm未満)を使用することで、細胞に近い効果的な培地およびガス交換が可能となる。ポートは、細胞を乱すことなく、流体の再循環を介して混合を可能にするように構成されている。より大きな高さの静的血管は、濃度勾配を生成し得、これにより、細胞の近くの領域で酸素および新鮮な栄養素が限定される。フローダイナミクスを制御することで、細胞が乱れることなく培地交換を実施することができる。培地は、細胞喪失のリスクなしに(細胞が存在しない)追加のチャンバから除去され得る。他の実施形態では、細胞培養チャンバ206は、バッグまたはハードチャンバである。
【0032】
本明細書に記載されるように、例示的な実施形態では、カセットは、細胞培養物、培養培地、細胞洗浄培地、バックフラッシュ培地、活性化試薬、および/またはこれらの任意の組み合わせを含むベクターのうちの1つ以上で予め充填されている。さらなる実施形態では、これらの種々の要素は、好適な注入ポートなどを介して後から追加することができる。例示的な実施形態では、バックフラッシュ培地は、エチレンジアミンテトラ酢酸(EDTA)などの抗凝固剤を好適に含有し、分離フィルタから移送される標的細胞集団の凝集を低減する。
【0033】
本明細書に記載されるように、実施形態では、カセットは、pHセンサ524、グルコースセンサ(図示せず)、酸素センサ526、二酸化炭素センサ(図示せず)、乳酸センサ/モニタ(図示せず)、および/または光学密度センサ(図示せず)のうちの1つ以上を好適にさらに含む。フローパス内の例示的な位置については、
図5を参照されたい。カセットはまた、1つ以上のサンプリングポートおよび/または注入ポートを含み得る。かかるサンプリングポート220および注入ポート(222)の例が
図2Aに示され、フローパス内の例示的な位置が
図5に示されており、これらには、カートリッジをエレクトロポレーションユニットまたは追加の培地源などの外部デバイスに接続するためのアクセスポートが含まれ得る。
図2Aはまた、細胞試料入力部202、細胞培地などを加温するために使用され得る試薬加温バッグ224、および二次チャンバ230の位置を示している。
【0034】
実施形態では、カセット102は、低温チャンバを好適に含み、低温チャンバは、細胞培養培地の保管に好適な冷蔵領域226、ならびに細胞培養の活性化、形質導入、トランスフェクション、および/または伸長を行うのに好適な高温チャンバを含み得る。好適には、高温チャンバは、サーマルバリアによって低温チャンバから分離される。本明細書で使用される場合、「低温チャンバ」は、細胞培地などを冷蔵温度で維持するために、室温未満で好適に維持されるチャンバを指し、より好適には約4℃~約8℃で維持されるチャンバを指す。低温チャンバは、培地のためのバッグまたは他のホルダを含み得、約1L、約2L、約3L、約4L、または約5Lの流体を含む。追加の培地バッグまたは他の流体源は、カセットに外部に接続され、アクセスポートを介してカセットに接続され得る。
【0035】
本明細書で使用される場合、「高温チャンバ」は、室温を上回って好適に維持され、細胞増殖および成長を可能にするためにより好適な温度、すなわち、約35~40℃、およびより好適に約37℃の温度で維持されるチャンバを指す。実施形態では、高温チャンバは、細胞培養チャンバ206(全体を通して増殖チャンバまたは細胞増殖チャンバとも称される)を好適に含む。
【0036】
図3A~
図3Bは、内部に位置決めされるカセット102(
図3Bにおいて開放されている自動化細胞工学システムのカバー)を有するCOCOON自動化細胞工学システム300を示している。また、バーコードリーダー、およびタッチパッドまたは他の同様のデバイスによる入力を使用して受信する能力を含み得る例示的なユーザインターフェースも示されている。
【0037】
本明細書に記載される自動化細胞工学システムおよびカセットは、好適には、3つの関連する体積、すなわち細胞培養チャンバ体積、作業体積、および総体積を有する。好適には、カセットで使用される作業体積は、プロセスステップに基づく180mL~460mLの範囲であり、約500mL、約600mL、約700mL、約800mL、約900mL、または約1Lまで増加させることができる。実施形態では、カセットは、4×109個の細胞~10×109個の細胞を容易に実現することができる。プロセス中の細胞濃度は、0.3×106細胞/ml~およそ10×106細胞/mlで変化する。細胞は、細胞培養チャンバ内に位置しているが、培地は、本明細書に記載されるように、追加のチャンバ(例えば、クロスフローリザーバおよびサテライト体積)を通じて連続的に再循環され、作業体積を増加させる。
【0038】
ガス交換ラインを含む流体経路は、例えばシリコーンなどのガス透過性材料から作製されてもよい。一部の実施形態では、自動化細胞工学システムは、細胞生成方法の間、実質的に非収量のチャンバ全体に酸素を再循環させる。したがって、一部の実施形態では、自動化細胞工学システムにおける細胞培養物の酸素レベルは、可撓性のガス透過性バッグ内の細胞培養物の酸素レベルよりも高い。酸素レベルの増加により、細胞の成長および増殖の増加がサポートされ得るため、細胞培養伸長ステップでは、より高い酸素レベルが重要になる可能性がある。
【0039】
実施形態では、本明細書に記載の方法およびカートリッジは、COCOONプラットフォーム(Octane Biotech(オンタリオ州キングストン))を利用しており、プラットフォームにより、単一のターンキープラットフォームで複数の単位動作が統合される。非常に具体的な細胞の処理目的に合わせて、複数の細胞プロトコルが用意されている。効率的かつ効果的な自動化翻訳を提供するために、記載される方法は、複数の単位動作を組み合わせるアプリケーション固有/スポンサー固有のディスポーザブルカセットの概念を利用しており、全て、最終細胞療法産物の中核的要件に焦点を当てている。複数の自動化細胞工学システム300は、大容量の細胞または個々の患者のための複数の異なる細胞試料を生成するために、一緒に大規模なマルチユニット動作に統合され得る(
図4を参照されたい)。
【0040】
追加の実施形態では、自動化細胞工学システム300で使用するためのカセット102が本明細書に提供されている。好適には、カセットは、細胞試料入力部202、細胞試料入力部に流体接続された細胞分離フィルタ204を含み、細胞分離フィルタは、免疫細胞を捕捉するマトリックスを含む。カセット102は、免疫細胞を収容するように構成されたチャンバ体積を有する免疫細胞の活性化、形質導入、トランスフェクション、および/または伸長を行うための細胞培養チャンバ206をさらに含む。カセット102はまた、分離フィルタに流体接続されたバックフラッシュシステム514と、細胞を採取するために細胞培養チャンバに流体接続された細胞試料出力部208と、をさらに好適に含む。本明細書に記載されるように、カセットは、好適には、細胞分離フィルタの後(または細胞分離フィルタの前)に遠心分離器を含まない。
【0041】
追加の実施形態では、本明細書に記載されるように、カセットは、分離フィルタに流体接続された細胞洗浄システム512をさらに含み得る。好適には、カセットは、細胞培養チャンバに接続された1つ以上の流体経路をさらに含み得、流体経路は、細胞培養チャンバ内の免疫細胞を乱すことなく、細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配を好適にもたらす。例示的な実施形態では、流体経路は、チューブ構成要素を通じた酸素化を可能にするシリコンベースのチューブ構成要素を含む。
【0042】
実施形態では、カセットはまた、分離フィルタ204の後に好適に廃棄物収集チャンバ510をさらに含む。追加の実施形態では、カセットは、細胞分離フィルタと細胞培養チャンバとの間に好適に位置する免疫細胞保持チャンバ516を含み得る。
【0043】
本明細書に記載されるように、実施形態では、細胞培養チャンバ206は、低チャンバ高さを有する平坦な非可撓性チャンバである。
【0044】
好適な実施形態では、カセットは、本明細書に記載されるように、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている。
【0045】
さらなる実施形態では、自動処理のための標的細胞集団を調製する方法が本明細書に提供される。本明細書に記載のように、本方法は、好適には、全血試料を含む細胞の試料の導入を可能にし、次いで、さらなる処理のためにこの細胞試料から所望のまたは標的細胞集団を分離し、本明細書に記載されるもののような自動化細胞工学システムにおける、好適にさらに自動化された処理を可能にする。
【0046】
例示的な方法では、標的細胞集団を含有する細胞試料が、自動化細胞工学システム300のカセット102に導入される。本明細書に記載のように、例示的な細胞試料としては、血液試料(全血を含む)、組織試料、体液試料などが挙げられる。
【0047】
実施形態では、方法を行うためのカセットを示す
図2A、およびカセットプロセスのフローパスまたはフローチャートを示す
図5を参照して記載したように、細胞試料は、細胞試料入力部202に好適に導入される。細胞試料は、例えば、シリンジ、容器、バイアル、血液バッグなどから導入することができる。
【0048】
実施形態では、
図5に示すように、細胞試料の導入の後に、細胞試料は、ポンプ520によって駆動されながら、制御弁(522)V3を通過し、流体経路(一般的には540とラベル付けされる)を通過する。
【0049】
次いで、細胞試料は、弁V11を通過した後、分離フィルタ204を好適に通過する。本明細書に記載されるように、細胞分離フィルタ204は、所望の細胞集団を捕捉するためのマトリックスを好適に含み、これには、細胞試料由来の標的細胞集団が含まれる。
【0050】
例示的な実施形態では、バックフラッシュが発生し、その間、細胞分離フィルタ204は、バックフラッシュシステム512から好適にバックフラッシュされる。かかる実施形態では、バックフラッシュ培地は、細胞分離フィルタをバックフラッシュするために、バックフラッシュシステム512に包含され、弁V4を通過し、弁V12および弁V1を通ってポンプ520を介して駆動される。このバックフラッシュは、細胞分離フィルタのマトリックス上に捕捉された標的細胞集団を移送し、その結果、標的細胞集団をフィルタから除去し、(さらなる自動処理を含む)さらなる処理を受けることができる。好適には、細胞がさらなる自動処理手順を受けるにつれて、標的細胞集団の凝固を限定するために、抗凝固剤を含有するバックフラッシュ培地を使用したバックフラッシュが生じる。
【0051】
実施形態では、細胞分離フィルタのマトリックスから除去される標的細胞集団は、例えば、弁V11を通過することによって、標的細胞集団保持チャンバ516に移送することができる。さらなる実施形態では、細胞分離フィルタのマトリックスから除去される標的細胞集団は、弁V11およびV9を通過した後、試料ポート(例えば、R5またはR6)を好適に通過して形質導入システム(図示せず)、トランスフェクションシステム(すなわち、非ウイルス法)に移送することができる。例示的な形質導入システムは、当該技術分野で既知であり、例示的なトランスフェクションシステムは、エレクトロポレーションシステムなどを含み、カセット102内に含まれ得るか、またはカセット102の外部であり得る。追加の実施形態では、細胞分離フィルタのマトリックスから除去される標的細胞集団は、例えば、弁V11を通過し、次いで弁V5またはV6を通過することによって、細胞培養チャンバ206に移送することができる。本明細書に記載されるように、細胞分離フィルタ後のこれらの種々の要素は、標的細胞集団が、形質導入、トランスフェクション、成長、伸長などを含むさらなる自動処理を受けることを可能にする。
【0052】
追加の実施形態では、本方法は、バックフラッシュの前に、細胞分離フィルタ上で捕捉された標的細胞集団を洗浄することをさらに含み得る。例えば、細胞洗浄システム512は、カセット102内に包含されるバッグであり得、細胞洗浄培地を含む。細胞洗浄システム512は、ポンプ520を介して、細胞洗浄培地を弁V4およびV11に通過させて、細胞分離フィルタ204上で捕捉された標的細胞集団を洗浄することができる。好適には、標的細胞集団は、弁V1およびV13を介して、細胞分離フィルタから廃棄物収集チャンバ510に追加の不要な廃棄物が渡される一方で、細胞分離フィルタのマトリックス上に残留する。例示的な実施形態では、細胞試料からの不要な廃棄物は、弁V1およびV13を介して、細胞分離フィルタを通過し、廃棄物収集チャンバ510に入り得る。好適に追加の実施形態は、例えば、弁V1、V12、およびV11を通過することにより、細胞試料由来の廃棄物を、細胞分離フィルタを通して戻して別の濾過サイクルを完了することによって、細胞試料のさらなる濾過が可能となる。細胞洗浄はまた、細胞洗浄培地を標的細胞保持チャンバ516に移送し、さらなる処理の前にチャンバ内に保持されている細胞を洗浄することによって、細胞洗浄システム512を介して行われ得る。
【0053】
例示的な実施形態では、細胞試料を好適な細胞分離フィルタ204に通過させることは、重力濾過を介して行われる。すなわち、細胞分離フィルタを介して細胞試料を駆動させるためにポンプ機構は使用されない。しかしながら、追加の実施形態では、ポンプ520を使用して、細胞分離フィルタを通して試料を駆動し、細胞試料に正または負の圧力を生成することができる。シリンジまたは他の機構を使用して、細胞分離フィルタを通して細胞試料を通過させるために、必要に応じて追加の正または負の圧力を提供することもできる。
【0054】
例示的な実施形態では、所望の自動処理の後、標的細胞集団は、好適に収集される。この収集は、試料出力部208を介して、または種々の試料ポート220のうちの1つを介して生じ得る。
【0055】
全体を通して記載されるように、本明細書に記載されるカセットおよび方法は、遠心分離器、ならびに遠心分離の使用を好適に除外している。好適には、本方法は、標的細胞集団を細胞分離フィルタから移送した後の遠心分離を除外する。この移送は、細胞分離フィルタを介した捕捉の直後に行われるか、または細胞分離フィルタからのバックフラッシュを介して行われるかを問わない。遠心分離を除外することにより、標的細胞集団は、過酷な遠心分離条件を必要とせずに、単純な濾過を介して細胞試料から分離し得ることが判明した。これには、標的細胞集団を全血の試料から除去することが含まれる。
【0056】
しかしながら、さらなる実施形態では、磁気分離プロセスを利用して、標的細胞集団から望ましくない細胞およびデブリをさらに排除および分離することができる。かかる実施形態では、生体分子(例えば、抗体、抗体断片など)が結合している磁気ビーズまたは他の構造は、標的細胞と相互作用し得る。次いで、フィルタ、カラム、フローチューブ、または磁場を有するチャネルなどの使用が含まれる、種々の磁気分離方法を使用して、細胞試料中にあり得る望ましくない細胞、デブリなどから標的細胞集団を分離することができる。例えば、標的細胞集団は、チューブまたは他の構造を通って流れ、磁場に曝露され得る。それによって、標的細胞集団は、磁場によって維持または保持され、望ましくない細胞およびデブリは、チューブを通過し得る。次いで、磁場をオフにして、標的細胞集団は、さらなる自動処理のためにカセットのさらなる保持チャンバまたは他の領域(複数可)を通過することが可能となる。
【0057】
図5のフローパスはまた、細胞培養チャンバ206とサテライト体積550との間の接続を示している。これは、カセットに追加の貯蔵能力を提供するか、または自動化されたプロセスの全体体積を増加させることができる。
図5には、種々のセンサ(例えば、pHセンサ524、溶解酸素センサ526)、ならびにサンプリング/試料ポートおよび種々の弁(バイパスチェック弁552を含む)、ならびに構成要素を接続するシリコーン系ベースのチューブ構成要素を好適に含む、1つ以上の流体経路540の例示的な位置決めも示されている。本明細書に記載されるように、シリコーン系チューブ構成要素の使用により、チューブ構成要素を通じた酸素化が可能となり、ガス移送および細胞培養物の最適な酸素化が促進される。カセットのフローパスにおける1つ以上の疎水性フィルタ554または親水性フィルタ556の使用も
図5に示されている。
【0058】
追加の実施形態では、自動化細胞工学システム300が本明細書に提供される。
図3Aおよび
図3Bに示されるように、自動化細胞工学システム300は、好適には、密閉可能ハウジング302、および密閉可能ハウジング内に包含されるカセット102を含む。本明細書で使用される場合、「密閉可能ハウジング」は、開閉され得る構造を指しており、本明細書に記載されるカセット102は、流体供給ライン、ガス供給ライン、電源、冷却接続、加熱接続などのような種々の構成要素を配置し、統合することができる。
図3Aおよび
図3Bに示されるように、密閉可能ハウジングは、カセットの挿入を可能にするために開放され得(
図3B)、閉鎖され得(
図3A)、閉鎖密閉環境を維持して、カセットを利用して本明細書に記載の種々の自動化されたプロセス可能にすることができる。
【0059】
本明細書に記載されるように、カセット102は、好適には、細胞試料入力部206、細胞試料入力部に流体接続された細胞分離フィルタ204、細胞分離フィルタに流体接続された細胞培養チャンバ206、および細胞培養チャンバに流体接続された細胞試料出力部208を含む。本明細書に記載されるように、カセット(ならびに自動化細胞工学システム)は、細胞分離フィルタの後の遠心分離器を含まないか、または任意の構成で好適に遠心分離器を含まない。
【0060】
図3A~
図3Bに示されるように、自動化細胞工学システム300はまた、ユーザから入力を受信するためのユーザインターフェース304をさらに含む。ユーザインターフェース304は、タッチパッド、タブレット、キーボード、コンピュータ端末、または他の好適なインターフェースであり得、ユーザは、自動化されたプロセスおよびフローパスを制御するために所望の制御および基準を自動化細胞工学システムに入力することを可能にする。好適には、ユーザインターフェースは、自動化細胞工学システムに命令を与え、自動化細胞工学システムの全体的な活動を制御するためにコンピュータ制御システムに結合される。かかる命令には、いつ種々の弁を開閉するか、いつ培地または細胞集団を提供するか、いつ温度を上昇または低下させるかなどが含まれ得る。
【0061】
本明細書に記載されるように、実施形態では、細胞分離フィルタは、標的細胞集団を捕捉するマトリックスを含む。好適には、マトリックスは、免疫細胞を捕捉する。
【0062】
実施形態では、自動化細胞工学システム内のカセットは、分離フィルタの後の廃棄物収集チャンバをさらに含む。分離フィルタに流体接続された細胞洗浄システムもまた、本明細書に記載されるように含まれ得る。分離フィルタに流体接続されたバックフラッシュシステム、ならびに任意選択で、細胞分離フィルタと細胞培養チャンバとの間に位置する標的細胞集団保持チャンバも含まれ得る。実施形態では、自動化細胞工学システムのカセットは、1つ以上の流体経路をさらに含み、流体経路は、細胞培養チャンバ内の細胞を乱すことなく、細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす。実施形態では、細胞培養チャンバは、低チャンバ高さを有する平坦な非可撓性チャンバである。
【0063】
自動化細胞工学システムの実施形態では、カセットは、培養培地、細胞洗浄培地、およびバックフラッシュ培地(好適には抗凝固剤を含む)で予め充填されている。本明細書に記載されるように、実施形態では、自動化細胞工学システムのカセットは、pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサ、ならびに好適な実施形態では、1つ以上のサンプリングポートのうちの1つ以上をさらに含み得る。
【0064】
細胞療法の生成における単位動作の自動化により、同種および自家的な細胞療法の用途全体に普遍的な利益の機会がもたらされる。患者固有の自家細胞産物のユニークなシナリオにおいて、自動化の利点は、さらにこれらの療法の最近の臨床的成功によって強調されているが、小バッチGMP準拠、経済性、患者のトレーサビリティ、およびプロセス逸脱の早期発見の重要なマイクロロットの複雑さのために、特に魅力的なものとなっている。複雑な製造プロトコルの出現に伴い、マイクロロット細胞生成における自動化された単位動作のエンドツーエンドの統合の価値は、これまであまり研究されてこなかったという事実が注目されている。しかしながら、間もなく承認されるこれらの療法の需要が予想されることから、完全に閉鎖したエンドツーエンドのシステムを実装することで、ハンズオンタイムおよび占有面積などの製造上のボトルネックに対する必要な解決策を提供することができる。
【0065】
先進的な療法の開発者は、臨床翻訳のロールアウトの早い段階で自動化を検討し、臨床試験プロトコルのスケールアップを検討することが奨励されている。早期の自動化は、プロトコルの開発に影響を与えるものであり得、後の段階で手動プロセスから自動化されたプロセスに切り替えた場合に比較検討の必要性を回避し、より長期的な商品化ルートのより良い理解を深めることができる。
【0066】
例示的な実施形態では、本明細書に記載の自動化細胞工学システムは、複数のチャンバを含み、本明細書に記載の種々の方法のステップの各々は、自動化細胞工学システムの複数のチャンバの異なるチャンバで実施され、活性化試薬、ベクター、および細胞培養培地の各々は、方法を開始する前に、複数のチャンバの異なるチャンバに包含され、複数のチャンバのうちの少なくとも1つは、細胞を成長させるための温度(例えば、約37℃)で維持され、複数のチャンバのうちの少なくとも1つは、冷蔵温度(例えば、約4~8℃)で維持される。
【0067】
実施形態では、本明細書に記載の自動化細胞工学システムは、温度センサ、pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサで監視される。したがって、一部の実施形態では、自動化細胞工学システムは、温度センサ、pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサのうちの1つ以上を含む。追加の実施形態では、自動化細胞工学システムは、所定の培養サイズに基づいて、細胞培養物の温度、pH、グルコース、酸素レベル、二酸化炭素レベル、および/または光学密度を調整するように構成される。例えば、自動化細胞工学システムが、細胞培養物の現在の酸素レベルが低すぎて、所望の細胞培養物サイズに対して必要な成長を実現することができないことを検出した場合、自動化細胞工学システムは、例えば、酸素化細胞培養培地を導入することによって、細胞培養培地を酸素化細胞培養培地に置き換えることによって、または細胞培養培地を酸素化成分(すなわち、シリコーンチューブ)を通して流すことによって、細胞培養物の酸素レベルを自動的に増加させる。別の例では、自動化細胞工学システムが、細胞培養物の現在の温度が高すぎること、および細胞が急速に成長しすぎていること(例えば、細胞の可能性のある過密性が望ましくない特徴をもたらし得る)を検出した場合、自動化細胞工学システムは、細胞培養物の温度を自動的に低下させて、細胞の安定した成長速度(または所望の指数的成長速度)を維持する。なおさらなる実施形態では、自動化細胞工学システムは、細胞成長速度および/もしくは細胞数、またはpH、酸素、グルコースなどのような他の監視因子に基づいて、細胞供給のスケジュールを自動的に調整する(すなわち、細胞培養に新鮮な培地および/もしくは栄養素を提供する)。自動化細胞工学システムは、低温チャンバ(例えば、4℃、または-20℃)に培地(および洗浄液などのような他の試薬)を保管し、加温した培地を細胞培養物に導入する前に、室温チャンバまたは高温チャンバ(例えば、それぞれ、25℃、または37℃)で培地を加温するように構成されてもよい。
【0068】
追加の例示的な実施形態
実施形態1は、細胞試料入力部と、細胞試料入力部に流体接続された細胞分離フィルタと、細胞分離フィルタに流体接続された細胞培養チャンバと、細胞培養チャンバに流体接続された細胞試料出力部と、を含む、自動化細胞工学システムで使用するためのカセットであり、カセットは、細胞分離フィルタの後の遠心分離器を含まない。
【0069】
実施形態2は、細胞分離フィルタが、細胞集団を捕捉するマトリックスを含む、実施形態1に記載のカセットを含む。
【0070】
実施形態3は、マトリックスが標的細胞を捕捉する、実施形態1に記載のカセットを含む。
【0071】
実施形態4は、細胞分離フィルタの後の廃棄物収集チャンバをさらに含む、実施形態1~3に記載のカセットを含む。
【0072】
実施形態5は、細胞分離フィルタに流体接続された細胞洗浄システムをさらに含む、実施形態1~4に記載のカセットを含む。
【0073】
実施形態6は、細胞分離フィルタに流体接続されたバックフラッシュシステムと、任意選択で、細胞分離フィルタと細胞培養チャンバとの間に位置する標的細胞集団保持チャンバと、をさらに含む、実施形態1~5に記載のカセットを含む。
【0074】
実施形態7は、1つ以上の流体経路をさらに含み、流体経路が、細胞培養チャンバ内の細胞を乱すことなく、細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす、実施形態1~6に記載のカセットを含む。
【0075】
実施形態8は、細胞培養チャンバが、低チャンバ高さを有する平坦な非可撓性チャンバである、実施形態1~7に記載のカセットを含む。
【0076】
実施形態9は、カセットが、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている、実施形態1~8に記載のカセットを含む。
【0077】
実施形態10は、バックフラッシュ培地が、抗凝固剤を含有する、実施形態9に記載のカセットを含む。
【0078】
実施形態11は、pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサのうちの1つ以上をさらに含む、実施形態1~10に記載のカセットを含む。
【0079】
実施形態12は、1つ以上のサンプリングポートをさらに含む、実施形態1~11に記載のカセットを含む。
【0080】
実施形態13は、細胞試料入力部と、細胞試料入力部に流体接続された細胞分離フィルタであって、細胞分離フィルタが、免疫細胞を捕捉するマトリックスを含む、細胞分離フィルタと、免疫細胞を収容するように構成されたチャンバ体積を有する免疫細胞の活性化、形質導入、および/または伸長を行うための細胞培養チャンバと、細胞分離フィルタに流体接続されたバックフラッシュシステムと、細胞培養チャンバに流体接続された細胞試料出力部と、を含む、自動化細胞工学システムで使用するためのカセットであり、カセットは、細胞分離フィルタの後の遠心分離器を含まない。
【0081】
実施形態14は、細胞分離フィルタに流体接続された細胞洗浄システムをさらに含む、実施形態13に記載のカセットを含む。
【0082】
実施形態15は、細胞培養チャンバに接続された1つ以上の流体経路をさらに含み、流体経路が、細胞培養チャンバ内の免疫細胞を乱すことなく、細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす、実施形態13または14に記載のカセットを含む。
【0083】
実施形態16は、細胞分離フィルタの後の廃棄物収集チャンバをさらに含む、実施形態13~15に記載のカセットを含む。
【0084】
実施形態17は、細胞分離フィルタと細胞培養チャンバとの間に位置する免疫細胞保持チャンバをさらに含む、実施形態13~16に記載のカセットを含む。
【0085】
実施形態18は、細胞培養チャンバが、低チャンバ高さを有する、平坦な非可撓性チャンバである、実施形態13~17に記載のカセットを含む。
【0086】
実施形態19は、カセットが、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている、実施形態13~18に記載のカセットを含む。
【0087】
実施形態20は、流体経路のうちの1つ以上が、チューブ構成要素を介した酸素化を可能にするシリコンベースのチューブ構成要素を含む、実施形態13~19に記載のカセットを含む。
【0088】
実施形態21は、自動処理のために標的細胞集団を調製する方法であって、方法が、標的細胞集団を含有する細胞試料を、自動化細胞工学システムのカセットに導入することと、細胞試料を細胞分離フィルタに通過させることと、細胞試料から標的細胞集団を、細胞分離フィルタのマトリックス上に捕捉することと、細胞分離フィルタをバックフラッシュすることと、標的細胞集団が自動処理を受けることができるように、細胞分離フィルタから標的細胞集団を移送することと、を含む、方法である。
【0089】
実施形態22は、移送することが、標的細胞集団が自動処理を受けることができるように、標的細胞集団を標的細胞集団保持チャンバ、形質導入システム、トランスフェクションのためのシステム、または細胞培養チャンバに移送することを含む、実施形態21に記載の方法を含む。
【0090】
実施形態23は、形質導入システムがエレクトロポレーションシステムである、実施形態22に記載の方法を含む。
【0091】
実施形態24は、バックフラッシュの前に、細胞分離フィルタ上で捕捉された標的細胞集団を洗浄することをさらに含む、実施形態21~23に記載の方法を含む。
【0092】
実施形態25は、細胞分離フィルタを介して、細胞試料から不要な廃棄物を廃棄物収集チャンバに通過させることをさらに含む、実施形態21~24に記載の方法を含む。
【0093】
実施形態26は、細胞分離フィルタを介して細胞試料を通過させることが、重力濾過を介して行われる、実施形態21~25に記載の方法を含む。
【0094】
実施形態27は、方法が、標的細胞集団を細胞分離フィルタから移送した後の遠心分離を除外する、実施形態21~26に記載の方法を含む。
【0095】
実施形態28は、自動処理の後に、カセットから標的細胞集団を収集することをさらに含む、実施形態21~26に記載の方法を含む。
【0096】
実施形態29は、密閉可能ハウジングと、密閉可能ハウジング内に包含されたカセットであって、カセットが、細胞試料入力部、細胞試料入力部に流体接続された細胞分離フィルタ、細胞分離フィルタに流体接続された細胞培養チャンバ、および細胞培養チャンバに流体接続された細胞試料出力部であって、カセットが、細胞分離フィルタの後の遠心分離器を含まない、細胞試料出力部、を含む、カセットと、ユーザから入力を受信するためのユーザインターフェースと、を含む、自動化細胞工学システムである。
【0097】
実施形態30は、カセットの細胞分離フィルタが、細胞集団を捕捉するマトリックスを含む、実施形態29に記載の自動化細胞工学システムを含む。
【0098】
実施形態31は、マトリックスが標的細胞を捕捉する、実施形態30に記載の自動化細胞工学システムを含む。
【0099】
実施形態32は、カセットが、細胞分離フィルタの後の廃棄物収集チャンバをさらに含む、実施形態29~31に記載の自動化細胞工学システムを含む。
【0100】
実施形態33は、カセットが、細胞分離フィルタに流体接続された細胞洗浄システムをさらに含む、実施形態29~32に記載の自動化細胞工学システムを含む。
【0101】
実施形態34は、カセットが、細胞分離フィルタに流体接続されたバックフラッシュシステムと、任意選択で、細胞分離フィルタと細胞培養チャンバとの間に位置する標的細胞集団保持チャンバと、をさらに含む、実施形態29~33に記載の自動化細胞工学システムを含む。
【0102】
実施形態35は、カセットが、1つ以上の流体経路をさらに含み、流体経路が、細胞培養チャンバ内の細胞を乱すことなく、細胞培養チャンバに対する再循環、廃棄物の除去、および均質なガス交換ならびに栄養素の分配をもたらす、実施形態29~34に記載の自動化細胞工学システムを含む。
【0103】
実施形態36は、カセットの細胞培養チャンバが、低チャンバ高さを有する平坦な非可撓性チャンバである、実施形態29~35に記載の自動化細胞工学システムを含む。
【0104】
実施形態37は、カセットの細胞培養チャンバが、バッグまたはハードチャンバである、実施形態29~35に記載の自動化細胞工学システムを含む。
【0105】
実施形態38は、カセットが、培養培地、細胞洗浄培地、およびバックフラッシュ培地で予め充填されている、実施形態29~37に記載の自動化細胞工学システムを含む。
【0106】
実施形態39は、バックフラッシュ培地が抗凝固剤を含有する、実施形態38に記載の自動化細胞工学システムを含む。
【0107】
実施形態40は、カセットが、pHセンサ、グルコースセンサ、酸素センサ、二酸化炭素センサ、および/または光学密度センサのうちの1つ以上をさらに含む、実施形態29~39に記載の自動化細胞工学システムを含む。
【0108】
実施形態41は、カセットが、1つ以上のサンプリングポートをさらに含む、実施形態29~40に記載の自動化細胞工学システムを含む。
【0109】
実施形態42は、コンピュータ制御システムをさらに含み、ユーザインターフェースが、コンピュータ制御システムに結合され、自動化細胞工学システムに命令を提供する、実施形態29~41に記載の自動化細胞工学システムを含む。
【実施例】
【0110】
実施例1-自動化細胞工学システムのための細胞濾過の確立
Octane Cocoon(商標)システムは、細胞療法産物の製造のための、閉鎖型で、自動化されたエンドツーエンドの細胞工学システムである。Cocoon(商標)は、基本器具、ソフトウェア、カスタマイズ可能なディスポーザブルカセットの3つの主要な構成要素で構成されている。本システムは、上流および下流の両方の細胞培養プロセスで、自動化された細胞単離、伸長、濃縮、およびバッファ交換が可能であるが、遠心分離機能を有していない。
【0111】
接着による標的細胞集団の単離は、間葉系幹細胞(MSC)、樹状細胞、および単球を含む大部分の接着細胞型に適用することができる。例えば、ヒト骨髄MSCは、Cocoon(商標)カセット増殖チャンバ中の接着によって単離され得る。骨髄組織の接種から1~2日後、汚染された赤血球(RBC)および他の懸濁細胞を廃棄物に排出し、Cocoon(商標)カセット増殖チャンバ内に付着細胞型が残留する。培地交換は、MSCの伸長を促進するように設計され、2~3日ごとに行われた。
【0112】
Cocoon(商標)カセット内でT細胞を培養するには、典型的にはドナー由来の全血コレクションからのT細胞または末梢血単核細胞(PBMC)のいずれかの精製集団が必要である。初期Cocoon(商標)出発物質中のRBC汚染の量も減少させながら、白血球を得るために必要な前処理手順を排除するために、全血濾過を評価した。
【0113】
Pall Life SciencesのArcadis WBC(白血球)シリンジフィルタ(カタログ番号AP-4851)およびサルベージ血液用ヘモネティクス白血球フィルタ(カタログ番号RS-1)(
図2B~
図2C)は、いずれも、RBCおよび他の汚染細胞を廃棄物に通過させる一方で、フィルタ出口の上流で白血球を捕捉および維持する繊維性マトリックスおよび培地を含有する。次いで、捕捉された白血球をフィルタから逆洗浄し、細胞培養活性のために収集する。アクロディスクWBCシリンジフィルタ(Pall)は、最大12mLのドナー全血または白血球増殖試料を処理することができ、一方で、白血球フィルタ(ヘモネティクス)は、最大450mLのドナー全血または白血球増殖試料を処理することができる。
【0114】
Cocoon(商標)カセットの流体経路でこれらのフィルタまたは同様のフィルタを使用することによって、ヒトT細胞が、Cocoon(商標)システム内のCAR-Tおよび他の細胞療法産物の全血またはロイコパックドナー試料から単離され得る。本明細書に記載される提案されたプロセスフローパスにより、エンドユーザがドナーの全血または白血球増殖試料を無菌で直接Cocoon(商標)システムに導入することが可能となる。全血フィルタは、Cocoon(商標)ディスポーザブルカセット流体経路内に統合されて、白血球を混合細胞集団から分離し、Cocoon(商標)増殖チャンバ内で、それらがさらに伸長され得る。最終的な治療産物は、必要に応じて自動的に採取し、新鮮な状態または凍結保存された状態で使用することができる。
【0115】
方法
Ficoll Plaque Plus(Fisher)を使用した密度勾配単離
100mL~450mLの全血または白血球増殖産物を得た。次いで、初期ドナー試料を2つのコレクションに分割した。1つ目はFicoll密度勾配を介して処理するためのものであり、2つ目は細胞分離フィルタを介して処理するためのものである。密度勾配単離のために、初期ドナー試料の半数を、ヒトPBMCの製造のための標準手順を使用して処理した。具体的には、ドナー試料を等しい体積の2mM EDTA/1X DPBS(Lonza)に1:1で希釈した。次いで、希釈試料を、30mL画分で、50mLの円錐チューブ当たり最大45mLの総体積のために、15mLのFicoll Plaque Plus密度勾配溶液(GEヘルスケア)上に慎重に層化した。次いで、チューブを室温で400×gで40分間遠心分離した。血漿の上層を、PBMCを含有するチューブのバフィーコート層のおよび10mL上方まで除去した。PBMCを収集し、収集体積の3倍の2mM EDTA/1X DPBS中で洗浄した。次いで、Nucleocounter NC-200(Chemometec)を使用して収集した細胞を二重に計数し、フローサイトメトリー(FACS)分析を介して分析し、凍結保存した。
【0116】
アクロディスク白血球シリンジフィルタ(Pall)を使用した全血濾過
製造元の指示に従って、アクロディスクWBCフィルタを使用して、初期ドナー全血および白血球増殖試料の半分、最大50mLを6mL~12mLの画分で処理した。フィルタ入口を10mLシリンジに取り付け、滅菌廃棄物容器上に取り付けた。6mL~12mLの希釈および未希釈の全血およびロイコパック試料の両方をシリンジハウジングに添加した。次いで、試料を、重力を介してWBCフィルタを通して濾過した。試料を完全に濾過する時間を記録した。次いで、フィルタを5mL PBS(pH7.4)で2回洗浄した。細胞を収集するために、WBCフィルタをシリンジハウジングから慎重に除去し、フィルタの入口側に取り付けられた清潔な150mLの採血バッグ(WalkMed)、および10mLのPBS(Lonza)を充填した培地バッグをWBCフィルタの出口に取り付けた。次いで、フィルタをPBSとバックフラッシュし、150mLの採血バッグ(WalkMed)中に収集した。次いで、収集した細胞懸濁液を、収集体積の3倍の2mM EDTA/1X DPBS中で洗浄した。次いで、Nucleocounter NC-200(Chemometec)およびフローサイトメトリー(FACS)分析のために冷凍保存した試料を使用して細胞を二重に計数した。次いで、同じ条件から単離した細胞をプールし、5%ヒト血清A/Bを補充したX-VIVO15培地(Lonza)の6mL中の1e7個の細胞で重複T-25組織フラスコ培養液に接種した。4日目、6日目、8日目、および11日目に、全ての培養物に対して100%培地交換および細胞計数を実施した。
【0117】
全血試料の前処理希釈
ドナー1:単一ドナーからの全血の148mLを、2画分に分割した。1つ目の74mL画分を0.2mM EDTA/1X DPBS(全血希釈合計148mL)に1:1で希釈し、2つ目の74mL画分を未希釈のままにした。次いで、未希釈画分および希釈画分の両方を、2×74mLの希釈全血と2×37mLの未希釈全血とで2つの追加画分に分割し、Ficoll分離勾配処理およびPallアクロディスクWBC細胞分離濾過処理の両方で使用した。Ficoll分離のために未希釈全血を使用することは、標準的な実験室の慣行ではなく、プロセス限定をより良く理解するためにのみこの評価に含めた。PallアクロディスクWBC濾過試料体積を、3mL未希釈、6mL希釈および未希釈、12mL希釈および未希釈、および24mL希釈した。
【0118】
ドナー2:第2のドナーからの全血の279mLを、全血の133mLを希釈せずに残し、第2の145mLの全血画分1:1を0.2mM EDTA/1X DPBS中で、全血290mLを希釈することによって分割した。54mLの希釈した全血を、Ficollによって3回に分けて処理した。このドナーのためにFicollを介して処理された未希釈試料は存在しなかった。残りの希釈全血画分および未希釈全血画分を、6mLおよび12mL容量のPallアクロディスクWBC濾過を介して処理した。
【0119】
希釈ロイコパック試料の前処理
ドナー1:単一ドナー由来の127mLの白血球増殖産物を、未洗浄試料濾過のために28mLに分割し、残りの99mLを、400mLの5mM EDTA-HBSS中で99mLを希釈し、遠心分離し、上清を廃棄し、200mLの5mM EDTA-HBSS中で細胞ペレットを再懸濁させることによって洗浄した。この洗浄された試料の180mLを、Ficoll分離密度勾配のために、および6mLおよび12mLのPallアクロディスクWBC濾過処理のために20mL利用した。
【0120】
結果
白血球分離および収集のための処理時間
Ficoll密度勾配単離のための未希釈全血画分と希釈全血画分との両方を同時に処理した。30mLの未希釈全血試料および74mLの希釈全血試料の処理時間は、白血球/バフィーコートの洗浄までのチューブ層形成時間からおよそ4時間であった。いずれの試料についても、赤血球溶解ステップは含まれなかった。
【0121】
Pall WBC細胞分離濾過の場合、6mL~24mLの全血試料の合計処理時間は、処理体積および全血希釈に応じて5分~20分の範囲であった(表1)。最も早い処理時間は、3mLの全血を2mM EDTA/1X DPBSで1:1に希釈した場合に観察され、3分以内に重力を介して完全に濾過され、平均して8分±3分の総処理時間(濾過、2回の洗浄、およびバックフラッシュ収集)が得られた。平均して、6mLの未希釈全血は、フィルタを通過するのに10分±2分、総処理時間19分±2分(濾過、2回の洗浄、およびバックフラッシュ収集)を要した。1:1に希釈した場合、6mLの2mM EDTA/1X DPBS(12mLの総体積)中の6mLの未希釈全血は、重力を介してフィルタを通過するために平均7分±2分、および総処理時間13分±4分を要した。1つ目のドナーの場合、18分後にフィルタを通過したのは12mLの未希釈全血のうち11mLだけで、残りの容量と洗浄液とをフィルタに通すためにシリンジのプランジャを手動で押す必要があった。このドナーの場合、12mLの全血を12mLの2mM EDTA/1X PBSで1:1に希釈したもの(総体積24mL)は、16分後には約11mLしか処理できずに目詰まりした。残りの体積およびその後の2つの洗浄を、シリンジフィルタのプランジャでフィルタを通して手動で押し込んだ。第2のドナーについて、12mLの未希釈の全試料の両方が、3mLおよび5mLの未処理で30分後に目詰まりした。第2のドナー12mLの未希釈全血体積に対して、手動介入は試みられず、1:1の希釈も実施されなかった。1つの10mLの未希釈全血試料を濾過し、11分後に全体積の重力濾過を完了し、合計処理時間は19分であった。
【0122】
6mLおよび12mLの各試料の4mLをフィルタを通して重力を介して処理した後、洗浄されたおよび未洗浄されたロイコパック試料により、PallアクロディスクWBCフィルタが目詰まりした(表2)。シリンジプランジャを使用して残りの2mL~8mLの試料を処理するために、手動介入が必要とされた。捕捉した細胞のコレクションのプロセス濾過フローを変更する平均タイミングは、6~7分であった。
【0123】
【0124】
【0125】
後処理細胞収率および生存率
全血ドナー1:表3に示されるデータ分析から2つのドナー1全血試料を省略したが、これらは、
図6Aおよび
図6Bに示されている。残りの試料のうち、処理された全血1mL当たり平均1×10
6個の生存細胞を、PallアクロディスクWBCフィルタを介して収集し、これに対して、Ficoll密度勾配分離を介して処理された全血1mL当たり0.9×10
6個の細胞を収集した。希釈WBC濾過試料と比較して、未希釈PallアクロディスクWBC濾過試料から、全血1mL当たり27.3%少ない生存細胞を得た。希釈Ficoll試料と比較した場合、未希釈Ficoll試料から処理された全血1mL当たり8%多い生存細胞を得た。アクロディスクWBCフィルタを介して処理した場合、未希釈Ficoll処理と比較して、処理された全血1mL当たり15%多い生存細胞を未希釈全血から得た。Ficoll密度勾配法と比較して、アクロディスクWBC濾過を介して希釈した全血を処理した場合、1mL当たり38%多い生存細胞を得た。生存率は全ての試料で類似しており、91%~94%の範囲であった。さらに、未希釈血液の体積を、2つのFicoll試料中で慎重に層化した。
図6Aおよび
図6Bは、細胞収率および生存率の差を示している。
【0126】
【0127】
濾過プロセスおよびFicollプロセスの両方から新たに単離した一次細胞を、1フラスコ当たり1e
7個の生存細胞の標的でT-25組織培養フラスコに接種して、予想されるCocoon接種細胞密度を模倣した。希釈した全血12mLおよび24mL試料中に、1e
7個の細胞密度で接種するのに十分な細胞が存在しなかった。6日目までに、全血濾過単離手順を有する全ての培養物は、初期の全細胞数より3~4倍高く、希釈全血、6mL濾過試料で最も高い細胞数を実現した(
図7A)。Ficoll密度勾配単離後に接種された培養物は、0~11日目からおよそ98%の培養生存率を維持しているにもかかわらず、接種日から採取まで有意な成長を示さなかった(
図7B)。全ての培養物は、培養の最初の8日間で約96%、および11日目で92%を超える生存率を維持した。
【0128】
全血ドナー2:平均して、88.6%±0.9%の生存率を有する処理済み全血1mL当たり16.1×10
5個の生存細胞がFicoll分離勾配法を介して得られたのに対し、未希釈濾過試料では、68.0%±6.2%の生存率を有する3.11×10
5個、および希釈濾過試料では、72.7%±2.1%の生存率を有する3.11×10
5個が得られた(表4、
図8A、および
図8B)。希釈WBC濾過試料と比較して、未希釈PallアクロディスクWBC濾過試料で全血1mL当たり53%少ない生存細胞を得たが、一方で、ドナー1は、未希釈試料から、希釈試料と比較して2%少ない細胞/mLを得た。アクロディスクWBCフィルタを介して処理した場合、希釈Ficoll処理と比較して、処理された全血1mL当たり91%少ない生存細胞を未希釈全血から得た。Ficoll密度勾配法と比較して、アクロディスクWBC濾過を介して希釈した全血を処理した場合、1mL当たり81%少ない生存細胞を得た。
【0129】
【0130】
ロイコパックドナー1:平均して、処理した白血球増殖産物1mL当たり32.9×10
6個の生存細胞を、98.1%±0.6%の生存率でFicoll分離勾配法を介して得た。比較して、処理された洗浄(1:1希釈)白血球増殖産物1mL当たり8.02×10
6個の生存細胞、および未洗浄産物の4.36×10
6個の生存細胞を、それぞれ、95.8%±0.3%の生存率および98.4%±0.6%の生存率で濾過方法を介して得た(表5、
図9A、および
図9B)。
【0131】
洗浄WBC濾過試料と比較して、未洗浄PallアクロディスクWBC濾過試料から、白血球増殖産物1mL当たり46%少ない生存細胞を得た。アクロディスクWBCフィルタを介して処理した場合、希釈Ficoll処理と比較して、処理された全血1mL当たり87%少ない生存細胞を未洗浄ロイコパック試料から得た(
図9B)。Ficoll密度勾配法と比較して、アクロディスクWBC濾過を介して洗浄された白血球増殖産物を処理した場合、1mL当たり76%少ない生存細胞を得た。
【0132】
【0133】
CD3+T細胞集団のFACS分析
現在の細胞療法は、Cocoon(商標)システムのような自動化細胞工学システムのためのCAR-T細胞療法手順の最適化に焦点を当てている。これを念頭に置いて、CD3+T細胞の割合、CD3+CD4+T細胞とCD3+CD8+T細胞との比率を、Ficollによって処理された全血および白血病細胞収集と、濾過方法とで比較した(
図10)。
【0134】
全血ドナー1:CD3+CD4+T細胞(6%~8%)およびCD3+CD8+T細胞(4%~10%)の最も低い割合が、2つの未希釈のPall濾過6mL全血試料のうちの1つ、ならびに12mLおよび24mLの希釈のPall濾過全血試料の両方において観察された(
図11)。全ての他の試料について、およそ22%±4%のCD3+CD4+T細胞および19%±3%のCD3+CD8+T細胞が、FicollおよびPallで濾過された全血試料の両方で捕捉された。しかしながら、全ての試料は、各条件内で捕捉されたCD4+T細胞対CD8+T細胞のおおよそ1:1の比率を維持した。
【0135】
全血ドナー2:未希釈の6mLの全血試料から収集した画分は、およそ30%~38%のCD3+CD4+T細胞および9%~12%のCD3+CD8+T細胞を有する全ての他の条件と比較した場合、CD3+CD4+T細胞(23.6%および22%)ならびにCD3+CD8+T細胞(8%および7.5%)の最も低い割合を提示した(
図12)。しかしながら、全ての試料で、3:1のCD3+CD8+細胞対CD3+CD4+細胞比を示した。2つの全血ドナー間のCD4+対CD8+比の差は、ドナー対ドナーの変動性の結果である可能性が高い。
【0136】
ロイコパックドナー試料:平均して、Ficoll単離方法を介して処理された全血由来の細胞画分は、40%±2%のCD3+CD4+T細胞および22.8%±3%のCD3+CD8+T細胞を含有した(
図13)。これは、未洗浄で濾過したロイコパック試料よりもおよそ15%多くのCD3+CD4+T細胞および5%多くのCD3+CD8+T細胞を収集したことになる。Ficoll単離はまた、洗浄した(1:1希釈した)PallアクロディスクWBC濾過ロイコパック試料よりも21%多くのCD3+CD4+T細胞および13%多くのCD3+CD8+T細胞を得た。CD3+CD4+細胞対CD3+CD8+細胞比が1:1であった12mLの未洗浄濾過ロイコパック試料を除いて、他の全てのFicoll試料および濾過試料は、2:1のCD3+CD4+対CD3+CD8+比を有した。CD4+、CD8+の収率の差は、4mL以下のロイコパック試料が重力のみを介して濾過されるため、シリンジプランジャを使用してPallアクロディスクWBCフィルタを通してロイコパック試料を手動で濾過する必要性によって悪影響を受けている可能性がある。
【0137】
結論
本明細書に記載される方法は、Cocoonシステムを介した全血白血球単離のための、個別にまたは直列に、Pallアクロディスク白血球シリンジフィルタなどの細胞濾過フィルタの使用方法を記載している。Cocoon(商標)カセットにこれらのフィルタの使用方法を実装するためのアップデートには、以下が含まれる。
【0138】
6mL~12mLの処理容量のWBCフィルタ当たりの未希釈全血試料または希釈全血試料。
【0139】
全血をDPBSまたは同様の緩衝液中で潜在的に1:1に希釈し、処理時間を短縮する。
【0140】
重力濾過の可能性。
【0141】
PallアクロディスクWBCフィルタにより、遠心分離なしでT細胞の捕捉および伸長が可能となる。全血および白血球増殖産物プロセス能力を有するより大きなフィルタも有用である。特に、ヘモネティクスによるサルベージ血液用白血球フィルタを使用した全血濾過。
【0142】
議論
Cocoon(商標)の全血からのインライン白血球単離は、白血球捕捉培地/マトリックスを有する特殊フィルタを使用する場合に行うことができる。好適なPallまたはヘモネティクスカスタムフィルタを、Cocoon(商標)システムに使用するために生成することができる。
【0143】
本明細書に記載される方法および用途に対する他の好適な修正および適応を、実施形態のいずれかの範囲から逸脱することなく行うことができることは、関連分野の当業者には容易に明らかであろう。
【0144】
特定の実施形態が本明細書に例示され、記載されてきたが、特許請求の範囲は、記載され、示された部分の特定の形態または構成に限定されないことを理解されたい。本明細書では、例示的な実施形態が開示されており、特定の用語が採用されるが、それらは、限定の目的ではなく、一般的かつ説明的な意味でのみ使用されている。上記の教示に照らして、実施形態の修正例および変形例が可能である。したがって、実施形態が、具体的に記載された方法以外の方法で実践され得ることを理解されたい。
【0145】
本明細書で言及される全ての刊行物、特許、および特許出願は、各個々の刊行物、特許、または特許出願が参照により組み込まれることが具体的かつ個別に示された場合と同程度に、参照により本明細書に組み込まれる。
【国際調査報告】