(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-02-07
(54)【発明の名称】刺激および監視コンポーネントを含むウェアラブルデバイス用のシステムおよび方法
(51)【国際特許分類】
A61N 7/00 20060101AFI20220131BHJP
A61B 5/372 20210101ALI20220131BHJP
【FI】
A61N7/00
A61B5/372
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021534333
(86)(22)【出願日】2019-12-13
(85)【翻訳文提出日】2021-06-18
(86)【国際出願番号】 US2019066245
(87)【国際公開番号】W WO2020123950
(87)【国際公開日】2020-06-18
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-12-13
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-22
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521258119
【氏名又は名称】リミナル サイエンシズ インコーポレイテッド
【氏名又は名称原語表記】LIMINAL SCIENCES,INC.
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】カブラムズ、エリック
(72)【発明者】
【氏名】カマラ、ホセ
(72)【発明者】
【氏名】ケイ-カウデラー、オーウェン
(72)【発明者】
【氏名】レフェル、アレクサンダー ビー.
(72)【発明者】
【氏名】ロスバーグ、ジョナサン エム.
(72)【発明者】
【氏名】アリエンツォ、マウリツィオ
(72)【発明者】
【氏名】フィロウジ、カムヤール
【テーマコード(参考)】
4C127
4C160
【Fターム(参考)】
4C127AA03
4C127BB05
4C127GG13
4C127GG16
4C160JJ33
4C160JJ34
4C160JJ36
4C160MM32
(57)【要約】
いくつかの態様では、人が着用可能か、人に取り付けられるか、または人の体内に埋め込まれるデバイスは、人の脳から信号を検出するように構成されたセンサと、音響信号を脳に印加するように構成されたトランスデューサとを含む。
【特許請求の範囲】
【請求項1】
人が着用可能か、人に取り付けられるか、または人の体内に埋め込まれるデバイスであって、
前記人の脳からの信号を検出するように構成されたセンサと、
前記脳に音響信号を印加するように構成されたトランスデューサとを含む、デバイス。
【請求項2】
前記センサは脳波(EEG)センサを含み、前記信号はEEG信号を含む、請求項1に記載のデバイス。
【請求項3】
前記トランスデューサは超音波トランスデューサを含み、前記音響信号は超音波信号を含む、請求項1に記載のデバイス。
【請求項4】
前記超音波信号は、100kHzから1MHzの間の周波数、0.001cm
3から0.1cm
3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm
2の間の電力密度を有する、請求項3に記載のデバイス。
【請求項5】
前記超音波信号は低電力密度を有するとともに、前記脳に印加された場合に組織に対して実質的に非破壊的である、請求項3に記載のデバイス。
【請求項6】
前記センサおよび前記トランスデューサは、非侵襲的に前記人の頭に配置される、請求項1に記載のデバイス。
【請求項7】
請求項1に記載のデバイスにおいて、前記センサおよび前記トランスデューサと通信するプロセッサを備え、該プロセッサは、
前記脳から検出された前記信号を前記センサから受信するようにプログラムされ、
前記脳に前記音響信号を印加するために前記トランスデューサに命令を送信するようにプログラムされている、請求項1に記載のデバイス。
【請求項8】
前記プロセッサは、1つまたは複数のランダムな間隔で前記音響信号を前記脳に印加するために前記トランスデューサに命令を送信するようにプログラムされている、請求項7に記載のデバイス。
【請求項9】
請求項8に記載のデバイスにおいて、音響信号を前記脳に印加するように構成された少なくとも1つの別のトランスデューサを含み、前記プロセッサは、前記1つまたは複数のランダムな間隔で前記音響信号を前記脳に印加する前記命令を送信すべく、前記トランスデューサのうちの1つを選択するようにプログラムされている、デバイス。
【請求項10】
前記プロセッサは、前記脳が神経障害の症状を示しているか判断すべく前記信号を解析するようにプログラムされ、
前記脳が前記神経障害の前記症状を示しているという判断に応答して、前記脳に前記音響信号を印加するように前記トランスデューサに命令を送信するようにプログラムされている、請求項7に記載のデバイス。
【請求項11】
前記音響信号は、神経障害の症状を抑制する、請求項1に記載のデバイス。
【請求項12】
前記神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD)、筋萎縮性側方硬化症(ALS)、および脳震盪のうちの1つまたは複数を含む、請求項11に記載のデバイス。
【請求項13】
前記症状が発作を含む、請求項11に記載のデバイス。
【請求項14】
前記信号は、電気的な信号、機械的な信号、光学的な信号、および/または赤外線信号を含む、請求項1に記載のデバイス。
【請求項15】
人が着用可能か、人に取り付けられるか、または人の体内に埋め込まれるデバイスを作動させる方法であって、該デバイスが前記人の脳からの信号を検出するように構成されたセンサと、音響信号を前記脳に印加するように構成されたトランスデューサとを含み、該方法は、
前記脳から検出された前記信号を前記センサから受信することと、
前記音響信号を前記トランスデューサによって前記脳に印加することとを含む、方法。
【請求項16】
装置であって、
人に着用されるか、人に取り付けられるか、又は人の体内に埋め込まれるデバイスを含み、該デバイスは、前記人の脳からの信号を検出するように構成されたセンサと、音響信号を前記脳に印加するように構成されたトランスデューサとを含む、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、刺激および監視コンポーネントを含むウェアラブルデバイス用のシステムおよび方法に関する。
【背景技術】
【0002】
世界保健機関(WHO)による最近の推定では、神経疾患は世界の疾病負荷の6%以上を占めるとされている。このような神経疾患には、てんかん、アルツハイマー病、パーキンソン病が含まれる。たとえば、世界中で約6500万人がてんかんに苦しんでいる。米国には約340万人のてんかん患者がおり、その経済的影響は推定150億ドルに上る。これらの患者は、脳内の過剰で同期した神経活動のエピソードである発作の再発などの症状に苦しんでいる。てんかん患者の70%以上が発作の制御が最適でない状態で生活しているため、学校、社会的および雇用の状況、運転などの日常生活、さらには自立した生活においてさえ、患者にとってこのような症状は困難な場合がある。
【発明の概要】
【0003】
いくつかの態様では、人が着用可能なデバイス、または人に取り付けられるデバイス、もしくは人の体内に埋め込まれるデバイスは、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するように構成されたトランスデューサとを含む。
【0004】
いくつかの実施形態では、センサは脳波(EEG)センサを含み、信号はEEG信号を含む。
いくつかの実施形態では、トランスデューサは超音波トランスデューサを含み、音響信号は超音波信号を含む。
【0005】
いくつかの実施形態において、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の電力密度を有する。
【0006】
いくつかの実施形態では、超音波信号は、例えば、1乃至100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置される。
【0007】
いくつかの実施形態では、デバイスは、センサおよびトランスデューサと通信するプロセッサを含む。プロセッサは、脳から検出された信号をセンサから受信し、脳に音響信号を印加するためにトランスデューサに命令を送信するようにプログラムされている。
【0008】
いくつかの実施形態では、プロセッサは、1つまたは複数のランダムな間隔で音響信号を脳に印加するためにトランスデューサに命令を送信するようにプログラムされている。
いくつかの実施形態では、デバイスは、脳に音響信号を印加するように構成された少なくとも1つの他のトランスデューサを含み、プロセッサは、1つまたは複数のランダムな間隔で音響信号を脳に印加するための命令を送信すべく、トランスデューサのうちの1つを選択するようにプログラムされている。
【0009】
いくつかの実施形態では、プロセッサは、脳が神経障害の症状を示しているかを判断すべく信号を分析するようにプログラムされるとともに、脳が神経障害を示していると判断したことに応答して、脳に音響信号を印加するようにトランスデューサに命令を送信するようにプログラムされている。
【0010】
いくつかの実施形態において、音響信号は、神経障害の症状を抑制する。
いくつかの実施形態では、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS:central nervous system)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD:attention deficit hyperactivity disorder)、筋萎縮性側方硬化症(ALS:amyotrophic lateral sclerosis)、および脳震盪のうちの1つまたは複数を含む。
【0011】
いくつかの実施形態では、症状は発作を含む。
いくつかの実施形態では、信号は、電気的な信号、機械的な信号、光学的な信号、および/または赤外線信号を含む。
【0012】
いくつかの態様において、人が着用可能なデバイス、または人に取り付けられるデバイス、もしくは人の体内に埋め込まれるデバイスを作動させる方法であって、該デバイスが人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するように構成されたトランスデューサとを含み、該方法は、脳から検出された信号をセンサから受信することと、トランスデューサを使用して音響信号を脳に印加することとを含む。
【0013】
いくつかの態様では、装置は、人によって着用されるか、人に取り付けられるか、または人の体内に埋め込まれるデバイスを含む。デバイスは、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するように構成されたトランスデューサとを含む。
【0014】
いくつかの態様では、人が着用可能なデバイスは、人の脳からの信号を検出するように構成されたセンサと、超音波信号を脳に印加するように構成されたトランスデューサとを含む。超音波信号は、例えば1から100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
【0015】
いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置される。
いくつかの実施形態では、センサは脳波(EEG)センサを含み、信号はEEG信号を含む。
【0016】
いくつかの実施形態では、トランスデューサは超音波トランスデューサを含む。
いくつかの実施形態において、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の低い電力密度を有する。
【0017】
いくつかの実施形態において、超音波信号は、神経障害の症状を抑制する。
いくつかの実施形態では、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS:central nervous system)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD:attention deficit hyperactivity disorder)、筋萎縮性側方硬化症(ALS:amyotrophic lateral sclerosis)、および脳震盪のうちの1つまたは複数を含む。
【0018】
いくつかの実施形態では、症状は発作を含む。
いくつかの実施形態では、信号は、電気的な信号、機械的な信号、光学的な信号、および/または赤外線信号を含む。
【0019】
いくつかの態様において、人が着用可能なデバイスを作動させる方法であって、該デバイスが人の脳からの信号を検出するように構成されたセンサと、超音波信号を人の脳に印加するように構成されたトランスデューサとを含み、該方法は、超音波信号を脳に印加することを含む。超音波信号は、例えば1から100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
【0020】
いくつかの態様では、方法は、人によって着用されたデバイス、または人に取り付けられたデバイスによって、超音波信号を人の脳に印加することを含む。
いくつかの態様では、装置は、人によって着用されるか、または人に取り付けられるデバイスを含む。デバイスは、人の脳からの信号を検出するように構成されたセンサと、超音波信号を脳に印加するように構成されたトランスデューサとを含む。超音波信号は、例えば1から100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
【0021】
いくつかの態様では、人が着用可能なデバイスは、人の脳に音響信号を印加するように構成されたトランスデューサを含む。
いくつかの実施形態では、トランスデューサは、音響信号をランダムに人の脳に印加するように構成される。
【0022】
いくつかの実施形態では、トランスデューサは超音波トランスデューサを含み、音響信号は超音波信号を含む。
いくつかの実施形態において、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の電力密度を有する。
【0023】
いくつかの実施形態では、超音波信号は、例えば、1乃至100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
いくつかの実施形態では、トランスデューサは、非侵襲的に人の頭に配置される。
【0024】
いくつかの実施形態において、音響信号は、神経障害の症状を抑制する。
いくつかの実施形態では、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS:central nervous system)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD:attention deficit hyperactivity disorder)、筋萎縮性側方硬化症(ALS:amyotrophic lateral sclerosis)、および脳震盪のうちの1つまたは複数を含む。
【0025】
いくつかの実施形態では、症状は発作を含む。
いくつかの態様において、人が着用可能なデバイスを作動させる方法であって、該デバイスがトランスデューサを含み、該方法は、超音波信号を人の脳に印加することを含む。
【0026】
いくつかの態様では、装置は、人によって着用されるか、または人に取り付けられるデバイスを含む。デバイスは、人の脳に音響信号を印加するように構成されたトランスデューサを含む。
【0027】
いくつかの態様では、人が着用可能なデバイス、または人に取り付けられるデバイス、もしくは人の体内に埋め込まれるデバイスは、人の脳からの脳波(EEG)信号を検出するように構成されたセンサと、低電力で実質的に非破壊的な超音波信号を脳に印加するように構成されたトランスデューサとを含む。
【0028】
いくつかの実施形態において、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の電力密度を有する。
【0029】
いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置される。
いくつかの実施形態において、超音波信号はてんかん発作を抑制する。
【0030】
いくつかの実施形態では、デバイスは、センサおよびトランスデューサと通信するプロセッサを含む。プロセッサは、脳から検出されたEEG信号をセンサから受信し、トランスデューサに指示を送信して、脳に超音波信号を印加するようにプログラムされている。
【0031】
いくつかの実施形態では、プロセッサは、1つまたは複数のランダムな間隔で超音波信号を脳に印加するためにトランスデューサに命令を送信するようにプログラムされている。
【0032】
いくつかの実施形態では、デバイスは、脳に超音波信号を印加するように構成された少なくとも1つの他のトランスデューサを含み、プロセッサは、1つまたは複数のランダムな間隔で超音波信号を脳に印加するための命令を送信すべく、トランスデューサのうちの1つを選択するようにプログラムされている。
【0033】
いくつかの実施形態では、プロセッサは、脳がてんかん発作を示しているかを判断するためにEEG信号を分析し、脳がてんかん発作を示しているという決定に応答して超音波信号を脳に印加するようトランスデューサに命令を送信するようにプログラムされている。
【0034】
いくつかの態様において、人が着用可能なデバイス、または人に取り付けられるデバイス、もしくは人の体内に埋め込まれるデバイスを作動させる方法であって、該デバイスが人の脳からの脳波(EEG)信号を検出するように構成されたセンサと、低電力の実質的に非破壊的な超音波信号を脳に印加するように構成されたトランスデューサとを含み、該方法は、センサによってEEG信号を受信することと、トランスデューサを使用して超音波信号を脳に印加することとを含む。
【0035】
いくつかの態様では、装置は、人によって着用されるか、人に取り付けられるか、または人の体内に埋め込まれるデバイスを含む。デバイスは、人の脳からの脳波(EEG)信号を検出するように構成されたセンサと、低電力で実質的に非破壊的な超音波信号を脳に印加するように構成されたトランスデューサとを含む。
【0036】
いくつかの態様では、デバイスは、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するようにそれぞれ構成された複数のトランスデューサとを含む。複数のトランスデューサのうちの1つが、脳から検出された以前の信号からのデータでトレーニング済み統計モデルを使用して選択される。
【0037】
いくつかの実施形態では、デバイスは、センサおよび複数のトランスデューサと通信するプロセッサを含む。プロセッサは、神経障害の症状の第1の予測強度を示す出力を得るべく、脳から検出された第1の信号からのデータをトレーニング済み統計モデルへの入力として提供するようにプログラムされるとともに、第1の音響信号を印加するための第1の命令を送信すべく、症状の第1の予測強度に基づいて複数のトランスデューサのうちの1つを第1の方向において選択するようにプログラムされる。
【0038】
いくつかの実施形態では、プロセッサは、神経障害の症状の第2の予測強度を示す出力を得るべく、脳から検出された第2の信号からのデータをトレーニング済み統計モデルへの入力として提供するようにプログラムされるとともに、第2の予測強度が第1の予測強度より小さいことに応答して、第2の音響信号を印加するための第2の命令を送信すべく、複数のトランスデューサのうちの1つを第1の方向において選択するようにプログラムされ、かつ第2の予測強度が第1の予測強度より大きいことに応答して、第2の音響信号を印加するための第2の命令を送信すべく、第1の方向とは反対方向、または第1の方向とは異なる方向において複数のトランスデューサのうちの1つを選択するようにプログラムされる。
【0039】
いくつかの実施形態では、統計モデルは深層学習ネットワークを含む。
いくつかの実施形態では、深層学習ネットワークは、データをn次元表現空間に符号化するための深層畳み込みニューラルネットワーク(DCNN:Deep Convolutional Neural Network)と、時間とともに表現空間の変化を観察することによって検出スコアを計算するためのリカレントニューラルネットワーク(RNN:Recurrent Neural Network)とを含む。検出スコアは、神経障害の症状の予測強度を示す。
【0040】
いくつかの実施形態では、脳から検出された以前の信号からのデータは、人の電子的な健康記録からアクセスされる。
いくつかの実施形態では、センサは脳波(EEG)センサを含み、信号はEEG信号を含む。
【0041】
いくつかの実施形態では、トランスデューサは超音波トランスデューサを含み、音響信号は超音波信号を含む。
いくつかの実施形態において、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の電力密度を有する。
【0042】
いくつかの実施形態では、超音波信号は、例えば、1乃至100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置される。
【0043】
いくつかの実施形態において、音響信号は、神経障害の症状を抑制する。
いくつかの実施形態では、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS:central nervous system)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD:attention deficit hyperactivity disorder)、筋萎縮性側方硬化症(ALS:amyotrophic lateral sclerosis)、および脳震盪のうちの1つまたは複数を含む。
【0044】
いくつかの実施形態では、症状は発作を含む。
いくつかの実施形態では、信号は、電気的な信号、機械的な信号、光学的な信号、および/または赤外線信号を含む。
【0045】
いくつかの態様において、デバイスを作動させる方法であって、該デバイスが人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するようにそれぞれ構成された複数のトランスデューサとを含み、該方法は、脳から検出された以前の信号からのデータでトレーニング済み統計モデルを使用して複数のトランスデューサのうちの1つを選択することを含む。
【0046】
いくつかの態様では、装置は、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するようにそれぞれ構成された複数のトランスデューサとを含むデバイスを含む。デバイスは、脳から検出された以前の信号からのデータでトレーニング済み統計モデルを使用して、複数のトランスデューサのうちの1つを選択するように構成されている。
【0047】
いくつかの態様では、デバイスは、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するようにそれぞれ構成された複数のトランスデューサとを含む。複数のトランスデューサのうちの1つが、健康状態の識別に関連する1つまたは複数の値で注釈が付けられた信号データでトレーニング済み統計モデルを使用して選択される。
【0048】
いくつかの実施形態では、健康状態の識別に関連する1つまたは複数の値で注釈が付けられた信号データは、神経障害の症状の強さの増加に関連するそれぞれの値で注釈が付けられた信号データを含む。
【0049】
いくつかの実施形態において、統計モデルは、神経障害の症状の強さの増加に関連する0から1までのそれぞれの値で注釈が付けられた脳から検出された以前の信号からのデータでトレーニングされたものである。
【0050】
いくつかの実施形態では、統計モデルは、統計モデルの出力の変動、出力の導関数のL1/L2ノルム、または出力の2次導関数のL1/L2ノルムに比例する正規化項を有する損失関数を含む。
【0051】
いくつかの実施形態では、デバイスは、センサおよび複数のトランスデューサと通信するプロセッサを含む。プロセッサは、神経障害の症状の第1の予測強度を示す出力を得るべく、脳から検出された第1の信号からのデータをトレーニング済み統計モデルへの入力として提供するようにプログラムされるとともに、第1の音響信号を印加するための第1の命令を送信すべく、症状の第1の予測強度に基づいて複数のトランスデューサのうちの1つを第1の方向において選択するようにプログラムされる。
【0052】
いくつかの実施形態では、プロセッサは、神経障害の症状の第2の予測強度を示す出力を得るべく、脳から検出された第2の信号からのデータをトレーニング済み統計モデルへの入力として提供するようにプログラムされるとともに、第2の予測強度が第1の予測強度より小さいことに応答して、第2の音響信号を印加するための第2の命令を送信すべく、複数のトランスデューサのうちの1つを第1の方向において選択するようにプログラムされ、かつ第2の予測強度が第1の予測強度より大きいことに応答して、第2の音響信号を印加するための第2の命令を送信すべく、第1の方向とは反対方向、または第1の方向とは異なる方向において複数のトランスデューサのうちの1つを選択するようにプログラムされる。
【0053】
いくつかの実施形態では、トレーニング済み統計モデルは深層学習ネットワークを含む。
いくつかの実施形態では、深層学習ネットワークは、データをn次元表現空間に符号化するための深層畳み込みニューラルネットワーク(DCNN:Deep Convolutional Neural Network)と、時間とともに表現空間の変化を観察することによって検出スコアを計算するためのリカレントニューラルネットワーク(RNN:Recurrent Neural Network)とを含む。検出スコアは、神経障害の症状の予測強度を示す。
【0054】
いくつかの実施形態では、信号データは、人の電子的な健康記録からアクセスされる、脳から検出された以前の信号からのデータを含む。
いくつかの実施形態では、センサは脳波(EEG)センサを含み、信号はEEG信号を含む。
【0055】
いくつかの実施形態では、トランスデューサは超音波トランスデューサを含み、音響信号は超音波信号を含む。
いくつかの実施形態において、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の電力密度を有する。
【0056】
いくつかの実施形態では、超音波信号は、例えば、1乃至100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である。
いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置される。
【0057】
いくつかの実施形態において、音響信号は、神経障害の症状を抑制する。
いくつかの実施形態では、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS:central nervous system)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD:attention deficit hyperactivity disorder)、筋萎縮性側方硬化症(ALS:amyotrophic lateral sclerosis)、および脳震盪のうちの1つまたは複数を含む。
【0058】
いくつかの実施形態では、症状は発作を含む。
いくつかの実施形態では、信号は、電気的な信号、機械的な信号、光学的な信号、および/または赤外線信号を含む。
【0059】
いくつかの態様において、デバイスを作動させる方法であって、該デバイスが人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するようにそれぞれ構成された複数のトランスデューサとを含み、該方法は、健康状態の識別に関連する1つまたは複数の値で注釈が付けられた信号データでトレーニング済み統計モデルを使用して、複数のトランスデューサのうちの1つを選択することを含む。
【0060】
いくつかの態様では、装置は、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するようにそれぞれ構成された複数のトランスデューサとを含むデバイスを含む。デバイスは、健康状態の識別に関連する1つまたは複数の値で注釈が付けられた信号データでトレーニング済み統計モデルを使用して、複数のトランスデューサのうちの1つを選択するように構成される。
【0061】
いくつかの態様では、デバイスは、人の脳からの信号を検出するように構成されたセンサと、該センサと通信する第1のプロセッサとを含む。第1のプロセッサは、健康状態を識別するようにプログラムされており、識別された健康状態に基づいて、識別された健康状態を裏付けるか又は否定すべく、デバイス外部の第2のプロセッサに信号からのデータを提供するようにプログラムされている。
【0062】
いくつかの実施形態では、健康状態の識別は、神経障害の症状の強さを予測することを含む。
いくつかの実施形態において、プロセッサは、予測強度を示す出力を取得すべく、脳から検出された信号からのデータを、第1のトレーニング済み統計モデルへの入力として提供するようにプログラムされ、予測強度が症状の存在を示す閾値を超えるかを決定するようにプログラムされ、閾値を超える予測強度に応答して、信号からのデータをデバイス外部の第2のプロセッサに送信するようにプログラムされている。
【0063】
いくつかの実施形態において、第1の統計モデルは、脳から検出された以前の信号からのデータに基づいてトレーニングされたものである。
いくつかの実施形態において、トレーニング済みの第1の統計モデルは、高い感度および低い特異性を有するようにトレーニングされ、トレーニング済みの第1の統計モデルを使用する第1のプロセッサは、トレーニング済みの第2の統計モデルを使用する第1のプロセッサよりも少ない電力量を使用する。
【0064】
いくつかの実施形態では、第2のプロセッサは、予測された強度を裏付けるか又は否定する出力を得るべく、信号からのデータをトレーニング済みの第2の統計モデルに提供するようにプログラムされる。
【0065】
いくつかの実施形態では、トレーニング済みの第2の統計モデルは、高感度および高特異性を有するようにトレーニングされる。
いくつかの実施形態では、トレーニング済みの第1の統計モデルおよび/またはトレーニング済みの第2の統計モデルは、深層学習ネットワークを含む。
【0066】
いくつかの実施形態では、深層学習ネットワークは、データをn次元表現空間に符号化するための深層畳み込みニューラルネットワーク(DCNN:Deep Convolutional Neural Network)と、時間とともに表現空間の変化を観察することによって検出スコアを計算するためのリカレントニューラルネットワーク(RNN:Recurrent Neural Network)とを含む。検出スコアは、神経障害の症状の予測強度を示す。
【0067】
いくつかの実施形態では、センサは脳波(EEG)センサを含み、信号はEEG信号を含む。
いくつかの実施形態では、センサは、非侵襲的に人の頭に配置される。
【0068】
いくつかの実施形態では、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS:central nervous system)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD:attention deficit hyperactivity disorder)、筋萎縮性側方硬化症(ALS:amyotrophic lateral sclerosis)、および脳震盪のうちの1つまたは複数を含む。
【0069】
いくつかの実施形態では、症状は発作を含む。
いくつかの実施形態では、信号は、電気的な信号、機械的な信号、光学的な信号、および/または赤外線信号を含む。
【0070】
いくつかの態様において、デバイスを作動させる方法であって、該デバイスが人の脳からの信号を検出するように構成されたセンサと、音響信号を人の脳に印加するように構成されたトランスデューサとを含み、該方法は、健康状態を識別することと、識別された健康状態を確認または否定すべく、信号からのデータをデバイス外部の第2のプロセッサに提供することとを含む。
【0071】
いくつかの態様では、装置は、人の脳からの信号を検出するように構成されたセンサと、音響信号を脳に印加するように構成されたトランスデューサとを含むデバイスを含む。デバイスは、健康状態を識別するように構成されており、識別された健康状態に基づいて、識別された健康状態を裏付けるか又は否定すべく、デバイス外部の第2のプロセッサに信号からのデータを提供するように構成されている。
【0072】
上述した概念および以下でより詳細に説明する追加の概念のすべての組み合わせ(ただし、そのような概念が相互に矛盾しない限り)は、本明細書に開示された本発明の主題の一部であると考えられることを理解されたい。特に、本開示の末尾に記載されるクレームされた主題のすべての組み合わせは、本明細書に開示される本発明の主題の一部であると考えられる。
【0073】
以下の図を参照して、様々な態様および実施形態を説明する。図は必ずしも一定の縮尺で描かれているわけではない。
【図面の簡単な説明】
【0074】
【
図1】
図1は、本明細書に記載の技術のいくつかの実施形態による、例えば神経障害の症状を治療するための人が着用可能なデバイスを示す。
【
図2A】
図2Aは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイス、およびデバイスと通信するアプリケーションを実行するモバイルデバイスの例示的な一例を示す。
【
図2B】
図2Bは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイス、およびデバイスと通信するアプリケーションを実行するモバイルデバイスの例示的な一例を示す。
【
図3A】
図3Aは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人がウェアラブルデバイスと通信するモバイルデバイスおよび/またはクラウドサーバの例示的な一例を示す。
【
図3B】
図3Bは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイスと通信するモバイルデバイスおよび/またはクラウドサーバのブロック図を示す。
【
図4】
図4は、本明細書に記載の技術のいくつかの実施形態による、刺激コンポーネントおよび監視コンポーネントを含む着用可能なデバイスのブロック図を示す。
【
図5】
図5は、本明細書に記載の技術のいくつかの実施形態による、実質的に非破壊的な音響刺激のためのウェアラブルデバイスのブロック図を示す。
【
図6】
図6は、本明細書に記載の技術のいくつかの実施形態による、音響刺激、例えばランダム化音響刺激のためのウェアラブルデバイスのブロック図を示す。
【
図7】
図7は、本明細書に記載の技術のいくつかの実施形態による、超音波刺激を使用して神経障害を治療するためのウェアラブルルデバイスのブロック図を示す。
【
図8】
図8は、本明細書に記載の技術のいくつかの実施形態による、音響刺激を駆動するためのウェアラブルデバイスのブロック図を示す。
【
図9】
図9は、本明細書に記載の技術のいくつかの実施形態による、音響刺激を駆動するためのウェアラブルデバイス用のフローチャートを示す。
【
図10】
図10は、本明細書に記載の技術のいくつかの実施形態による、注釈付き信号データに基づくトレーニング済み統計モデルを使用するデバイスのブロック図を示す。
【
図11A】
図11Aは、本明細書に記載の技術のいくつかの実施形態による、注釈付き信号データに基づくトレーニング済み統計モデルを使用するデバイス用のフローチャートを示す。
【
図11B】
図11Bは、本明細書に記載の技術のいくつかの実施形態による、神経障害の1つまたは複数の症状を検出するために使用され得る畳み込みニューラルネットワークを示す。
【
図11C】
図11Cは、本明細書に記載の技術のいくつかの実施形態による、深層学習ネットワークからの予測を含む例示的なインターフェースを示す。
【
図12】
図12は、本明細書に記載の技術のいくつかの実施形態による、脳のエネルギー効率の高い監視を行うためのデバイスのブロック図を示す。
【
図13】
図13は、本明細書に記載の技術のいくつかの実施形態による、脳のエネルギー効率の高い監視を行うためのデバイス用のフローチャートを示す。
【
図14】
図14は、本明細書に記載の技術のいくつかの実施形態を実施する際に使用できる例示的なコンピュータシステムのブロック図を示す。
【発明を実施するための形態】
【0075】
てんかんなどの神経疾患に対する従来の治療オプションは、侵襲性と有効性との間にトレードオフがある。たとえば、手術は一部の患者のてんかん発作の治療に効果的であるが、手術は侵襲的である。別の例では、抗てんかん薬は非侵襲的であるが、一部の患者には効果がない場合がある。いくつかの従来のアプローチでは、発作などの神経障害の症状を予防および治療するために、埋め込み型脳シミュレーションデバイスを使用して電気刺激を提供してきた。他の従来のアプローチでは、高強度レーザーおよび高強度超音波(HIFU:high-intensity lasers and high-intensity ultrasound)を使用して脳組織を切除する。これらのアプローチは侵襲性が高く、多くの場合、発作の焦点の位置特定、即ち脳組織のアブレーションまたはその場所での電気刺激を実行するために、脳内の発作の焦点の特定が成功した後にのみ実施され得る。しかしながら、これらのアプローチは、焦点の脳組織の破壊または電気刺激が発作を止めるという仮定に基づいている。これは一部の患者には当てはまるが、同じまたは類似の神経障害に苦しんでいる他の患者には当てはまらない。切除またはアブレーション後に発作の減少が見られる患者も存在するが、治療前よりも効果が見られないか、さらに悪化した症状を示す多数の患者が存在する。たとえば、中等度の発作を起こしている患者の中には、手術後に非常に重い発作を起こす人もいれば、まったく異なるタイプの発作を起こす人もいる。したがって、従来のアプローチは侵襲性が高く、正しく実施するのが難しく、それであっても一部の患者にのみ有益である可能性がある。
【0076】
本発明者らは、非侵襲性または最小限の侵襲性および/または実質的に非破壊性でもある神経疾患の効果的な治療選択肢を見出した。本発明者らは、一度の手術で脳組織を殺そうとする代わりに、特定の脳領域のニューロンを実質的に非破壊的な方法で刺激するために経頭蓋的に送達される音響信号、例えば低強度の超音波を使用して脳組織を活性化する、本明細書で説明するシステムおよび方法を提案した。いくつかの実施形態において、脳組織が、ランダムな間隔で、例えば昼間および/または夜間を通じて散発的に活性化されることにより、脳が発作状態に落ち着くことを防止する。いくつかの実施形態では、例えば、脳からの脳波(EEG)測定値を監視することにより、患者の脳が発作の兆候を示しているという検出に応答して、脳組織を活性化することができる。したがって、説明されているシステムおよび方法のいくつかの実施形態は、脳卒中、パーキンソン病、片頭痛、震え、前頭側頭型認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS)疾患、脳症、ハンチントン病、自閉症、ADHD、ALS、脳震盪、および/または他の適切な神経学的障害などの神経障害の症状の非侵襲的および/または実質的に非破壊的な治療を提供する。
【0077】
例えば、説明されているシステムおよび方法のいくつかの実施形態は、1つまたは複数のセンサを人の頭皮上に配置することを可能にする治療を提供することができる。したがって、人の脳を監視するために頭皮上にセンサを配置する手術が必要ないため、治療は非侵襲的であり得る。別の例では、説明されているシステムおよび方法のいくつかの実施形態は、1つまたは複数のセンサを人の頭皮の直下に配置することを可能にする治療を提供することができる。したがって、皮下手術、または小さな切開を必要とするか、または切開を必要としない同様の手順を使用して、人の脳を監視するために頭皮の直下にセンサを配置できるため、治療は最小限の侵襲であり得る。別の例では、説明されているシステムおよび方法のいくつかの実施形態は、1つまたは複数のトランスデューサを用いて、低強度の超音波信号を脳に印加する治療を提供し得る。したがって、脳への治療の適用中に脳組織が除去または切除されないため、治療は実質的に非破壊的であり得る。
【0078】
いくつかの実施形態では、説明されているシステムおよび方法は、神経障害の症状を治療するために人が着用可能なデバイスを提供する。デバイスは、脳に音響信号を印加するように構成されたトランスデューサを含み得る。いくつかの実施形態では、音響信号は、例えば数百立方ミリメートルのオーダーの低い空間分解能を使用して印加される超音波信号であり得る。組織切除に使用される従来の超音波治療(例えば、HIFU)とは異なり、説明されているシステムおよび方法のいくつかの実施形態は、超音波刺激に対してより低い空間分解能を使用する。低周波数信号は、人の頭蓋骨を通過する際に減衰が非常に小さいため、低い空間分解能の要件により、刺激周波数を低下させることができるため(たとえば、100kHzから1MHzのオーダー)、システムが低エネルギーレベルで動作させることができる。この電力使用量の減少は、実質的に非破壊的な使用および/またはウェアラブルデバイスでの使用に適し得る。したがって、低いエネルギーの使用により、説明されているシステムおよび方法のいくつかの実施形態を、低電力、常時オン、および/または人が着用可能なデバイスに実施することが可能である。
【0079】
いくつかの実施形態では、説明されているシステムおよび方法は、監視コンポーネントおよび刺激コンポーネントを含む人が着用可能なデバイスを提供する。デバイスは、人の脳からの信号、例えば、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出するように構成されたセンサを含み得る。例えば、デバイスは、人の脳からのEEG信号または別の適切な信号などの電気信号を検出するように構成されたEEGセンサまたは別の適切なセンサを含み得る。デバイスは、脳に音響信号を印加するように構成されたトランスデューサを含み得る。例えば、デバイスは、超音波信号を脳に印加するように構成された超音波トランスデューサを含み得る。別の例では、デバイスは、超音波信号を脳に印加するためのくさび型トランスデューサを含み得る。米国特許出願公開第2018/0280735号明細書は、くさび型トランスデューサの例示的な実施形態に関するさらなる情報を提供し、その全体が参照により本明細書に援用される。
【0080】
いくつかの実施形態では、ウェアラブルデバイスは、センサおよび/またはトランスデューサと通信するプロセッサを含み得る。プロセッサは、脳から検出された信号をセンサから受信することができる。プロセッサは、音響信号を脳に印加するための命令をトランスデューサに送信することができる。いくつかの実施形態では、プロセッサは、脳が神経障害の症状を示しているかを判断すべく、信号を分析するようにプログラムされ得る。プロセッサは、例えば、脳が神経障害の症状を示しているという判断に応答して、脳に音響信号を印加するようトランスデューサに命令を送信するようにプログラムされ得る。音響信号は、神経障害の症状、例えば発作を抑制し得る。
【0081】
いくつかの実施形態では、超音波信号は、低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的であり得る。
いくつかの実施形態において、超音波トランスデューサは、水中で特徴付けられる超音波信号の音響焦点の空間ピークパルス平均強度によって測定される電力密度が1から100ワット/cm2の範囲内である電圧波形によって駆動され得る。使用中、患者の脳内の焦点に到達する電力密度は、患者の頭蓋骨によって上記の範囲から1から20dBだけ減衰し得る。いくつかの実施形態において、電力密度は、空間ピーク時間平均(Ispta:spatial-peak temporal average)または別の適切なメトリックによって測定され得る。いくつかの実施形態では、超音波信号の音響焦点における超音波信号の生体効果の少なくとも一部を測定する機械的指標が決定され得る。音響焦点またはその近傍でのキャビテーションを避けるために、機械的指数は1.9未満であり得る。
【0082】
いくつかの実施形態では、超音波信号は、100kHzから1MHzの間の周波数、または別の適切な範囲を有し得る。いくつかの実施形態では、超音波信号は、0.001cm3から0.1cm3の間、または別の適切な範囲の空間分解能を有し得る。
【0083】
いくつかの実施形態では、デバイスは、トランスデューサを用いて、1つまたは複数のランダムな間隔で音響信号を脳に印加し得る。例えば、デバイスは、患者の脳に音響信号を、日中および/または夜間のランダムな時間、例えば、約10分ごとに印加し得る。別の例では、全身てんかんの患者の場合、デバイスは、日中および/または夜間のランダムな時間に、例えば、約10分ごとに視床を刺激し得る。いくつかの実施形態では、デバイスは別のトランスデューサを含んでもよい。デバイスは、1つまたは複数のランダムな間隔で音響信号を脳に印加すべく、トランスデューサのうちの1つを選択し得る。いくつかの実施形態では、デバイスは、超音波ビームを頭蓋骨内の任意の位置に向けるか、複数の焦点を有する頭蓋骨内に超音波放射のパターンを生成するようにプログラム可能なトランスデューサのアレイを含み得る。
【0084】
いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置される。例えば、デバイスは、人の頭皮上に配置したり別の適切な方法で人の頭に非侵襲的に配置することができる。このデバイスの説明的な例は、以下の
図1に関して説明されている。いくつかの実施形態では、センサおよびトランスデューサは、低侵襲な方法で人の頭に配置される。例えば、デバイスは、皮下手術によって、または人の頭皮の直下に配置するなど、小さな切開を必要とするか切開を必要としない同様の処置によって、もしくは別の適切な方法で、人の頭に配置することができる。
【0085】
いくつかの実施形態では、多数のニューロンが構造化された位相関係と同期して発火したときに発作が起こると考えられ得る。ニューロンの集団の集合的な活動は、高次元空間で進化する点として数学的に表すことができ、各次元は単一のニューロンの膜電位に対応する。この空間では、発作は、孤立した周期的なアトラクタである安定したリミットサイクルによって表され得る。脳が日常の作業を行うとき、高次元空間の一点で表される脳の状態は、複雑な軌道をたどりながら空間を動き回り得る。しかしながら、この点が空間の特定の危険な領域、たとえば発作の誘引盆地に近づきすぎると、その点は発作状態に引っ張られる可能性がある。患者によっては、睡眠不足、アルコール摂取、特定の食品の摂取などの特定の活動により、脳の状態が発作の誘引盆地の危険な領域に近づく傾向がある。発作の発生源と推定される脳組織を切除/アブレーションする従来の治療法では、この空間の景観を変えようとしている。一部の患者にとっては発作のリミットサイクルが取り除かれるかもしれないが、他の人にとっては古いリミットサイクルがより強く誘引されるようになったり、新しいサイクルが現れるようになったりする可能性がある。さらに、電極の外科的配置を含む、脳組織へのあらゆるタイプの手術は非常に侵襲的であり、脳は非常に大きく複雑なネットワークであるため、空間的に位置を特定した脳組織の断片の除去または損傷によるネットワークレベルの影響を予測することは簡単ではない。
【0086】
説明されているシステムおよび方法のいくつかの実施形態は、発作の位置を特定して推定された発生源の脳組織を除去するのではなく、脳の状態が発作の誘引盆地に近づく時期を決定すべく、例えばEEG信号を使用して脳を監視する。脳の状態がこの危険な領域に近づいていることが検出されると、脳の状態を危険な領域から押し出すべく、例えば音響信号を使用することにより脳が乱される。言い換えれば、この空間の状況を変えようとするのではなく、説明されているシステムおよび方法のいくつかの実施形態は、脳の状況を学習し、脳の状態を監視し、必要に応じて脳にピーンという音を送信することにより、脳の状態を危険な領域から離脱させる。説明されているシステムおよび方法のいくつかの実施形態は、非侵襲的で実質的に非破壊的な神経刺激、(例えば、他の経頭蓋超音波治療よりも)より低い電力消費、および/または非侵襲的電気記録装置と組み合わされた抑制戦略を提供する。
【0087】
例えば、全身てんかんの患者の場合、説明されているシステムおよび方法のいくつかの実施形態は、視床または脳の別の適切な領域を、日中および/または夜間を通してランダムな時間に、例えば約10分ごとに刺激し得る。デバイスは、空間ピークパルス平均強度によって測定されるように、約1から100ワット/cm2の電力使用量で、約100kHzから1MHzの超音波周波数を使用し得る。別の例では、左側頭葉てんかんの患者について、説明されているシステムおよび方法のいくつかの実施形態は、EEG信号(例えば、所定の閾値を超える)に基づいて発作リスクレベルの増加を検出することに応答して、左側頭葉または脳の別の適切な領域を刺激し得る。発作リスクレベルが低下したことをEEG信号が示すまで、および/または最大刺激時間閾値(例えば、数分)に達するまで、左側頭葉は刺激され続けられ得る。所定の閾値は、患者のEEG記録でトレーニングされた機械学習トレーニングアルゴリズムを使用して決定することができ、監視アルゴリズムは、EEG信号を使用して発作リスクレベルを測定することができる。
【0088】
いくつかの実施形態では、発作抑制戦略は、その空間的および時間的解像度によって分類することができ、患者ごとに異なり得る。空間分解能は、活性化された/抑制された脳構造のサイズを意味する。いくつかの実施形態では、低い空間分解能は、数百立方ミリメートル、例えば0.1立方センチメートルのオーダーであってもよい。いくつかの実施形態では、中程度の空間解像度は、0.01立方センチメートルのオーダーであってもよい。いくつかの実施形態では、高い空間分解能は、数立方ミリメートル、例えば0.001立方センチメートルのオーダーであってもよい。時間分解能は、一般的に刺激の応答性を意味する。いくつかの実施形態では、低い時間分解能は、発作が起こりそうな時期を考慮しないランダム刺激を含み得る。いくつかの実施形態では、中程度の時間分解能は、発作確率のわずかな増加に応じた刺激を含み得る。いくつかの実施形態では、高い時間分解能は、例えば発作が始まった直後など、高い発作確率の検出に応答した刺激を含み得る。いくつかの実施形態では、中程度の時間分解能および高い時間分解能を伴う戦略を使用するには、脳活動記録装置を使用し、近い将来に発作が発生する可能性を検出するための機械学習アルゴリズムを実行する必要があり得る。
【0089】
いくつかの実施形態では、デバイスは、低い空間解像度から中程度の空間解像度および低い時間解像度を伴う戦略を使用してもよい。このデバイスは、低出力の経頭蓋超音波を使用して、発作が発生することを防ぐべく、中枢に接続された脳構造を大まかに刺激し得る。例えば、デバイスは、昼および/または夜間を通したランダムな時間に、低い空間分解能(たとえば、数百立方ミリメートルのオーダー)の超音波刺激で脳の1つまたは複数の領域を刺激することができる。このようなランダムな刺激の効果は、脳が発作の原因となるよく知られたパターンに落ち着くのを防ぐためである。デバイスは、発作の発生を防ぐために、個々の視床下核および他の適切な脳領域を高い接続性で標的にすることができる。
【0090】
いくつかの実施形態では、デバイスは、低い空間解像度から中程度の空間解像度および中程度の空間解像度から高い時間解像度を伴う戦略を使用してもよい。デバイスは、脳を非侵襲的に監視するとともに、高レベルの発作リスク(例えば、発作が1時間以内に発生する可能性が高いこと)を検出する1つまたは複数のセンサを含み得る。高い発作リスクレベルの検出に応答して、デバイスは頭蓋骨を介して脳に送信される低出力の超音波刺激を脳に印加し、発作の発生を防止/停止するために脳構造を活性化および/または抑制する。例えば、超音波刺激は、空間ピークパルス平均強度によって測定されるように、100kHzから1MHzの周波数および/または1から100ワット/cm2の電力密度を有し得る。デバイスは、視床、梨状皮質、発作病巣と同じ半球の粗いスケールの構造などの脳構造(例えば、限局性てんかん患者の場合)、および発作の発生を防ぐためのその他の適切な脳構造をターゲットにすることができる。
【0091】
図1は、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイスの異なる態様100、110、および120を示す。デバイスは、非侵襲性の発作予測および/または検出デバイスであり得る。いくつかの実施形態では、態様100において、デバイスは、ローカル処理装置102および1つまたは複数の電極104を含み得る。ローカル処理装置102は、腕時計、腕章、ネックレス、無線イヤホン、または別の適切な装置を含んでもよい。ローカル処理装置102は、データをクラウドサーバ、携帯電話、または別の適切な装置に送信するための無線および/または物理的コネクタを含み得る。ローカル処理装置102は、脳から検出された信号をセンサから受信し、脳に音響信号を印加するようにトランスデューサに命令を送信し得る。電極104は、人の脳からの信号、例えばEEG信号を検出するように構成された1つまたは複数のセンサ、および/または音響信号、例えば超音波信号を脳に印加するように構成された1つまたは複数のトランスデューサを含み得る。音響信号は、低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的であり得る。いくつかの実施形態において、1つの電極は、センサまたはトランスデューサのいずれかを含み得る。いくつかの実施形態では、1つの電極は、センサとトランスデューサとの両方を含んでもよい。いくつかの実施形態では、1個、10個、20個、または別の適切な数の電極が利用可能である。電極は、デバイスに取り外し可能に取り付けられ得る。
【0092】
いくつかの実施形態では、態様110において、デバイスは、ローカル処理装置112、センサ114、およびトランスデューサ116を含み得る。デバイスは、人の頭皮上に配置したり別の適切な方法で人の頭に非侵襲的に配置することができる。ローカル処理装置112は、腕時計、腕章、ネックレス、無線イヤホン、または別の適切な装置を含んでもよい。ローカル処理装置112は、データをクラウドサーバ、携帯電話、または別の適切な装置に送信するための無線および/または物理的コネクタを含み得る。ローカル処理装置112は、脳から検出された信号をセンサ114から受信し、脳に音響信号を印加するようにトランスデューサ116に命令を送信し得る。センサ114は、人の脳からの信号、例えばEEG信号を検出するように構成され得る。トランスデューサ116は、音響信号、例えば超音波信号を脳に印加するように構成され得る。音響信号は、低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的であり得る。いくつかの実施形態において、1つの電極は、センサまたはトランスデューサのいずれかを含み得る。いくつかの実施形態では、1つの電極は、センサとトランスデューサとの両方を含んでもよい。いくつかの実施形態では、1個、10個、20個、または別の適切な数の電極が利用可能である。電極は、デバイスに取り外し可能に取り付けられ得る。
【0093】
いくつかの実施形態では、態様120において、デバイスは、ローカル処理装置122および電極124を含み得る。デバイスは、人の頭皮上に配置したり別の適切な方法で人の耳の上方に非侵襲的に配置することができる。ローカル処理装置122は、腕時計、腕章、ネックレス、無線イヤホン、または別の適切な装置を含んでもよい。ローカル処理装置122は、データをクラウドサーバ、携帯電話、または別の適切な装置に送信するための無線および/または物理的コネクタを含み得る。ローカル処理装置122は、脳から検出された信号を電極124から受信し、および/または脳に音響信号を印加するように電極124に命令を送信し得る。電極124は、人の脳からの信号、例えばEEG信号を検出するように構成されたセンサ、および/または音響信号、例えば超音波信号を脳に印加するように構成されたトランスデューサを含み得る。音響信号は、低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的であり得る。いくつかの実施形態において、電極124は、センサまたはトランスデューサのいずれかを含み得る。いくつかの実施形態では、電極124は、センサとトランスデューサとの両方を含んでもよい。いくつかの実施形態では、1個、10個、20個、または別の適切な数の電極が利用可能である。電極は、デバイスに取り外し可能に取り付けられ得る。
【0094】
いくつかの実施形態において、デバイスは、音、動き、光信号、心拍数、および他の適切な感知様式を検出するための1つまたは複数のセンサを含み得る。たとえば、センサは、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出し得る。いくつかの実施形態では、デバイスは、ワイヤレスイヤホン、ワイヤレスイヤホンに埋め込まれたセンサ、およびトランスデューサを含み得る。センサは、ワイヤレスイヤホンが人の耳の中にある場合、人の脳からの信号、たとえばEEG信号を検出することができる。ワイヤレスイヤホンは、関連するケースまたはエンクロージャを有することができ、ケースまたはエンクロージャは、センサからの信号を受信して処理し、および/または脳に音響信号を印加するためにトランスデューサに命令を送信するためのローカル処理装置を含む。
【0095】
いくつかの実施形態では、デバイスは、可聴範囲の周波数を有する信号などの機械的信号を検出するためのセンサを含み得る。例えば、発作を示す脳からの可聴信号を検出するためにセンサを使用することができる。センサは、発作を示す脳からの可聴信号を検出するために人の頭皮上に配置された音響受信機であってもよい。別の例では、センサは、発作を示す脳からの可聴信号を検出するために人の頭皮上に配置された加速度計であってもよい。このようにして、デバイスは、発作が発生する前後に発作を「聞く」ために使用され得る。
【0096】
図2Aおよび
図2Bは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイス、およびデバイスと通信するアプリケーションを実行するモバイルデバイスの例示的な例を示す。
図2Aは、神経障害の症状を治療するために人が着用可能なデバイス200、およびデバイス200と通信するアプリケーションを実行するモバイルデバイス210の例示的な一例を示す。いくつかの実施形態では、デバイス200は、発作の予測、発作の検出、ならびに使用者または介護者への警告、状態の追跡および管理、および/または発作などの神経障害の症状の抑制が可能である。デバイス200は、BLUETOOTH(登録商標)、WIFI(登録商標)、または別の適切な接続を介して、携帯電話、時計、または別の適切なデバイスなどのモバイルデバイス210に接続することができる。デバイス200は、1つまたは複数のセンサ202で神経活動を監視し、プロセッサ204を使用して、ユーザ、介護者、または別の適切な存在とデータを共有することができる。デバイス200は、個々の患者のパターンについて学習することができる。デバイス200は、該デバイス200を着用した人の電子的な健康記録からの、脳から検出された以前の信号からのデータにアクセスすることができる。
【0097】
図2Bは、神経障害の症状を治療するために人が着用可能なデバイス、例えばデバイス200と通信するアプリケーションを実行するモバイルデバイス250および252の例示的な例を示す。例えば、モバイルデバイス250または252は、神経障害に罹患している人のリアルタイムの発作リスクを表示することができる。発作の場合、モバイルデバイス250または252は、人、介護者、または別の適切な存在に警告することができる。例えば、モバイルデバイス250または252は、発作が次の30分、次の1時間、または別の適切な期間内に予測されることを介護者に通知することができる。別の例では、モバイルデバイス250または252は、発作が起こったときに介護者に警告を送信し、および/または介護者がその人の神経障害の治療を改善するために、脳からの信号などの発作活動を記録することができる。いくつかの実施形態では、ウェアラブルデバイス200および/またはモバイルデバイス250または252は、脳から検出されたEEG信号などの信号を分析して、脳が神経障害の症状を示しているかを判断することができる。ウェアラブルデバイス200は、脳が神経障害の症状を示しているという決定に応答して、超音波信号などの音響信号を脳に印加することができる。
【0098】
いくつかの実施形態では、ウェアラブルデバイス200、モバイルデバイス250または252、および/または別の適切なコンピューターデバイスは、脳が神経障害の症状、例えば発作または別の適切な症状を示しているかを判断するために、脳から検出された1つまたは複数の信号、たとえばEEG信号または別の適切な信号を深層学習ネットワークに提供することができる。深層学習ネットワークは、患者の集団および/またはウェアラブルデバイス200を着用している人から収集されたデータに基づいてトレーニングされ得る.モバイルデバイス250または252は、人が発作を起こしそうなとき、および/または発作がなくなるとき、その人および/または介護者に警告するインターフェースを生成することができる。いくつかの実施形態では、ウェアラブルデバイス200および/またはモバイルデバイス250または252は、神経障害を患っている人との双方向通信を可能にし得る。たとえば、人は、テキスト、音声、または別の適切な入力方式を通じて、ウェアラブルデバイス200に「私はビールをさきほど飲んだのですが、発作を起こす可能性が高いのではないかと心配しています」と通知することができる。ウェアラブルデバイス200は、適切な出力モードを使用して、「分かりました。デバイスは警戒態勢に入いります。」と応答することができる。深層学習ネットワークは、この情報を使用して、その人の将来の予測を支援し得る。たとえば、深層学習ネットワークは、深層学習ネットワークの更新/トレーニングに使用されるデータにこの情報を追加し得る。別の例では、深層学習ネットワークは、その人の次の症状を予測するのに役立てるべく、この情報を入力として使用することができる。追加または代替として、ウェアラブルデバイス200は、神経障害に罹患している人の睡眠および/または食事パターンを追跡する際に人および/または介護者を支援し、要求に応じてこの情報を提供することができる。深層学習ネットワークは、深層学習ネットワークの更新/トレーニングに使用されるデータにこの情報を追加し、および/またはこの情報を入力として使用して、人の次の症状を予測するのに役立てることができる。深層学習ネットワークに関するさらなる情報は、
図11Bおよび
図11Cに関して提供される。
【0099】
図3Aは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイスと通信するモバイルデバイスおよび/またはクラウドサーバの例示的な一例300を示す。この例では、ウェアラブルデバイス302は、1つまたは複数のセンサで脳活動を監視し、そのデータをその人のモバイルデバイス304、たとえば携帯電話、腕時計、または別の適切なモバイルデバイスに送信することができる。モバイルデバイス304は、データを分析し、および/またはデータをサーバー306、例えば、クラウドサーバに送信することができる。サーバー306は、データを分析するために1つまたは複数の機械学習アルゴリズムを実行することができる。たとえば、サーバー306は、深層学習ネットワークを使用することができ、該深層学習ネットワークを使用することができるは、データまたはデータの一部を入力として受け取るとともに、1つまたは複数の予測された症状、たとえば発作の予測された強さに関する情報を含む出力を生成する。分析されたデータは、モバイルデバイス304および/またはコンピューターデバイス308上のアプリケーションに表示され得る。例えば、モバイルデバイス304および/またはコンピューターデバイス308は、神経障害に罹患している人のリアルタイムの発作リスクを表示することができる。発作の場合、モバイルデバイス304および/またはコンピューターデバイス308は、人、介護者、または別の適切な存在に警告することができる。たとえば、モバイルデバイス304および/またはコンピューターデバイス308は、発作が次の30分、次の1時間、または別の適切な期間内に予測されることを介護者に通知することができる。別の例では、モバイルデバイス304または308は、発作が起こったときに介護者に警告を送信し、および/または介護者が人の神経障害の治療を改善するために、脳からの信号などの発作活動を記録することができる。
【0100】
いくつかの実施形態では、発作を検出および/または予測するようにトレーニングされた機械学習アルゴリズムによって、1つまたは複数の警告を生成することができる。たとえば、機械学習アルゴリズムは、たとえば
図11Bおよび
図11Cに関して説明したような深層学習ネットワークを含むことができる。アルゴリズムが発作の存在を検出した場合、または発作が近い将来(たとえば1時間以内)に発生する可能性があると予測した場合、警告がモバイルアプリケーションに送信され得る。例えば、モバイルアプリケーションが患者に通知を送信することに加えて、モバイルアプリケーションは双方向通信することができ、患者は、アルゴリズムのパフォーマンスを改善するためにモバイルアプリケーションに情報を入力する能力を有し得る。たとえば、機械学習アルゴリズムが、患者が発作を起こしているという確信閾値内で確信を持てない場合、モバイルアプリケーションを介して患者に質問を送信し、患者が最近発作を起こしたかを尋ね得る。患者が「いいえ」と答えた場合、アルゴリズムはこれを考慮に入れ、それに応じてトレーニングまたは再トレーニングすることができる。
【0101】
図3Bは、本明細書に記載の技術のいくつかの実施形態による、神経障害の症状を治療するために人が着用可能なデバイスと通信するモバイルデバイスおよび/またはクラウドサーバのブロック
図350を示す。デバイス360は、腕時計、腕章、ネックレス、無線イヤホン、または別の適切な装置を含んでもよい。デバイス360は、脳から(例えば、EEGセンサ、加速度計、心電図(EKG)センサ、および/または他の適切なセンサから)信号を取得するために、1つまたは複数のセンサ(ブロック362)を含み得る。デバイス360は、センサ(ブロック362)によって取得された信号を調整、増幅、および/またはデジタル化するためのアナログフロントエンド(ブロック364)を含み得る。デバイス360は、アナログフロントエンド(ブロック364)からの出力信号をバッファリング、前処理、および/またはパケット化するためのデジタルバックエンド(ブロック366)を含み得る。デバイス360は、例えばBLUETOOTH(登録商標)を介して、デジタルバックエンド(ブロック366)からモバイルアプリケーション370にデータを送信するためのデータ送信回路(ブロック368)を含み得る。追加または代替として、データ送信回路は、例えばUSBを介してデバッグ情報をコンピュータに送信し、および/または例えばマイクロSDカードなどのローカル記憶装置にバックアップ情報を送信することができる(ブロック368)。
【0102】
モバイルアプリケーション370は、携帯電話または別の適切なデバイス上で実行することができる。モバイルアプリケーション370は、デバイス370からデータを受信(ブロック372)したり、そのデータをクラウドサーバ380に送信(ブロック374)したりすることができる。クラウドサーバ380は、モバイルアプリケーション370からデータを受信(ブロック382)したり、そのデータをデータベースに保存(ブロック383)したりすることができる。クラウドサーバ380は、検出特徴を抽出(ブロック384)したり、検出アルゴリズムを実行(ブロック386)したり、結果をモバイルアプリケーション370に送り返し(ブロック388)たりすることができる。検出アルゴリズムに関するさらなる詳細は、
図11Bおよび
図11Cに関しても含めて、本開示で後述する。モバイルアプリケーション370は、クラウドサーバ380から結果を受信(ブロック376)したり、結果をユーザに表示(ブロック378)したりすることができる。
【0103】
いくつかの実施形態では、デバイス360は、例えばインターネットを介して、データをクラウドサーバ380に直接送信することができる。クラウドサーバ380は、ユーザに表示するために結果をモバイルアプリケーション370に送信することができる。いくつかの実施形態では、デバイス360は、例えばインターネットを介して、データをクラウドサーバ380に直接送信することができる。クラウドサーバ380は、ユーザに表示するために結果をデバイス360に送り返すことができる。例えば、デバイス360は、結果を表示する画面を備えた腕時計であってもよい。いくつかの実施形態では、デバイス360は、データをモバイルアプリケーション370に送信することができ、モバイルアプリケーション370は、検出特徴を抽出したり、検出アルゴリズムを実行したり、モバイルアプリケーション370および/またはデバイス360に結果を表示したりすることができる。デバイス360、モバイルアプリケーション370、および/またはクラウドサーバ380間のやり取りの他の適切な改変が可能であり、それらは本開示の範囲内である。
【0104】
図4は、本明細書に記載の技術のいくつかの実施形態による、刺激コンポーネントおよび監視コンポーネントを含む着用可能なデバイス400のブロック図を示す。デバイス400は、人が着用可能であり(または人に取り付けられたり、または体内に埋め込まれたりするものであり)、監視コンポーネント402、刺激コンポーネント404、およびプロセッサ406を含む。監視コンポーネント402は、人の脳からの信号、例えば、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出するように構成されたセンサを含み得る。例えば、センサは脳波(EEG)センサであってもよく、信号はEEG信号などの電気信号であってもよい。刺激コンポーネント404は、脳に音響信号を印加するように構成されたトランスデューサを含み得る。例えば、トランスデューサは超音波トランスデューサであってもよく、音響信号は超音波信号であってもよい。いくつかの実施形態では、超音波信号は、低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的であり得る。いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置され得る。
【0105】
プロセッサ406は、監視コンポーネント402および刺激コンポーネント404と通信することができる。プロセッサ406は、脳から検出された信号を監視コンポーネント402から受信し、脳に音響信号を印加するように刺激コンポーネント404に指示を送信するようにプログラムされ得る。いくつかの実施形態では、プロセッサ406は、1つまたは複数のランダムな間隔で音響信号を脳に印加するために刺激コンポーネント404に命令を送信するようにプログラムされ得る。いくつかの実施形態では、刺激コンポーネント404は、2つ以上のトランスデューサを含むことができ、プロセッサ406は、1つ以上のランダムな間隔で音響信号を脳に印加する命令を送信するトランスデューサの1つを選択するようにプログラムすることができる。
【0106】
いくつかの実施形態では、プロセッサ406は、脳が神経障害の症状を示しているかを判断すべく、監視コンポーネント402からの信号を分析するようにプログラムされ得る。プロセッサ406は、脳が神経障害の症状を示しているという判断に応答して、脳に音響信号を印加するようトランスデューサに命令を送信するようにプログラムされ得る。音響信号は、神経障害の症状を抑制し得る。例えば、症状は発作であり、神経障害は、脳卒中、パーキンソン病、片頭痛、震え、前頭側脳認知症、外傷性脳損傷、うつ病、不安症、アルツハイマー病、認知症、多発性硬化症、統合失調症、脳損傷、神経変性、中枢神経系(CNS)疾患、脳症、ハンチントン病、自閉症、注意力障害過活動障害(ADHD)、筋萎縮性側方硬化症(ALS)、および脳震盪のうちの1つまたは複数を含む。
【0107】
いくつかの実施形態では、超音波トランスデューサをプログラムするソフトウェアは、(例えば、EEGセンサ、加速度計、EKGセンサ、および/または他の適切なセンサから)リアルタイムのセンサ読み取り値を、機械学習アルゴリズム、例えば
図11Bおよび
図11Cに関して説明した深層学習ネットワークを継続的に実行しているプロセッサに送信することができる。たとえば、このプロセッサはデバイス自体のローカルに存在してもよいし、またはクラウドに存在してもよい。プロセッサで実行されるこれらの機械学習アルゴリズムは、次の3つのタスクを実行し得る。1)発作の発生時期を検出する、2)発作が近い将来(例えば、1時間以内)に発生する可能性が高い時期を予測する、3)刺激超音波ビームを向ける場所を出力する。発作が始まったことをプロセッサが検出した直後に、刺激超音波ビームをオンにして、アルゴリズムの出力によって決定された位置に刺激超音波ビームを向けることができる。常に同じ特徴/焦点を有する発作のある患者の場合、良好なビーム位置が見つかった可能性がある場合、その位置は変更しない。ビームがどのように活性化されるかの別の例は、発作が近い将来に発生する可能性があるとプロセッサが予測した場合、ビームは比較的に低強度(たとえば、発作が検出されたときに使用される強度と比較して)でオンにされ得る。いくつかの実施形態では、刺激超音波ビームの標的は発作焦点自体でなくてもよい。例えば、標的は、発作の「チョークポイント」、すなわち、刺激されると発作活動を停止できる発作焦点の外の場所であり得る。
【0108】
図5は、本明細書に記載の技術のいくつかの実施形態による、実質的に非破壊的な音響刺激のための着用可能なデバイス500のブロック図を示す。デバイス500は、人が着用可能であり、監視コンポーネント502および刺激コンポーネント504を含む。監視コンポーネント502および/または刺激コンポーネント504は、非侵襲的に人の頭に配置され得る。
【0109】
監視コンポーネント502は、人の脳からの信号、例えば、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出するように構成されたセンサを含み得る。例えば、センサは脳波(EEG)センサであってもよく、信号はEEG信号であってもよい。刺激コンポーネント504は、例えば1から100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊である超音波信号を脳に印加するように構成された超音波トランスデューサを含むことができる。例えば、超音波信号は、100kHzから1MHzの間の周波数、0.001cm3から0.1cm3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm2の間の低い電力密度を有し得る。超音波信号は、神経障害の症状を抑制し得る。例えば、症状は発作であり、神経障害はてんかんまたは別の適切な神経障害であり得る。
【0110】
図6は、本明細書に記載の技術のいくつかの実施形態による、音響刺激、例えばランダム化音響刺激のためのウェアラブルデバイス600のブロック図を示す。デバイス600は、人が着用可能であり、刺激コンポーネント604および刺激コンポーネント606を含む。刺激コンポーネント604は、人の脳に音響信号を印加するように構成されたトランスデューサを含み得る。例えば、トランスデューサは超音波トランスデューサであってもよく、音響信号は超音波信号であってもよい。いくつかの実施形態では、超音波信号は、低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的であり得る。いくつかの実施形態では、トランスデューサは、非侵襲的に人の頭に配置され得る。
【0111】
いくつかの実施形態では、プロセッサ606は、ランダムな間隔で、例えば昼間および/または夜間を通じて散発的に脳組織を活性化するように、刺激コンポーネント604に命令を送信することにより、脳が発作状態に落ち着くのを防止することができる。例えば、全身てんかんの患者の場合、デバイス600は、視床または脳の別の適切な領域を、日中および/または夜間を通じてランダムな時間に、例えば約10分ごとに刺激することができる。いくつかの実施形態では、刺激コンポーネント604は別のトランスデューサを含んでもよい。デバイス600および/またはプロセッサ606は、1つまたは複数のランダムな間隔で音響信号を脳に印加すべく、トランスデューサのうちの1つを選択し得る。
【0112】
図7は、本明細書に記載の技術のいくつかの実施形態による、超音波刺激を使用して神経障害を治療するためのウェアラブルルデバイス700のブロック図を示す。デバイス700は、人が着用可能であり(または人に取り付けられたり、または体内に埋め込まれたりするものであり)、てんかん発作を治療するために使用することができる。デバイス700は、センサ702、トランスデューサ704、およびプロセッサ706を含む。センサ702は、人の脳からのEEG信号を検出するように構成され得る。トランスデューサ704は、低電力で実質的に非破壊的な超音波信号を脳に印加するように構成され得る。超音波信号は、1つまたは複数のてんかん発作を抑制することができる。例えば、超音波信号は、100kHzから1MHzの間の周波数、0.001cm
3から0.1cm
3の間の空間分解能、および/または空間ピークパルス平均強度によって測定される1から100ワット/cm
2の間の電力密度を有し得る。いくつかの実施形態では、センサおよびトランスデューサは、非侵襲的に人の頭に配置され得る。
【0113】
プロセッサ706は、センサ702およびトランスデューサ704と通信することができる。プロセッサ706は、脳から検出されたEEG信号をセンサ702から受信し、脳に超音波信号を印加すべくトランスデューサ704に命令を送信するようにプログラムされ得る。いくつかの実施形態では、プロセッサ706は、脳がてんかん発作を示しているかを判断するためにEEG信号を分析し、脳がてんかん発作を示しているという決定に応答して、超音波信号を脳に印加すべくトランスデューサ704に命令を送信するようにプログラムされ得る。
【0114】
いくつかの実施形態では、プロセッサ706は、1つまたは複数のランダムな間隔で超音波信号を脳に印加するために刺激コンポーネント704に命令を送信するようにプログラムされ得る。いくつかの実施形態では、トランスデューサ704は、2つ以上のトランスデューサを含むことができ、プロセッサ706は、1つ以上のランダムな間隔で超音波信号を脳に印加する命令を送信するトランスデューサのうちの1つを選択するようにプログラムされ得る。
【0115】
機械学習を使用して人間の脳内の超音波ビームの焦点を制御する閉ループシステム
従来のブレイン・マシン・インターフェースは、刺激を受ける脳領域をリアルタイムで変更できないという制限がある。神経障害の症状を治療するために刺激する適切な脳領域を見つけるのは難しいことが多いため、これが問題になり得る。たとえば、てんかんでは、発作を抑制または停止するために脳内のどの領域を刺激する必要があるか明確でない場合がある。適切な脳領域は、発作の焦点(位置を特定するのが難しい場合がある)、発作の抑制に役立つ可能性のある領域、または別の適切な脳領域であり得る。埋め込み型の電子応答神経刺激装置および脳深部刺激装置などの従来のソリューションは、医師が最善の推測をするか、脳の事前に決定された領域を選択することにより、一度しか配置できない。そのため、従来のシステムでは、刺激を受ける脳領域をリアルタイムで変更することはできない。
【0116】
本発明者らは、刺激の脳領域がリアルタイムで変更され得る場合、特に脳領域が遠隔で変更され得る場合、神経障害の治療がより効果的である可能性があることを認識した。脳領域はリアルタイムおよび/またはリモートで変更され得ることから、毎秒数十(またはそれ以上)の場所を試行することができるため、平均的な発作の持続時間に対して迅速に、刺激に適した脳領域に近づくことができる。このような治療は、超音波を使用して脳を刺激することで達成することができる。いくつかの実施形態では、患者は超音波トランスデューサのアレイを着用し(例えば、そのようなアレイは人の頭皮に配置される)、超音波ビームは、フェーズドアレイなどのビームフォーミング法を使用して操作され得る。いくつかの実施形態では、くさび型トランスデューサを用いることによって、より少ない数のトランスデューサを使用することができる。いくつかの実施形態では、くさび型トランスデューサを使用する場合、くさび型トランスデューサの電力要件が低いため、デバイスはエネルギー効率がより良好である。米国特許出願公開第2018/0280735号明細書は、くさび型トランスデューサの例示的な実施形態に関するさらなる情報を提供し、その全体が参照により本明細書に援用される。ビームのターゲットは、アレイをプログラムすることで変更することができる。特定の脳領域の刺激が機能していない場合、ビームを脳の別の領域に移動して、患者に害を与えることなく再試行することができる。
【0117】
いくつかの実施形態では、脳の状態を感知する機械学習アルゴリズムは、例えば深層学習ネットワークを含む閉ループシステムを形成すべく、ビームステアリングアルゴリズムに接続され得る。脳の状態を感知する機械学習アルゴリズムは、EEGセンサ、EKGセンサ、加速度計、および/または他の適切なセンサからの記録を入力として取得することができる。さまざまなフィルタをこれらの組み合わされた入力に適用することができ、データの有用な表現を抽出すべく、これらのフィルタの出力を一般的に非線形の方法で組み合わせてることができる。次に、この高レベルの表現で分類器をトレーニングすることができる。これは、深層学習を使用して、および/またはフィルタを事前に指定し、サポートベクターマシン(SVM:Support Vector Machine)などの分類器をトレーニングすることによって達成できる。いくつかの実施形態では、機械学習アルゴリズムは、高次の脳の状態を表す潜在空間を通じて高次元入力データを滑らかに変化する軌跡へマッピングすべく、長短期記憶(LSTM:long short-term memory)ユニットベースのRNN(recurrent neural network)などのリカレントニューラルネットワーク(RNN)をトレーニングすることを含む。プロセッサで実行されるこれらの機械学習アルゴリズムは、次の3つのタスクを実行し得る。1)神経障害、例えば発作の症状が現れる時期を検出する、2)近い将来(例えば、1時間以内)に症状が発生する可能性が高い時期を予測する、3)音響信号、例えば超音波ビームの刺激を向ける場所を出力する。これらのタスクのいずれかまたはすべては、深層学習ネットワークまたは別の適切なネットワークを使用して実行され得る。この技術に関するさらなる詳細は、
図11Bおよび
図11Cを参照することを含めて本開示で後述する。
【0118】
てんかんを例にとると、すでに始まっている発作を抑制または止めることが目標である。この例では、閉ループシステムは次のように動作する。最初に、システムは、ビームが事前に設定された初期位置(たとえば、側頭葉てんかん患者の海馬)に配置された状態で、発作活動の「強さ」を測定する測定アルゴリズムを実行することができる。次に、ビーム位置をわずかに変更し、測定アルゴリズムを使用して、結果として生じる発作強度の変化を測定することができる。発作活動が減少した場合、システムはビームをこの方向に動かし続ける。発作活動が増加した場合、システムはビームを反対または異なる方向に動かすことができる。ビーム位置は電子的にプログラムできることから、毎秒数十のビーム位置を試すことができるため、平均発作の持続時間に対して迅速に適切な刺激位置に近づくことができる。
【0119】
いくつかの実施形態では、いくつかの脳領域は刺激に不適切な場合がある。たとえば、脳幹の一部を刺激すると、不可逆的な損傷または不快感を引き起こす可能性がある。この場合、閉ループシステムは、適切な刺激位置が実行可能な点の集合から取得される「制約された」勾配降下法ソリューションに従うことができる。これにより、立ち入り禁止の脳領域が決して刺激されないようにすることができる。
【0120】
図8は、本明細書に記載の技術のいくつかの実施形態による、音響刺激を駆動するためのウェアラブルデバイス800のブロック図を示す。デバイス800、例えばウェアラブルデバイスは、機械学習を使用して脳内の超音波ビームの焦点を操作する閉ループシステムの一部であり得る。デバイス800は、人の脳からの信号、例えば、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出するように構成された監視コンポーネント802、例えばセンサを含み得る。例えば、センサはEEGセンサであってもよく、信号はEEG信号などの電気信号であってもよい。デバイス800は、脳に音響信号を印加するようにそれぞれ構成された刺激コンポーネント804、例えば一組のトランスデューサを含み得る。例えば、トランスデューサのうちの1つまたは複数は超音波トランスデューサであってもよく、音響信号は超音波信号であってもよい。センサおよび/またはトランスデューサの組は、非侵襲的に人の頭に配置され得る。いくつかの実施形態では、デバイス800は、センサおよびトランスデューサの組と通信するプロセッサ806を含み得る。プロセッサ806は、脳から検出された以前の信号からのデータでトレーニング済み統計モデルを使用して、トランスデューサのうちの1つを選択することができる。例えば、脳から検出された以前の信号からのデータは、人の電子的な健康記録からアクセスされ得る。
【0121】
図9は、本明細書に記載の技術のいくつかの実施形態による、音響刺激を駆動するためのウェアラブルデバイス用のフローチャート900を示す。
902において、プロセッサ、例えばプロセッサ806は、脳から検出された第1の信号からのデータをセンサから受信することができる。
【0122】
904において、プロセッサはトレーニング済みの統計モデルにアクセスすることができる。統計モデルは、脳から検出された以前の信号からのデータを用いてトレーニングされ得る。例えば、統計モデルは、脳から検出された以前の信号からのデータを用いてトレーニングされた深層学習ネットワークを含み得る。
【0123】
906において、プロセッサは、神経障害、例えばてんかん発作の症状の第1の予測強度を示す出力を取得すべく、脳から検出された第1の信号からのデータをトレーニング済み統計モデル、たとえば深層学習ネットワークへの入力として提供することができる。
【0124】
908において、症状の第1の予測強度に基づいて、プロセッサは、第1の音響信号を印加する第1の命令を送信するために、第1の方向においてトランスデューサのうちの1つを選択することができる。例えば、第1の音響信号は、例えば1から100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である超音波信号であり得る。音響信号は、神経障害の症状を抑制し得る。
【0125】
910において、プロセッサは、第1の音響信号を脳に印加するために、選択されたトランスデューサに命令を送信することができる。
いくつかの実施形態では、プロセッサは、神経障害の症状の第2の予測強度を示す出力を得るべく、脳から検出された第2の信号からのデータをトレーニング済み統計モデルへの入力として提供するようにプログラムされ得る。第2の予測強度が第1の予測強度よりも小さいと判定された場合、プロセッサは、第2の音響信号を印加する第2の命令を送信すべく、第1の方向においてトランスデューサのうちの1つを選択することができる。第2の予測強度が第1の予測強度よりも大きいと判定された場合、プロセッサは、第2の音響信号を印加する第2の命令を送信すべく、第1の方向と反対の方向または第1の方向と異なる方向においてトランスデューサのうちの1つを選択することができる。
【0126】
新規な検出アルゴリズム
従来のアプローチでは、発作の検出を分類の問題と考慮している。たとえば、EEGデータのウィンドウ(たとえば、5秒の長さ)は、分類器に入力され得、該分類器は、入力が発作によるものか否かを表すバイナリラベルを出力する。アルゴリズムをリアルタイムで実行するには、EEGデータの連続するウィンドウでアルゴリズムを実行する必要がある。しかしながら、発明者らは、そのようなアルゴリズム構造、またはアルゴリズムのトレーニングにおいて、脳が発作と非発作との間で迅速に行き来しないことを提供するものがないことを見出した。現在のウィンドウが発作である場合、次のウィンドウも発作である可能性が高くなる。この推論は、発作の最後に関してのみ間違う。同様に、現在のウィンドウが発作ではない場合、次のウィンドウも発作ではない可能性が高くなる。この推論は、発作の最初に関してのみ間違う。発明者は、短い時間の尺度で振動するネットワーク出力にペナルティを課すことによって、発作状態の「滑らかさ」をアルゴリズムの構造またはトレーニングに反映することが好ましいことを認識した。発明者らは、例えば、出力の全変動に比例する損失関数に正規化項を追加すること、または出力の(有限差分を介して計算された)導関数のL1/L2ノルム、もしくは出力の二次導関数のL1/L2ノルムに比例する損失関数に正規化項を追加することによってこれを達成した。いくつかの実施形態では、LSTMユニットを備えたRNNは、自動的にスムーズな出力を提供することができる。いくつかの実施形態では、検出出力の平滑性を達成する方法は、従来の非平滑検出アルゴリズムをトレーニングし、その結果を因果的なローパスフィルタに供給し、このローパスでフィルタリングされた出力を最終結果として使用することである。これにより、最終結果がスムーズになる。たとえば、非スムーズ検出アルゴリズムは、次の式の一方または両方を使用して最終結果を生成することができる。
【0127】
【0128】
【数2】
式(1)および式(2)で、y[i]は、サンプルの発作、または発作なしのグラウンドトゥルースラベルである。
【0129】
は、サンプルiのアルゴリズムの出力である。L(w)は、wによってパラメータ化されたモデルで評価された機械学習損失関数である(ネットワークの重みを表すことを意味する)。L(w)の最初の項は、アルゴリズムが発作をどの程度正確に分類するかを測定することができる。L(w)の第2項(λを掛けたもの)は、アルゴリズムが時間とともに滑らかに変化する解を学習することを促進する正則化項である。式(1)および式(2)は、示されているように正則化の2つの例である。式(1)は全変動(TV)ノルムであり、式(2)は一次導関数の絶対値である。両方の式は、滑らかさを強制しようと試みる。式(1)では、TVノルムは滑らかな出力では小さく、滑らかでない出力では大きくなる。式(2)では、滑らかさを強制するために一次導関数の絶対値にペナルティが課される。場合によっては、式(1)が式(2)よりもうまく機能する場合があり、逆もまた同様である。その結果は、式(1)を使用して従来の非平滑検出アルゴリズムをトレーニングして、最終結果を式(2)を使用してトレーニングされた同様のアルゴリズムと比較することにより経験的に決定され得る。
【0130】
従来、EEGデータにはバイナリ形式で注釈が付けられているため、ある瞬間は発作ではないと分類され、次の瞬間は発作として分類される。発作の開始および終了を特定する客観的な方法がない場合があるため、発作の正確な開始時間および終了時間は比較的任意である。しかしながら、従来のアルゴリズムを使用すると、検出アルゴリズムが注釈と完全に一致しないというペナルティが課せられる可能性がある。発明者らは、例えば、0から1に上昇し、1から0に滑らかに下降するスムーズなウインドウラベルを使用して、データに「スムーズに」注釈を付ける方がよい場合があることを認識した。0は非発作を表し、1は発作を表す。この注釈スキームは、発作が時間の経過とともに進化し、正確な境界設定にあいまいさが含まれる可能性があることをよりよく反映し得る。したがって、発明者らは、この注釈スキームを適用して、発作検出を検出問題から回帰機械学習問題に作り直した。
【0131】
図10は、本明細書に記載の技術のいくつかの実施形態による、注釈付き信号データに基づくトレーニング済み統計モデルを使用するデバイスのブロック図を示す。統計モデルは、深層学習ネットワークまたは別の適切なモデルを含むことができる。デバイス1000、例えばウェアラブルデバイスは、人の脳からの信号、例えば、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出するように構成された監視コンポーネント1002、例えばセンサを含み得る。例えば、センサはEEGセンサであってもよく、信号はEEG信号であってもよい。デバイス1000は、脳に音響信号を印加するようにそれぞれ構成された刺激コンポーネント1004、例えば一組のトランスデューサを含み得る。例えば、トランスデューサのうちの1つまたは複数は超音波トランスデューサであってもよく、音響信号は超音波信号であってもよい。センサおよび/またはトランスデューサの組は、非侵襲的に人の頭に配置され得る。
【0132】
いくつかの実施形態では、デバイス1000は、センサおよびトランスデューサの組と通信するプロセッサ1006を含み得る。プロセッサ1006は、健康状態の識別に関連する1つまたは複数の値、例えば神経障害の症状の強度の増加に関連するそれぞれの値で注釈が付けられた信号データでトレーニング済みの統計モデルを使用して、複数のトランスデューサのうちの1つを選択することができる。例えば、信号データは、脳から検出された以前の信号からのデータを含むことができるとともに、人の電子的な健康記録からアクセスされ得る。いくつかの実施形態において、統計モデルは、神経障害の症状の強さの増加に関連する、例えば0から1までのそれぞれの値で注釈が付けられた脳から検出された以前の信号からのデータでトレーニングされ得る。いくつかの実施形態では、統計モデルは、統計モデルの出力の変動、出力の導関数のL1/L2ノルム、または出力の2次導関数のL1/L2ノルムに比例する正規化項を有する損失関数を含み得る。
【0133】
図11Aは、本明細書に記載の技術のいくつかの実施形態による、注釈付き信号データに基づくトレーニング済み統計モデルを使用するデバイス用のフローチャート1100を示す。
【0134】
1102において、プロセッサ、例えばプロセッサ1006は、脳から検出された第1の信号からのデータをセンサから受信することができる。
1104において、プロセッサはトレーニング済みの統計モデルにアクセスすることができ、統計モデルは、健康状態の識別に関連する1つ以上の値、例えば神経障害の症状の強さの増加に関連するそれぞれの値(例えば0と1との間の値)で注釈が付けられた、脳から検出された以前の信号からのデータを使用してトレーニングされたものである。
【0135】
1106において、プロセッサは、神経障害、例えばてんかん発作の症状の第1の予測強度を示す出力を取得すべく、脳から検出された第1の信号からのデータをトレーニング済み統計モデルへの入力として提供することができる。
【0136】
1108において、症状の第1の予測強度に基づいて、プロセッサは、第1の音響信号を印加する第1の命令を送信するために、第1の方向に複数のトランスデューサのうちの1つを選択することができる。
【0137】
1110において、プロセッサは、第1の音響信号を脳に印加するために、選択されたトランスデューサに命令を送信することができる。例えば、第1の音響信号は、例えば1から100ワット/cm2の低電力密度を有するとともに、脳に印加された場合に組織に対して実質的に非破壊的である超音波信号であり得る。音響信号は、神経障害の症状を抑制し得る。
【0138】
いくつかの実施形態では、プロセッサは、神経障害の症状の第2の予測強度を示す出力を得るべく、脳から検出された第2の信号からのデータをトレーニング済み統計モデルへの入力として提供するようにプログラムされ得る。第2の予測強度が第1の予測強度よりも小さいと判定された場合、プロセッサは、第2の音響信号を印加する第2の命令を送信すべく、第1の方向においてトランスデューサのうちの1つを選択することができる。第2の予測強度が第1の予測強度よりも大きいと判定された場合、プロセッサは、第2の音響信号を印加する第2の命令を送信すべく、第1の方向と反対の方向または第1の方向と異なる方向においてトランスデューサのうちの1つを選択することができる。
【0139】
いくつかの実施形態において、発明者らは、神経障害の1つまたは複数の他の症状を検出するための深層学習ネットワークを開発した。たとえば、発作を予測するために深層学習ネットワークを使用することができる。深層学習ネットワークは、データをn次元表現空間(たとえば16次元)に埋め込むか符号化するための深層畳み込みニューラルネットワーク(DCNN)と、時間とともに表現空間の変化を観察することによって検出スコアを計算するリカレントニューラルネットワーク(RNN)とを含む。しかしながら、深層学習ネットワークはこれに限定されず、神経障害の1つまたは複数の症状を予測するのに適した代替または追加のアーキテクチャコンポーネントを含んでもよい。
【0140】
いくつかの実施形態では、深層学習ネットワークへの入力として提供される特徴は、時間領域または周波数領域で受信および/または変換されてもよい。いくつかの実施形態では、周波数領域ベースの特徴を使用してトレーニングされたネットワークは、時間領域ベースの特徴を使用してトレーニングされた別のネットワークと比較して、より正確な予測を出力することができる。たとえば、周波数領域ベースの機能を使用してトレーニングされたネットワークは、発作中に得られたEEG信号データに誘導された波形が時間的に制限された露出を有し得るため、より正確な予測を出力することができる。したがって、例えばドブシー4タブ(db-4)マザーウェーブレットまたは別の適切なウェーブレットを使用する離散ウェーブレット変換(DWT:discrete wavelet transform)を使用して、EEG信号データを周波数領域に変換することができる。EEG信号データを深層学習ネットワークへの入力に適した形式に変換するために、他の適切なウェーブレット変換が追加的または代替的に使用されてもよい。いくつかの実施形態では、各チャネルにおけるEEG信号データの1秒のウィンドウが選択され、DWTが5レベルまで又は別の適切な数のレベルまで適用され得る。この場合、深層学習ネットワークへの各バッチ入力は、(バッチサイズxサンプリング周波数xEEGチャネルの数xDWTレベル+1)に等しい次元を有するテンソルであり得る。このテンソルは、深層学習ネットワークのDCNNエンコーダに提供される。いくつかの実施形態では、信号統計は人によって異なり、特定の人でも経時的に変化し得る。したがって、特に提供されたトレーニングデータが十分に大きくない場合、ネットワークは過剰適合の影響を受けやすい可能性がある。この情報は、DCNNエンコーダが、少なくとも時間的ドリフトが発作に関する情報を伝達するスペースに信号を埋め込むことができるように、ネットワーク用のトレーニングフレームワークを開発する際に利用され得る。トレーニング中に、DCNNエンコーダに適合させるべく、以下で説明するシャム損失および分類損失が含む1つまたは複数の目的関数を使用することができる。
【0141】
1.シャム損失ワンショットまたは数ショットの学習フレームワーク、即ちトレーニングデータセットが小さいフレームワークでは、シャム損失ベースのネットワークは、一対の入力インスタンスが同じカテゴリからのものであるか否かを示すように、設計され得る。ネットワークの設定は、同じ患者において時間的に近い2つのサンプルの双方が同じカテゴリからのものであるか否かを検出することを目的とし得る。
【0142】
2.分類の損失バイナリクロスエントロピーは、教師あり学習に広く使用されている目的関数である。この目的関数は、区分的動作およびEEG信号統計の主観性に関わらず、クラス間の距離を可能な限り増やしながら、同じカテゴリの埋め込み間の距離を減らすために使用され得る。対のデータセグメントマットは、サンプルの比較を2次関数的に増加させるのに役立つため、データの不足によって生じる過剰適合を軽減する。いくつかの実施形態では、トレーニングデータのバッチが形成されるたびに、データ拡張を支援すべく1秒のウィンドウの開始をランダムに選択することによって、トレーニングデータのサイズを増加させることができる。
【0143】
いくつかの実施形態では、DCNNエンコーダは、フラクショナルマックスプーリング(FMP:fractional max-pooling)を備えた13層の2D畳み込みニューラルネットワークを含み得る。DCNNエンコーダをトレーニングした後、このネットワークの重みは固定され得る。DCNNエンコーダからの出力は、最終的な検出のためにRNNへの入力層として使用され得る。いくつかの実施形態では、RNNは、双方向LSTMと、該双方向LSTMに続いて完全に接続された2つのニューラルネットワーク層とを含み得る。一例では、RNNは、30個の1秒周波数領域のEEG信号サンプルをDCNNエンコーダに供給した後、各試行で結果として生じる出力をRNNに供給することによってトレーニングされ得る。
【0144】
いくつかの実施形態では、データ拡張および/または統計的推論は、深層学習ネットワークの推定誤差を低減するのに役立ち得る。一例では、この深層学習ネットワーク用に提案されたセットアップに関して、各30秒の時間ウィンドウは、1秒の時間ウィンドウの開始にジッタを追加することによって複数回評価され得る。サンプリングの数は、計算能力に依存し得る。たとえば、上述したセットアップの場合、リアルタイム機能は、最大30回のモンテカルロシミュレーションで維持され得る。
【0145】
上述した深層学習ネットワークは一例の実装に過ぎず、他の実装が採用され得ることを理解されたい。例えば、いくつかの実施形態では、1つまたは複数の他のタイプのニューラルネットワーク層が、上述したアーキテクチャの1つまたは複数の層の代わりに、またはそれに加えて、深層学習ネットワークに含まれてもよい。例えば、いくつかの実施形態では、1つまたは複数の畳み込み、転置畳み込み、プーリング、アンプーリング層、および/またはバッチ正規化が、深層学習ネットワークに含まれてもよい。別の例として、アーキテクチャは、隣接する層のペア間で非線形変換を実行するために1つまたは複数の層を含んでもよい。非線形変換は、本明細書で説明した技術の態様がこの点で限定されないため、正規化線形ユニット(ReLU)変換、シグモイド、および/または他の任意の適切なタイプの非線形変換であってもよい。
【0146】
改変の別例として、いくつかの実施形態では、LSTMアーキテクチャの代わりに、またはLSTMアーキテクチャに加えて、他の適切なタイプのリカレントニューラルネットワークアーキテクチャを使用することができる。
【0147】
上述したアーキテクチャでは、例示的な寸法は、様々な層に対する入力および出力のために提供されるが、これらの寸法は例示の目的のみであり、他の寸法が他の実施形態で使用され得ることを理解されたい。
【0148】
トレーニングデータからニューラルネットワークパラメータを推定するために、任意の適切な最適化手法を使用することができる。例えば、以下の最適化技術の1つまたは複数を使用してもよい。確率的勾配降下法(SGD:stochastic gradient descent)、ミニバッチ勾配降下法、運動量SGD、ネステロフ加速勾配法、アダグラード、アダデルタ、RMSprop、適応モーメント推定(Adam:Adaptive Moment Estimation)、AdaMax、ネステロフ加速適応モーメント推定(Nadam:Nesterov-accelerated Adaptive Moment Estimation)、AMSGrad。
【0149】
図11Bは、本明細書に記載の技術のいくつかの実施形態による、神経障害の1つまたは複数の症状を検出するために使用できる畳み込みニューラルネットワーク1150を示す。本明細書に記載の深層学習ネットワークは、畳み込みニューラルネットワーク1150を含んでもよく、それに加えてまたはそれに代えて、脳が神経障害の症状を示していることを検出するため、および/または音響信号が脳の領域へ伝達することを誘導するために適した別のタイプのネットワークを含んでもよい。例えば、発作を検出し、および/または超音波信号を送信するための脳の位置を予測するために、畳み込みニューラルネットワーク1150を使用することができる。図示されるように、畳み込みニューラルネットワークは、入力1152(例えば、テンソル)に関する情報を受信するように構成された入力層1154と、出力を提供するように構成された出力層1158(例えば、n次元表現空間における分類)と、入力層1154と出力層1158との間に接続された複数の隠れ層1156とを備える。複数の隠れ層1156は、畳み込み層およびプーリング層1160および完全に接続された層1162を含む。
【0150】
入力層1154の後には、1つまたは複数の畳み込み層およびプーリング層1160が続き得る。畳み込み層は、畳み込み層への入力(例えば、入力1152)よりも空間的に小さい(例えば、より小さな幅および/または高さを有する)フィルタの組を含み得る。各フィルタは、すべての空間位置でのフィルタの応答を示す活性化マップ(例えば、2次元活性化マップ)を生成すべく、畳み込み層への入力で畳み込まれ得る。畳み込み層の後には、畳み込み層の出力をダウンサンプリングして次元を縮小するプーリング層が続き得る。プーリング層は、最大プーリングおよび/またはグローバル平均プーリングなどの様々なプーリング技術のいずれかを使用することができる。いくつかの実施形態では、ダウンサンプリングは、ストライドを使用して、畳み込み層自体によって(例えば、プーリング層なしで)実行され得る。
【0151】
畳み込み層およびプーリング層1160の後に、完全に接続された層1162が続き得る。完全に接続された層1162は、前の層(例えば、畳み込み層またはプーリング層)から入力を受け取り、次の層(例えば、出力層1158)に出力を提供する1つまたは複数のニューロンをそれぞれ有する1つまたは複数の層を含み得る。完全に接続された層1162は、所定の層の各ニューロンが前の層の各ニューロンから入力を受け取り、次の層の各ニューロンに出力を提供し得るので、「密」として説明され得る。完全に接続された層1162の後に、畳み込みニューラルネットワークの出力を提供する出力層1158が続き得る。出力は、例えば、入力1152(または入力1152の任意の部分)がクラスの組のうちどのクラスに属するかを示すことができる。畳み込みニューラルネットワークは、確率的勾配降下型アルゴリズムまたは別の適切なアルゴリズムを使用してトレーニングされ得る。畳み込みニューラルネットワークは、バリデーションセットの精度(たとえば、トレーニングデータから差し出された部分)が飽和するまで、または任意の他の適切な基準を使用してトレーニングを続けることができる。
【0152】
図11Bに示される畳み込みニューラルネットワークは、一例の実装にすぎず、他の実装が使用可能であることを理解されたい。たとえば、
図11Bに示す畳み込みニューラルネットワークに1つ以上の層を追加してもよいし、削除してもよい。畳み込みニューラルネットワークに追加可能な追加サンプル層は、パッド層、連結層、およびアップスケール層を含む。アップスケール層は、層への入力をアップサンプリングするように構成され得る。ReLU層は、入力への伝達関数として整流器(ランプ関数と呼ばれることもある)を適用するように構成され得る。パッド層は、入力の1つまたは複数の次元をパディングすることによって、層への入力のサイズを変更するように構成され得る。連結層は、複数の入力を結合するように構成され得る(たとえば、複数の層からの入力を結合する)。
【0153】
畳み込みニューラルネットワークは、本明細書に記載の様々な機能のいずれかを実行すべく採用され得る。いくつかの実施形態では、予測を行うために複数の畳み込みニューラルネットワークを使用できることを理解されたい。第1および第2のニューラルネットワークは、異なる層の配置を含み、および/または異なるトレーニングデータを使用してトレーニングされ得る。
【0154】
図11Cは、本明細書に記載の技術のいくつかの実施形態による、深層学習ネットワークからの予測を含む例示的なインターフェース1170を示す。インターフェース1170は、コンピューターデバイス、例えばコンピューターデバイス308または別の適切なデバイス上に表示するために生成され得る。ウェアラブルデバイス、モバイルデバイス、および/または別の適切なデバイスは、脳から検出された1つまたは複数の信号、たとえばEEG信号または別の適切な信号をコンピューターデバイスに提供することができる。例えば、インターフェース1170は、EEG信号データを含む信号データ1172を示す。この信号データは、脳が神経障害の症状、例えば発作または別の適切な症状を示しているかを判断するために、深層学習ネットワークをトレーニングするように使用され得る。インターフェース1170はさらに、予測された発作および発作を示す医師の注釈を伴うEEG信号データ1174を示す。予測される発作は、深層学習ネットワークからの出力に基づいて決定され得る。本発明者らは、発作を検出するためのそのような深層学習ネットワークを開発し、予測が神経内科医からの注釈に密接に対応することを見出した。例えば、
図11Cに示されるように、予測される発作を示すスパイク1178は、発作を示す医師の注釈1176と重複するか、またはほぼ重複することが見出されている。
【0155】
コンピューターデバイス、モバイルデバイス、または別の適切なデバイスは、人が発作を起こしそうなとき、および/または発作がなくなるとき、その人および/または介護者に警告すべく、インターフェース1170の一部を生成することができる。モバイルデバイス、例えばモバイルデバイス304、および/またはコンピューターデバイス、例えばコンピューターデバイス308上で生成されたインターフェース1170は、発作が検出されたか否かについての表示1180または1182を表示することができる。例えば、モバイルデバイスは、神経障害に罹患している人のリアルタイムの発作リスクを表示することができる。発作の場合、モバイルデバイスは、人、介護者、または別の適切な存在に警告することができる。例えば、モバイルデバイスは、発作が次の30分、次の1時間、または別の適切な期間内に予測されることを介護者に通知することができる。別の例では、モバイルデバイスは、発作が起こったときに介護者に警告を送信し、および/または介護者が人の神経障害の治療を改善するために、脳からの信号などの発作活動を記録することができる。
【0156】
消費電力およびパフォーマンスを最適化するための階層型アルゴリズム
本発明者らは、デバイスがバッテリ充電中ではない期間に長時間にわたって機能することを可能にするために、可能な限り電力消費を低減することが必要であることを認識した。電力消費を支配する少なくとも2つの活動があり得る。
【0157】
生理学的測定値(たとえば、発作と発作ではない、または近い将来に発作を起こすリスクの測定など)に基づいて脳の状態を分類すべく、機械学習アルゴリズム(深層学習ネットワークなど)を実行すること、および/または
データの機械学習アルゴリズムをさらに処理および/または実行するために、デバイスから携帯電話またはサーバーにデータを送信すること。
【0158】
いくつかの実施形態では、計算量の少ないアルゴリズムをデバイス、例えばウェアラブルデバイスで実行することができ、アルゴリズムの出力が指定された閾値を超える場合、デバイスは、例えば無線をオンにして、より計算量の多いアルゴリズムを介してさらに処理するための、携帯電話またはサーバー(クラウドサーバなど)に関連するデータへ送信することができる。発作の検出を例にとると、計算量の多いアルゴリズム、即ち重いアルゴリズムでは、偽陽性率および偽陰性率が低くなり得る。計算量の少ない、即ち軽いアルゴリズムを得るために、いずれかのレートが犠牲となり得る。本発明者らは、より多くの偽陽性、すなわち高感度(例えば、真の発作を決して見逃さない)および低い特異性(例えば、発作がないときに、しばしばデータを発作としてラベル付けする多くの偽陽性)を有する検出アルゴリズムを可能にすることが重要であると認識した。デバイスの軽量アルゴリズムがデータを発作としてラベル付けするときは常に、デバイスは、重いアルゴリズムを実行すべく、データをモバイルデバイスまたはクラウドサーバに送信し得る。デバイスは、重いアルゴリズムの結果を受信し、その結果をユーザに表示することができる。このように、デバイス上の軽いアルゴリズムは、たとえば、計算能力および/または送信されるデータ量を削減することによって、デバイス、携帯電話、および/またはクラウドサーバを含むシステム全体の予測性能を維持しながら、消費される電力量を大幅に削減するフィルタとして機能することができる。
【0159】
図12は、本明細書に記載の技術のいくつかの実施形態による、脳のエネルギー効率の高い監視を行うためのデバイスのブロック図を示す。デバイス1200、例えばウェアラブルデバイスは、人の脳からの信号、例えば、電気的な信号、機械的な信号、光学的な信号、赤外線信号、または別の適切なタイプの信号を検出するように構成された監視コンポーネント1202、例えばセンサを含み得る。例えば、センサはEEGセンサであってもよく、信号はEEG信号などの電気信号であってもよい。センサは、非侵襲的に人の頭に配置され得る。
【0160】
デバイス1200は、センサと通信するプロセッサ1206を含み得る。プロセッサ1206は、健康状態を識別し、例えば神経障害の症状の強さを予測し、識別された健康状態、例えば予測された強度に基づいて、識別された健康状態、例えば予測された強度を裏付けるか又は否定すべく、信号からのデータをデバイス1200の外部にあるプロセッサ1256に提供するようにプログラムされ得る。
【0161】
図13は、本明細書に記載の技術のいくつかの実施形態による、脳のエネルギー効率の高い監視を行うためのデバイス用のフローチャート1300を示す。
1302において、プロセッサ、例えばプロセッサ1206は、脳から検出された信号からのデータをセンサから受信することができる。
【0162】
1304において、プロセッサはトレーニング済みの第1の統計モデルにアクセスすることができる。第1の統計モデルは、脳から検出された以前の信号からのデータを用いてトレーニングされ得る。
【0163】
1306において、プロセッサは、例えば神経障害の症状の予測される強度を示す、健康状態を識別する出力を取得すべく、トレーニング済みの第1の統計モデルへの入力として脳から検出された信号からのデータを提供する。
【0164】
1308において、プロセッサは、予測された強度が症状の存在を示す閾値を超えるかを決定することができる。
1310において、閾値を超える予測強度に応答して、プロセッサは、信号からのデータをデバイス外部の第2のプロセッサに送信することができる。いくつかの実施形態では、第2のプロセッサ、例えばプロセッサ1256は、識別された健康状態、例えば症状の予測された強度を裏付けるか又は否定する出力を得るべく、信号からのデータをトレーニング済みの第2の統計モデルに提供するようにプログラムされ得る。
【0165】
いくつかの実施形態では、トレーニング済みの第1の統計モデルは、高感度および低特異性を有するようにトレーニングされる。いくつかの実施形態では、トレーニング済みの第2の統計モデルは、高感度および高特異性を有するようにトレーニングされ得る。従って、トレーニング済みの第1の統計モデルを使用する第1のプロセッサは、トレーニング済みの第2の統計モデルを使用する第1のプロセッサよりも少ない電力量を使用し得る。
【0166】
コンピュータアーキテクチャの例
本明細書に記載の技術の実施形態のいずれかに関連して使用することができるコンピュータシステム1400の例示的な実装を
図14に示す。コンピュータシステム1400は、1つまたは複数のプロセッサ1410と、非一時的なコンピュータ可読記憶媒体(例えば、メモリ1420および1つまたは複数の不揮発性記憶媒体1430)を含む1つまたは複数の製品を含む。プロセッサ1410は、本明細書に記載の技術の態様がこの点で限定されないため、任意の適切な方法で、メモリ1420および不揮発性記憶装置1430へのデータの書き込みおよびデータの読み取りを制御することができる。本明細書に記載の機能のいずれかを実行するために、プロセッサ1410は、プロセッサ1410によって実行するためのプロセッサ実行可能命令を格納する非一時的なコンピュータ可読記憶媒体として機能し得る1つ以上の非一時的なコンピュータ可読記憶媒体(例えば、メモリ1420)に格納された1つ以上のプロセッサ実行可能命令を実行し得る。
【0167】
また、コンピューターデバイス1400は、ネットワーク入力/出力(I/O)インターフェース1440を含むことができ、該ネットワークI/Oインターフェース1440を介してコンピューターデバイスが他のコンピューターデバイスと(例えば、ネットワークを通じて)通信することができる。また、コンピューターデバイス1400は、1つまたは複数のユーザI/Oインターフェース1450を含むことができ、ユーザI/Oインターフェース1450を介してコンピューターデバイスが、ユーザに出力を提供するとともに、ユーザから入力を受け取ることができる。ユーザI/Oインターフェースは、キーボード、マウス、マイクロホン、表示装置(例えば、モニターまたはタッチスクリーン)、スピーカー、カメラ、および/または他の様々なタイプのI/Oデバイスなどのデバイスを含み得る。
【0168】
上述した実施形態は、多くの方法のいずれかで実施することができる。例えば、実施形態は、ハードウェア、ソフトウェア、またはそれらの組み合わせを使用して実施することができる。ソフトウェアで実装される場合、ソフトウェアコードは、単一のコンピューターデバイスで提供されるか、複数のコンピューターデバイスに分散されるかに関わらず、任意の適切なプロセッサ(マイクロプロセッサなど)またはプロセッサの集合で実行することができる。上記の機能を実行する任意のコンポーネントまたはコンポーネントの集合は、一般に、上記の機能を制御する1つまたは複数のコントローラと見なすことができることを理解されたい。1つまたは複数のコントローラは、専用ハードウェア、またはマイクロコードまたはソフトウェアを使用して上記の機能を実行するようにプログラムされた汎用ハードウェア(例えば、1つまたは複数のプロセッサ)など、多数の方法で実装することができる。
【0169】
この点に関して、本明細書に記載の実施形態の1つの実装は、コンピュータプログラム(すなわち、複数の実行可能な命令)が符号化され、1つまたは複数のプロセッサ上で実行されると、1つまたは複数の実施形態の上述した機能を実行する少なくとも1つのコンピュータ可読記憶媒体(例えば、RAM、ROM、EEPER、フラッシュメモリまたは他のメモリ技術、CD-ROM、デジタル多用途ディスク(DVD)または他の光ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置または他の磁気記憶装置、または他の有形の非一時的なコンピュータ可読記憶媒体)を含む。コンピュータ可読媒体は、そこに格納されたプログラムを任意のコンピューターデバイスにロードして、本明細書で説明される技術の態様を実施することができるように、可搬型であり得る。加えて、実行されたときに上述した機能のいずれかを実行するというコンピュータプログラムへの言及は、ホストコンピュータ上で実行されるアプリケーションプログラムに限定されないことを理解されたい。むしろ、コンピュータプログラムおよびソフトウェアという用語は、本明細書では、一般的な意味で、本明細書で説明される技術の態様を実施すべく、1つまたは複数のプロセッサをプログラムするために採用され得る任意のタイプのコンピュータコード(例えば、アプリケーションソフトウェア、ファームウェア、マイクロコード、または任意の他の形式のコンピュータ命令)を指すために使用される。
【0170】
「プログラム」または「ソフトウェア」という用語は、本明細書では、一般的な意味で使用され、コンピュータまたは他のプロセッサをプログラムして、上述した実施形態の様々な態様を実装するために使用できる任意のタイプのコンピュータコードまたはプロセッサ実行可能命令の組を指す。さらに、一態様によれば、実行されたときに本明細書で提供される開示の方法を実行する1つまたは複数のコンピュータプログラムは、単一のコンピュータまたはプロセッサ上に存在する必要はなく、本明細書で提供される開示の様々な態様を実施するために、異なるコンピュータまたはプロセッサ間でモジュール方式で分散され得ることを理解されたい。
【0171】
プロセッサ実行可能命令は、プログラムモジュールなど、1つまたは複数のコンピュータまたは他のデバイスによって実行される多くの形式であり得る。一般に、プログラムモジュールには、特定のタスクを実行したり、特定の抽象データ型を実装したりするルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含む。典型的には、プログラムモジュールの機能は、様々な実施形態において所望されるように組み合わされ、または分散され得る。
【0172】
また、データ構造は、任意の適切な形式で、1つまたは複数の非一時的なコンピュータ可読記憶媒体に記憶され得る。説明を簡単にするために、データ構造は、データ構造内の場所によって関連付けられたフィールドを有するように示され得る。そのような関係は、同様に、フィールド間の関係を伝達する非一時的なコンピュータ可読媒体内の場所を有するフィールドにストレージを割り当てることによって達成することができる。しかしながら、任意の適切なメカニズムを使用して、データ要素間の関係を確立するポインタ、タグ、または他のメカニズムの使用を含む、データ構造のフィールド内の情報間の関係を確立することができる。
【0173】
また、様々な発明の概念は、1つまたは複数のプロセスとして具体化することができ、その例が提供されている。各プロセスの一部として実行される動作は、任意の適切な方法で命令することができる。したがって、例示的な実施形態において連続的な行為として示されているとしても、行為が図示とは異なる順序で実施される実施形態が構築され得、これは、いくつかの行為を同時に実施することを含み得る。
【0174】
本明細書で定義および使用されるすべての定義は、辞書の定義、および/または定義された用語の通常の意味を支配するためであると理解されたい。
本明細書の明細書および特許請求の範囲で使用されるように、1つまたは複数の要素の列挙に関連する「少なくとも1つ」という句は、列挙された要素のうちの任意の1つ以上の要素から選択された少なくとも1つの要素を意味するものであり、要素の列挙内で具体的に列挙された全ての要素の少なくとも1つを含む必要はなく、要素の列挙内の要素からなる任意の組み合わせを除外するものではないと理解されたい。また、この定義は、「少なくとも1つ」という句が参照する要素の列挙内で具体的に識別される要素以外の要素が、具体的に識別される要素に関連するかに関わらず、任意選択で存在し得ることを許容する。したがって、非限定的な例として、「AおよびBの少なくとも1つ」(または、同等に「AまたはBの少なくとも1つ」、もしくは同等に「Aおよび/またはBの少なくとも1つ」)は、一実施形態では、少なくとも1つのAを含む(任意選択で2つ以上のAを含む)が、Bは存在しない(および任意選択でB以外の要素を含む)ものを参照し、別の実施形態では、少なくとも1つのBを含む(任意選択で2つ以上のBを含む)が、Aは存在しない(および任意選択でA以外の要素を含む)ものを参照し、さらに別の実施形態では、少なくとも1つのAを含み(任意選択で2つ以上のAを含み)、少なくとも1つのBを含む(任意選択で2つ以上のBを含む)(および任意選択で他の要素を含む)もの等を参照してもよい。
【0175】
本明細書および特許請求の範囲で使用される「および/または」という句は、その句で結合された要素の「いずれかまたは両方」を意味する、すなわち、ある場合にはそれら要素が結合的に存在し、他の場合にはそれら要素が分離的に存在することを意味すると理解されたい。「および/または」で列挙された複数の要素は、同じように解釈される必要があり、即ち、その句で結合された要素の「1つ以上」であると解釈される必要がある。「および/または」という句によって具体的に識別される要素以外の他の要素が、具体的に識別される要素に関連するか否かに関わらず、任意選択で存在してもよい。したがって、非限定的な例として、「含む」などの非制限的な用語と組み合わせて使用される場合、「Aおよび/またはB」への言及は、一実施形態では、Aのみ(任意選択でB以外の要素を含む)を参照し、別の実施形態では、Bのみ(任意選択でA以外の要素を含む)を参照し、さらに別の実施形態では、AおよびBの両方(任意選択で他の要素を含む)を参照するなどしてもよい。
【0176】
請求項の要素を変更するための特許請求の範囲における「第1」、「第2」、「第3」などの序数用語の使用は、それ自体では、優先順位、優先権、またはある請求項の要素の別の請求項の要素に対する順序、もしくは方法の動作が実行される時間的な順序を意味するものではない。このような用語は、(序数の用語を使用するが)特定の名前を有する1つの請求項の要素を同じ名前を有する別の要素から区別するための識別子としてのみ使用される。
【0177】
本明細書で使用されている表現および用語は、説明を目的としたものであり、限定的なものと見なされるべきではない。「含む」、「備える」、「有する」、「包含する」、「含有する」、およびそれら用語の変化形の使用は、その後に記載される項目および追加の項目を包含することを意味する。
【0178】
本明細書に記載された技術のいくつかの実施形態を詳細に説明したので、様々な改変および改善が当業者にとって容易に行われるであろう。そのような改変および改善は、本開示の精神および本開示の範囲内となることが意図される。したがって、上述の説明は単なる例であり、限定することを意図するものではない。技術は、以下の特許請求の範囲およびその均等物によって定義されるものによってのみ制限される。
【0179】
本明細書に記載されている技術のいくつかの態様は、添付書類で以下に記載されている非限定的な例示的な実施形態に基づいてさらに理解することができる。添付書類のいくつかの態様、および本明細書に記載の他の実施形態は、てんかんの発作の治療に関して記載されているが、これらの態様および/または実施形態は、任意の適切な神経障害の症状の治療に等しく適用可能であり得る。以下の添付書類に記載されている実施形態の制限は、添付書類に記載されている実施形態のみの制限であり、本明細書に記載されている他の実施形態の制限ではない。
【図】
【国際調査報告】