IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マガルディ パワー ソシエタ ペル アチオニの特許一覧

特表2022-515261熱の形態でエネルギーを蓄積するプラントと方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-02-17
(54)【発明の名称】熱の形態でエネルギーを蓄積するプラントと方法
(51)【国際特許分類】
   F28D 20/00 20060101AFI20220209BHJP
   F25B 21/02 20060101ALI20220209BHJP
   F25B 1/00 20060101ALI20220209BHJP
   F28D 19/02 20060101ALI20220209BHJP
   F24S 60/00 20180101ALI20220209BHJP
【FI】
F28D20/00 A
F25B21/02 A
F25B1/00 399Y
F28D19/02
F24S60/00
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021536823
(86)(22)【出願日】2019-10-03
(85)【翻訳文提出日】2021-08-16
(86)【国際出願番号】 IB2019058410
(87)【国際公開番号】W WO2020136456
(87)【国際公開日】2020-07-02
(31)【優先権主張番号】102018000021301
(32)【優先日】2018-12-28
(33)【優先権主張国・地域又は機関】IT
(31)【優先権主張番号】102019000007416
(32)【優先日】2019-05-28
(33)【優先権主張国・地域又は機関】IT
(81)【指定国・地域】
(71)【出願人】
【識別番号】518019673
【氏名又は名称】マガルディ パワー ソシエタ ペル アチオニ
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】マガルディ,マリオ
(72)【発明者】
【氏名】バセッティ,フルヴィオ
(57)【要約】
熱の形態でのエネルギーの蓄積のためのプラントであって、少なくとも1つの蓄積装置(1)を含み、蓄積装置(1)は、格納ケーシング(2)と、ケーシング(2)の中に置かれる流動化可能な固体粒子の層(3)と、粒子の層(3)に熱的に接続される加熱手段(7、70、70’、700)であって、熱エネルギーを粒子に伝達するように構成された加熱手段と、粒子の層に熱的に接続され、そこから熱エネルギーを受け取るように選択的に活性化される熱交換手段(8、5)と、を含み、全体的構成は、熱エネルギーが加熱手段から層の流動化可能な固体粒子に伝達され、同時に、又は遅れて、流動化可能な固体粒子から熱交換手段に伝達されるものであり、プラントは、例えば再生可能資源、特に風力若しくは太陽光エネルギーからの余剰電気エネルギー、又は産業プロセスからの廃熱である残留熱エネルギーによって、加熱手段に熱エネルギーを供給するように構成される。
【特許請求の範囲】
【請求項1】
熱の形態でエネルギーを蓄積するプラントであって、
少なくとも1つの蓄積装置(1)を含み、前記蓄積装置(1)は、
格納ケーシング(2)と、
前記格納ケーシング(2)内に置かれる流動化可能な固体粒子の層(3)と、
前記固体粒子の前記層(3)と熱的に接続された加熱手段(7、70、70’、700)であって、前記固体粒子に熱エネルギーを伝達するように構成される加熱手段と、
同じく前記固体粒子の前記層(3)と熱的に接続され、前記固体粒子の層から熱エネルギーを受けるように選択的に活性化される熱交換手段(8、5)と、
を含み、
全体的構成は、前記熱エネルギーが前記加熱手段(7、70、70’、700)から前記層(3)の前記流動化可能な前記固体粒子に移動され、同時に又は遅れて、前記熱エネルギーが前記流動化可能な前記固体粒子から前記熱交換手段(8、5)に移動されるものであり、
前記プラントは、例えば再生可能資源、特に風力若しくは太陽光エネルギーからの余剰電気エネルギー、又は産業プロセスからの廃熱である残留熱エネルギーによって、前記加熱手段に熱エネルギーを供給するように構成されるプラント。
【請求項2】
前記加熱手段は、前記格納ケーシング(2)内に、前記層(3)の粒子と接触して配置される、請求項1に記載のプラント。
【請求項3】
前記加熱手段は、前記格納ケーシング(2)内に配置され、前記固体粒子の前記層(3)と熱的に接続される電気抵抗器手段(7)を含み、前記電気抵抗器手段(7)は、ジュール効果によって熱エネルギーを発生させ、発生された前記熱エネルギーを前記層(3)の前記固体粒子に移動するように構成される、請求項1又は2に記載のプラント。
【請求項4】
前記電気抵抗器手段(7)は、前記固体粒子の前記層(3)の中に少なくとも部分的に浸漬されて、又は前記層によって取り囲まれるように配置される、請求項3に記載のプラント。
【請求項5】
前記電気抵抗器手段(7)は、前記固体粒子の前記層(3)の自由表面(35)に実質的に直交する方向の長さ方向に延びる1つ又は複数の矩形の素子を含む、請求項3又は4に記載のプラント。
【請求項6】
前記加熱手段(7、70、70’)及び前記熱交換手段(8、5)の少なくとも一方は、例えばセラミック又は耐火性手段という、高温に対する耐性を有する材料の層又はスクリーンを有する、請求項1~5のいずれか一項に記載のプラント。
【請求項7】
前記加熱手段(700)は、前記格納ケーシング(2)の外部に配置される、請求項1に記載のプラント。
【請求項8】
前記加熱手段(700)は、前記層(3)の前記固体粒子の流動化可能なガスの回路(4)と熱的に接続され、前記ガスを加熱し、前記ガスが前記格納ケーシング(2)に入るように構成される、請求項7に記載のプラント。
【請求項9】
前記加熱手段は、使用時に作動流体、特に液体及び蒸気の少なくとも一方の形態の水が通る熱交換器(70、70’)を含む、請求項1~8のいずれか一項に記載のプラント。
【請求項10】
前記加熱手段(70)はヒートポンプ装置(71)の回路の一部である、請求項1~9のいずれか一項に記載のプラント。
【請求項11】
前記熱交換手段は、使用時に作動流体が通過するように構成された以下のコンポーネント、すなわち熱電素子(8)、熱イオン素子(8)、熱光起電力素子(8)、管束(5)のうちの1つ又は複数を含む、請求項1~10のいずれか一項に記載のプラント。
【請求項12】
前記格納ケーシング(2)は、前記固体粒子の前記層(3)が入射太陽放射から熱エネルギーを受けるように、前記入射太陽放射の進入を可能にするように構成された照射開口(10)を有する、請求項1~11のいずれか一項に記載のプラント。
【請求項13】
前記照射開口(10)は、使用時に閉鎖手段又は遮蔽手段を持たず、前記格納ケーシング(2)の内部コンパートメント(20)と外部環境とが直接連通する状態をもたらす、請求項12に記載のプラント。
【請求項14】
前記照射開口(10)は、流動化可能な固体粒子の前記層(3)又はその一部は、使用時に入射太陽放射に直接さらされるように、前記格納ケーシング(2)の上壁(21)に配置される、請求項12又は13に記載のプラント。
【請求項15】
前記格納ケーシング(2)は外部に対して閉鎖され、好ましくは外部に対して断熱される、請求項1~11のいずれか一項に記載のプラント。
【請求項16】
流動化ガス、好ましくは空気を、流動化可能な固体粒子の前記層(3)の中に導入するように構成された流動化手段(4)を含む、請求項1~15のいずれか一項に記載のプラント。
【請求項17】
前記流動化ガスの速度及び流量の少なくとも一方を選択的に変化させる手段を含む、請求項16に記載のプラント。
【請求項18】
前記流動化手段は前記固体粒子の前記層の選択された部分を独立して流動化するように構成される、請求項16又は17に記載のプラント。
【請求項19】
前記蓄積装置の下流側に配置され、前記熱交換手段と流体連通するタービンを含む電気エネルギー生成手段(202)を含む、請求項1~18のいずれか一項に記載のプラント。
【請求項20】
複数の蓄積装置(1、1’、100、100’)であって、各蓄積装置の前記熱交換手段を通過する作動流体と熱的に直列又は並列に配置された複数の蓄積装置(1、1’、100、100’)を含む、請求項1~19のいずれか一項に記載のプラント。
【請求項21】
熱の形態でエネルギーを蓄積する方法であって、
流動化可能な固体粒子の層(3)と熱的に接続されて配置された加熱手段(7、70、70’、700)によって熱エネルギーを生成するステップであって、前記加熱手段は例えば再生可能資源、特に風力若しくは太陽光エネルギーからの余剰電気エネルギー、又は他の産業プロセスからの廃熱である残留熱エネルギーによって熱エネルギーが供給されるようなステップと、
熱エネルギーを前記流動化可能な固体粒子の前記層(3)に蓄積するステップと、
前記蓄積された熱エネルギーを熱交換手段(8、5)に移動し、前記流動化可能な固体粒子の前記熱エネルギーを電気エネルギーに変換すること、及び前記熱エネルギーを外部に移動させることの少なくとも一方を含むステップと、
を提供する方法。
【請求項22】
選択された動作条件下で活性化される前記層(3)の前記流動化可能な前記固体粒子を流動化するステップを含む、請求項21に記載の方法。
【請求項23】
流動化ガスの速度及び流量の少なくとも一方の選択的調整をすることを含む、請求項21に記載の方法。
【請求項24】
前記固体粒子の前記層の選択された部分の独立した流動化をすることを含む、請求項21~23のいずれか一項に記載の方法。
【請求項25】
前記固体粒子の前記層から排出される高温流動化ガスからの熱エネルギーの移動をすることを含む、請求項21~24のいずれか一項に記載の方法。
【請求項26】
請求項1~20のいずれか一項に記載のプラントを使用する、請求項21~25のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
説明
発明の技術分野
本発明は主として、熱の形態でエネルギーを蓄積するプラントと方法に関する。特に、本発明は流動化可能な固体粒子の層を使用する熱エネルギーの蓄積のための装置を使用する。
【背景技術】
【0002】
技術水準
再生可能資源からの、特に太陽光及び風力型の電気エネルギー生成のための低コストなプラントが知られている。
【0003】
過去10年間で、とりわけ脱炭素(CO大気放出のないエネルギー資源の利用)を考慮し、イタリア及び全世界における太陽光プラントの使用は大幅に増大し、風力の割合もまた同様である。エネルギー生成のうち再生可能資源によるものの割合の増大に伴い、実際、風や太陽のように、その一貫しない性質から、ある期間においては利用されないエネルギー利用の可能性が大きくなりすぎて、エネルギー生成の全体的利用が損なわれるという状況が特定されることがますます多くなっている。
【0004】
さらに、その期間以外の期間に、再生可能資源からのエネルギーの利用可能性の減少を補償するために、化石又は核燃料からの、又は大規模水力発電プラントからのエネルギー供給が必要となる。
【0005】
さらに、電気エネルギーのコストはエネルギー市場の動向に関連して大きく変動し、最大値と最小値の差が大きい場合、それを最低コストで購入し、蓄積しておいて、後日、より高い価格で販売することが好機となる。
【0006】
上述の欠点を解消するために、電気化学電池が利用されることもあるが、これは重要なエネルギーレベルを保持することができない。さらに、使用される電気化学蓄電システムの中には、生産システム全体の中の危機的な要素であるものがあり、これは特にそれらの短い耐用年数、性能に対して高い投資費用、環境温度へのその依存性、火災のリスク、プラントの調整の必要性(所望の温度に保つため)、環境汚染金属の使用、限定的な利用可能性、動作終了後の処分の必要性、及び何れにしても前述のような各環境条件下で継続的供給を保証するために必要なエネルギー量の蓄積能力の限界による。
【発明の概要】
【発明が解決しようとする課題】
【0007】
発明の概要
技術的問題として設定され、本発明により解決される技術的問題は、特に電気又は熱エネルギーを最終利用者に供給する業務の継続を保証するために特に有効な熱の形態でエネルギーを蓄積するプラントを提供することによって、先行技術に関して上述した欠点を克服することである。
【課題を解決するための手段】
【0008】
上述の技術的問題は、請求項1に記載のプラント及び請求項21に記載の方法によって解決される。
【0009】
本発明の好ましい特徴は、従属項に記載されている。
【0010】
本発明は、エネルギーを熱の形態で流動化可能固体粒子の層に蓄積し、又はその後、蓄積されたエネルギーを移動及び/又は変換して、最終利用者のニーズに基づいて供給エネルギーのプログラム可能でフレキシブルな利用を可能にできる装置に基づく。有利な点として、累積されたエネルギーは、電気エネルギーに再変換し、又は、例えば地域暖房若しくは淡水化プラントのために熱の形態で直接使用でき、さらには民生又は産業応用においてこのような2つの形態の組合せを使用することもできる。
【0011】
粒子の層に蓄積される熱エネルギーは、同じ層内に挿入された、又はそこに熱的に接続されたコンポーネントによって生成され、これは例えば1つ又は複数の太陽光、風力発電システム又は異なるエネルギー源に関連付けられるシステムにより供給される、生成過剰による、又は利用者の負荷の減少による、グリッド内で余剰となった利用可能電気エネルギーを利用する。一般的に言えば、提案される装置は、他の資源からの電気エネルギー、例えば利用者の需要に関して余剰の利用可能電気エネルギー、特に風力又は太陽光プラントにより生成されるエネルギーを熱の形態で蓄積する。
【0012】
代替的に、又は上記のものと組み合わせて、熱エネルギーの蓄積のために、複数の発生源、例えば製鉄所、セメントプラント、熱電プラント、又はその他の産業プロセスからの廃熱を利用できる。この場合、プラント熱エネルギーは、粒子の層の流動化ガスを加熱することによって、又は専用の熱交換器をこのような粒子の層に挿入することによって利用できる。
【0013】
層の加熱成分の前記電気又は熱パワーシステムは、粒子の層を受ける同じプラントに挿入でき、又はこれらはそれに関して別の、及び/又は離れた位置にあることもできる。
【0014】
さらに、幾つかの電力源は、異なる温度範囲のための、流動化層の加熱の異なるフェーズで使用できる。
【0015】
粒子の層を加熱するコンポーネントは、層自体の中に浸漬させることができ、例えば電気抵抗器、ヒートポンプ素子、又はその他を含むことができる。
【0016】
粒子の層の中に浸漬されたこのようなコンポーネント又は加熱素子には、高温に対する耐性を有する材料、例えばセラミック又は耐火性手段の適当な層又はスクリーンで得られる保護を提供できる。
【0017】
抵抗器を使用する場合、これらは周知のように、ジュール効果によって熱エネルギーを生成する。
【0018】
ヒートポンプを使用する場合、同じく周知のように、これらは電気エネルギーを使って熱エネルギーをより低温の資源からより高温の資源へと移動させることのできる熱機械である。より低温の資源は例えば外部環境によって、又は産業プロセスの熱残留物(廃熱)によって表すことができる。
【0019】
有利な点として、加熱コンポーネント、特に抵抗器及び/又はヒートポンプの凝縮器を装置のケーシングの底部又は側壁に接続できる。
【0020】
粒子の層は、砂又は比熱の高いその他の適当な材料を含むか、それから成ることができる。好ましい構成では、層の粒子は≧約600℃の、より好ましくは約700~1000℃の累積温度に到達する。
【0021】
前述のように、層は好ましくは流動化ガス、典型的には空気を供給し、分散させるシステムによって流動化される。
【0022】
流動化には、層の特定の動作領域、例えば電気抵抗と、ヒートポンプの凝縮器と、若しくはその他の加熱コンポーネントと直接接触する区間、又は粒子の層全体が関わることができる。有利な点として、流動化システムは、相互に独立して活性化できる幾つかの流動化ユニット及び/又は層の選択された部分の独立した流動化の可能性、すなわち流動化の「区分」を提供できる。
【0023】
さらに好ましい実施形態において、加熱コンポーネント、例えば前述の電気抵抗器は、粒子の層の流動化ガスを加熱するように配置でき、すると、前記流動化ガスを通じてこのような層に熱エネルギーが供給される。さらに、加熱コンポーネントは、装置の他の地点において、例えば粒子の層の自由表面、すなわちフリーボードの領域内で供給されることになるガスを加熱できる。
【0024】
実施形態の変形型において、加熱素子はまた、粒子の層の中に浸漬された、例えば管束を有する熱交換器の中を流れる作動流体又はキャリア、例えば空気又は水を加熱することもでき、又は加熱することのみできる。
【0025】
これらの変形型において、加熱素子は前記作動流体又はガスを、特に800~900℃以上まで加熱するように適用できる。
【0026】
蓄積プラントは、後述のように、電気エネルギー及び/又は熱エネルギーの生成及び供給のための他のコンポーネント及び/又はプラントに熱エネルギーを伝達するように構成される。この目的のために、蓄積装置は熱交換器の以下のコンポーネントのうちの1つ又は複数を含むか、それに関連付けることができる:
- 蓄積された熱エネルギーの電気エネルギーへの変換を行うことのできる熱電、熱イオン、及び/又は熱光起電力型、又はさらに別の種類の素子、
- 蓄積装置の中に格納され、粒子の層に挿入されるか、粒子の層によって取り囲まれる、その中に作動流体が流れる、特に電気エネルギー生成のための熱力学サイクルを供給するための熱交換器、
- 粒子の層への熱エネルギーを取り出して、それを必要に応じて使用する他の環境へと渡すヒートポンプの一部である熱交換器、
- 民生用、農業用、又は産業用の熱エネルギーの直接的且つ効率的な使用のために、一般的に流体、典型的に蒸気を加熱するように動作する熱交換器。
【0027】
好ましくは、このような熱交換器のコンポーネントであっても、粒子の層の中に浸漬されるか、それによって取り囲まれている場合、高温に対する耐性を有する材料、例えばセラミック又は耐火性手段の適当な層又はスクリーンによって保護される。
【0028】
好ましくは、前記熱交換器のコンポーネントは、下流側の利用者の電気及び/又は熱エネルギーに対する実際の要求に応じて介入し、又は不活性化されるように、例えば電気スイッチ及び/又はバルブによって、相互に独立して選択的に作動させることができる。
【0029】
蓄積装置からの熱エネルギーの移動はまた、前述のモードの代わりに、又はそれと共に、粒子の層から出る高温の流動化ガスを直接使用することによって行われることもできる。このようなガスは、全部又は部分的に使用され、好ましくはサイクロン又は高温に対する耐性を有するセラミックフィルタによって塵埃が除去されてから、下流の利用者に送られる。
【0030】
好ましい実施形態に基づき、後述のように蓄積装置の2つの構成が提供される。
【0031】
第1の実施形態は、粒子の層が外部環境に向かう開口を持たないケーシング内に格納される、「閉鎖型」と呼ばれる構成に基づく。したがって、この構成では粒子の層により蓄積される熱エネルギーは、前述の加熱コンポーネントによってのみ生成される。
【0032】
第2の実施形態では、装置が外部環境に向かう開口が設けられたケーシングを有する、「開放型」と呼ばれる構成が提供される。このような開口を通じて、適当な光学系により集光された太陽放射に関連する熱エネルギーを粒子の層に伝達できる。開口は、外部及び内部環境間にスクリーンを介さない直接接続を可能とし、又はそれに太陽放射を透過させるパネル又は窓を設けることができる。
【0033】
ヘリオスタットにより集光可能な太陽エネルギーの温熱電位を電気エネルギーの生成にこのように利用することは当業界で知られている。特に、太陽放射に直接又は間接にさらされる流動化可能固体粒子の層に基づく前記熱エネルギーの蓄積及び伝達のための装置は、例えば国際公開第2013/150347A1号及び国際公開第2017/021832A1号において開示されている。
【0034】
この第2の実施形態においては、すると、流動化された層に蓄積される熱エネルギーは2つの寄与物、すなわち光学系により集光され、流体層により吸収される太陽放射等の第1のエネルギーの寄与と、同じ流動化可能層に関連付けられる加熱コンポーネントにより熱エネルギーに変換される電気エネルギー等の第2のエネルギーの寄与に由来できる。
【0035】
この最後の実施形態は、例えば熱による淡水化等、いずれの気象条件下でも、継続性が求められる産業プロセスに供給するための一貫した熱エネルギーの利用可能性を保証することが必要な場合に特に有利である。
【0036】
提案される蓄積システムは、前述のように、好ましくは再生可能資源からの熱エネルギーを蓄積して、電気及び/又は熱エネルギーを柔軟に生成する。これは複数の蓄積装置を使用でき、その各々がコミュニティ及び産業プラントによる24時間/365日体制のサービスにおいて電気及び熱エネルギーを生成するために希望に応じて増やすことのできるモジュールを実装し、これは耐久性と経済性は別として、現行の電気化学蓄積システムのほか、化石燃料エネルギー生成システムに対する持続可能な代替案となる。
【0037】
ここまで説明したシステムは、数十GWhまでの測定可能な量だけ熱エネルギーを蓄積でき、すると、効率レベルの高い大型タービンへの供給に適している。
【0038】
さらに、既知の技術に関して、システムは、前述のように不連続的な再生可能エネルギーにおける継続的増大によりますます不安定さを増す送電網の安定性のための重要なサービスを提供でき、それゆえ化石又は核資源に基づく従来の資源を廃止できる。
【0039】
提案されているシステムの他の利点は地域非依存性であり、これは、低コストのエッセンシャルサービスを提供し、環境及び人々の健康のために環境影響を与えないことによって、世界中のいずれの国にも、いずれの気象条件でも設置できるからである。
【0040】
本発明のその他の利点、特徴、及び使用モードは、限定的な目的ではなく、例として図示されるその幾つかの実施形態に関する以下の詳細な説明から明らかとなるであろう。
【0041】
図面の簡単な説明
下記のような添付の図面の図が参照される。
【図面の簡単な説明】
【0042】
図1】本発明によるプラントの熱エネルギーを蓄積し、伝達するための装置であって、流動化可能粒子の層に挿入され、閉鎖型構成であり、熱エネルギーを電気エネルギーに直接変換するための熱電及び/又は熱光起電力コンポーネントが設けられている装置の第1の好ましい実施形態に、その長さ方向の断面の概略図を示すことによって関する。
図1-2】抵抗器の代わりにヒートポンプが使用されている、図1の装置の第1の実施形態の変形型に関する。
図1-3】抵抗器の代わりに流動化ガスを供給するための回路に関連するヒータが使用されている、図1の装置の第2の実施形態の変形型に関する。
図1-4】粒子の層に挿入された適当な熱交換器内を流れる作動流体、例えば空気又は水を加熱するために使用されるヒータを提供する、図1-3の装置の実施形態の変形型に関する。
図2】本発明によるプラントの熱エネルギーを蓄積し、伝達するための装置の、図1の構成に粒子の層に挿入された熱交換器が追加された第2の好ましい実施形態に関し、その長さ方向の断面の概略図を示す。
図2-2】粒子の層に挿入された熱交換器が追加された、図1-2の装置の好ましい実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図2-3】粒子の層に挿入された熱交換器が追加された、図1-3の装置の好ましい実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図2-4】粒子の層に挿入された熱交換器が追加された、図1-4の装置の好ましい実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図3】本発明によるプラントの熱エネルギーを蓄積し、伝達するための装置であって、開放型構成であり、熱エネルギーを電気エネルギーに直接変換するための熱イオン、熱電、及び/又は熱光起電力コンポーネントが設けられている装置の第三の好ましい実施形態に関し、その長さ方向の断面の概略図を示す。
図3-2】開放型の代替的構成における図2-2の同じ実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図3-3】開放型の代替的構成における図2-3の同じ実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図3-4】開放型の代替的構成における図2-4の同じ実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図4】本発明によるプラントの熱エネルギーを蓄積し、伝達するための装置の、図3の構成において粒子の層に挿入された熱交換器が追加された第四の好ましい実施形態に関し、その長さ方向の断面の概略図を示す。
図4-2】開放型の代替的構成における図1-2の同じ実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図4-3】開放型の代替的構成における図1-3の同じ実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図4-4】開放型の代替的構成における図1-4の同じ実施形態の変形型に関し、その長さ方向の断面の概略図を示す。
図5】各々がそれぞれの蓄積モジュールを実装する前述の実施形態及び実施形態の変形型のいずれか1つによる蓄積装置を含み、再生可能資源により供給され、既存の熱電パワープラントの内部に挿入される、本発明の好ましい実施形態によるエネルギー蓄積プラントのブロック図を示す。
図6】蒸気再過熱を行うタービンが挿入された、図5の構成の変形型のブロック図を示す。
図7】電気エネルギーを生成し、各々がそれぞれの蓄積モジュールを実装する前述の実施形態及び実施形態の変形型のいずれか1つによる蓄積装置を含み、再生可能資源により供給され、既存の熱電パワープラントの内部に挿入され、前記装置が従来のボイラに代わる、本発明の他の好ましい実施形態によるエネルギー蓄積プラントのブロック図を示す。
図8】熱エネルギーを生成し、各々がそれぞれの蓄積モジュールを実装する前述の実施形態及び実施形態の変形型のいずれか1つによる蓄積装置を含み、再生可能資源により供給される、本発明の追加的な好ましい実施形態によるエネルギー蓄積プラントのブロック図を示す。
図9】各々が前述の実施形態及び実施形態の変形型のいずれか1つによるそれぞれの蓄積装置に基づく50のモジュールを含む、本発明の好ましい実施形態による蓄積プラントのレイアウトの概略図を示す。
【発明を実施するための形態】
【0043】
上述の図面に示される大きさは、純粋に例示のためであり、これらは必ずしも比例関係で示されているとは限らない。
【0044】
発明の好ましい実施形態の詳細な説明
本発明の実施形態と変形型が以下に説明され、これは上述の図面を参照しながら行われる。
【0045】
幾つかの図面において、同様のコンポーネントは同じ参照番号で示されている。
【0046】
以下の詳細な説明の中で、同じ説明の中ですでに扱った実施形態及び変形型に関して追加される実施形態及び変形型は、すでに説明したものとの相違点のみ説明される。
【0047】
さらに、後述の幾つかの実施形態と変形型及び関係するコンポーネント、手段、及び要素は組み合わせても使用される可能性がある。
【0048】
図1に関して、本発明の第1の好ましい実施形態による、熱エネルギーを蓄積し、伝達する装置が全体として1で示されている。
【0049】
装置は、熱エネルギーを蓄積し、移動する機能を有するプラント、特に熱エネルギー、特に電気及び/又は熱エネルギー生成プラントにおいて使用されることが意図されている。
【0050】
装置1はまず、格納ケーシング2を含み、これは内部コンパートメント20を画定し、これは流動化可能粒子の層3を格納するように構成される。
【0051】
(格納)ケーシング2は多角形、例えば立方体又は並行六面体の形状を有することができる。この例において、ケーシング2は上壁21、側面スカート23、及び下壁又は基底部24を有することができる。
【0052】
装置1の形状に関して、長さ方向L、この例では縦方向と、長さ方向Lに垂直であり、するとこの例では水平方向である横断方向Tを画定できる。
【0053】
装置1はここで、閉鎖型に構成されており、すなわち、外部環境に向かう開口を持たず、好ましくはそれに関して断熱されている。
【0054】
流動化可能粒子の層3は粒状型であり、すなわち固体粒子により形成される。装置1の粒子の層に好ましい粒子材料の種類は、高い能力、伝導率、及び熱拡散率の特徴を有する。
【0055】
層3は、内部コンパートメント20を、使用中であっても、それ自体の自由表面35より上に自由空間22、すなわちフリーボードが残されるように占有する。特に、空間22は、下側では自由表面35によって、上側ではケーシング2の壁21によって、及び横方向にはケーシング自体のスカート23によって限定される。
【0056】
粒子の層3は好ましくは、流動化ガス、特に空気を同じ粒子の層3を通じて供給し、分散させるように構成された、全体として4で示される流動化手段によって動かされる。この実施形態において、手段4は、ケーシング2の下側基底部24、すなわち粒子の層3に配置された、流動化空気を供給又は導入するための複数の要素を含む。
【0057】
すると、粒子の層3の中の流動化空気の経路は、下から上、特に縦又は実質的に縦となる。より一般的に言えば、流動化ガスの導入は長さ方向Lに沿って行われる。
【0058】
粒子の層3からの流動化ガスは、自由領域又はフリーボード22内に収集され、上壁21に設置された適当な(図示せず)抽出器フードによって捕捉される。
【0059】
有利な点として、流動化ガスの速度及び/又は流量を選択的に変化させるための手段を提供できる。同様にして、粒子の層の一部の選択的及び/又は選別的流動化を提供できる。
【0060】
1つ又は複数の電気抵抗器又は抵抗7は粒子の層3の内部に位置付けられ、好ましくはその中に完全に浸漬される。この実施形態において、これらは例えば、粒子の層の基底部から導入され、これらは長さ方向Lに延びる。
【0061】
前記抵抗器7は、電気エネルギー、例えば太陽光及び/又は風力型の電気エネルギー生成のための手段によって供給され、好ましくは、これらは高温に対する耐性を有するスクリーン、例えばセラミック材料の層等により保護される(図示せず)。
【0062】
自由領域、すなわちフリーボード22には、1つ又は複数の熱交換器コンポーネント8が格納され、これはケーシング2の壁21に接続し、又はそれに取り付けることができる。熱交換器コンポーネント8は粒子の層3に熱的に接続され、電気スイッチ(図示せず)等のシステムにより活性化できる。この例において、有利な点として、コンポーネント8は、熱電、熱イオン、サーモ光電気型又はそれらの組合せである。コンポーネント8は、熱エネルギーから電気エネルギーへの直接変換用に構成され、その後、これらは実際に粒子の層3の熱エネルギーをいずれかの種類の利用者が利用可能な電気エネルギーに変換する。
【0063】
コンポーネント8は、流動化された粒子の層3の内部であっても格納でき、すると、これらは流動化された粒子の中に浸漬され、又はそれによって取り囲まれる。
【0064】
コンポーネント8は好ましくは、例えばセラミック材料の層等、高温又は擦り傷に対する耐性を有するスクリーンによって(図示せず)保護される。
【0065】
図1-2、1-3、及び1-4の各々は、図1の装置のそれぞれの実施形態の変形型を示し、電気抵抗器7は粒子の層の異なる加熱手段又はコンポーネントに置き換えられ、実際に、入力エネルギー、特に電気エネルギーを粒子の層3の加熱熱エネルギーに変換するように構成される。
【0066】
図1-2において、粒子の層3の内部に熱交換器70がヒートポンプ71の回路の一部として位置付けられ、ヒートポンプは低温源と接触する第2の交換器72、コンプレッサ73、及びラミネーションバルブ74を含む。
【0067】
図1-4の変形型では、粒子の層の中に浸漬された、70’で示される交換器は作動流体の使用に基づく熱交換回路71’の一部である。
【0068】
図1-3において、流動化ガスを供給するための回路の中に空気ヒータ700が挿入され、これは、その中に含められる熱エネルギーを増やすことによって、粒子の層3に入るガスの温度を上昇させる。
【0069】
図2は、本発明による装置の第2の実施形態に関し、ここでは装置1’で示される。装置1’は前述の第1の実施形態及び関連する変形型とは、層3の中に格納された別の熱交換素子、特に管束5を有する点で異なる。このような管束5は作動流体、特に液体及び/又は蒸気の状態の水がそこを通り、層3の粒子から熱を受け取る。
【0070】
特に、図2の構成において、設計温度及び圧力の条件下で装置1’から管束5を通って出る作動流体は、電気エネルギー生成のための発電機に連結されたタービン510の中で膨張させることができ、又は他の産業目的のため、例えば調整システム若しくは淡水化プラントにおける熱水の生成のために使用できる。換言すれば、管束5は、装置1’が挿入されるプラントの別のコンポーネント、例えば1つ又は複数のタービン510、凝縮器521、過熱低減器530、中間熱交換器511、ポンプ520等に接続され、これらは各々、それ自体よく知られている。
【0071】
実施形態の変形型は、単独のコンポーネント又は粒子の層3に関連する熱交換素子として、管束5を提供できる。
【0072】
図1-2~1-4の図面と同様に、図2-2、2-3、及び2-4の各々は、電気抵抗器7が、実際に入力エネルギー、特に電気エネルギーを粒子の層3の加熱のための熱エネルギーに変換するように構成された、粒子の層の異なる加熱手段又はコンポーネントに置き換えられている図2の装置のそれぞれの実施形態の変形型を示す。
【0073】
図2-2において、粒子の層3の内部に熱交換器70がヒートポンプ71の回路の一部として位置付けられ、ヒートポンプは低温源と接触する第2の交換器72、コンプレッサ73、及びラミネーションバルブ74を含む。
【0074】
図2-4の変形型では、粒子の層の中に浸漬された、70’で示される交換器は作動流体の使用に基づく熱交換回路71’の一部である。
【0075】
図2-3において、流動化ガスを供給するための回路の中に空気ヒータ700が挿入され、これは、それによって供給される熱エネルギーを増やすことによって、粒子の層3に入るガスの温度を上昇させる。
【0076】
図3は、本発明の装置の第三の好ましい実施形態に関し、ここでは100で示される。第1の実施形態及び関連する前述の変形型に関して説明した装置に関して、装置100はケーシング2の上壁21に照射開口10を有する。装置100に関連する光学系(図示せず)は、このような開口10に、及びコンパートメント20内に実際に入る入射太陽放射を集光する。このようにして、層3の粒子は太陽からの第1の熱エネルギーを吸収する。
【0077】
この例において、開口10はケーシング2の上壁21に、好ましくはそれに対して長さ方向に中央に配置されているように示されている。実施形態の変形型は、その異なる位置付けを提供できる。同様に、開口10は、動作条件下で、遮蔽若しくは被覆手段を持たずに外部に向かって完全に開放することができ、又はこれは入射太陽放射を透過させる保護窓を有することもできる。
【0078】
ここで考慮される構成によって、電気抵抗器7又はその他の前述のコンポーネントの電源供給からの、及び照射開口10を通じて集光される太陽放射からの熱エネルギーを蓄積させることができる。
【0079】
図3はまた、照射開口10の口に配置される、装置100の成形閉じ込め構造80も示している。閉じ込め構造80は、完全に又は主として装置100の外部に展開でき、すなわち、それは空の空間22内に一部が突出していてもしていなくてもよい。
【0080】
閉じ込め構造80は貫通穴を有し、すなわち、それは管状構造を有し、それによってケーシング2の内部と外部との照射開口10による直接連通が保持される。
【0081】
実施形態の変形型において、閉じ込め構造80は、フリーボード22が空気及び/又は粒子の外部への漏出を回避又は軽減するのを助ける無風チャンバを画定する。
【0082】
この実施形態の変形型において、閉じ込め構造80はケーシング2の内部に向かって断面が減少するテーパ形状、特に円錐形状を有する。閉じ込め構造のこのような断面によって、専用の光学系により集光される太陽放射の方向を妨げないようにすることができる。
【0083】
さらに、この実施形態の変形型では、装置100は閉じ込め構造80に配置された、又は一般的には照射開口10の補助装置9を含む。補助装置9は、熱電及び/又は熱イオン及び/又は熱光起電力パネルによって構成され、電気エネルギー生成のために入射太陽放射に直接さらされるように構成される。代替的に、装置9はそれ自体のキャリア流体によって太陽放射の熱を直接吸収しやすい熱交換器により構成される。
【0084】
他の実施形態について説明したものと同様に、図3-2、3-3、及び3-4の各々は、電気抵抗器7が、実際に入力エネルギー、特に電気エネルギーを粒子の層3の加熱のための熱エネルギーに変換するように構成された、粒子の層の幾つかの加熱手段又はコンポーネントに置き換えられている図3の装置のそれぞれの実施形態の変形型を示す。
【0085】
図3-2において、粒子の層3の内部に熱交換器70がヒートポンプ71の回路の一部として位置付けられ、ヒートポンプは低温源と接触する第2の交換器72、コンプレッサ73、及びラミネーションバルブ74を含む。
【0086】
図3-4の変形型では、粒子の層の中に浸漬された、70’で示される交換器は作動流体の使用に基づく熱交換回路71’の一部である。
【0087】
図3-3において、流動化ガスを供給するための回路の中に空気ヒータ700が挿入され、これは、その中に含まれる熱エネルギーを増やすことによって、粒子の層3に入るガスの温度を上昇させる。
【0088】
図4を参照すると、これは本発明の装置の第四の実施形態を概略的に示しており、これはここでは100’で示される。図2の構成と同様に、装置100’は図3に関連して説明したものとは、層3の中に格納された別の熱交換素子、特に管束5を有する点で異なる。前記管束の、及びそれに関連する他のプラントコンポーネントの構成は、実際に図2に関してすでに説明したものと同じである。
【0089】
補助装置9は、粒子の層の中に浸漬された熱交換素子5とは独立していても、又はそれに接続されていてもよい。
【0090】
図4-2、4-3、及び4-4の各々は、電気抵抗器7が、実際に入力エネルギー、特に電気エネルギーを粒子の層3の加熱のための熱エネルギーに変換するように構成された、粒子の層の幾つかの加熱手段又はコンポーネントに置き換えられている図4の装置のそれぞれの実施形態の変形型を示す。
【0091】
図4-2において、粒子の層3の内部に熱交換器70がヒートポンプ71の回路の一部として位置付けられ、ヒートポンプは低温源と接触する第2の交換器72、コンプレッサ73、及びラミネーションバルブ74を含む。
【0092】
図4-4の変形型では、粒子の層の中に浸漬された、70’で示される交換器は作動流体の使用に基づく熱交換回路71’の一部である。
【0093】
図4-3において、流動化ガスを供給するための回路の中に空気ヒータ700が挿入され、これは、その中に含まれる熱エネルギーを増やすことによって、粒子の層3に入るガスの温度を上昇させる。
【0094】
図3~3-4及び4~4-4に関して上述したもののような「開放型」構成では、蓄積及び移動装置は、ケーシング2の外部に、例えば照射開口10の周囲に配置された、図1及び2に関して述べた、抵抗7又は幾つかの実施形態の変形型に関して上で紹介したその他の熱交換コンポーネントを供給するように構成されたコンポーネント8と同じ種類の、熱イオン及び/又は熱電及び/又は熱光起電力型のコンポーネントを提供できる。
【0095】
図示されていないが、本発明の装置の、「閉鎖型」及び「開放型」形態の両方における考え得る追加的な構成は、蓄積装置からの熱エネルギーの移動が、前述のモードの代わりに、又はそれと共に、粒子の層から排出される高温の流動化ガスを直接利用することによって行われるようにする。このようなガスは、全部又は部分的に使用され、好ましくはサイクロン又は高温に対する耐性を有するセラミックフィルタによって塵埃が除去されてから、下流の利用者に送られる。
【0096】
前述のように、ここまで説明した装置の各々は、熱の形態でエネルギーを蓄積するように構成されたプラントに挿入できる。幾つかの考え得る追加的なプラント構成を以下に説明する。
【0097】
図5は、本発明の好ましい実施形態によるプラントのブロック図であり、これは全体的に200で示される。プラント200は、前述の実施形態及び実施形態の変形型のいずれか1つによる複数の装置を含み、各々がそれぞれの蓄積モジュールを実装する。代表例において、それぞれが210’、210’’、210で示されるn個の蓄積装置が例示される。好ましくは、上述の装置は照射開口を持たないタイプのものであり、すると、例えば図1~1-4又は2~2-4の実施形態の変形型にしたがって実装される。提案される構成では、前述のモジュールにより蓄積される熱エネルギーは蒸気生成のために利用される。
【0098】
プラント200は、図中、風力及び太陽光資源として例示される再生可能資源400により供給され、その余剰電気エネルギーを利用する。ここで検討する実施形態では、プラントは特に化石燃料ボイラ300及び発電システム又は発電ブロック202の一部であるタービンを含む既存の熱電プラントの中に挿入される。
【0099】
送電網からの需要に応じて、プラント200は、各モジュールに含められる適当な熱交換器又は熱交換素子によって、この場合はすでにプラント中に事前にある発電システム、すなわち発電ブロック202に、電気エネルギー生成のために送られることになる蒸気を発生させるために熱エネルギーを放出させる。
【0100】
プラント200は制御システム又はユニット201によって管理され、これは特に、蓄積モジュール210’~210’’、発電ブロック202、及び送電網(「送電網」)500へのエネルギー供給を制御する。
【0101】
本願で例示される構成において、発電グループ202の付近のプラントが利用可能な面積に依存する蓄積モジュールの数は、化石燃料の消費及びそれに対応する環境中のCO排出を排除又は削減することによって、既存のボイラ300と同じ熱パワー又はその一部のみを生成するようにすることができる。
【0102】
設置されるモジュールの数は、当初は限定して、その後、ボイラ300の熱パワーと同じ生成量に到達するように増大させることができる。
【0103】
図6は、図5の構成の変形型のブロック図を示し、発電グループ202の中にタービン230が挿入され、蒸気再過熱を行う。
【0104】
図6に例示される変形プラントのサイクルでは、蒸気再熱(「再熱」)が提供され、それによって生産効率の向上が可能となる。このような再熱は、同じくすでに前述の装置に関して説明した、211’~211で示される追加的な蓄積モジュールによって行われる。
【0105】
すると、モジュール装置群は好ましくは2つのセクションに分割され、両方のセクションのモジュールは、再生可能資源400からの電気エネルギーを変換することによって熱エネルギーを蓄積する。生成された蒸気は、モジュール210’~210の第1のセクションから出て、タービン230内に導入され、第1の膨張ステップの後に、モジュール211’~211のもう一方のセクションに戻されて、蒸気再熱が行われ、これはその後、タービン230に再び導入される。
【0106】
代表的な構成では、しかしながら、固体燃料300を用いるボイラが提供され、2つの専用ライン又はセクション301及び302を通じた蒸気過熱が組み込まれる。
【0107】
図7は、本発明の他の好ましい実施形態の変形型によるエネルギー蓄積プラントのブロック図を示す。図5に関してすでに説明したものに関して、ここで検討されるプラントでは、蓄積モジュール210’~210が化石燃料ボイラに完全に置き換わる。
【0108】
図8は、図7の方式の変形型を示し、生成されるエネルギーは熱利用者205のために使用される。ここで検討されるプラントは、前述の構成に関して、再生可能資源からの電気エネルギーを変換することによって熱エネルギーを蓄積し、接続された熱利用者の需要に応じて熱エネルギーを移動させる。
【0109】
図9は、本発明による好ましい実施形態による蓄積プラントのレイアウトの概略図を示し、これは50のモジュールを含み、各々が前述の実施形態及び実施形態の変形型のいずれか1つによるそれぞれの蓄積装置に基づく。モジュールは、再生可能資源からの電気エネルギーを変換することによって熱エネルギーを蓄積し、要求に応じて、専用の発電グルーブによって電気エネルギーを生成する。
【0110】
例示されたもののようなモジュール式システムは、その高い電力密度から、小さい空間を占有することによっていずれの必要なエネルギー蓄積量にも到達でき、例えば、5ヘクタール-100熱モジュール-300MWhであり、これは40%の効率を有するタービンに供給することにより、住民1,000,000人の都市の分を賄うことのできる1200電気MWhと等しい。
【0111】
前述の好ましい構成のすべてにおいて、各蓄積モジュールには、流体温度を接続された利用者の動作パラメータに合わせるために生成された蒸気を調整するシステムが提供される。
【0112】
さらに、前述のように、各プラント構成は、1つのモジュールの熱エネルギーを蓄積するステップと、必要に応じたそのままでの、又は電気エネルギーの形態でのその放出を管理する制御システムを提供する。
【0113】
これに関して、電気エネルギーと熱エネルギーの復号生成のために追加的な熱電併給的構成が可能である。
【0114】
前述のように、大量の熱エネルギーの蓄積の可能性によって、新規な適切に考案され、構成されたタービン/発電機群の代わりに既存の化石燃料発電プラントさえ使用することが可能となる。この可能性は、化石燃料で生成される電気エネルギーにより現在実行されている今日から再生可能資源により生成される電気への移行の経済に多大な経済的及び環境的利点をもたらすことができる。
【0115】
本発明はさらに、本発明のプラントに関連して前述した機能性に基づいて、熱エネルギーを蓄積し、移動させる方法を提供する。
【0116】
本発明の主題はここまで、その好ましい実施形態に関して説明された。同じ発明的核心に属するその他の実施形態も存在するかもしれず、そのすべてが後述の特許請求項の保護範囲に含まれるものとする。
図1
図1bis
図1ter
図1quater
図2
図2-2】
図2-3】
図2-4】
図3
図3-2】
図3-3】
図3-4】
図4
図4bis
図4ter
図4quater
図5
図6
図7
図8
図9
【国際調査報告】