(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-02-18
(54)【発明の名称】動的発振回路を有する高電圧直流電流用の電流遮断装置および制御方法
(51)【国際特許分類】
H01H 33/59 20060101AFI20220210BHJP
H01H 9/54 20060101ALI20220210BHJP
【FI】
H01H33/59 H
H01H33/59 C
H01H9/54 A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021537871
(86)(22)【出願日】2019-12-23
(85)【翻訳文提出日】2021-08-12
(86)【国際出願番号】 FR2019053292
(87)【国際公開番号】W WO2020136350
(87)【国際公開日】2020-07-02
(32)【優先日】2018-12-27
(33)【優先権主張国・地域又は機関】FR
(81)【指定国・地域】
(71)【出願人】
【識別番号】517202755
【氏名又は名称】スーパーグリッド インスティテュート
【住所又は居所原語表記】23 RUE CYPRIAN, 69100 VILLEURBANNE, FRANCE
(74)【代理人】
【識別番号】100107641
【氏名又は名称】鎌田 耕一
(74)【代理人】
【識別番号】100202201
【氏名又は名称】兒島 淳一郎
(72)【発明者】
【氏名】ヤン,ヤン
【テーマコード(参考)】
5G028
5G034
【Fターム(参考)】
5G028AA14
5G028FB01
5G028FC01
5G028FC02
5G034AA04
5G034AA07
(57)【要約】
本発明は、高電圧直流電流用の電流遮断装置(10)であって:-第1ポイント(12)および第2ポイント(14)の間の主線路(16)に配置された少なくとも1つの第1機械的スイッチ(18);-第1スイッチ(18)と並列に配置された第1サージ抑制器(30);および-第1スイッチ(18)と電気的に並列かつ第1サージ抑制器(30)と電気的に並列に配置された発振回路(40)であって、電気的に直列に設けられたインダクタ(42)、キャパシタ(44)および発振トリガ(46)を少なくとも備える発振回路(40)を備え、装置(10)は、発振回路(40)において、発振回路に直列に挿入された、抵抗の抵抗値を変化させるための制御可能デバイス(48、48’、50、50’)を備えることを特徴とする電流遮断装置(10)に関する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
高電圧直流電流用の電流遮断装置(10)であって:
-第1ポイント(12)および第2ポイント(14)の間の主線路(16)であって、前記主線路(16)に挿入された少なくとも1つの第1機械的スイッチ(18)を含む主線路(16);
-前記第1スイッチ(18)と並列に配置された第1サージ抑制器(30);および
-前記第1スイッチ(18)と電気的に並列かつ前記第1サージ抑制器(30)と電気的に並列に配置された発振回路(40)であって、電気的に直列に設けられたインダクタ(42)、キャパシタ(44)および発振トリガ(46)を少なくとも含む発振回路(40)、
を含むタイプのものであり、
前記装置(10)は、前記発振回路(40)において、前記発振回路(40)に直列に挿入された、抵抗値を変化させるための制御可能デバイス(50、50’)を含むことを、特徴とする、電流遮断装置(10)。
【請求項2】
前記遮断装置は、バイパススイッチ(50、50’)およびダンピング抵抗(48、48’)を少なくとも含み、前記バイパススイッチ(50、50’)は、開放状態と投入状態の間で切り替え可能であり、前記ダンピング抵抗(48、48’)および前記バイパススイッチ(50、50’)は、前記バイパススイッチ(50、50’)がある状態のときに前記ダンピング抵抗(48、48’)が前記発振回路(40)に電気的に直列に挿入されて前記発振回路(40)の前記インダクタ(42)、前記キャパシタ(44)および前記発振トリガ(46)と電気的に直列となり、一方、前記バイパススイッチ(50、50’)が別の状態のときに前記ダンピング抵抗(48)が前記発振回路で短絡するように、配置されていることを特徴とする、請求項1に記載の遮断装置。
【請求項3】
前記発振回路(40)は、前記発振回路(40)に永久的に挿入され、前記発振回路(40)の前記インダクタ(42)、前記キャパシタ(44)および前記発振トリガ(46)と電気的に直列に設けられた少なくとも1つの永久抵抗(R’)を含むことを特徴とする、請求項1または2に記載の遮断装置。
【請求項4】
前記発振回路(40)は、複数のダンピング抵抗(48、48’)であって前記複数のダンピング抵抗(48、48’)の各々がそのダンピング抵抗(48、48’)の別個のバイパススイッチ(50、50’)に関連付けられている複数のダンピング抵抗(48、48’)を含み、各バイパススイッチ(50、50’)は、開放状態と投入状態の間で切り替え可能であり、ダンピング抵抗(48、48’)および前記関連付けられたバイパススイッチ(50、50’)は、前記バイパススイッチ(50、50’)がある状態のときに前記バイパススイッチ(50、50’)に関連付けられた前記ダンピング抵抗(48、48’)が前記発振回路(40)に電気的に直列に挿入されて前記インダクタ(42)、前記キャパシタ(44)および前記発振トリガ(46)と電気的に直列となり、一方、前記バイパススイッチ(50、50’)が別の状態のときに前記バイパススイッチに関連付けられた前記ダンピング抵抗(48、48’)が前記発振回路(40)で短絡するように、配置されていることを特徴とする、先行する請求項のいずれか一項に記載の遮断装置。
【請求項5】
前記遮断装置は、前記主線路(16)に挿入された第2機械的スイッチ(24)を含み、前記第1機械的スイッチ(18)および前記第2機械的スイッチ(24)は、前記第1ポイント(12)および前記第2ポイント(14)の間の前記主線路(16)に連続して挿入されているが前記主線路(16)の中間ポイント(13)から見て互いに反対側に配置され、これら2つの機械的スイッチ(18、24)の各々は、独立して、開放状態および投入状態の間で制御されることを特徴とする、先行する請求項のいずれか一項に記載の遮断装置。
【請求項6】
前記遮断装置は、電気的に前記中間ポイント(13)および前記第2ポイント(14)の間に配置された、前記第2スイッチ(24)と電気的に並列に配置された第2サージ抑制器(32)を含むことを特徴とする、請求項5に記載の遮断装置。
【請求項7】
前記装置(10)は、前記第1ポイント(12)および前記第2ポイント(14)の間に、前記第1スイッチ(18)および前記第2スイッチ(24)によって形成されたアセンブリと電気的に並列、かつ、前記第1サージ抑制器(30)および前記第2サージ抑制器(32)によって形成されたアセンブリと電気的に並列に設けられた、容量性バッファ回路(34)を含み、前記容量性バッファ回路(34)は、作動スイッチ(36)およびバッファキャパシタ(38)を含むことを特徴とする、請求項5に記載の遮断装置。
【請求項8】
前記容量性バッファ回路(34)は、専用の誘導素子を含まないことを特徴とする、請求項7に記載の遮断装置。
【請求項9】
前記作動スイッチ(36)および前記バッファキャパシタ(38)は、前記第1ポイント(12)から前記第2ポイント(14)に延びる前記容量性バッファ回路の線路(35)において電気的に直列に配置されていることを特徴とする、請求項7または8に記載の遮断装置。
【請求項10】
前記容量性バッファ回路(34)は、前記バッファキャパシタ(38)を放電するための回路(39)を含むことを特徴とする、請求項7から9のいずれか一項に記載の遮断装置。
【請求項11】
前記容量性バッファ回路(34)は、前記作動スイッチ(36)と並列に配置された第3サージ抑制器(37)を含むことを特徴とする、請求項7から10のいずれか一項に記載の遮断装置。
【請求項12】
前記第3サージ抑制器(37)は、前記作動スイッチ(36)の複数の端子に直接的かつ該端子間領域を跨ぐように接続されていることを特徴とする、請求項11に記載の遮断装置。
【請求項13】
前記第1スイッチ(18)は、少なくとも1つの真空スイッチを含むことを特徴とする、先行する請求項のいずれか一項に記載の遮断装置。
【請求項14】
前記第2スイッチ(24)は、少なくとも1つの絶縁ガススイッチを含むことを特徴とする、先行する請求項のいずれか一項に記載の遮断装置。
【請求項15】
前記第2スイッチ(24)は、少なくとも1つの真空スイッチを含むことを特徴とする、請求項1から13のいずれか一項に記載の遮断装置。
【請求項16】
請求項2から15のいずれか一項に記載の遮断装置を制御するための制御方法であって、前記装置を流れる遮断されるべき電流の強度の値を決定することと、前記決定された故障電流の強度の値に応じて、前記少なくとも1つのバイパススイッチが切り替わることによって該バイパススイッチが至るべき状態を決定することと、を含むことを特徴とする、制御方法。
【請求項17】
前記発振回路の全ての前記バイパススイッチが、同時に切り替えられることを特徴とする、請求項16に記載の遮断装置を制御するための制御方法。
【請求項18】
前記発振回路の前記複数のバイパススイッチの少なくともいくつかが、互いに時間差をつけて切り替えられることを特徴とする、請求項16に記載の遮断装置を制御するための制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的にはHVDCネットワークと称される、高電圧直流電流を輸送するおよび/または供給するネットワークの分野に関する。本発明は、特に、このようなネットワーク用の故障電流遮断装置に関する。
【背景技術】
【0002】
HVDCネットワークは、特に、異種のまたは非同期の発電箇所(de sites de production d'electricite disparates ou non synchrones)の相互接続に対するソリューションと考えられる。HVDCネットワークは、特に、交流電流テクノロジーというよりもむしろ、沖合の風力発電所によって生成されるエネルギーの輸送および供給を想定したものと考えられる。これは、長距離のネットワークにおいて線路損失がより低く寄生容量の影響がないためである。典型的には、このようなネットワークは、100kVであったり100kVよりも高かったりする程度の電圧レベルを有する。
【0003】
本明細書において、公称動作電圧が直流電流において1500Vよりも高い装置が、直流電流に関する高電圧と考えられる。補足すると、そのような高電圧は、直流電流において75000V(75kV)よりも高い場合において、超高電圧に分類される。当然ながら、高電圧領域は、超高電圧領域を含む。
【0004】
このようなネットワークにおける直流電流の遮断は、このようなネットワークの実現可能性および発展に直接的に影響する重要な検討事項である。
【0005】
交流電流の遮断を実現する、すなわち電流の遮断が機械的切替素子の開放のみによって実現される、機械的サーキットブレーカータイプの遮断装置が知られている。このような機械的切替素子は、切替素子が投入されると機械的および電気的に接触し切替素子が開放されると機械的に分離される2つの接触形成用の導電性部品を含む。このような機械的サーキットブレーカーには、自身に大電流が流れるときに、様々な欠点がある。
【0006】
大電流および/または高電圧下においては、機械的分離により、2つの導電性部品の間で電気アークが形成されうる。これは、装置が保護するネットワークに蓄積された大きなエネルギーに依るものである。機械的分離による電気アークが形成されたままでは、遮断装置は、電気的遮断を成し遂げない。なぜなら、アークの存在により、電流が装置を流れ続けるためである。電気的遮断は、電流の流れを有効に妨げるという意味では、直流電流かつ高電圧下という電気アークが維持され易い状況においては成し遂げるのが非常に困難であることがある。さらに、この電気アークは、一方では2つの接触形成用の導電性部品をエロ―ジョンにより劣化させ、他方では周辺環境をイオン化により劣化させる。さらに、このイオン化が原因で、電流を止めるのにいくらかの時間がかかる。このことにより、遮断装置のメンテナンス作業が必要となるのであるが、メンテナンス作業は煩わしく費用がかかる。
【0007】
HVDCネットワークにおける故障電流は、非常に激しく破壊的である。大電流が生じる故障が発生したときには、その電流を素早く遮断する必要があり、あるいは、遮断が可能となるのを待つ間において電流を制限する必要も生じうる。さらに、HVDC電流の遮断は、交流電流(AC)の遮断よりも成し遂げるのが困難である。交流電流の遮断の際には、遮断を成し遂げるのに電流のゼロクロスが利用される。しかし、直流電流、特にHVDCの場合はこれに該当しない。
【0008】
従来技術
様々なソリューションが、HVDC線路における電流遮断を容易にするために提案されてきた。例えば、書類WO2015/078525、US2017/0178844またはDE2136865を参照できる。
【0009】
ソリューションには、主としてサイリスタおよびIGBTである、多数の能動的な半導体切替素子を用いるものがある。しかし、これらの素子は、高価格/高電力効率である。このような半導体スイッチを過度に用いると、ソリューションのコストが増加する。
【0010】
文書WO2015/185096、US4442469およびUS3758790の各々には、高電圧直流電流用の電流遮断装置が記載されている。これらの装置は、第1機械的スイッチおよび第2機械的スイッチを備える。第1機械的スイッチおよび第2機械的スイッチは、第1ポイントおよび第2ポイントの間の主線路に連続的に挿入されているが、主線路の中間ポイントから見て互いに反対側に位置する。これら2つの機械的スイッチの各々は、開放状態および投入状態の間で制御される。しかし、機械的スイッチにおいて、機械的に分離した接点間の電気アークの存在下で電流を妨げるという問題は、未解決のままである。
【0011】
さらに、スイッチと電気的に並列に配置された発振回路を設けることが知られている。発振回路は、スイッチにおける電流のゼロクロスを形成することで第1スイッチが機械的に開放されているときに第1スイッチにおける電気的遮断を容易にするように設計されており、また、これが可能である。いくつかの知られた実施形態では、発振回路は、インダクタ、キャパシタおよび発振トリガを少なくとも含む。これらは、有効に電気的遮断されることが望まれるスイッチと並列に設けられた発振回路に、電気的に直列に入るように配置されている。しばしば、発振回路が動作を開始する前に、キャパシタは予め充電されるようになっている(est prevu que)。この例では、回路は、キャパシタを予め充電するための回路を含みうる。しかし、その場合、発振回路は、特に想定されうる最大強度の故障電流を含め、対象となるスイッチにおいて生じうるあらゆる故障電流を妨げることができるように構成される必要がある。しかし、使用時には、この最大値には達しない故障電流が生じることがある。この例では、発振回路は、発振回路が生成する逆電流(contre-courant)が故障電流に比べて非常に大きいという意味で、大き過ぎることになる。さらに、この例では、発振回路は、対象となるスイッチを流れる電流の1または複数のゼロクロスを生成するが、そのようなゼロクロスは、スイッチにおける強度の変化速度dI/dtが過度に高い状態で生じうる。スイッチにおける強度の変化速度dI/dtが過度に高いと、ゼロクロスがあっても電気的遮断がなされない可能性がある。
【0012】
EP-3091626に記載の装置は、このタイプのものであり、スイッチと電気的に並列に配置された発振回路を含む。この文書は、第1スイッチと並列に設けられた発振回路に抵抗が直列に挿入されうる遮断装置を開示していない。電気回路において、2つの素子は、同一電流が流れれば、直列である。従って、EP-3091626では、抵抗150は、スイッチに並列に設けられた発振回路に直列に入りえない(ne peut pas etre en serie dans)。EP-3091626では、2つのスイッチ130,140が開放されているとき、抵抗150を流れる電流は、LC素子120を流れる電流と同じと考えられる。しかし、この例では、抵抗150もLC素子120も、スイッチ110と並列な発振回路内にはない(ni la resistance 150 ni le composant LC 120 ne sont dans un circuit oscillant en parallele de l'interrupteur 110)。スイッチ120または130が投入されているとき、抵抗150を流れる電流は、LC素子120を流れる電流と同じにはなりえない。なぜなら、LC素子120を流れる電流のほとんどは、投入されたスイッチ120または130を含む分岐路を流れるのであって、抵抗150を流れないためである。D1において、抵抗150の役割は、単にキャパシタを充電させることである。抵抗は、発振回路が主線路に電流を注入するときには、発振回路において役割を有さない。
【0013】
いくつかの先行技術文献では、故障電流に応じて、発振回路の特性を適合化する動的回路が提案されている。
【0014】
DE-102011083514としても発行されている文書US-2014/299579では、少なくとも2つの並列分岐路であって各々がキャパシタ分岐スイッチと直列に設けられたキャパシタを有する並列分岐路を含む発振回路が記載されている。故障電流に応じて、発振回路に蓄えられた電荷を放電するキャパシタの数を選択できる。よって、この動的回路は、主線路に注入される逆電流の強度を適合化できる。システムにおける各分岐路では、スイッチはフル電圧に耐える必要があるが、このことは高価かつ大型の素子を必要とする。
【0015】
文書WO-2015/166600では、発振回路のインダクタンス値を適合化するための手段を含む発振回路が記載されている。一実施形態は、例えば複数のコイルである複数の専用の誘導素子を含み、それらの少なくともいくつかにはバイパススイッチが設けられている。バイパススイッチは高電圧に耐える必要があり、このことは高価かつ大型の素子を必要とする。
【0016】
しかし、上記の最後の2つの文献における装置は、発振回路において実装される合計キャパシタンスまたは合計インダクタンスに影響を与えるものであり、通常、発振回路が故障電流のありうる全範囲にわたる電気アークを妨げることができるように合計キャパシタンスまたは合計インダクタンスに関する多くの段階を設けることを必要とする。現実には、これは、誘導性または容量性の専用素子の数を増加させ、さらには発振回路に直接関連付けられた制御スイッチの数を増加させる。このことは高コストおよび大スペースの要求を引き起こす。
【0017】
要するに、従来技術には、機械的スイッチにおける電流の有効な遮断、ここで電流は充電電流であるか故障電流であるかによらない、を遮断するべき広い電流範囲にわたって実現するコンパクトかつ安価なソリューションは、特に1000アンペアよりも小さくてもよい値から10kAよりも大きくてもよい値までという遮断するべき電流範囲を考慮したときには、存在しない。
【発明の概要】
【0018】
従って、本発明は、高電圧直流電流用の電流遮断装置であって、以下を含むタイプのものを提案する:
-第1ポイントおよび第2ポイントの間の主線路であって、主線路に挿入された少なくとも1つの第1機械的スイッチを含む主線路;
-第1スイッチと並列に配置された第1サージ抑制器;および
-第1スイッチと電気的に並列かつ第1サージ抑制器と電気的に並列に配置された発振回路であって、電気的に直列に設けられたインダクタ、キャパシタおよび発振トリガを少なくとも含む発振回路。
【0019】
本発明の一側面では、装置は、発振回路において、発振回路に直列に挿入された、抵抗値を変化させるための制御可能デバイスを含む。
【0020】
本発明に係る装置は、本発明の任意の他の特徴を、単独でまたは組み合わせで備えていてもよい。
【0021】
制御可能デバイスは、少なくともバイパススイッチおよびダンピング抵抗によって形成されていてもよい、または、バイパススイッチおよびダンピング抵抗を少なくとも含んでいてもよい。バイパススイッチは、開放状態と投入状態の間で切り替え可能であり、ダンピング抵抗およびバイパススイッチは、バイパススイッチがある状態のときにダンピング抵抗が発振回路に電気的に直列に挿入されて発振回路のインダクタ、キャパシタおよび発振トリガと電気的に直列となり(la resistance d'amortissement est inseree electriquement en serie dans le circuit d'oscillation avec l'inductance, la capacite et l'enclencheur d'oscillation du circuit d'oscillation)、一方、バイパススイッチが別の状態のときにダンピング抵抗が発振回路で短絡する(la resistance d'amortissement est court-circuitee par rapport au circuit d'oscillation)ように、配置されていてもよい。
【0022】
発振回路は、発振回路に永久的に挿入され、発振回路のインダクタ、キャパシタおよび発振トリガと電気的に直列に設けられた少なくとも1つの永久抵抗を含んでいてもよい。
【0023】
発振回路は、複数のダンピング抵抗であって複数のダンピング抵抗の各々がそのダンピング抵抗の別個のバイパススイッチに関連付けられている複数のダンピング抵抗を含み、各バイパススイッチは、開放状態と投入状態の間で切り替え可能であり、ダンピング抵抗および関連付けられたバイパススイッチは、バイパススイッチがある状態のときにスイッチに関連付けられたダンピング抵抗が発振回路に電気的に直列に挿入されて発振回路のインダクタ、キャパシタおよび発振トリガと電気的に直列となり、一方、バイパススイッチが別の状態のときにスイッチに関連付けられたダンピング抵抗が発振回路で短絡するように、配置されていてもよい。
【0024】
遮断装置は、主線路に挿入された第2機械的スイッチを含み、第1機械的スイッチおよび第2機械的スイッチは、第1ポイントおよび第2ポイントの間の主線路に連続して挿入されているが主線路の中間ポイントから見て互いに反対側(de part et d'autre d'un point intermediaire de la ligne principale)に配置され、これら2つの機械的スイッチの各々は、独立して、開放状態および投入状態の間で制御されてもよい。
【0025】
遮断装置は、電気的に中間ポイントおよび第2ポイントの間に配置された、第2スイッチと電気的に並列に配置された第2サージ抑制器を含んでいてもよい。
【0026】
遮断装置は、第1ポイントおよび第2ポイントの間に、第1スイッチおよび第2スイッチによって形成されたアセンブリと電気的に並列、かつ、第1サージ抑制器および第2サージ抑制器によって形成されたアセンブリと電気的に並列に設けられた、容量性バッファ回路を含み、容量性バッファ回路は、作動スイッチおよびバッファキャパシタを含んでいてもよい。典型的には、容量性バッファ回路は、専用の誘導素子を含まない。
【0027】
作動スイッチおよびバッファキャパシタは、第1ポイントから第2ポイントに延びる容量性バッファ回路の線路において電気的に直列に配置されていてもよい。
【0028】
容量性バッファ回路は、バッファキャパシタを放電するための回路を含んでいてもよい。
【0029】
容量性バッファ回路は、作動スイッチと並列に配置された第3サージ抑制器であって、例えば、作動スイッチの複数の端子に直接的かつ該端子間領域を跨ぐように接続された第3サージ抑制器(directement aux bornes de l'interrupteur d'activation)を含んでいてもよい。
【0030】
第1スイッチは、少なくとも1つの真空スイッチを含んでいてもよい。
【0031】
第2スイッチは、少なくとも1つの絶縁ガススイッチを含んでいてもよく、少なくとも1つの真空スイッチを含んでいてもよい。
【0032】
本発明はまた、遮断装置を制御するための制御方法であって、装置を流れる遮断されるべき電流の強度の値を決定することと、決定された故障電流の強度の値に応じて、少なくとも1つのバイパススイッチが切り替わることによってバイパススイッチが至るべき状態(de l' etat dans lequel l'au moins un interrupteur de by-pass doit etre bascule)を決定することと、を含むことを特徴とする制御方法に関する。このような方法では、発振回路の全てのバイパススイッチが、同時に切り替えられてもよく、反対に、互いに時間差をつけて切り替えられてもよい。
【図面の簡単な説明】
【0033】
【
図1】
図1は、本発明に係る遮断装置の第1実施形態の模式図である。
【
図2】
図2は、本発明に係る遮断装置の第2実施形態の模式図である。
【
図3】
図3は、本発明の第1実施形態に係る、開放工程における装置の動作に関するいくつかの量的特性の変化を模式的に示すグラフである。
【
図4】
図4は、本発明に係る遮断装置において実装可能な発振回路の一変形例の模式図である。
【
図5】
図5は、本発明に係る遮断装置において実装可能な発振回路の他の変形例の模式図である。
【発明を実施するための形態】
【0034】
図1は、本発明に係る遮断装置10の第1実施形態を模式的に示す。この装置は、高電圧あるいはさらには超高電圧における直流電流用である。
【0035】
図1に見られるように、電流遮断装置10は、第1端子12でありうる第1ポイントと、第2端子14でありうる第2ポイントと、を含む。第1ポイント12および第2ポイント14またはこれらの端子は、装置10における電流の入力部/出力部を形成する。これらのポイントの各々は、装置10の物理的な端子、例えば、装置10の物理的接続端子、または、導電体上の(long)点である仮想的端子に対応しうる。
【0036】
図1の装置10は、主線路16を含む。主線路16は、第1端子12および第2端子14の間で延びている。第1ポイント12および第2ポイント14の間の主線路16では、第1端子20および第2端子22を有する第1スイッチ18と、第1端子26および第2端子28を有する第2スイッチ24とが、連続して挿入されている。第1スイッチ18の第1端子20は、第1ポイント12と同電位である。第2スイッチ24の第2端子28は、第2ポイント14と同電位である。第1スイッチ18の第2端子22および第2スイッチ24の第1端子28は、同電位であり、2つのスイッチ18、24の間に配置された主線路16の中間ポイント13と同電位である。第1スイッチ18および第2スイッチ24が電流を流す投入状態にあるとき、電流は装置10を通じて主線路16において流れる。主線路16は、装置10における第1ポイント12および第2ポイント14の間において最もインピーダンスが低い線路である。第1スイッチ18および第2スイッチ24の片方または両方は、開放状態または投入状態に切り替えられうる。
【0037】
装置10は、電気設備に組み込まれることを意図したものである。例えば、装置10の第1端子12は、高電圧源を備えうる設備の一部に接続されうる。高電圧電源は、例えば、100キロボルトよりも大きい。第2端子14は、例えば、電流消費回路に接続されうる。電流消費回路は、例えば、電気負荷または電気ネットワークである。この態様において、図示の例では、電流が流れる方向について、第1端子12は、上流端子または電流入力端子であり、一方、第2端子14は、下流端子または電流出力端子であると考えることができる。この例では、装置の主線路16は、直流電圧源によって印加される公称電流が流れることを意図したものである。ただし、本発明に係る装置10は、可逆的なものであり、装置を流れる電流の流れは、反対方向でありうる。
【0038】
電気設備は、高電圧領域すなわち少なくとも1500ボルトよりも大きい電圧、好ましくは超高電圧領域すなわち75000Vよりも大きい電圧における、公称直流電圧で動作するように構成されている。本発明は、特に、少なくとも100000ボルト(100kV)よりも大きい電圧における、3000アンペアまで、好ましくは10000アンペアまで、またはさらには20000アンペアまでの電流を遮断する能力を有する遮断装置に有利に利用されうる。
【0039】
第1スイッチ18および第2スイッチ24は、特に、サーキットブレーカータイプ、断路器タイプ、またはヒューズタイプ等でありうる。以下のより具体的な例では、第1スイッチ18および第2スイッチ24の各々は、例えば、サーキットブレーカーによって形成されている。
【0040】
第1スイッチ18および第2スイッチ24の両方は、好ましくは、2つの電気的接点または一対の電気的接点を移動させることによって、特に離間させることによって、電気的遮断が実現される機械的電気遮断装置である。機械的装置では、電気的接点の移動は、一般的には、機械的な、空圧式の、水圧式のまたは電気式の、操作部材またはアクチュエータにより実行されるものであり、運動伝達キネマティクスによるものでありうる。この移動は、電子的に監視されうる。上述のとおり、大電流および/または高電圧の存在下では、電気的接点の機械的分離により、スイッチにおける2つの電気的接点間に電気アークが形成されうる。これは、装置が保護するネットワークに蓄積された大きなエネルギーのせいである。機械的遮断による電気アークが形成されたままでは、スイッチは、電気的遮断を成し遂げない。なぜなら、アークの存在により、電流がスイッチを流れ続けるためである。以下に説明するように、本発明は、電流の流れを有効に妨げるという意味で、電気遮断を実現するための手段を提供する。
【0041】
第1スイッチ18および/または第2スイッチ24の各々は、単一の機械的電気遮断装置でありうる、または、電気的に直列および/または並列に配置された複数の機械的電気遮断装置でありうる。これは、絶縁流体が充填された密閉容器内に電流供給手段(“バスバー”とも称される)が収容された、“金属収容”装置と称される装置でありうる。特に、金属収容装置は、空気において絶縁が成し遂げられる装置に比べてよりコンパクトに設計されうる。
【0042】
機械的電気遮断スイッチは、特に、接地電位にある容器の周壁から離れた固定位置に絶縁支持体によって保持される2つの電極を含む、従来形式のものでありうる。これらの電極は、これらの電極の一方の一部を形成する可動接続部材の位置に基づいて、電気的に接続されたり電気的に分離されたりする。可動接続部材は、例えば、命令により駆動される摺動管(tube coulissant)である。管は、一般には、それが電気的に接続される電極によって保持され、反対側の電極からの管の分離は電気アークを引き起こしがちである。この電気アークは、当該反対側の電極から管が移動するスイッチの開放動作の期間にわたり持続されうる。機械的電気遮断スイッチは、通常、管によって保持される2対の電気的接点と、2つの電極と、を含む。第1対は、装置の完全投入状態において公称電流が流れる対である。この接点対は、接点の第2対によって補助されうる。接点の第2対は、アーク接点対または第2接点対と称される。この対における2つの接点は、第1対におけるアーク現象が最小化され完全投入状態における良好な電気導電状態が確保されるように、第1対の分離中において直接接触したままとされることを意図したものである。反対に、第2対の接点は最後に分離され、電気アークが形成される。
【0043】
いくつかの実施形態では、第1スイッチ18は、真空スイッチである、または、少なくとも1つの真空スイッチを含む。第1スイッチ18では、能動遮断部材、特に電気的接点が、大気圧よりも低い圧力、特に100ミリバール未満、特に10マイクロバール未満の、密閉容器に収容されている。そのようなスイッチには、電流の強度変化速度が高いすなわち時間に関する強度の微分値(dI/dt)が高い場合においても完全な電気的遮断を実現できるという利点がある。
【0044】
本発明のいくつかの実施形態では、第2スイッチ24は、絶縁流体スイッチである、または、少なくとも1つの絶縁流体スイッチを含む。絶縁流体スイッチは、特に、絶縁ガススイッチである。このタイプのスイッチは、高電圧下、さらには超高電圧下における、電流の遮断に特に適している。このような装置では、能動的な遮断部材は、特に電気的接点は、絶縁流体が存する密閉容器に収容されている。絶縁流体は、ガスでありうるし、通常は通常六フッ化硫黄(SF6)であるが、液体またはオイルもまた用いられうる。絶縁流体は、加圧された、例えば絶対圧力で3バール以上の流体である。この流体は、その絶縁性を目的に選ばれ、具体的には同等の圧力の乾燥空気よりも大きい絶縁耐力を有するように選ばれる。
【0045】
後により詳細に説明する実施形態を含め、いくつかの実施形態では、第1スイッチ18は、真空スイッチである、または、真空スイッチを含む、そして、第2スイッチ24は、絶縁流体スイッチであり特に絶縁ガススイッチである、または、絶縁流体スイッチを含み特に絶縁ガススイッチを含む。ただし、他の組み合わせは可能である。例えば、同一テクノロジーの、特に両方が真空スイッチタイプの、第1スイッチおよび第2スイッチという組み合わせを装置が含んでいてもよい。
【0046】
図1に見られるように、装置10は、第1ポイント12および中間ポイント13の間で第1スイッチ18と並列に配置され従って第1スイッチ18と電気的に並列に配置された第1サージ抑制器30と、第2スイッチ24と電気的に並列に配置され従って電気的に中間ポイント13および第2ポイント14の間に配置された第2サージ抑制器32と、を含む。
【0047】
このような複数のサージ抑制器により、それらと並列に配置されたスイッチの端子間の電位差の大きさを制限できる。サージ抑制器30、32または“電圧サージアレスタ”は、従って、その端子間の電圧のピークを制限する装置である。サージ抑制器30、32は、通常、その端子間の電圧に応じて変化する可変抵抗を有する電気素子を備える。抵抗値の変化は、通常、サージ抑制器30、32の端子間の電圧に対して非線形である。通常、サージ抑制器30、32の端子間の電圧が遷移電圧よりも低いと、サージ抑制器30、32の抵抗は大きく、電圧の上昇に応じた抵抗の低下はゼロまたは比較的小さく、サージ抑制器は、好ましくは1アンペア(A)未満、またはさらには100ミリアンペア(mA)未満の漏れ電流しか流さない。これに対し、サージ抑制器の端子間の電圧が遷移電圧よりも高いと、サージ抑制器の抵抗は電圧の上昇に応じて急速に低下し、クリッピング電圧値または保護電圧に至り、この電圧では、サージ抑制器の抵抗は低いまたはさらには非常に低い。換言すると、サージ抑制器は、選択された電流範囲にわたる、該サージ抑制器の端子間の電圧の制限器として動作する。サージ抑制器は、サージ抑制器の大きさに応じた最大電流を流すときに保護電圧を印加する。遷移電圧よりも低いと、サージ抑制器は、電流の流れを妨げる。遷移電圧よりも高いと、サージ抑制器は、サージ抑制器を電流が流れるようにし、その端子間の電圧が少し上昇する。知られているように、遷移電圧は、通常、正確な値ではなく、むしろ、遷移電圧の範囲に対応する。しかし、本明細書において、サージ抑制器の遷移電圧は、サージ抑制器に1アンペア(A)の電流が流れる電圧であると定義する。保護電圧は、サージ抑制器にその大きさに応じた最大電流が流れるときの、サージ抑制器の端子間の電圧である。サージ抑制器の中で、ライトニングアレスタは、特に、複数のバリスタとTVSダイオード(“Transil(商標)”ダイオードまたはTVSダイオードのような過渡電圧抑制ダイオード)とを備えうるものとして知られている。特に、本発明の範囲において、第1サージ抑制器30および/または第2サージ抑制器32の各々は、金属酸化物バリスタ(または、MOV)を備えていてもよい。
【0048】
有利には、図示の例では、第1サージ抑制器30は、遷移電圧が例えば10000ボルト(10kV)から100000ボルト(100kV)の範囲にあるサージ抑制器でありうる。第2サージ抑制器32は、通常、第1サージ抑制器30の遷移電圧よりも遷移電圧が高いサージ抑制器である。より具体的には、サージ抑制器は、好ましくは、第2サージ抑制器32および第1サージ抑制器30の間の遷移電圧比が1と10の間であるような、遷移電圧を有する。
【0049】
2つの連続的な第1スイッチ18および第2スイッチ24を含む
図1の例では、第1サージ抑制器30の遷移電圧は、遮断装置10が挿入される電気設備の公称電圧よりも厳密に小さい。特に最適化された実施形態では、第1サージ抑制器30および第2サージ抑制器32は、第1サージ抑制器30の遷移電圧および第2サージ抑制器32の遷移電圧の合計が電気設備の公称電圧以上となるように、選択される。
【0050】
図1のような装置においては、保護電圧が200kVよりも小さい第1サージ抑制器30を選択することにより、第1スイッチ18の端子間の電圧がこの保護電圧以下に維持され、これにより等価の高電圧システムに比べてコストおよびスペースの要求が大幅に小さいスイッチを使用することが可能となる。第1スイッチ18における電気的遮断も容易となる。
【0051】
第1サージ抑制器30および/または第2サージ抑制器32の各々は、電気的に直列および/または並列に配置された複数のディスクリート素子のアセンブリによって形成されていてもよい。例えば、各ディスクリート素子は、ライトニングアレスタ、特に金属酸化物バリスタのようなバリスタであり、またはTVSダイオードである。好ましくは、電気的に直列および/または並列に配置された複数のディスクリート素子のアセンブリは、装置の他の部分から見て、アセンブリとしての等価な遷移電圧およびアセンブリとしての等価な保護電圧を有する単一のサージ抑制器の挙動を示す。
【0052】
図2は、本発明に係る遮断装置10の第2実施形態を模式的に示す。この装置は、高電圧あるいはさらには超高電圧における直流電流用である。この装置は、シンプル化されて設計されたものである。2つの実施形態において共通する要素は同一の参照符号により示され、そうではないという教示がない限り、上述したそれらに関する詳細はこの第2実施形態にも適用可能である。
【0053】
このシンプル化された実施形態では、遮断装置10は、第1ポイント12および第2ポイント14の間を延びる主線路16において、第1スイッチ18のみを含む。そのため、この実施形態は、第1実施形態で説明した第2スイッチを含まない。これは、第1スイッチ18を直列または並列に配置された複数の電気的スイッチのアセンブリで形成することを妨げないが、回路の他の部分からは、単一のスイッチとして見られる。第1スイッチ18の第1端子20は、第1ポイント12と同電位である。第1スイッチ18の第2端子22は、第2ポイント14と同電位である。第1スイッチ18が電流を流す投入状態であるとき、電流は、装置10を通じて主線路16において流れる。主線路16は、第1ポイント12および第2ポイント14の間において装置10で最もインピーダンスが低い線路である。第1スイッチ18は、開放状態または投入状態に切り替わりうる。
【0054】
第1スイッチ18は、好ましくは、機械的電気遮断装置である。第1スイッチ18は、単一の機械的電気遮断装置であってもよく、電気的に直列および/または並列に配置された複数の機械的電気遮断装置であってもよい。第1スイッチ18は、“金属収容”装置と称される装置でありうる。いくつかの実施形態では、第1スイッチ18は、真空スイッチである、または、少なくとも1つの真空スイッチを含む。
【0055】
図2に見られるように、装置10は、第1ポイント12および中間ポイント14の間で第1スイッチ18と並列に配置され従って第1スイッチ18と電気的に並列に配置された第1サージ抑制器30を含む。第1ポイント12および第2ポイント14の間に第1スイッチ18のみを備えるこの実施形態では、第1サージ抑制器30の遷移電圧は、厳密に、電気設備の公称電圧以上とすることができる。
【0056】
本発明の両方の実施形態に共通の一側面において、遮断装置10は、第1スイッチ18と電気的に並列に配置された発振回路40を含む。発振回路40は、第1サージ抑制器30と電気的に並列に配置されていることに留意されたい。発振回路40は、第1スイッチ18における電流のゼロクロスを形成するように設計されており、また、これが可能である。第1実施形態では、発振回路40は、第1ポイント12および中間ポイント13の間に配置されており、第1スイッチ18のみを流れ第2スイッチ24を流れない電流のゼロクロスを生成する。
図2の第2実施形態では、発振回路40は、第1ポイント12および第2ポイント14の間に配置されている。
【0057】
このような発振回路40の目的は、第1スイッチ18が機械的に開放されているときの第1スイッチ18における電気的遮断を容易にすることにある。このようなスイッチの開放後であっても、スイッチにおける離間した接点間で電気アークが継続して形成されることがあり、これにより有効な電気的遮断の達成が妨げられることがある。発振回路40によって生成される、第1スイッチを流れる電流のゼロクロスは、第1スイッチ18における電気的遮断を容易にする。
【0058】
発振回路40は、発振回路40に電気的に直列に入りかつ第1スイッチ18と電気的に並列となるように配置された、インダクタ42、キャパシタ44および発振トリガ46であって、
図1に示す第1実施形態では第1ポイント12および中間ポイント13の間に配置され
図2に示す第2実施形態では第1ポイント12および第2ポイント14の間に配置されたものを少なくとも含む。両方の例において、このような発振回路40を動作させるために、有利には、発振回路40の動作を開始する前に、キャパシタ44が予め充電されている。この例では、発振回路40は、キャパシタ44を事前に充電するための回路(図示していない)をさらに含んでいてもよい。
【0059】
本発明の一側面では、装置は、発振回路40において、発振回路40のインダクタ42、キャパシタ44および発振トリガ46と電気的に直列に設けられた少なくとも1つのダンピング抵抗48を含み、発振回路40は、発振回路に直列に挿入された、抵抗値を変化させるための制御可能装置を含む。
【0060】
図1および2に示す2つの例示的な実施形態では、有利には、このような発振回路40には、少なくとも1つのダンピング抵抗48と、ダンピング抵抗48の少なくとも1つのバイパススイッチ50と、が設けられうる。バイパススイッチ50は、開放状態と投入状態の間で切り替え可能である。ダンピング抵抗48およびバイパススイッチ50は、例えば、バイパススイッチ50がある状態のときにダンピング抵抗48が発振回路40に電気的に直列に入りインダクタ42、キャパシタ44および発振トリガ46と電気的に直列となり、一方、バイパススイッチ50が別の状態のときにダンピング抵抗48が発振回路40で短絡するように、互いに並列に配置されている。
【0061】
図1および2の例では、ダンピング抵抗48は、第1スイッチ18と直接接続されかつ第1スイッチ18のみと並列に延びる(qui s' etend directement et uniquement en parallele de l'interrupteur primaire 18)発振回路40の電気線路であって、
図1の第1実施形態では第1ポイント12および中間ポイント13の間を延び
図2の第2実施形態では第1ポイント12および第2ポイント14の間を延びる電気線路において、インダクタ42、キャパシタ44および発振トリガ46と電気的に直列である。バイパススイッチ50は、ダンピング抵抗48と直接接続されかつダンピング抵抗48のみと並列に配置されている。バイパススイッチ50が開放状態であるとき、ダンピング抵抗48は発振回路40に電気的に直列に入りインダクタ42、キャパシタ44および発振トリガ46と電気的に直列となり、一方、バイパススイッチ50が投入状態であるとき、ダンピング抵抗48は、発振回路40で短絡する。
【0062】
ダンピング抵抗48は、電気的に直列および/または並列に配置された複数のディスクリート素子のアセンブリによって形成されていてもよいことに留意されたい。その場合、関連付けられたバイパススイッチ50は、通常、そのアセンブリと電気的に並列に配置される。
【0063】
発振トリガ46は、スイッチであり、有利には半導体スイッチであるが、機械スイッチであってもよく、特に
図2に示すような第1スイッチのみを含む装置であってもよい。発振トリガ46は、好ましくは、双方向スイッチである。
図1の例では、発振トリガ46は、互いに並列であり反対方向に向けられた(montes tete-beche)2つのサイリスタ46aおよび46bのアセンブリによって形成されていてもよい。このようなアセンブリは、TRIACに類似している。しかし、IGBTまたは他のタイプの制御スパークギャップのような、他の半導体素子が用いられうる。耐電圧または電流処理の観点から、発振トリガ46は、電気的に直列および/または並列に配置された複数のスイッチのアセンブリで形成されていてもよい。しかし、発振トリガ46は、好ましくは、装置の他の部分に対する単一のスイッチとして振る舞うよう制御されうる。
【0064】
バイパススイッチ50は、有利には半導体スイッチであるが、機械的スイッチであってもよい。バイパススイッチ50は、好ましくは、双方向スイッチである。
図1および2の例のように、バイパススイッチ50は、互いに並列であり反対方向に向けられた2つのサイリスタ50aおよび50bのアセンブリによって形成されていてもよい。このようなアセンブリは、TRIACに類似している。しかし、IGBTまたは他のタイプの制御スパークギャップのような、他の半導体素子が用いられうる。耐電圧または電流処理の観点から、バイパススイッチ50は、電気的に直列および/または並列に配置された複数のスイッチのアセンブリで形成されていてもよい。しかし、バイパススイッチ50は、好ましくは、装置の他の部分に対する単一のスイッチとして振る舞うよう制御されうる。
【0065】
図4では、本発明に係る遮断装置10の発振回路40の第1変形例が描かれている。この変形例では、発振回路40は、発振回路40に永久的に挿入され、インダクタ42、キャパシタ44および発振トリガ46と電気的に直列に設けられた少なくとも1つの永久抵抗R’を含む。永久抵抗R’は、バイパススイッチと関連付けられていない。この例では、永久抵抗R’は、ダンピング抵抗48が発振回路40で短絡したときの、発振回路の抵抗の最小値を定める。ダンピング抵抗48が発振回路40に、例えば関連付けられたバイパススイッチ50が開放されているときに挿入されたとき、発振回路の抵抗値は、永久抵抗R’の電気抵抗値とダンピング抵抗48の電気抵抗値との合計によって定められる。永久抵抗R’は、電気的に直列および/または並列に配置された複数のディスクリート素子のアセンブリによって形成されていてもよい。
【0066】
図5では、本発明に係る遮断装置10の発振回路40の第2変形例が描かれている。この変形例では、発振回路40は、少なくとも1つの第2ダンピング抵抗48’と、第2ダンピング抵抗48’と関連付けられた少なくとも1つの第2バイパススイッチ50’と、を含む。第2バイパススイッチ50’は、開放状態および投入状態の間で切り替えられうる。第2ダンピング抵抗48’および第2バイパススイッチ50’は、ここでは、第2バイパススイッチ50’がある状態のときに第2ダンピング抵抗48’が発振回路40に電気的に直列に入りインダクタ42、キャパシタ44および発振トリガ46と電気的に直列となり、第1ダンピング抵抗48が発振回路40に挿入されている場合には第1ダンピング抵抗48と電気的に直列となるように、互いに並列に配置されている。第2バイパススイッチ50’が別の状態のとき、第2ダンピング抵抗48’は発振回路40で短絡する。2つのダンピング抵抗48、48’が発振回路40に挿入されているとき、すなわちこの例では、2つの関連付けられた2つのバイパススイッチ50、50’が開放されているとき、発振回路の抵抗値は、2つのダンピング抵抗48、48’の電気抵抗値の合計によって定められる。
【0067】
当然ながら、
図5の変形例は2つよりも多いダンピング抵抗に一般化され、従って2つよりも多いバイパススイッチに一般化されうる。発振回路40は、複数のダンピング抵抗であって、複数のダンピング抵抗の各々がそのダンピング抵抗の別個バイパススイッチに関連付けられており、各バイパススイッチが開放状態および投入状態の間で切り替えられうる複数のダンピング抵抗を含んでいてもよい。ダンピング抵抗および関連付けられたバイパススイッチは、例えば、バイパススイッチがある状態のときにスイッチに関連付けられたダンピング抵抗が発振回路40に電気的に直列に挿入されてインダクタ42、キャパシタ44および発振トリガ46と電気的に直列となり、一方、バイパススイッチが別の状態のときにスイッチに関連付けられたダンピング抵抗が発振回路40で短絡するように、互いに並列に配置されている。
【0068】
各々がバイパススイッチに関連付けられている複数のダンピング抵抗を有することにより、バイパススイッチが同時に制御されうる。反対に、発振回路の複数のバイパススイッチの少なくともいくつかは、互いに時間差をつけて切り替えられてもよい。発振回路の合計の抵抗値に、2つよりも多い抵抗値の段階を適用できる。
【0069】
図4および5の2つの変形例は、少なくとも1つの永久抵抗および複数のダンピング抵抗を同時に含む発振回路に組み込まれ、それらは全て発振回路に互いに直列に挿入されている、または、直列に挿入されうることに留意されたい。
【0070】
このような発振回路40の役割およびこのような発振回路40が存在する利点は、特に、このような発振回路40が設けられた装置の動作の説明から明らかとなる。この目的で、このような遮断装置10を用いて実装される遮断動作中の
図1の装置のいくつかのパラメータの変化を示す
図3を参照する。ただし、このような発振回路40の役割およびこのような発振回路40が存在する利点を説明する前に、以下において、遮断装置10の別の変形例に関する補足的な要素が概括的に説明されている。これらの補足的な要素は任意である。
【0071】
図1に示すようないくつかの実施形態において、本発明に係る遮断装置10は、第1ポイント12および第2ポイント14の間に、第1スイッチ18および第2スイッチ24によって形成されたアセンブリと電気的に並列、かつ、第1サージ抑制器30および第2サージ抑制器32によって形成されたアセンブリと電気的に並列に設けられた、専用の誘導素子がない容量性バッファ回路34を含んでいてもよい。容量性バッファ回路34は、作動スイッチ36およびバッファキャパシタ38を含む。図示の例では、この回路は、電気線路35を備える。電気線路35の一端は、第1ポイント12と同電位でありかつ第1スイッチ18の第1端子20と同電位であるポイントにおいて主線路16と電気的に接続されている。電気線路35の他端は、第2ポイント14と同電位でありかつ第2スイッチ24の第2端子28と同電位であるポイントにおいて主線路16と電気的に接続されている。この線路35には、作動スイッチ36およびバッファキャパシタ38が電気的に直列に挿入されている。バッファキャパシタ38は、例えば、合計電気キャパシタンスC38を有する1または複数のキャパシタを備える、または、合計電気キャパシタンスC38を有する1または複数のキャパシタによって形成されている。
【0072】
容量性バッファ回路34は、他の回路のように、特に、容量性バッファ回路34が備える電気素子の性質および回路の幾何形状に由来する寄生インダクタンスを有していてもよい。しかし、例示的な実施形態では、容量性バッファ回路34は、専用の誘導素子を含まない、すなわち、所望の誘導機能を有するディスクリート素子を含まない、そのため、寄生インダクタンスよりも大きいインダクタンスを有する素子を含まず、特にコイルまたは誘導性強磁性コアを含まない。そのため、容量性バッファ回路のインダクタンスは非常に低くてもよく、例えば、公称ネットワーク電圧の10キロボルトの範囲につき、50マイクロヘンリー未満、または1マイクロヘンリー未満である。
【0073】
図1に示すようないくつかの実施形態では、容量性バッファ回路34は、バッファキャパシタ38を放電するための回路を含んでいてもよい。
図1の例では、放電回路は、受動放電回路であり、能動素子を有さない。この例では、放電回路は、バッファキャパシタ38と並列に配置された抵抗39を含む。好ましくは、抵抗39は、高い電気抵抗値R39を有する。電気抵抗値R39は、並列に配置されたバッファキャパシタ38および抵抗39のダイポールであって電気線路35に挿入されたダイポールが、第2スイッチ24における電気遮断時間に比べて長い(importante)時定数を有するような値である。この時定数は、例えば50ミリ秒よりも大きい時定数であり、好ましくは100ミリ秒よりも大きい時定数である。この例では、時定数は、積R39×C38に等しい。図示されていない他のタイプの放電回路は、制御スイッチのような少なくとも1つの能動素子を含んでいてもよい。放電回路は、抵抗39に直接接続され抵抗39と電気的に直列に配置された(agence directement en serie electriquement avec la resistance 39)制御スイッチを備え、これら2つの素子のアセンブリがバッファキャパシタ38と並列に設けられていてもよい。制御スイッチが投入状態に切り替わって電流が流れているときに、バッファキャパシタ38の2つの電極板間に放電回路が形成されうる。
【0074】
図1に示す実施形態は、容量性バッファ回路34において、作動スイッチ36と並列に配置された第3サージ抑制器37が、任意的に存在することが示されていることに留意されたい。第3サージ抑制器37は、有利には、図示されているように、作動スイッチ36の複数の端子に直接的かつ該端子間領域のみを跨ぐように接続されるように、配置されており、反対側に配置されているという意味では、容量性バッファ回路34の線路35において、バッファキャパシタ38と電気的に直列に接続されている(Ce parasurtenseur tertiaire 37 peut avantageusement etre, comme illustre, agence directement et uniquement aux bornes de l'interrupteur d'activation 36, au sens qu'il est au contraire agence, dans la ligne 35 du circuit capacitif tampon 34, electriquement en serie avec la capacite tampon 38)。第3サージ抑制器37は、有利には、作動スイッチ36の端子間の電圧を制限するサイズを有しうる。例えば、保護電圧が10000ボルト(10kV)から100000ボルト(100kV)の範囲にあるサージ抑制器を選択可能である。保護電圧がこの電圧範囲にある第3サージ抑制器37を選択することにより、作動スイッチ36の端子間の電圧がこの電圧範囲に維持され、これにより等価のより高電圧のシステムに比べてコストおよびスペースの要求が大幅に小さいスイッチを使用することが可能となる。
【0075】
ただし、容量性バッファ回路40においてこのような第3サージ抑制器37が存在する場合、好ましくは、第1サージ抑制器30の保護電圧よりも大きい遷移電圧を有する第3サージ抑制器が選択されることに留意されたい。
【0076】
図3では、
図1に示す遮断装置であって装置を通って電流が流れる投入状態から第1ポイント12が第2ポイント14から電気的に絶縁された開放状態へと切り替わるものに関する、以下のパラメータの経時的な変化が描かれている:
-第2スイッチ24の端子間の電圧V24;
-第2スイッチ24を流れる電流の強度I24;
-発振トリガ46を流れる電流の強度I46;
-バイパススイッチ50を流れる電流の強度I50;
-第1スイッチ18の端子間の電圧V18
-第1スイッチ18を流れる電流の強度I18;
-第1サージ抑制器30を流れる電流の強度I30;
-第2サージ抑制器32を流れる電流の強度I32;
-装置10を流れる電流の強度I12;および
-装置10の端子間の電圧V1214;
【0077】
本発明に係る遮断装置10を制御するための制御方法は、装置を投入状態から開放状態に遷移させる観点から、第1スイッチ18および
図1の実施形態については第2スイッチ24を機械的に開放する工程を備える。2つのスイッチは、機械的に同時に開放されてもよく、任意の順序で連続的に開放されてもよい。
図3の例では、時刻t0で開放が有効となるものとする。1つまたは2つのスイッチを開放する工程は、例えば装置10を公称電流が流れている公称負荷時において、例えば、装置10の第1ポイント12に電気的に接続された電気設備の一部を、装置10の第2ポイント14に電気的に接続された電気設備の別の一部から電気的に絶縁するために、遮断装置を開放するという単純な要求によって開始されうる。1つまたは2つのスイッチを開放する工程は、電気設備における電気的故障、例えば遮断装置10を流れる故障電流を伴う、の発生により開始されうる。故障電流は、装置10を流れる最大公称電流よりも大きくてもよい。故障の発生時のそのような開放は、その故障の検出、特に装置10を流れる電流の1または複数のパラメータの検出、例えば装置10を流れる電流の強度の検出、に基づいたものであってもよい。上述のように、1つまたは2つのスイッチ18、24の機械的開放は、それ自身によって、第1スイッチまたは2つのスイッチの各々における電気アークの形成に起因する遮断装置10を流れる電流の流れを遮断するという意味での電気的開放をもたらさないことがありうることに留意されたい。以下の方法に関する説明は、この前提に基づいたものである。
【0078】
この前提において、この方法では、開放した第1スイッチ18における電流を遮断して、第1サージ抑制器30の遷移電圧よりも高く第1サージ抑制器30を電流通電モードに切り替えることに適した電圧を、第1スイッチの端子間に生じさせる。
【0079】
本発明の一側面では、開放した第1スイッチ18において電流を遮断するために、上述の発振回路40の任意の変形例のいずれかであって以下に説明する内容に従ったものを用いることができる。
図3の例では、発振回路40の実装は、発振トリガ46の投入に対応する時刻t1において開始され、第1スイッチ18の電気的開放は時刻t3において有効になるものとする。
【0080】
そのため、
図1および2または
図4および5に描かれ上述された発振回路40を実装することが提案される。そのような装置によれば、要望によっては制御可能な態様で、さらに一時的であってもよい態様で、発振回路40と、第1スイッチ18を含む主線路16の一部と、によって形成される発振ループに、少なくとも1つのダンピング抵抗48を挿入できる。発振キャパシタ44が充電されたりその初期充電レベルが高まったりインダクタ42が充電されたりすることなく(sans changer la capacite d'oscillation 44, ni son niveau de chargement initial, et sans changer l'inductance 42)、発振回路40による発振ループに注入される発振電流を、より低コストで変更できるようになる。
【0081】
いくつかの実施形態では、ダンピング抵抗48に関連付けられたバイパススイッチ50の存在は、発振回路40を、即座に、RLC直列回路からLC直列回路に変更し、また、LC直列回路からRLC直列回路に変更することを可能にする。他の実施形態では、ダンピング抵抗48に関連付けられたバイパススイッチ50の存在は、RLC直列回路である発振回路40を、即座に、合計電気抵抗値が異なる別のRLC直列回路に変更することを可能にする。
【0082】
主線路16を流れる故障電流に応じて、第1スイッチ18における有効な電気的遮断を実現する観点から、あるRLC直列回路の放電、あるLC直列回路の放電、または合計電気抵抗値が異なる別のRLC直列回路の放電のいずれかに由来する発振電流を、発振ループに注入できる。
【0083】
このような態様で、
図1および2または
図4および5に示す発振回路40を含む遮断装置10を制御するための制御方法であって、ある時刻において、装置を流れる遮断されるべき電流の少なくとも1つのパラメータを決定すること、例えばこの電流の強度の値を決定すること、を含む制御方法を提供できる。この決定は、例えば第1スイッチ18を含む主線路16の一部における電流強度センサの存在による、直接的なものでありうる。この決定は、例えば遮断装置のまたは設備の他のパラメータを分析することによる、間接的なものでありうる。この決定は、直接的な決定および間接的な決定の両方を組み合わせたものでありうる。この決定は、遮断装置の開放の工程の開始前、特に第1スイッチ18の機械的開放前に、行われうる。この決定は、遮断装置の開放の工程の開始後、特に第1スイッチ18の機械的開放後に、行われうる。当然ながら、この決定に関して、遮断装置10の開放の工程の開始の前および後に決定されたパラメータを考慮することもできる。
【0084】
この決定に基づいて、例えば故障電流の強度の決定された値に応じて、制御方法は、ダンピング抵抗48に関連付けられたバイパススイッチ50(l'interrupteur de by-pass 50 associe a la resistance d'amortissement 48, ou a une esistanced'amortissement 48)が切り替わることによってバイパススイッチ50が至るべき状態と、特に、バイパススイッチ48が切り替わるべきかどうかと、いつ切り替わるべきかとを、発振回路40の合計電気抵抗値を適合させるために決定できる。
【0085】
図3に示す例では、より具体的には
図1に示す装置の動作に関して、発振回路40が時刻t1において発振トリガ46の投入により駆動される例が描かれている。この時刻およびその直後の時刻において、バイパススイッチ50を流れる電流I50はゼロに維持されており、このことは時刻t2までバイパススイッチ50が開放状態であることを示していることに留意されたい。時刻t1とt2の間において、ダンピング抵抗48は発振回路40に有効に挿入され、RLC直列回路が形成される。発振キャパシタ44の放電の開始は、RLC直列回路の放電に対応する。時刻t2から、ダンピング抵抗48を短絡させるように、バイパススイッチ50は投入状態に切り替えられる。発振キャパシタ44の放電の残部は、LC直列回路の放電に対応する。
【0086】
当然ながら、時刻t1およびt2の間の期間すなわち時間間隔d1t、ダンピング抵抗48が発振回路40に有効に(effectivement)挿入される時間間隔である、を決定することが可能である。この期間d1tは、予め決定されていてもよく、装置における電流のいくつかのパラメータ、特に第1スイッチ18を流れる故障電流のパラメータ、に基づいて決定されてもよい。
【0087】
本発明に係る発振回路40を含む遮断装置10は、発振トリガ46の投入時において、少なくとも1つのダンピング抵抗48が発振回路40に挿入されるように、または反対に、少なくとも1つのダンピング抵抗48がこの回路で短絡されるように、制御されうる。ダンピング抵抗48が発振回路40に挿入されると、特に、発振キャパシタ44の放電開始時において発振回路40によって生成される第1スイッチ18における電流の強度の変化速度d(I18)/dtが制限されうる。発振トリガ46の投入時にダンピング抵抗48が発振回路に有効に挿入される例では、ダンピング抵抗48は、
図3に示すように第1スイッチ18において電気的遮断が有効となる前を含めたある時間間隔後に短絡されるように選択されうる、または反対に、ダンピング抵抗48は、発振回路40の全作動期間において発振回路にダンピング抵抗48が挿入されたままとなるように選択される。
【0088】
図1に示す装置では、発振回路における特徴的なパラメータ間の最適関係は、
【数1】
のように定められる。ここで、
-d1t:ダンピング抵抗48が発振回路40に有効に挿入される時間間隔;
-(dI18/dt)max:第1スイッチ18が自身で電気的遮断を実行できる、第1スイッチ18における電流のゼロクロス時のdI18/dtの最大値;
-V44i:発振回路のキャパシタ44の端子間の初期電圧
-Idef:装置10を流れる遮断されるべき電流の強度;
-R48:ダンピング抵抗48の電気抵抗値;
-C44:発振回路40のキャパシタ44のキャパシタンス値;
-L72:発振回路40のインダクタ42のインダクタンス値。
【0089】
第1スイッチ18のみを含む
図2に示す遮断装置において、第1スイッチ18を流れる電流の遮断により、第1スイッチ18の端子間に電圧が生じうる。この電圧は、第1サージ抑制器30の端子間に反映される。第1サージ抑制器30は、第1スイッチ18の端子間の電圧を制限する役割を担い、電気アークの再点孤のリスクを抑えうる。第1サージ抑制器30の保護電圧は、サージ抑制器を流れる電流が存在する限りすなわち電流I30がゼロではない限り、ネットワークの公称電圧よりも大きい。これは、ネットワークへのエネルギーの吸収と密接に関係がある。このエネルギーが吸収されると、
図2の遮断装置10は開放されると考えられる。なぜなら、漏れ電流しか第1サージ抑制器30を通って装置10を流れることができないためである。これに関し、遮断装置10の端子間の電圧は、第1サージ抑制器30の端子間の電圧に等しいことに留意されたい。遮断装置10が開放されている定常状態において、この電圧は、通常、設備の公称電圧に等しい。よって、第1サージ抑制器30を、その遷移電圧が設備の公称電圧以上となるように選択することが賢明である。
【0090】
図1に示す遮断装置では、第1スイッチ18を流れる電流を遮断すると、装置10を流れる電流によりキャパシタ44が充電され、このことはキャパシタ44の端子間の電圧の上昇を引き起こし、これにより第1サージ抑制器30の端子間に同一電圧が生じ、これにより第1スイッチ18の端子間に同一電圧が生じる。故障電流が大きい場合、この電圧は
図3の時刻t4において第1サージ抑制器30の遷移電圧に達し、第1サージ抑制器30の抵抗が変化して電圧の上昇が制限され、電圧が平坦となる。この段階で、第1サージ抑制器30は、電流を通すようになると考えられる。時刻t4から、装置10を流れる電流は、第1サージ抑制器30を流れるが、第2スイッチ24の接点間のアークの存在により、第2スイッチ24を継続して流れる。
【0091】
いずれの例においても、ダンピング抵抗48の電気抵抗値は大きくなくてもよい。そのため、1または複数のダンピング抵抗を形成する1または複数の素子は、コンパクトかつ安価でありうる。さらに、低い抵抗値によれば、抵抗に関連付けられたバイパススイッチ50に印加される電圧の値もまた、比較的低い。このため、1または複数のバイパススイッチ50を形成する1または複数の素子は、コンパクトかつ安価でありうる。
【0092】
第2スイッチ24における電気アークを遮断するために、作動スイッチ36を投入することによって容量性バッファ回路34を作動させる。これは、
図3の時刻t5に対応する。換言すると、容量性バッファ回路34において、バッファキャパシタ38が充電され第2スイッチ24から電流が逸れるのに適した電流が流れるように、作動スイッチ36が切り替わる。初期状態において、バッファキャパシタ38は、例えば、ここでは放電抵抗39によって形成される放電回路の存在により、放電されている。そのため、そして第1サージ抑制器30の端子間の電位差の存在により、装置10を流れる電流は、容量性バッファ回路34へと切り替わり、バッファキャパシタ38を充電する。第1に、図示の例では、抵抗39の抵抗値R39は十分に大きく、抵抗を流れる放電電流は無視できることとする。反対に、容量性バッファ回路34の電気インピーダンスの値は、時刻t5の前の値よりも大幅に小さい。バッファキャパシタ38の充電期間、
図3では時刻t6まで続くものとされている、は、非常に重要である。なぜなら、この期間において、装置10を流れる電流は、作動スイッチ36を流れる電流I36という形で実質的に容量性バッファ回路34を流れ、これにより第2スイッチ24を流れる電流が低減またはキャンセルされるためである。ここで、第2スイッチ24は、その接点が互いに分離した機械的遮断状態にあることを思い出されたい。第2スイッチ24を流れる電流I24の低減またはさらにはキャンセルは、有利には、第2スイッチ24における電気アークの消弧を引き起こす。時刻t5からの期間、この期間は第2スイッチ24からバッファ回路34に電流が逸れるべき期間である、は、非常に長い期間である必要はないことに留意されたい。容量性バッファ回路34が電流を通す期間は、第2スイッチ24の離間した接点間に存在するガスの脱イオン化に必要な期間よりも長ければ十分である。ガスが脱イオン化すると、第2スイッチ24の接点のギャップは、アークの再点孤を防止するのに十分となる。この期間は、数マイクロ秒程度であり、好ましくは20マイクロ秒未満である。
【0093】
第2スイッチ24における電流I24が低減しまたはさらにはキャンセルされる逸れ期間d2t、時刻t5から時刻t6までである、は、回路の素子のサイズを適切に定めることにより、要求される期間に調整されうる。通常、バッファキャパシタ38の合計電気キャパシタンスC38の増加は、逸れ期間を増加させる傾向にある。
【0094】
第1の近似では、逸れ期間d2t、時刻t5から時刻t6までである、は、以下の法則に支配されると仮定されうる:
d2t=Vt30×C38/Idef、
ここで:
d2tは、所望の逸れ期間である;
Vt30は、第1サージ抑制器30の遷移電圧である;
C38は、バッファキャパシタ38の合計電気キャパシタンスである;
Idefは、装置を流れる故障電流の値である。
【0095】
一指標として、バッファキャパシタ38の合計電気キャパシタンスC38の有利な値は、この値が、所望の逸れ期間d2tに装置を流れることが想定される最大故障電流値Idefmaxを乗じ第1サージ抑制器30の遷移電圧Vt30で割った値、すなわち:
C38=d2t×Idefmax/Vt30
以上となるように、決定されうる。
【0096】
時刻t6の後、第2スイッチ24は電気的に開放され電気アークの再点孤のリスクなく電圧が第2スイッチ24の端子間に現れうると考えられる。この電圧は、第2サージ抑制器32の端子間に反映される。第2サージ抑制器32は、第2スイッチの端子間の電圧を制限する役割を担いうる。サージ抑制器30の端子間の電圧およびサージ抑制器32の端子間の電圧の合計は、電圧1214である。電圧の合計は、サージ抑制器を流れる電流が存在する限り、すなわち、電流I32がゼロとは異なる限りにおいて、ネットワークの公称電圧よりも大きい電圧でありうる。これは、ネットワークへのエネルギーの吸収と密接に関係がある。
【0097】
時刻t7から、遮断装置10は開放されていると考えられる。なぜなら、漏れ電流しか、装置10を、第1サージ抑制器30および第2サージ抑制器32を介して流れることができないためである。これに関し、遮断装置10の端子間の電圧は、第1サージ抑制器30の端子間の電圧と第2サージ抑制器32の端子間の電圧との合計であることに留意されたい。通常、この電圧は、遮断装置10が開放された定常状態において、設備の公称電圧と等しい。よって、第1サージ抑制器30および第2サージ抑制器32を、それらの遷移電圧の合計が設備の公称電圧以上となるように選択することが賢明である。
【0098】
本発明に係る遮断装置10は、電気設備において、他の遮断装置と電気的に直列に関連付けられてもよいことに留意されたい。上記他の遮断装置は、例えば断路器タイプの、線路における電流を完全かつ信頼性のある態様で遮断できる遮断装置である。上記他の遮断装置は、その電流遮断能力を最適化することを必要とすることなくその絶縁性能が最適化されるように、そのサイズが定められうる。なぜなら、電流遮断能力は、本発明に係る遮断装置によって主として確保されるためである。
【0099】
さらに、本発明に係る遮断装置は、装置を流れる電流をその流れ方向に関わらず遮断可能な、従って装置を双方向に流れる電流を遮断可能な、双方向性の装置であることに留意されたい。よって、そのような遮断装置は、所与の時刻のネットワークの構成に応じて、線路においていずれの方向にも直流電流が流れうるメッシュネットワークを含む設備において実装されうる。
【0100】
本発明に係る装置によれば、急速かつ信頼性のある態様で電気的開放を実現することが可能となり、高電圧、特に100kVよりも高い電圧における、高強度の(特に、10kAよりも大きい)故障電流の流れを止めることができる。しかし、装置が開放された後、故障の原因が解消したと思われた場合には、電流を元の状態に戻すために遮断装置10を電気的に再投入できるようにすることが必要である。
図1の装置の例では、装置10は、第1スイッチ18及び第2スイッチ24が機械的に投入され、好ましくは連続的かつその順序すなわち第1スイッチ18が機械的に投入されその後第2スイッチ24が機械的に投入されるように、制御される。この順序を遵守することにより、第2サージ抑制器32が、第1スイッチ18が機械的に再投入されたときの突入電流を制限することが可能となることに留意されたい。
【0101】
第1スイッチ18が投入された直ぐ後に、特に故障が除去されたことを確認するために、遮断装置10を流れる電流の、および/または、相-接地間電圧の、または、設備における、1または複数のパラメータが決定されうる。しかし、故障は除去されていない可能性がある。そのため、装置を流れる電流および/または相-接地間電圧に関する検出されたパラメータに応じて、装置の速やかな再開放が、装置10の完全な再投入である第2スイッチ24の再投入を待たずに引き起こされうる。
【国際調査報告】