IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジーイーヴィー・テクノロジーズ・プロプライアタリー・リミテッドの特許一覧

特表2022-516544スペーシングガイドを備える、船のためのパイプ収容システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-02-28
(54)【発明の名称】スペーシングガイドを備える、船のためのパイプ収容システム
(51)【国際特許分類】
   B63B 25/08 20060101AFI20220218BHJP
【FI】
B63B25/08 N
B63B25/08 B
B63B25/08 G
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021538456
(86)(22)【出願日】2019-12-20
(85)【翻訳文提出日】2021-08-27
(86)【国際出願番号】 CA2019051887
(87)【国際公開番号】W WO2020140150
(87)【国際公開日】2020-07-09
(31)【優先権主張番号】16/236,902
(32)【優先日】2018-12-31
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519046166
【氏名又は名称】ジーイーヴィー・テクノロジーズ・プロプライアタリー・リミテッド
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100172041
【弁理士】
【氏名又は名称】小畑 統照
(72)【発明者】
【氏名】パトリック・ジョン・フィッツパトリック
(57)【要約】
圧縮天然ガスなどの圧縮流体を貯蔵および移送するための組立体であって、この組立体が、船舶の中または上にある貨物倉の中に保管される六角形状に積み重ねられる複数のパイプを有し、貨物倉が、下側支持体、側方支持体、および、パイプを下方に強く押圧する強制機構であって、パイプが、パイプ自体に対して、またはパイプが配置される船舶に対して移動しないように、強制機構を有する。パイプの間の摩擦により複数のパイプがその構造の点で船舶の一部として振る舞う。積み重ねられるパイプは、上記積み重ねられたパイプの中の同じ列の上記複数のパイプのうちの隣接するパイプの間に隙間を維持するために、凸面が上向きで配置されるパイプセグメントなどの、複数のスペーサによって支持される。強制機構からの圧縮力を分配するために、荷重均一化装置が、複数のパイプの上方に配置され得る。
【選択図】図1
【特許請求の範囲】
【請求項1】
流体を移送するための組立体であって、前記組立体が、
移送船舶の中または上にある貨物倉であって、前記貨物倉が、下側支持体、前記下側支持体の第1の側にある第1の側方支持体、および前記下側支持体の第2の側にある第2の側方支持体を有する、貨物倉と、
前記貨物倉内で受けられる、流体を収容するための複数のパイプであって、前記複数のパイプが複数の列となるように積み重ねられ、隣接するパイプが隣接する列の間で2つの接触点を有し、同じ列の中の隣接するパイプが空間により互いから分離される、複数のパイプと、
前記複数のパイプの上方にある強制部材と、
前記パイプの間の摩擦が、前記移送船舶の動きによって発生するか、前記移送船舶の屈曲によって発生するか、または差温もしくは差圧によるひずみによって発生するパイプの有意な相対的な移動を一切防止するように、前記強制部材を用いて前記複数のパイプに対して十分な圧縮力を加えるための強制機構と、
前記パイプへ流体を充填するためおよび取り出すために、前記複数のパイプに接続される流体ラインシステムと
を備える、組立体。
【請求項2】
前記複数のパイプを支持するための、前記下側支持体に隣接する複数のスペーサであって、前記スペーサが、前記複数のパイプの同じ列の中の隣接する前記パイプの間に前記隙間を作るためのものである、複数のスペーサをさらに備える、請求項1に記載の組立体。
【請求項3】
前記複数のスペーサが、前記複数のパイプを支持するための、前記下側支持体に隣接する複数のアーチであり、前記アーチが、凸面が上に向く向きであり、前記アーチが、前記複数のパイプのうちの隣接する前記パイプの間に前記隙間を作るためのものである、請求項2に記載の組立体。
【請求項4】
分割パイプが、前記複数のパイプの中のパイプと同じサイズのパイプの1/3のセグメントである、請求項3に記載の組立体。
【請求項5】
前記パイプが鋼鉄から作られる、請求項1に記載の組立体。
【請求項6】
前記流体収容パイプが、複数の空のパイプ、または前記流体収容パイプと実質的に等しい外径を有するハーフパイプによって囲まれる、請求項1に記載の組立体。
【請求項7】
前記強制機構が、押さえ梁と前記倉の上部固定デッキとの間にある複数のジャッキである、請求項1に記載の組立体。
【請求項8】
摩擦要素が前記パイプの間に配置され、前記摩擦要素が、前記パイプの間の摩擦を最大にするために前記パイプの表面を粗くするかまたは他の形で処理することであってよい、請求項1に記載の組立体。
【請求項9】
前記貨物倉内の空間が不活性ガスで充填される、請求項1に記載の組立体。
【請求項10】
前記強制機構が、前記複数のパイプの定置を受け入れるために第1の力を加えた後で、前記複数のパイプの上で前記上側強制部材を下方向に押圧することを可能にするための締め付け機構を有する、請求項1に記載の組立体。
【請求項11】
前記強制部材の下方にある荷重均一化装置をさらに備え、前記荷重均一化装置が、前記複数のパイプの少なくとも2つのパイプに対して前記圧縮力を分配するために、前記強制部材および前記複数のパイプのうちの前記少なくとも2つのパイプと係合する、請求項1に記載の組立体。
【請求項12】
前記荷重均一化装置が、強制部材係合側、第1のパイプ係合側、および第2のパイプ係合側を有する圧力楔である、請求項11に記載の組立体。
【請求項13】
前記荷重均一化装置が流動性材料である、請求項11に記載の組立体。
【請求項14】
前記流動性材料がコンクリートグラウト溶液である、請求項13に記載の組立体。
【請求項15】
船舶の上または中で運搬される複数の積み重ねられるパイプの中でガスを移送するための方法であって、前記方法が、
船舶の貨物倉の中に複数のパイプを配置するステップと、
前記複数の積み重ねられるパイプの同じ列の中で隣接するパイプの間の空間を維持するステップと、
前記船舶自体の屈曲を含めた、前記船舶のいかなる動きも、パイプ自体の間または前記パイプと前記船舶との間での相対的な動きを誘発しないように、前記パイプを一体に強く押し込めるステップと
を含む、方法。
【請求項16】
維持する前記ステップが、前記パイプの同じ列の中で隣接する前記パイプの間に隙間を作るための複数のスペーサの上に前記複数のパイプを積み重ねるステップを含む、請求項15に記載の方法。
【請求項17】
前記複数のパイプを積み重ねる前記ステップが、複数の分割パイプの上に前記複数のパイプを積み重ねるステップを含み、前記分割パイプが、凸面が上に向く向きである、請求項16に記載の方法。
【請求項18】
前記分割パイプが前記複数のパイプの中のパイプと等しいサイズのパイプの1/3のセグメントである、請求項17に記載の方法。
【請求項19】
前記船舶がバージである、請求項15に記載の方法。
【請求項20】
前記船舶が船である、請求項15に記載の方法。
【請求項21】
前記パイプが圧力容器である、請求項15に記載の方法。
【請求項22】
前記パイプが圧縮ガスを運搬する、請求項15に記載の方法。
【請求項23】
前記複数のパイプの上方に荷重均一化装置を配置するステップをさらに含む、請求項15に記載の方法。
【請求項24】
前記荷重均一化装置を配置する前記ステップが、前記複数の積み重ねられるパイプの最上列の隣接するパイプの間に少なくとも1つの楔を配置するステップを含む、請求項15に記載の方法。
【請求項25】
荷重均一化装置を配置する前記ステップが、前記複数の積み重ねられるパイプにおけるパイプの最上列の少なくとも一部分を覆うように流動性材料を流すステップを含む、請求項15に記載の方法。
【請求項26】
前記流動性材料がコンクリートグラウト溶液である、請求項25に記載の方法。
【請求項27】
流体移送組立体であって、
第1の側および第2の側を有する下側支持体と、
前記下側支持体の前記第1の側に隣接する第1の側方支持体と、
前記下側支持体の前記第2の側に隣接する第2の側方支持体と
を備え、
前記第1の側方支持体、前記下側支持体、および前記第2の側方支持体が、パイプ受けエリアを画定し、
前記流体移送組立体は、
前記下側支持体に隣接する一列のスペーサと、
前記パイプ受けエリア内で前記第1の側方支持体と前記第2の側方支持体との間で複数の列となるように積み重ねられる複数のパイプであって、前記複数のパイプが、上側、下側、第1の側、および第2の側を画定し、前記下側が、前記一列のスペーサによって支持される、複数のパイプと、
前記パイプ受けエリアの上方にある上部支持体と
をさらに備え、
前記複数のパイプの中の隣接するパイプが隣接する列の間に2つの接触点を有し、同じ列の中の隣接するパイプが空間によって互いから分離され、
前記流体移送組立体は、
前記複数のパイプの前記第1の側および前記第2の側のうちの一方に隣接する強制部材であって、前記強制部材が、前記複数のパイプの隣接するパイプの間、ならびに前記複数のパイプと、前記下側支持体、前記第1の側方支持体、前記第2の側方支持体、および前記上部支持体から選択される隣接する構造との間での、静止摩擦を増大させることを目的として前記複数のパイプに対して圧縮力を加えるために、前記複数のパイプに対して強い圧力を加えるためのものである、強制部材
をさらに備える、流体移送組立体。
【請求項28】
前記一列のスペーサが、前記複数のパイプを支持するための、前記下側支持体に隣接する複数のアーチであり、前記アーチが、凸面が上に向く向きであり、前記アーチが前記複数のパイプの中の隣接するパイプの間に前記隙間を作るためのものである、請求項27に記載の組立体。
【請求項29】
前記アーチが、前記複数のパイプの中のパイプと同じサイズのパイプの1/3のセグメントである、請求項28に記載の組立体。
【請求項30】
前記強制部材に対して力方向の力を加えるための強制機構をさらに備え、
前記力方向に対して垂直である方向において拘束を実現するための筋交い構造をさらに備える、
請求項27に記載の流体移送組立体。
【請求項31】
前記強制機構によって作用される圧縮力によって発生する集中応力を分散させるための応力分散構造をさらに備える、請求項27に記載の流体移送組立体。
【請求項32】
前記応力分散構造が、前記強制機構と前記複数のパイプとの間にある空のパイプの層である、請求項31に記載の流体移送組立体。
【請求項33】
前記応力分散構造が、前記複数のパイプを囲む空のパイプの層である、請求項31に記載の流体移送組立体。
【請求項34】
前記複数のパイプの各々のパイプを充填機構または除去機構に接続するための手段をさらに備える、請求項27に記載の流体移送組立体。
【請求項35】
前記複数のパイプが、パイプの外側層、およびパイプの内部グループを画定し、
パイプの前記外側層が、空の状態を維持するためのもの、および強制機構によって発生する荷重を分配するためのものである、
請求項27に記載の流体移送組立体。
【請求項36】
流体を移送するための組立体であって、
移送船舶の中または上にある貨物倉であって、第1の側および第2の側を有する下側支持体、前記下側支持体の前記第1の側にある第1の側方支持体、および前記下側支持体の前記第2の側にある第2の側方支持体を有する、貨物倉と、
前記貨物倉内で受けられる、流体を収容するための複数のパイプであって、前記複数のパイプが、複数の列となるように積み重ねられ、前記複数のパイプの隣接するパイプが、前記複数の列の隣接する列の間で2つの接触点を有する、複数のパイプと、
前記複数のパイプの上方にある強制部材と、
前記強制部材を介して前記複数のパイプに対して圧縮力を加えるための強制機構であって、前記圧縮力が、前記複数のパイプにおけるパイプの間の摩擦が、前記複数のパイプにおけるパイプの有意な相対的な移動を一切防止するのに十分である、強制機構と、
前記強制部材の下方にある荷重均一化装置であって、前記荷重均一化装置が、前記複数のパイプの少なくとも2つのパイプに対して前記圧縮力を分配するために、前記強制部材および前記複数のパイプのうちの前記少なくとも2つのパイプと係合する、荷重均一化装置と
前記パイプへ流体を充填するためおよび取り出すために、前記複数のパイプの前記パイプに接続される流体ラインシステムと
を備える、組立体。
【請求項37】
前記荷重均一化装置が、強制部材係合側、第1のパイプ係合側、および第2のパイプ係合側を有する圧力楔である、請求項36に記載の組立体。
【請求項38】
前記圧力楔が設計荷重下で変形可能である、請求項37に記載の組立体。
【請求項39】
前記荷重均一化装置が流動性材料である、請求項36に記載の組立体。
【請求項40】
前記流動性材料がコンクリートグラウト溶液である、請求項39に記載の組立体。
【請求項41】
前記複数のパイプの前記パイプが鋼鉄から構成される、請求項36に記載の組立体。
【請求項42】
同じ列の中の前記隣接するパイプが空間により互いから分離される、請求項36に記載の組立体。
【請求項43】
前記複数のパイプを支持するための、前記下側支持体に隣接する複数のスペーサであって、前記スペーサが、前記複数のパイプの同じ列の中の隣接する前記パイプの間に前記空間を作るためのものである、複数のスペーサをさらに備える、請求項42に記載の組立体。
【請求項44】
前記移送船舶が上部固定デッキを備え、
前記強制機構が、前記強制部材と前記上部固定デッキとの間にある複数のジャッキを備える、
請求項36に記載の組立体。
【請求項45】
前記強制機構が、前記複数のパイプの中のパイプの定置を受け入れるために第1の力を加えた後で、前記強制部材を前記複数のパイプの上に押圧することを可能にするための締め付け機構を備える、請求項36に記載の組立体。
【請求項46】
船舶の上または中で運搬される複数の積み重ねられるパイプの中でガスを移送するための方法であって、前記方法が、
前記船舶の貨物倉の中に複数の積み重ねられるパイプを配置するステップと、
前記複数の積み重ねられるパイプの上方に荷重均一化装置を配置するステップと、
前記船舶自体の屈曲を含めた、前記船舶のいかなる動きも、前記複数の積み重ねられるパイプの前記パイプの間または前記パイプと前記船舶との間での相対的な動きを実質的に排除するように、前記複数の積み重ねられるパイプの前記パイプを一体に強く押し込めるステップと
を含む、方法。
【請求項47】
前記荷重均一化装置を配置する前記ステップが、前記複数の積み重ねられるパイプの最上列の隣接するパイプの間に少なくとも1つの楔を配置するステップを含む、請求項46に記載の方法。
【請求項48】
少なくとも1つの楔を配置する前記ステップが、前記楔の尖端を隣接するパイプの間に配置し、前記楔の平坦な表面を強制部材に隣接するように配置するステップを含む、請求項47に記載の方法。
【請求項49】
荷重均一化装置を配置する前記ステップが、前記複数の積み重ねられるパイプにおけるパイプの最上列の少なくとも一部分を覆うように流動性材料を流すステップを含む、請求項46に記載の方法。
【請求項50】
前記流動性材料がコンクリートグラウト溶液である、請求項49に記載の方法。
【請求項51】
前記複数の積み重ねられるパイプの同じ列の中で隣接するパイプの間の空間を維持するステップをさらに含む、請求項46に記載の方法。
【請求項52】
維持する前記ステップが、前記パイプの同じ列の中で隣接する前記パイプの間に隙間を作るための複数のスペーサの上に前記複数のパイプを積み重ねるステップを含む、請求項51に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、天然ガスなどのガスの海上貯蔵および海上移送のための装置および方法に関する。
【背景技術】
【0002】
例えば、海中パイプラインを通すこと、液化天然ガスとしてLNG船を用いること、または圧縮天然ガス(CNG:compressed natural gas)としてCNG船を用いることを含めて、水域を通じて天然ガスを移送する方法が知られている。ガスをガス水和物またはディーゼル様液体(GTL)に変換してこのガス水和物またはGTLを船により運ぶなどの他の手段も知られている。現在、水域を通じた天然ガスのほぼすべての移送は海中パイプラインまたはLNG船によって実行される。
【0003】
船上での液化天然ガス(LNG:liquefied natural gas)の移送は安定した巨大な産業であるが、船またはバージによる圧縮天然ガス(CNG)の移送はほぼ存在しない。海路でCNGを運ぶことに対しての主要な障害のうちの1つは、船移送またはバージ移送に適するCNG収容システムのコストである。したがって、CNG船またはCNGバージの全体のコストを低減するような形で、大量のCNGを収容することができ、船およびバージの上または中に設置するのに特に適する、CNGなどの圧縮ガスのための貯蔵システムを設計することが現在進行形で必要とされる。
【0004】
トラックによるCNGの地上移送もよく知られている。ここ数十年間、CNGはチューブトレーラで移送されている。CNGは自動車のための一般的な燃料であり、多様なCNG貯蔵タンクが自動車内で燃料を貯蔵するのに利用可能である。また、多様な寸法のパイプが、しばしば、トラック、船、またはバージによって移送される。これらの業界では、六角形状に積み重ねられるパイプを十分な力で縛るかまたは押さえつけることにより、垂直荷重下でこのスタックからパイプが滑り落ちないようにするための十分な摩擦を発生させることができることがよく知られている。場合によっては、摩擦材がパイプ層の間に配置されて摩擦を増大させる。しかし、これらの解決策のいずれも、大量のCNGをバルク移送するためのコスト効率の高いCNG船またはCNGバージを提供することができない。
【0005】
船またはバージのためのCNG収容システムを構成する好適な方法のうちの1つの方法が、長手方向においてバージまたは船のほぼ全長にわたって六角形状に緊密な形でパイプを積み重ねることである。このような1つの方法が、1999年9月22日に出願された加国特許第2,283,008号に開示されている。この特許で説明されるCNGバージはそのデッキ上にガス貯蔵組立体を据え付けるものであり、ガス貯蔵組立体が、バージデッキのほぼ全長にわたって延びる水平に向けられた長いパイプのスタックを有する。ここでの積み方は緊密であり、この発明の一態様では、パイプが互いに接触する形で六角形状に積み重ねられ得、それにより摩擦により接合される。
【0006】
加国特許第2,283,008号で説明されるバージおよび船はCNGを移送するための1つの可能性のある方法であるが、この発明は、波、潮流、および風に応じた、ピッチ、ヨー、およびヒーブのようなバージまたは船の動きを考慮に入れていない。さらに、この発明は、波によって生じる荷重を受けるときにバージまたは船が湾曲したり捻じれたりまたは他の形で歪むときにそのバージまたは船自体の歪みを考慮に入れていない。さらに、この発明は、パイプに圧縮ガスを充填したりパイプから圧縮ガスを取り出したりするときに生じる圧力変化および温度変化に晒されるときのパイプの膨張および収縮を考慮に入れていない。海面状態によって生じる屈曲および加速度ならびにパイプを積載および荷降ろしするときに生じる差温および差圧により、パイプが互いに対しておよびバージまたは船に対して摺動して移動してしまう。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は特には非液化圧縮天然ガスの海上ガス移送に関連するが、本発明は他のガスを移送するのにも使用され得る。本発明の目的は、CNGなどの圧縮ガスを運搬するように設計される船またはバージのコストを低減することである。
【課題を解決するための手段】
【0008】
本発明は、船およびバージの上または中で、主として、互いに対してまたは船に対して動くことがないように一体に十分に押し込められた状態の、六角形状に積み重ねられる長い直線形の一定の長さのパイプにより、CNGなどの大量の圧縮ガスを移送するように特には適合されるガス貯蔵システムに関連する。一定の長さのパイプがマニホルドによって接続される。一実施形態で、つまり船の応用において、CNGが上部デッキの下方で運搬される。しかし、本発明は、船の上部デッキの上でも、あるいはバージの上部デッキの上でもまたはバージの上部デッキの下方でも、採用される。本発明は、CNG以外の圧縮ガスを運搬するのにも採用され得る。
【0009】
パイプが、連続直線長において、船のほぼ全長にわたって延びており、六角形状に詰め込まれており、強制機構により一体に堅固に押し固められている。加国特許第2,283,008号で説明されているように、船倉を船の全長に合わせるのを可能にするように、および必要である場合に船舶を安定させるために、必要となる間隔で、六角形状に積み重ねられるパイプの間の隙間に液密材料を充填することにより液密の横方向隔壁を受け入れるのを可能にするように、船が設計され得る。パイプ径は任意の妥当な寸法であってよく、例えば、約20.3cm(約8インチ)から約91.4cm(約36インチ)であってよく、または他の直径であってもよい。パイプの正確な直径および長さは、鋼鉄などのパイプ材料および接続マニホルドのコストなど、システムを形成する種々の構成要素のコストを考慮に入れたシステムの経済的側面、ならびに建造の時および場所によって決定される。
【0010】
本発明が、六角形状に積み重ねられて互いに接触している長いパイプの組立体から構成される。強制機構が提供され、この強制機構が、本システムを収容する船が外洋環境で移動しているときにパイプが相対的に有意に動くのを一切防止するようにパイプを一体に堅固に押し込んでいる。2つ目として、本発明が、船の剛性を向上させることにより、船の屈曲または捻じれによって生じる任意のひずみを低減する。3つ目として、本発明が、差温または差圧によって生じる組立体内の個別のパイプ間の有意な相対的な移動を一切防止する。これらの目標が、船自体の屈曲を含めたいかなる環境においても、パイプの間で生じる摩擦により任意のパイプが他のパイプに対して有意に動くのを防止することになるようにパイプを一体に強く押し込めることによって達成される。このような要求は、例えばトラックまたは船により移送されているパイプのスタック内で1つのパイプが任意の他のパイプに対して滑るのを防止するために通常採用されるような任意の摩擦要素にも及ぶ。パイプが十分な力で一体に押し込まれ、その結果、溶接によりすべてのパイプが一体に完全に固定されかつ船またはバージの船体にも固定される場合と同程度となる。強制機構を用いてパイプを一体に摩擦により係止することにより船舶の全体の剛性が向上し、その結果、船舶が屈曲を受けることまたは捻じれることが有意に低減され、また、パイプの組立体および船舶が一体的に動くようになる。複数のパイプを一体に溶接しておりかつ船にも溶接している場合と同程度で複数のパイプが結果として振る舞うようになるように複数のパイプを一体に十分に押し込めることによりバージまたは船の全体の強度を向上させることは前例がなく、新規性を有する。本発明の利点は、船またはバージのデッキ上であるいは船またはバージの倉内で利用可能である空間内に収容される複数のパイプの中で貯蔵されるCNGの量が最大になることおよびひいてはCNGを移送するための低コストの手段が作られることである。
【0011】
システムが下側支持体および側方支持体を有する。側方支持体が、複数のパイプを配置することができる下側支持体の各側に位置する。側方支持体が下側支持体に対してほぼ垂直であってよい。
【0012】
システムが、側方支持体の間に位置する、流体を収容するための複数のパイプをさらに有する。複数のパイプの各パイプがマニホルドシステムに対しての接続手段を有する。複数のパイプが、好適には、側方支持体の間で下側支持体の上に六角形状に積み重ねられる。
【0013】
側方支持体に対して動くことのない上部固定支持体が提供される。しかし、力が加えられると、上部固定支持体、固定される側方支持体、および底部支持体がわずかに弾性的に歪む。
【0014】
上側強制部材が好適には上部固定支持体の下方に位置する。強制部材が側方支持体に対して上下に動くことができ、倉内で積み重ねられる複数のパイプに圧縮力を加えるためにパイプのスタックを強く下に押さえることができる。圧縮力により、
a.パイプ自体の間での、または、パイプと、下側支持体、側方支持体、または強制部材との間での、いかなる有意な相対的な動きも防止すること、
b.複数のパイプに協調してバージまたは船の船体を振る舞わせるようにバージまたは船のいかなる相対的な動きを受け入れること(言い換えると、複数のパイプがバージまたは船の強度を向上させ、その結果、船またはバージの環境によって誘発されるいかなる動きも船体と複数のパイプとの間での相対的な動きを一切引き起こさないようになる)、
c.差圧および差温によって引き起こされる個別のパイプのいかなる相対的な移動も防止すること、
d.起こり得るいかなるゆすりも受け入れるために第1の圧力サイクル中に力を調整することを可能にすること
のためにパイプの間に十分な摩擦が生じる。
【0015】
強制機構が、例えば、衝突、または波によって生じる運動、ガス圧力、あるいは他の要因などの、いかなる条件においても強制機構のいかなる長手方向の移動も防止するために強制機構を長手方向において拘束するための筋交いを有することができる。
【0016】
複数のジャッキ、またはレバーを含めた他の手段などの、あるいはボルトの張力により複数のパイプに加えられる圧縮力を提供するために強制部材の各端部をボルト留めする手段などの、強制部材に加えられる力を発生させるための手段が提供される。
【0017】
いくつかの事例で、底部支持体、上部支持体、および側方支持体に対してパイプを押し込めるための圧縮力によって発生する集中応力を分散させる手段が必要となる可能性がある。このような事例では、ガス収容パイプを囲む空のパイプの層が提供され得る。集中応力を分散させるための他の手段には、荷重の分散を可能にするための木材の詰め物または他の適合可能材料が含まれる。
【0018】
天然ガスなどのパイプへ流体を充填するためおよび取り出すための、各々のパイプをマニホルドシステムに接続するための手段が提供される。
必要となる拘束応力を評価することは非自明であり、本発明に独自のものである。拘束力は、パイプの相対的な移動が、具体的には、波、衝突など、の任意の事象によって生じる長手方向の力などの、あらゆる荷重に耐えるようにするのに十分な大きさでなければならない。これらの要因の間のこの関係は以下の方程式で説明される。
N-本発明が受ける重力加速度の数値
-裸の鋼鉄パイプの間の摩擦係数(約0.70)
P-後で説明される強制機構によって発生する拘束圧力
L-パイプの長さ
-単一のパイプの外径
D-複数のパイプの平均高さおよび平均幅
-1つのパイプの重量に圧縮天然ガスなどのパイプ内部の流体の重量に加算したもの
方程式:N=C・P・π・L・(d/(D・W
【0019】
一実施形態で、パイプスペーサが貨物倉の底部に位置する。パイプスペーサが、ガスの内部圧力下でのパイプの膨張時におよびまたは温度によるパイプの膨張時にパイプの水平軸に沿って貨物倉内のすべてのパイプを互いに接触させないように構成される。つまり、同じ列のパイプの間に空間が存在する。この空間は、非常に大きい力を発生させること、ならびにデッキ、底部シェル、および側壁の中の周囲の拘束ガーダを可塑化させることを防止するために必要である。ガーダ内に過大応力を発生させることに加えて、周囲構造を可塑化することにより、圧縮応力を与えるジャッキ圧縮が失われ、上側のパイプが緩められる。したがってこの空間は設計の重要な部分である。その理由は、この空間により、デッキからの予圧縮力を閉じ込めることが可能となり、貨物倉のデッキ、側壁、および基部の過大応力を回避することが可能となる。
【0020】
所与の内部圧力範囲および内部温度範囲において、空間サイズが、パイプ径、材料の弾性係数、および材料の強度と直接関係がある。一実施形態で、材料が551.7MPa(80ksi)の降伏強度を有する鋼鉄であり、許容される最大円周応力がこの降伏強度の約70%であり、温度変化が約摂氏60度の範囲内である。空間が好適にはパイプ外径の約1.5%から約3%である。より好適には、空間がパイプ外径の2%から2.5%である。最も好適には、空間が理想的にはパイプ径の約2%である。より大きい空間も可能であるが、これより大きい空間では積み方の均一性にわずかな悪影響が出始める。他の材料および他の強度では理想的な空間の範囲が異なることになる。例えば、より高い強度を有する鋼鉄が利用される場合、理想的な空間が2%から3%に拡大し得る(例えば、1103.4MPa(160ksi)の鋼鉄)。
【0021】
一実施形態で、力均一化装置を用いて、強制梁からの圧力がパイプスタックのパイプの最上列上で均一化される。通常、一番上の列のパイプが完全には水平ではない。製造されるパイプでは普通にあることであるが、ごくわずかに異なるパイプ径の蓄積によりいくらかの不均一さが生じる可能性がある。隣接するパイプの間に位置する楔の形態の力均一化装置を提供することにより、圧力を均一に分配することができるようになる。別の実施形態で、流動性材料の滑らかな層の形態の1つの形態の均一化装置を加えることにより(例えば、一番上の層にコンクリートの「蓋」を加える)、圧力を均一に分配することができる。
【0022】
本発明の種々の実施形態を例示として示して説明している以下の詳細な説明から、当業者には、本発明の別の態様が容易に明らかとなることを理解されたい。理解されるであろうが、本発明の精神および範囲から一切逸脱することなく、本発明は他の異なる実施形態も可能であり、種々の他の点においてそのいくつかの細部を修正することも可能である。具体的には、上部支持部材が強制部材となるように設計されてもよい。したがって、図面および詳細な説明は本質的に例示であるとみなされ、限定的であるとみなされない。
図面を参照すると、限定的ではなく例として本発明のいくつかの態様が示されている。
【図面の簡単な説明】
【0023】
図1】本発明による船を示す側面図である。
図2】本発明による船を示す平面図である。
図3図1の3-3に沿う、本発明によるガス貯蔵組立体をより明瞭に示す断面図である。
図4図4Aは、強制梁6と、強制梁に加えられる力を発生させるための、この事例では一連のジャッキ10である強制機構とを示している、図3の拡大部分を示す図である。図4Bは、いかなる隙間も塞ぐためのシムを提供することにより、1つまたは複数のパイプが強制梁に面一ではない場合でも強制梁からの力をすべてのパイプに作用させることができる方法を示している、図4Aの拡大部分を示す図である。図4Cは、パイプに対して強制梁が動かないのを保証するための、船の動きによって生じる有意な長手方向の力に耐えるように強制梁に筋交いを入れることができる方法を示している、図4Aの断面4C-4Cを示す図である。
図5図5Aは、ガスを収容する複数のパイプの2列を接合するマニホルドパイプのうちの2つのマニホルドパイプを示している、マニホルドシステムの小さい一部分を示す正面図である。図5Bは、ガス収容パイプに対してマニホルドを接続する方法を示している、マニホルドの小さい一部分を示す側面図である。
図6】パイプの場所A、B、C、およびDを示している、船舶のガーダに作用する力を示すグラフである。
図7】パイプの場所AおよびCを示している、力のベクトル三角形を示している、強制部材の下方に積み重ねられるパイプを示す断面図である。
図8】パイプの場所BおよびDを示している、力のベクトル三角形を示している、船舶の船体の底部の上方に積み重ねられるパイプを示す断面図である。
図9】隣接するパイプからの膜応力と、ガス圧力による膜応力の変化とを示している、パイプを示す断面図である。
図10】拘束圧力および重力、ガス圧力、および差温を受けて、場所Bで起こるパイプの歪みの誇張図を示している、パイプを示す断面図である。
図11】隣接するパイプの間の隙間を塞ぐことによる膜応力の変化を示している、パイプを示す断面図である。
図12】荷重集中を回避するための凹部を有する、横方向ガーダの上方にあるパイプセグメントから形成される一対の底部支持アーチを示す斜視図である。
図13】上に位置するガスパイプを示している、図12の一対の底部支持アーチを示す斜視図である。
図14図13の一対の底部支持アーチおよびガスパイプを示す側面図である。
図15図12~14の一対の底部支持アーチおよびガスパイプを示す端面図である。
図16図12~15の一対の底部支持アーチを利用する支持組立体を示す斜視図である。
図17】底部支持アーチにかかる荷重を示している、図16の支持組立体を示す立面図である。
図18】最大圧力下での荷重を示している、図16および17の支持組立体の一部分を示す立面図である。
図19図6で見ることができるようなパイプのスタックの一番上の列に非均一な頂部表面の確率を示すグラフである。
図20】強制部材およびパイプの最上列との間に荷重分配楔を有する、強制部材の下方に積み重ねられるパイプを示す断面図である(パイプが力のベクトル三角形と共に示される)。
図21】強制梁により作用する2つのパイプの間にある楔を有する、2つのパイプを示す立断面図である。
図22】ジャッキング前の非均一なパイプ上で示されている図11のパイプおよび楔を示す立断面図である。
図23】ジャッキング後の非均一なパイプ上で示されている図11のパイプおよび楔を示す立面図である。
図24図12および13の楔およびパイプを示す拡大図である。
図25】例えばコンクリートグラウト溶液である、非均一なパイプ上にある滑らかな層を利用する荷重分配の実施形態を示す立断面図である。
【発明を実施するための形態】
【0024】
以下の説明および本明細書で説明される実施形態は、本発明の種々の態様の原理の特定の実施形態の例を例示するために提供されるものである。これらの実施例は、本発明の種々の態様において、これらの原理および本発明を限定するのではなく説明するために提供されるものである。本記述では、本明細書および図面を通して同様の部品にはそれぞれ同じ参照符号が付される。図面は必ずしも正確な縮尺ではなく、いくつかの例では、特定の特徴をより明瞭に描写するために比率が誇張される可能性がある。
【0025】
圧縮ガス移送組立体が開示される。本発明の組立体が、CNGなどの圧縮ガスの海上移送のために、船またはバージの上にまたはその中に据え付けられ得る。実施形態のこの詳細な説明のために、船の船体の内部の組立体を用いて船が示される。これは本発明を説明するための手段であることを意図され、限定的ではない。組立体が船またはバージのデッキの上にあるいはバージの船体の中に配置されるように修正されてもよいことが当業者には容易に明らかとなろう。
【0026】
図1を参照すると、概して10で示される移送船舶の側面図が示されている。一実施形態で、移送船舶10が船である。移送船舶の他の例にはバージが含まれる。一実施形態では、移送船舶10が、前方貨物隔壁12、後方貨物隔壁14、および中心線長手方向隔壁16を有する。ガス移送組立体が船の船体の中に閉じ込められ、前方貨物隔壁12と後方貨物隔壁14との間に収容される。図2に示される中心線長手方向隔壁16が移送船舶10を2つの貨物倉に分け、つまり右舷貨物倉18および左舷貨物倉20に分ける。移送船舶10が船体22を有する。底部支持部材24が船体22の底部に組み込まれ得る。複数のパイプ40が底部支持部材24上で支持される。移送船舶10が複数の側方支持部材26をさらに有し、これらの複数の側方支持部材26が移送船舶10の船体22の側部の一部であってよく、また、中心線長手方向隔壁16の一部であってよい。側方支持部材26が貨物倉18および20の長手方向に沿って離間され、通常、図1および2に示されるように等しく離間されて互いに位置合わせされる。本発明のこの実施形態は、貨物倉18および20が横方向の隔壁を一切有さず、したがってパイプが貨物倉のほぼ全長にわたって延在することができることを示している。液密の横方向の隔壁が必要である場合、このような液密の横方向の隔壁は、六角形状に積み重ねられるパイプによって形成される空間の間に密閉材料を配置するという手段などの、加国特許第2,283,008号で開示される手段によって提供され得る。移送船舶10が、固定される上部支持部材28をさらに有する。固定される上部支持部材28が移送船舶10の上部デッキの一部である。
【0027】
図3を参照すると、図1の線3-3に沿う断面図が示されている。説明を目的として、図3が複数のパイプを有さない左舷貨物倉20を示しており、さらに、中に位置する複数のパイプ40を有する右舷貨物倉18を示している。実際には、左舷貨物倉20および右舷貨物倉18の両方にパイプが装填されることになる。移送船舶10の船体22が左舷貨物倉20および右舷貨物倉18を囲む。一実施形態で、船体22が、外側垂直支持部材26、上部支持部材28、および底部支持部材24を組み込む。長手方向隔壁16が移送船舶10の構造の一部であり、さらに内側支持部材27を組み込む。
【0028】
上部強制部材30(図3)が離間され、その結果、上部強制部材30が側方支持部材26に位置合わせされるが、側方支持部材26に接続されない。中心線隔壁26が左舷貨物倉20および右舷貨物倉18を分離し、内側支持部材27を組み込むことができる。強制部材30が、強制梁36と固定される上部支持部材28との間にある複数のジャッキ34である強制機構32を有する形で示されており、固定される上部支持部材28が移送船舶10の上部デッキの一部である。必要な力を発生させる他の手段も企図され、これには、デッキの据え付け中にデッキと強制部材との間で下方に押し込められるときに必要な力を発生させる圧縮ばねが含まれ、それにより、必要な圧力をパイプに加えるための必要な力が得られる。強制機構32によって提供される力は、上で説明したように、概して40で示されるパイプの移動を防止するのに実質的に十分な大きさでなければならない。ここで説明される本発明の実施形態では、ジャッキ34ごとの力の概略の範囲は25メートルトンから125メートルトンの間である。
【0029】
図4Aを参照すると、図3の一部分の拡大図が示されている。複数のパイプ40が空のパイプ42およびガス充填パイプ44を含む。複数のガス充填パイプ44が、常に空である空のパイプ42の層によって囲まれる。これらの図では空のパイプ42が「MT」として示され、ガス充填パイプ44が「GAS」として示される。空のパイプ42の目的は、支持部材24、26、27に対して空のパイプ42を押すときに強制機構32によって発生する荷重を分配することである。空のパイプ42が、ガスを運搬するパイプ44に荷重が集中することを回避するために、ガス収容パイプ44への集中荷重を分配する。木柱または他の材料を使用する手段などの荷重を分散させる他の手段も企図される。荷重の分散が必要なくしたがってガス充填パイプ42が支持部材24、26、27に直接に接触することができることも企図される。
【0030】
図4Bを参照すると、1つの空のパイプ42、つまり下側のパイプ46が、強制梁36よりわずかに低いところに示されており、隙間を作る。隙間が、円形であることからくる直径のばらつきまたは他のこのような差異などのパイプの外形の小さい差異によって作られ得るものである。隙間が、強制機構30を適用する前の目視検査によって見つけられ得る。隙間が視覚的に明らかである場合に隙間の中でシム48が動かされ得る。隙間が視覚的に明らかではない場合、ジャッキ34を締め付けることにより、パイプ40のうちの1つのパイプの中である程度の隙間が作られることおよび荷重が等しく共有されることが保証される。さらに図4Bには固定される上部支持部材28が示されており、この固定される上部支持部材28が好適には側方支持部材26に固定される。この実施形態では、支持部材26が移送船舶10の船体22に一体化される。後で考察するように、これらの隙間を受け入れるための他の好適な手段も企図され、これが、パイプの中の任意の隙間を受け入れるための軽量コンクリートなどの材料のブランケットを提供すること、または隙間が存在する場合でもパイプに力を加えるのを可能にするために強制梁に楔を固定することなどである。
【0031】
図4Cを参照すると、いかなる長手方向の荷重によっても強制梁36が押されてその位置をずらされるのを防止するために、長手方向において強制梁36に筋交いを入れるための筋交い構造60が提供され得る。筋交いアーム62が長手方向において強制梁36に筋交いを入れる。強制機構32のジャッキ34により強制梁36に完全に荷重がかけられた後で、筋交いアーム62が堅固に固定される。筋交いアーム62を固定するための1つの手法は、強制梁36上にボルト留めされるフランジ64および上部支持部材28に添着される同様のボルト留めされるフランジ66を介する手法である。
【0032】
図5Aおよび5Bを参照すると、各ガス収容パイプ44に圧縮ガスを充填するための概して70で示されるマニホルドシステムが示されている。マニホルドシステムを提供するための手法は多く存在し、これらの方法は一般に知られているものである。図5Aおよび5Bが、接続のための空間を最大にするマニホルドシステム70の一実施形態を示している。複数のパイプ40の各パイプが、好適には、1つのテーパ状の端部72、および1つの閉端部74を有する。パイプ44は、組立体の交互の側部において、接触している隣接する各々の列がテーパ状の開端部72を有するように、積み重ねられる。例えば、奇数の列のすべてのテーパ状の開端部72が、テーパ状の開端部72を前方に置くように積み重ねられ得、すべての偶数の列が、テーパ状の開端部72を後方に置くように積み重ねられ得る。ガス収容パイプ44の各列がマニホルドパイプ76に接続される。この実施形態では、接続がボルト留めされるフランジ78によるものである。この接合機構および溶接などの他の接合機構はよく知られている。
【0033】
横方向および垂直方向の設計圧力
図6を参照すると、一実施形態で、パイプ40が、1.33cm(0.525インチ)の壁厚を有する40.6cm(16インチ)の外径を有する。24.8MPa(3600psi)の動作圧力によって発生する引張円周応力は365.5MPa(53ksi)である。この応力に加えて、拘束圧力および移送船舶10の動きによって発生する膜応力および軸方向応力も存在する。膜応力および軸方向応力は、積み重ねられたパイプ40の頂部および底部にパイプ40が存在するかどうかによって変化する。
【0034】
パイプ40は入れ子方式で互いに上に積み重ねられる。1つの列の中でパイプ40の隣接するパイプの間に意図的な6mmの最小空間を設けることができる(例えば、図7を参照されたい)。隣接するパイプ40の間の空間がパイプ40の詰まりを回避する。詰まりの可能性がないと、パイプ40は「板ばね」のように振る舞い、したがって詰まったパイプ40と比較して垂直方向の剛性により高い柔軟性が含まれる。垂直方向の剛性における柔軟性を維持することにより、(ガス膨張時の)底部支持部材24、外側支持部材26、内側支持部材27、および上部支持部材28の拘束用ガーダに可塑性を一切もたらさないという利点が得られる(このような可塑性は拘束圧力またはジャッキ圧力を損失させる可能性がある。
【0035】
さらに、垂直方向の圧力が、外側支持部材26および内側支持部材28の側方垂直ガーダが反動的な横方向圧力を発生される。
【0036】
一実施例で、底部に位置する複数のパイプ40の1つのパイプ(つまり、図6の近位側の場所B)が最も大きい膜応力を受ける。フロアの底部支持部材24が31.3T/mの最大圧力を受ける。一実施例で、底部支持部材24の底部横方向ガーダが4メートルで離間され、結果として、底部横方向ガーダ102(図13を参照されたい)が1メートルラン当たり125.2メートルトンのUDLを有することになる。ガスパイプ40が、図8の場所Bで示されるように、4つの荷重点で圧力を受ける。
この実施例では、31.3T/mの最大圧力が以下の表1に記載される以下の成分から構成される。
【0037】
【表1】
【0038】
表1の列の間の関係の説明は以下の通りである。例として、10t/mのジャッキ34によりパイプ40に対して拘束圧力またはジャッキ圧力が加えられる。パイプ40の1つのパイプに対して10t/mの拘束圧力により4t/mの荷重が得られ、つまり0.4メートル直径で10t/mの圧力を有する。4t/mは0.22kip/インチであり、これが荷重点80のところで2つのベクトルに分解され、2列目のように、各々ベクトルが0.22/2/Cos30°の値を有し、つまり1インチ当たり0.13kipを有する。1インチ当たり0.13kipであるこれらの4つのベクトルより、パイプ40の壁の周りに対称に変化する曲げモーメントを発生させる。当技術分野で知られている一般的な標準の公式を使用して、モーメント、撓み、および膜応力が計算される。
【0039】
拘束圧力またはジャッキ圧力(10t/m
拘束圧力またはジャッキ圧力が垂直方向に作用する。拘束圧力が上部から加えられ、移送船舶10の底部から等しく反作用する。拘束圧力またはジャッキ圧力が不変の荷重条件として加えられる。パイプ40が詰まっていないと、得られる横方向の圧力が拘束圧力またはジャッキ圧力の約1/3になる。すべての圧力においてこの関係が得られ、図6では、場所C(6.8T/m)およびD(10.4T/m)の圧力がA(20.5T/m)およびB(31.3T/m)の約1/3であることが分かる。
【0040】
さらに図6を参照すると、上部支持部材28の上部横方向ガーダおよび底部支持部材24の底部横方向ガーダ102が同様の設計荷重を受ける。上部が20.5t/m(82t/m run)の上向きの圧力を受け、底部横方向ガーダ102が、約10t/mの外部水頭を差し引いて、約31.3t/mを受ける(合計85t/m run)。これらが約10,000kip-feetの設計モーメントを発生させ、各々、最大約30ksiの応力が発生する。これはガーダの弾性許容範囲に十分に収まるものである。というのは、EH36の降伏点が51ksiであるからである。ガーダの限界状態つまり弾性許容範囲は約20,000kip-feetと推定される。2000×20の補強ウェブによることを想定すると、加えられる剪断力が約1200kipであり、最終的な剪断抵抗力が約2100kipである。完全な荷重下での横方向ガーダ102の中間スパンの弾性撓みが約6mmである。10t/mのジャッキ圧力下では、上部支持部材28の上部ガーダが上方に3mm撓みことになり、つまりこれはその中間スパンと同様である。
【0041】
ガス圧力効果(8.4t/m
複数のパイプ40のガス充填パイプ44がガスに圧力を受けて3600psiになると、二次元応力系の物理学に従ってパイプ44の円周が伸長する(0.3のポアソン比)。上で考察したパイプ44の実施例では、この伸長によりパイプ44の直径が0.6mm拡大する。例えば30個のガス充填パイプ40である、一列のパイプ44において、各パイプ44の直径が個別に拡大することで、一列のパイプを約20mm拡大させることができる。ガス充填パイプ44がある程度等しい6個の力ベクトルにより詰まった状態にされると、全体の膨張を制止することができなくなる。その理由は、ガス充填パイプ44が変形することができなくなるからである。底部支持部材24のガーダ100、102(図13)、外側支持部材26のガーダ、内側支持部材27のガーダ、および上部支持部材28のガーダがこの膨張量で降伏することになり、それによりいくらかの程度で可塑化する。この効果は自己限定的であることからガーダが不具合を発生することはないが、拘束圧力によるガス充填パイプ44の圧縮応力が低下する。
【0042】
パイプ44が詰まっていないと、つまり列の中に水平方向の隙間を有する場合、パイプ44の膨張がガーダをわずかに変形させる(例えば、2mm)こと以上のことを引き起こすことができず、このわずかな変形は十分にガーダの弾性応答の範囲に収まるものである。ガーダが完全な剛体であると仮定すると、詰まっていない、すなわち「板ばね」のパイプ40が8.4t/mの圧力で上方および下方にのみしか押され得ない。ガーダがある程度の弾力性を有することを理由としてこの数値は保守的な数値であり、したがってこの数値は緩和され得る。パイプ40の構成物の中央では、この緩和が約2t/mとなる。ガーダ支持体のところではこの緩和がより小さくなる。したがって、ガーダは控えめに言って柔軟性を有さないと考えられる。
【0043】
次に図7を参照すると、一連の三角形の力として力ベクトルが並んでいるのを見ることができる。これらの三角形の力は側壁26、27からの反応を示すことができる。実際には底部までは示されない。側壁26、27と交差する(上部および底部側の両方から)ベクトルにより、垂直方向の0.33倍の側方圧力が発生する(つまり、Sin30/Cos30)=0.33)。同じ列のパイプ40の間に7mmの隙間が設けられる場合、圧力がわずかに増大して0.35となる。
【0044】
次に図8を参照すると、単位ベクトルが頂部と比較して底部(つまり、近位側の場所B)のところで約50%大きいことを見ることができる。この単位ベクトルは頂部のところで31.3t/m対20.5t/mの圧力を表す。さらに、パイプ40のすべての円周溶接部が接触点の領域において好適には研磨されており滑らかであることに留意されたい。その結果、溶接部が局部的に降伏することがなくなる。さらに、この実施例では、31.3t/mが倉18、20の中央において現実的な数値であるが(頂部での20.5t/mと同様に)、この最大圧力は側部26、27に向かうにつれてわずかに低下する。その理由は、一部のベクトルが側方支持部材26、27の垂直方向ガーダをわずかに圧縮させるように作用するからである。非常に大きい穀物貯蔵庫でも同様の効果を見ることができ、非常に大きい穀物貯蔵庫では、側方に向かって圧力の形状がアーチ状であることを理由として、穀物貯蔵庫の底部が比較的小さい圧力を受ける。この効果は単純に、横方向ガーダの全幅にわたる全圧力を利用することが保守的であるのを保証するものであると言うことができる。
【0045】
疲労評価
次に図9を参照すると、アメリカ船級協会(ABS)のガイドラインが示されている。ここでは、平均故障ライン未満の3つの標準偏差に基づく適切なS-N曲線を用いて設計寿命を評価するのに10個の因子が使用される(2つの標準偏差に基づくより一般的な工業規格とは異なる)。
【0046】
2種類の溶接がパイプ40のボディの中で使用され得、つまり長い継ぎ目のための電気抵抗溶接(ERW)および円周方向接合溶接が使用され得る。
ERW溶接はクラスB溶接およびクラスC溶接の間で分類され、C溶接未満はない。円周溶接部はE溶接およびF溶接の間で分類され、F溶接未満はない。
【0047】
サイクル回数と応力範囲との間の関係が以下の方程式によって表され得る、
Log(N)=Log(C)-cδ-mLog(Fsr)
ここでは、
N=応力範囲Fsr下で不具合を生じることになると予測されるサイクル回数
C=この溶接部の平均S-N曲線に関連する定数
m=平均S-N曲線の負の傾き
c=平均未満の標準偏差の数値
δ=Log(N)の標準偏差
【0048】
ERW溶接の場合、200psiから3600psiとなる応力範囲が345n/mm(50ksi)である。円周溶接の場合、応力範囲はこの値の半分の173n/mm(25ksi)である。55ksiつまり380n/mmの最大張力範囲を得るためには、図9に示されるように50ksiに5ksiの膜応力範囲を加えなければならない。
この方程式に数値を挿入することにより、以下のような各々の種類の溶接の故障サイクル回数が得られる。
【0049】
ERW溶接
クラスB:Log10(N)=15.370-3×0.182-4.0Log(380)=4.505
ここから、N=104.505=32,000サイクルが得られる。
クラスC:Log10(N)=14.034-3×0.204-3.5Log(380)=4.393
【0050】
ここから、N=104.393=24,700サイクルが得られる。
1週間に1回のサイクルを想定する場合の30年間にわたってガスパイプの受ける最大サイクル回数は約1600である。この数を10倍すると16,000となるが、これは3つの標準偏差を使用して確立された最小値24,700未満である。したがって、これは十分な余裕をもってABSの要求を満たす。
【0051】
円周溶接
クラスE:Log10(N)=12.517-3×0.251-3.0Log(173)=5.05
ここから、N=105.05=110,000サイクルが得られる。
クラスF:Log10(N)=12.237-3×0.218-3.0Log(173)=4.87
ここから、N=104.87=74,000サイクルが得られる。
円周溶接は、実質的に、長手方向のERW溶接の約3倍の許容範囲を有する。
【0052】
図10は、拘束圧力および重力、ガス圧力、および移送船舶10の船体22の温度を超える摂氏108度(華氏60度)であるパイプ40のブロックの差温を受けての、場所B(例えば、図6を参照されたい)で起こるパイプの歪みの誇張図である。重力および拘束圧力により0.7mmの垂直方向における半径の歪み90が生じる。ガス圧力および温度により押し戻され得ないことから、この垂直方向の半径の歪み90は0.7mmのままである。代わりに、パイプ40が示されるように水平軸に沿って延伸する。1つの列の中の隣接するパイプ40の間に空間を意図的に導入することは非常に重要である。加えて、1つの列の中の隣接するパイプ40の間の空間を導入することにより、倉18、20の壁と垂直方向ガーダとの間の正確な構造寸法の公差を比較的大きくすることができることから、建造が非常に容易になる。横方向の圧力の係数を1(詰まり状態)から0.35まで減少させることも非常に重要である。
【0053】
さらに図10を参照すると、歪んだパイプの垂直方向の収縮が0.7mmであり、対して水平方向の膨張92が1.3mmである。垂直方向の収縮90が水平方向の膨張92より小さい。その理由は、パイプ40がガス圧力下で上方に膨張することができず、最小抵抗経路に従って側方に膨張する(隙間が存在するため)。これは、この移動を妨げるような詰まりまたは反動力が発生し得ないことによる。
【0054】
パイプ重量(9.3t/m
パイプ重量は、倉つまり右舷貨物倉18または左舷貨物倉20の底部面積によってパイプ40の総重量を割ったものである。
【0055】
ガス重量(1.5t/m
ガス重量はパイプ重量の計算値と同等である。
ガス温度効果または20%gの上向きの加速度(2.1t/m)。船舶の周囲の鋼鉄より高い温度であるパイプにより温度効果が得られ、それにより、船の構造によりパイプが膨張することが不可能であることを理由として、応力が増大する。上向きの加速度は、海の波によって生じるピッチおよびヒーブなどの船の動きにより生じるものである。
【0056】
パイプ40全体の例えば鋼鉄のパイプ材料の温度が移送船舶10の例えば鋼鉄などのすべての周囲の材料より摂氏108度(華氏60度)高い場合、パイプ40の例えば鋼鉄である材料がガス圧力効果の場合と同様に外向きの圧力を作用させる。これは非常に稀なケースであり、可能性として荷重を与えた後のわずかな期間のみで起こる。したがって、これは、海の大しけ時に発生する任意の加速度に対して加算されるものとはみなされない。移送船舶10の底部での圧力値はg力の20%に等しい(上向きに作用する)。
【0057】
パイプ40が詰まり状態である図11を参照すると、すべての最大応力が詰まっていない状態と等しい応力の40%まで減少する。例えば、詰まっていない状態で15ksiの応力を発生させることになるような31.3t/mの圧力で、詰まり状態では、わずか6ksiの膜応力しかパイプ40内に発生しない。これによりパイプ40にいくつかの小さい利点が与えられるが、底部支持部材24、外側支持部材26、内部支持部材27、および上部支持部材28の拘束用ガーダが、その端部支持点において、わずかに可塑化する。パイプ40からガスが取り出される場合、経時的に増大し得るようなジャッキ圧力または拘束圧力がわずかに失われる。
【0058】
最初にジャッキ34が10t/mまで締め付けられるような場合、1.25倍の動作圧力つまり4500psiまでパイプ40の圧力試験が実施される。また、この初期条件により、パイプ40が鋼鉄同士の接触をし得ないような領域において、局所的な詰め込みが行われる。圧力試験後、デッキつまり固定される上部支持部材28の上向きの歪みおよびジャッキ34の荷重が検査される。ジャッキ34の荷重が10t/mまで低下する場合(ほぼ確実に起こることである)、ジャッキ34が再び締め付けられてその状態で固定される。パイプ40からダミーパイプ106さらには横方向ガーダ102を通る、この連鎖構造内の各々の要素の反応は、弾性領域の範囲内に収まる。したがって、その後に繰り返されるサイクルにわたって拘束圧力の損失がゼロとなる。
【0059】
ガスパイプ44に圧力試験を行うときに試験パイプにクランプ機構を取り付けた。スタックの底部(場所B)の状態を反映するために接触点のところに力を誘発した。初期の拘束力を19.3t/mと同等にし、圧力を与えるときに、ベクトルを29.2t/mに合わせるための差圧が自己誘発した(図9を参照されたい)。合計で30.3t/mを誘発した。その理由は、この力の大きさは非常に稀な事象で生じるものであり、1週間に1回のサイクルでは生じないものであるからである。
【0060】
図12を参照すると、交差点においてつまりパイプ40が横方向ガーダ102と交差する点において、ダミーパイプまたは分割パイプ106の中に凹部108が導入され得る。ダミーパイプまたは分割パイプ106が好適には、凸面が上向きで配置されるパイプ40と同等の寸法のパイプの1/3のセクションである。この交差点ではガスパイプ44と支持体100、102との間に接触箇所が存在しない。このように分割パイプ106に凹部108を加えることは1つの追加的な緩和措置であり、いかなる局部的な応力集中の可能性も排除することになる。この領域に円周溶接部が存在する場合、全体のアプローチの一部として溶接部が研磨されて滑らかにされていることを理由として、隙間が低減されない。
【0061】
次に図13~17を参照すると、底部支持部材24が長手方向ガーダ100および横方向ガーダ102で形成され得る。フロア104が提供される。一列のダミーパイプ106がフロア104上に位置する。
【0062】
図14~16を参照すると、長手方向ガーダ100に溶接される6mmのプレート104に対して1/3ダミーパイプ106を溶接することにより、1つの列の中の隣接するパイプ40の間に約7mmの隙間が導入されて維持される。この組合せの効果により407mmごとに2100inの剛性が得られる。1/3ダミーパイプ106が好適にはパイプ40と同じ材料であり、同じ厚さを有する。
【0063】
1つの列の中のパイプ40の間の7mmの隙間が横方向にパイプ40を膨張させるのを可能にする。これによりパイプ40のグループの「柔軟性」が増す。詰まっていない状態のパイプ40の垂直方向の弾性率が約0.1GPaである。詰まり状態のパイプ40の剛性は約55倍であり、約5.5GPaの弾性率を有する。比較のためのゴムの弾性率は約0.1GPaであり、これは詰まっていない状態のパイプ40と同等である。詰まり状態のパイプ40は硬い木材と同等の弾性率を有することになる。図17を参照すると、横方向ガーダ102の支持体のところの荷重分布がわずかにのみ大きいことが分かる。これは、詰まっていない状態のパイプ40が相対的に高い柔軟性を有することが理由である。この変形平衡方程式により小さい差異しか得られないことの理由を理解することを補助するために、パイプ40の12メートルの厚さを有するスタックを固体ゴムのブロックに置き換えることを想像することが有用である。ここでは、このゴムのブロックが、より高い剛性を有するダミーパイプシステム(40.6cm(16インチ)の幅ごとに2100in)によって圧縮されることを想像する。反応が本質的に実質的に均一であることが容易に分かるであろう。最大圧力下で補強材がその中央においてその支持体に対して1mm未満で歪み(端部スパンでも)、パイプブロックの剛性が比較的高い柔軟性を有することにより上で述べた集中が起こり、これが約5%である(33t/m/31.3t/m)。
【0064】
図17が、バックアップの補強材を用いずに1/3ダミーパイプ106のみが使用される場合の約50t/mまでの増大する集中を示している。
【0065】
パイプ40が全体として詰まっている場合、「ゴム」の類似物は「木材」に置き換える必要があり、支持体のところで荷重集中が有意に増大する。したがって、膨張用の隙間または空間を導入することによりこのエリアもより恩恵を受けることになり、つまり、ガス膨張中に横方向ガーダに関節を発生させないことに加えて、あらゆる実用的な目的のために荷重集中効果が排除される。
【0066】
上で考察したすべての多様な効果を全体にまとめると、16ksi(15.8ksi)の最大膜応力が得られる。最大膜応力は、一番下の列の、水平軸の先端部のところの、底部横方向ガーダ102との交差領域の、パイプ40にのみ発生する。このエリアではダミーパイプ106が好適にはより薄くなっており、それにより考えられるあらゆる問題をさらに軽減するための凹部108が作られる。このように寸法を薄くすることは最小限で行われ、例えば約数ミリメートルである。したがって、可能である絶対最大応力が53ksiプラス16ksiであり、これには合計69ksiの場合の圧力集中係数(図17を参照されたい)が含まれる。これは、参照によるその内容が本明細書に組み込まれる米国特許第9,759,379号で説明されるCoselleパイプと対比され得る。このCoselleパイプは不具合を発生することなく65,000サイクルを成功させるものであり、曲げの初期降伏時に7倍のひずみで可塑化した。このCoselleパイプは、次いで、各サイクルで、楕円効果により、合計約80ksiの応力範囲を受けた。本発明のパイプ40の直線セグメントの場合の各サイクルの応力範囲は50ksi(円周応力)に5ksi(膜応力)を加算したものであり、これは55ksiに等しい。したがって、パイプ40の直線セグメントは3つの標準偏差の試験を満たすことができる。対してCoselleパイプは満たすことができない。
【0067】
次に図18を参照すると、組合せのダミーパイプ補強材が、その剛性および弾性率が非常に高いことにより(パイプの剛性の3倍)、非常に小さい応力しか受けない。1週間に1回のサイクルによる応力範囲は図18の場所Aのところではわずかに約5ksiである。
【0068】
すべてのパイプ40を面一にすることができない場合でも拘束圧力またはジャッキ圧力によりすべてのパイプが均一に押圧されるのを保証することが望ましい。例えば、強制梁36とパイプ40の上部の層との間の空間にコンクリートなどのレベリング材料を充填することができる。パイプを均一に押圧することを保証するための別の手法は、上部の梁36に固定されるパイプ40の間に楔を設置することである。
【0069】
次に図19を参照すると、34個の高さおよび30個の幅のパイプ40を積み重ねた場合の複数のパイプ40の頂部の、超過確率対高さの差のグラフが示されている。製造プロセス中の不正確さを原因とするパイプ頂部の高さの非常にわずかな差では100%の確率に接近する。グラフを参照することで分かるように、最も可能性が高いと考えられる1つのパイプにつき3mmの誤差の場合、パイプ頂部の20mmの高さの差の超過確率が50%となる。可能性が低い保守的な推定と考えられる、パイプが1つのパイプにつき4mmの誤差を有すると判断する場合、パイプ頂部の28mmの高さの差の超過確率が50%となると推定される。結論として、パイプ頂部の約30mmの高さの差を超過する確率は1%のみであると推定される。
【0070】
次に図20を参照すると、右舷貨物倉18内に位置する複数のパイプ40が示されている。強制部材30が複数のパイプ40の上方に配置される。パイプ40の一番上の列の頂部に複数の荷重均一化装置100を見ることができる。一実施形態で、荷重均一化装置100が圧力楔102である。圧力楔102が、強制部材係合側104、第1のパイプ係合側106、および第2のパイプ係合側108を有する。圧力楔102が、好適には、以下のようにしてパイプの寸法に関連付けられる寸法を有する、2つの隣接するパイプの間で押圧する場合に楔102の2つの表面をこれらの隣接するパイプの各々に接触させることになるように、楔102の寸法を決定しなければならない。当業者によって容易に決定される、この要求を満たす寸法範囲が存在する。一実施例で、楔102が、圧力楔102の強制部材係合側104から離れる方向に、パイプの直径の約1/3の距離だけ、延在する。一実施形態では、圧力楔102が約250トンの鋼鉄から構成される。圧力楔102はセルフレベリングであり、左右に自由に移動することができる。圧力楔102が、好適には、鋼鉄から構成され、設計荷重下で変形することができる。
【0071】
図21を参照すると、強制部材係合側104を強制部材30に係合させることになるように配置される圧力楔102が示されている。第1のパイプ係合側106が1つのパイプ40に接触しており、第2のパイプ係合面108が第2のパイプ40に接触している。図21は、パイプ40の各々が同じ高さにあり、その間に圧力楔102が配置されていることを示している。
【0072】
次に図22を参照すると、2つのパイプ40の間に圧力楔102が示されており、ここでは、各々のパイプ40が互いに同じ高さにない。図22から分かるように、右側のパイプ40が左側のパイプ40より約25mm高いところに示されている。したがって、荷重を受けない状態では、つまり、強制部材30のジャッキングの前では、圧力楔102が左側にずれた状態で示されている。
【0073】
次に図23を参照すると、1平方メートル当たり10トン(10トン/メートル)のジャッキ圧力下で強制部材30によって変形させられた圧力楔102が示されている。図23から分かるように、第1のパイプ係合側106および第2のパイプ係合側108がジャッキ圧力によって変形されている。
【0074】
図24から分かるように、図23に示されるように変形したつまり荷重を受けている圧力楔102bに対して、図22に示されるように荷重を受けていない状態における、荷重を受けていない圧力楔102aの構成を比較するための、圧力楔102の拡大図が示されている。図24から分かるように、荷重を受けてない圧力楔102aの強制部材に係合される表面104aと比較して、強制部材30からジャッキ圧力を加えた後の、荷重を受けている圧力楔102bの強制部材に係合される表面104bが下がっている。
【0075】
次に図25を参照すると、荷重均一化装置100の第2の実施形態が示されている。第2の実施形態では、荷重均一化装置100が流動性材料120である。流動性材料120がコンクリートグラウト溶液であってよい。流動性材料120の他の例には、一定の時間の経過後に固化するゲルが含まれる。好適な実施形態では、ストッパ122が隣接するパイプ40の間に配置される。ストッパ122は、隣接するパイプ40の間に流動性材料120が漏洩することを防止するための長手方向アングル部材124であってよい。図25で分かるように、流動性材料120が、隣接するパイプ40の高さの差を補償することにより荷重均一化装置100として機能する。
【0076】
本明細書では個別の実施形態が示されて考察されるが、特定の実施形態の構成要素が本明細書で考察される他の実施形態と組み合わされてもよいことを理解されたい。例えば、本出願人の6つのローラの実施形態で示されて考察される要素が本出願人の4つのローラの実施形態または1つのローラの実施形態にも配備され得る。同様に、本出願人の2ステージの構成要素が、本明細書で考察される、ハブ、ローラの種類、ローラの数、チューブ型または非チューブ型、あるいは他の構成要素の、任意の組合せと共に利用され得る。
【0077】
本明細書では特定の実施形態を説明してきたが、本発明がこの特定の実施形態のみ限定されず、本発明の範囲内で、この特定の実施形態に対して多くの修正および追加が行われ得ることが認識されよう。例えば、以下の従属請求項の範囲の特徴の種々の組合せが、本発明の範囲から逸脱することなく、独立請求項の特徴を用いて行われ得る。
【0078】
したがって、本発明に従って、上に記載した目的、目標、および利点を完全に満たすような、ゴルフコースのバンカーの砂などの、滑らかな粒子状媒体のためのローラ組立体が提供されることは明らかである。実施形態の構成要素が交換可能であることを含めて、本発明の特定の実施形態に関連させて本発明を説明してきたが、上記の説明に照らして当業者には、代替形態、修正形態、および変形形態が明らかとなることは明白である。したがって、添付の特許請求の範囲の精神の範囲内にあるすべての代替形態、修正形態、および変形形態を包含することが意図される。
【0079】
したがって、本発明は、本目的を実行すること、ならびに上で言及した目標および利点さらには本発明に固有の目標および利点を達成することに良好に適する。本開示では本発明の好適な実施形態を説明してきたが、当業者には多くの変更形態および修正形態が明らかとなろう。このような変更形態および修正形態は、特許請求の範囲によって定義される本発明の精神の範囲に包含される。
図1
図2
図3
図4A
図4B
図4C
図5a
図5b
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
【国際調査報告】