(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-03-09
(54)【発明の名称】ヘッドマウントディスプレイ用の無線データ伝送システム
(51)【国際特許分類】
H04B 7/06 20060101AFI20220302BHJP
H04B 7/0413 20170101ALI20220302BHJP
H01Q 3/26 20060101ALI20220302BHJP
H01Q 21/06 20060101ALI20220302BHJP
G01S 11/12 20060101ALI20220302BHJP
【FI】
H04B7/06 956
H04B7/0413
H01Q3/26 Z
H01Q21/06
G01S11/12
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021537872
(86)(22)【出願日】2020-01-23
(85)【翻訳文提出日】2021-07-12
(86)【国際出願番号】 US2020014753
(87)【国際公開番号】W WO2020154480
(87)【国際公開日】2020-07-30
(32)【優先日】2019-01-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】517160525
【氏名又は名称】バルブ コーポレーション
(74)【代理人】
【識別番号】110000877
【氏名又は名称】龍華国際特許業務法人
(72)【発明者】
【氏名】エラーン、ステイシー ジェーン
(72)【発明者】
【氏名】ヴァンウィク、エリック ジュドソン
(72)【発明者】
【氏名】グッドソン、モンゴメリー ヴィンセント
【テーマコード(参考)】
5J021
【Fターム(参考)】
5J021AA09
5J021DB02
5J021DB03
5J021EA04
5J021HA05
(57)【要約】
仮想現実アプリケーション、拡張現実アプリケーション、又はビデオアプリケーションなどの様々なアプリケーションに、低遅延且つ高帯域幅の無線データ伝送を提供するシステム及び方法である。フェーズドアレイアンテナなどの、そのビームを制御入力に基づいて選択的に操縦するように動作可能な電気操縦可能型アンテナを含む無線データ伝送システムが提供される。無線データ伝送システムは、携帯型無線デバイス(例えば、ヘッドマウントディスプレイ(HMD)、タブレットコンピュータ、スマートフォン)がトラッキング対象体積内を動き回ると、携帯型無線デバイスをトラッキングするように動作可能なトラッキングサブシステムを含む。無線データ伝送システムは、トラッキングサブシステムからデータ(例えば、ビデオデータ)を受信する携帯型無線デバイスの既知の位置、向き、又は動きを利用し、トラッキングサブシステムから受信するトラッキングデータに少なくとも部分的に基づいて、操縦可能型アンテナのビームフォーミングパターンを選択的に調整することにより、携帯型無線デバイスの動きを補償する。
【特許請求の範囲】
【請求項1】
携帯型無線デバイスがトラッキング対象体積内を移動すると、動作に際して前記携帯型無線デバイスの物理的位置を示すトラッキングデータを生成するトラッキングサブシステムと、
複数のビームフォーミングパターンを提供するように選択的に構成可能なアンテナアレイと、
前記アンテナアレイに動作可能に結合された無線周波数送信機(RF送信機)であって、動作に際して前記RF送信機は前記アンテナアレイを介して前記携帯型無線デバイスにデータを無線で送信する、RF送信機と、
前記トラッキングサブシステム及び前記アンテナアレイに動作可能に結合されたビームフォーミングコントローラであって、動作に際して前記ビームフォーミングコントローラは、
生成された前記トラッキングデータを前記トラッキングサブシステムから受信し、
前記トラッキングサブシステムから受信した前記トラッキングデータに少なくとも部分的に基づいて、前記アンテナアレイのビームフォーミングパターンを動的に調整する
ビームフォーミングコントローラと
を備える無線データ伝送システム。
【請求項2】
前記アンテナアレイは、複数のアンテナサブエレメントを含む平面フェーズドアレイアンテナを有する、請求項1に記載の無線データ伝送システム。
【請求項3】
前記アンテナアレイの前記ビームフォーミングパターンを動的に調整するために、前記ビームフォーミングコントローラは、前記複数のアンテナサブエレメントのそれぞれのビームフォーミング重みを動的に調整して、前記複数のアンテナサブエレメントのそれぞれの位相シフト又は振幅のうちの少なくとも一方を修正する、請求項2に記載の無線データ伝送システム。
【請求項4】
前記ビームフォーミングコントローラは、前記トラッキングサブシステムから受信した前記トラッキングデータに基づいて、前記複数のアンテナサブエレメントのそれぞれの前記ビームフォーミング重みの値を直接的に計算する、請求項3に記載の無線データ伝送システム。
【請求項5】
前記ビームフォーミングコントローラは、前記トラッキングサブシステムから受信した前記トラッキングデータに基づいて、前記複数のアンテナサブエレメントのそれぞれの前記ビームフォーミング重みの値をメモリから取得する、請求項3に記載の無線データ伝送システム。
【請求項6】
前記RF送信機は30GHz~300GHzの間の1つ又は複数の周波数帯域で動作する、請求項1から5のいずれか一項に記載の無線データ伝送システム。
【請求項7】
前記RF送信機は60GHzの周波数帯域で動作する、請求項1から6のいずれか一項に記載の無線データ伝送システム。
【請求項8】
前記トラッキングサブシステムにより生成されるトラッキングデータはさらに、前記トラッキング対象体積内での前記携帯型無線デバイスの向きを示す方位データを含む、請求項1から7のいずれか一項に記載の無線データ伝送システム。
【請求項9】
前記トラッキングサブシステムは、トラッキングされる前記携帯型無線デバイス以外の、前記トラッキング対象体積内にある少なくとも1つの対象物の物理的位置を示すトラッキングデータを生成する、請求項1から8のいずれか一項に記載の無線データ伝送システム。
【請求項10】
前記ビームフォーミングコントローラは、他の前記少なくとも1つの対象物の前記物理的位置を示す前記トラッキングデータに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する、請求項9に記載の無線データ伝送システム。
【請求項11】
他の前記少なくとも1つの対象物は、ハンドヘルドコントローラ、人体の一部、静止した物体、又は前記トラッキング対象体積の物理的境界のうちの少なくとも1つを含む、請求項9又は10に記載の無線データ伝送システム。
【請求項12】
前記トラッキングデータは、前記携帯型無線デバイスの今後の物理的位置を示す予測データを含む、請求項1から11のいずれか一項に記載の無線データ伝送システム。
【請求項13】
前記ビームフォーミングコントローラは、前記携帯型無線デバイスの前記今後の物理的位置を示す前記予測データに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する、請求項12に記載の無線データ伝送システム。
【請求項14】
前記ビームフォーミングコントローラは、
前記無線データ伝送システムと前記携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信し、
受信した前記品質データに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する、請求項1から13のいずれか一項に記載の無線データ伝送システム。
【請求項15】
前記ビームフォーミングコントローラは、
前記無線データ伝送システムと前記携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信し、
前記品質データ及び対応するトラッキングデータを格納し、
格納した前記品質データ及び前記対応するトラッキングデータを分析し、
分析した前記品質データ及び前記対応するトラッキングデータに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する、請求項1から14のいずれか一項に記載の無線データ伝送システム。
【請求項16】
前記RF送信機は、前記アンテナアレイを介して前記携帯型無線デバイスにビデオデータを無線で送信する、請求項1から15のいずれか一項に記載の無線データ伝送システム。
【請求項17】
前記RF送信機は第1のRF送信機であり、前記無線データ伝送システムはさらに、動作に際して前記第1のRF送信機とは異なるRF帯域を用いて非ビデオデータを送信する第2のRF送信機を備える、請求項16に記載の無線データ伝送システム。
【請求項18】
前記トラッキングサブシステムは、ビデオトラッキング、自己位置推定及び地図作成の同時実行(SLAM)トラッキング、音響トラッキング、慣性トラッキング、磁気式トラッキング、又は光学式トラッキングのうちの少なくとも1つを実装する、請求項1から17のいずれか一項に記載の無線データ伝送システム。
【請求項19】
前記ビームフォーミングコントローラは、過去のトラッキングデータ及び過去の品質データに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する、請求項1から18のいずれか一項に記載の無線データ伝送システム。
【請求項20】
前記ビームフォーミングコントローラは、
前記無線データ伝送システムと前記携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信し、
受信した前記品質データを品質限界値と比較し、
前記品質データが前記品質限界値に満たないという判定に応答して、前記トラッキングデータ以外の他の基準に基づき、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する、請求項1から19のいずれか一項に記載の無線データ伝送システム。
【請求項21】
前記他の基準は、前記無線接続の前記品質を示す受信した前記品質データを含む、請求項20に記載の無線データ伝送システム。
【請求項22】
前記携帯型無線デバイスは、ヘッドマウントディスプレイ(HMD)、タブレットコンピュータ、スマートフォン、又はウェアラブルコンピュータを含む、請求項1から21のいずれか一項に記載の無線データ伝送システム。
【請求項23】
前記ビームフォーミングコントローラは、動作に際して、位置依存性を有する予め導出されたチャネル状態情報を受信し、受信した前記チャネル状態情報に少なくとも部分的に基づいて、係数、重み、又はストリームエンコーディングのうちの1つ又は複数を選択する複数入力複数出力(MIMO)コントローラを有する、請求項1から22のいずれか一項に記載の無線データ伝送システム。
【請求項24】
無線データ伝送システムを動作させる方法であって、前記方法は、
トラッキング対象体積内での携帯型無線デバイスの物理的位置を示すトラッキングデータを生成する段階と、
生成した前記トラッキングデータをトラッキングサブシステムから受信する段階と、
前記トラッキングデータに基づいて、アンテナアレイのビームフォーミングパターンを動的に調整する段階と、
前記携帯型無線デバイスが前記トラッキング対象体積内を移動している間に、前記アンテナアレイを介してビデオデータを無線伝送する段階と
を備える方法。
【請求項25】
前記アンテナアレイのビームフォーミングパターンを動的に調整する段階は、前記アンテナアレイの複数のアンテナサブエレメントのそれぞれのビームフォーミング重みを動的に調整して、前記複数のアンテナサブエレメントのそれぞれの位相シフト又は振幅のうちの少なくとも一方を修正する段階を有する、請求項24に記載の方法。
【請求項26】
トラッキングデータを生成する段階は、前記トラッキング対象体積内での前記携帯型無線デバイスの向きを示す方位データを生成する段階を有する、請求項24又は25に記載の方法。
【請求項27】
前記無線データ伝送システムと前記携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信する段階と、
受信した前記品質データに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する段階と
をさらに備える、請求項24から26のいずれか一項に記載の方法。
【請求項28】
前記無線データ伝送システムと前記携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信する段階と、
前記品質データ及び対応するトラッキングデータを格納する段階と、
格納した前記品質データ及び前記対応するトラッキングデータを分析する段階と、
分析した前記品質データ及び前記対応するトラッキングデータに少なくとも部分的に基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する段階と
をさらに備える、請求項24から27のいずれか一項に記載の方法。
【請求項29】
前記ビデオデータの送信に用いられるRF帯域とは異なるRF帯域を用いて、前記携帯型無線デバイスに非ビデオデータを送信する段階をさらに備える、請求項24から28のいずれか一項に記載の方法。
【請求項30】
トラッキングデータを生成する段階は、ビデオトラッキング、自己位置推定及び地図作成の同時実行(SLAM)トラッキング、音響トラッキング、慣性トラッキング、磁気式トラッキング、又は光学式トラッキングのうちの少なくとも1つを実装する段階を有する、請求項24から29のいずれか一項に記載の方法。
【請求項31】
前記無線データ伝送システムと前記携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信する段階と、
受信した前記品質データを品質限界値と比較する段階と、
前記品質データが前記品質限界値に満たないという判定に応答して、受信した前記トラッキングデータの代わりに、受信した前記品質データに基づいて、前記アンテナアレイの前記ビームフォーミングパターンを動的に調整する段階と
をさらに備える、請求項24から30のいずれか一項に記載の方法。
【請求項32】
無線データ伝送システムを動作させる方法であって、前記方法は、
操縦可能型フェーズドアレイアンテナを介して、トラッキング対象体積内に存在する携帯型無線デバイスにビデオデータを無線伝送する段階と、
ビデオデータの前記無線伝送時に、前記携帯型無線デバイスの物理的位置を繰り返しトラッキングする段階と、
前記操縦可能型フェーズドアレイアンテナのビームフォーミングパターンを動的に調整して、前記トラッキング対象体積内の前記携帯型無線デバイスの動きをトラッキングする段階と
を備える方法。
【請求項33】
ビームフォーミングパターンを動的に調整する段階は、前記操縦可能型フェーズドアレイアンテナのビームフォーミング重みを動的に調整する段階を有する、請求項32に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は概して、無線データ伝送システム及び方法に関する。
【背景技術】
【0002】
1つの現世代の仮想現実(「VR」)体験がヘッドマウントディスプレイ(「HMD」)を用いて生み出されている。HMDは、据え置き型コンピュータ(パーソナルコンピュータ(「PC」)、ラップトップ、ゲームコンソールなど)にテザリングされてもよく、スマートフォン及び/若しくはその関連ディスプレイと組み合わされても且つ/又は一体化されてもよく、あるいは自己完結型であってもよい。一般に、HMDは表示デバイスであり、ユーザの頭に着用され、単眼(単眼鏡型HMD)又は両眼(双眼鏡型HMD)の前方に小型表示デバイスを有する。表示ユニットは通常、小型化されており、例えば、CRT、LCD、液晶オンシリコン(LCOS)、又はOLEDの技術を含んでよい。双眼鏡型HMDは、異なる画像をそれぞれの眼に表示できる可能性がある。この機能は、立体画像を表示するのに用いられる。
【0003】
VRシステムは、高品質のVR体験を提供するために、大量のビデオデータを必要とする。さらに、ビデオデータは低遅延(例えば、20ms未満)で提供されなければならない。これは、ユーザの頭の動きとシーン表示内での対応する変化との間の時間差に起因した、目が回って不快な気分をユーザが感じるのを防ぐためである。この要件は、「Motion to Photon」又はMTPと呼ばれている。したがって、好適な性能を提供するのに必要なデータ量は非常に多くなり得る(例えば、1Gb/s、3Gb/s、又はそれ以上)。IEEE 802.11acなどの現在の無線システムでは、特に、ユーザがHMDを着用して移動する際に、又は他のデバイスの存在が干渉の原因になり得る場合に、高いスループットレベルを維持するのに苦労する。したがって、必要なスループットを実現するために、ほとんどのVRシステムが現在では、ユーザが着用する携帯型HMDと、HMDによる表示のためにビデオデータを送信する据え置き型コンピュータとの間で有線テザーを利用している。
【発明の概要】
【0004】
無線データ伝送システムが、携帯型無線デバイスがトラッキング対象体積内を移動すると、動作に際して携帯型無線デバイスの物理的位置を示すトラッキングデータを生成するトラッキングサブシステムと、複数のビームフォーミングパターンを提供するように選択的に構成可能なアンテナアレイと、アンテナアレイに動作可能に結合された無線周波数(RF)送信機であって、動作に際してRF送信機はアンテナアレイを介して携帯型無線デバイスにデータを無線で送信する、RF送信機と、トラッキングサブシステム及びアンテナアレイに動作可能に結合されたビームフォーミングコントローラであって、動作に際してビームフォーミングコントローラは、生成されたトラッキングデータをトラッキングサブシステムから受信し、トラッキングサブシステムから受信したトラッキングデータに少なくとも部分的に基づいてアンテナアレイのビームフォーミングパターンを動的に調整する、ビームフォーミングコントローラとを含んでいると要約されてよい。
【0005】
アンテナアレイは、複数のアンテナサブエレメントを有する平面フェーズドアレイアンテナを含んでよい。アンテナアレイのビームフォーミングパターンを動的に調整するために、ビームフォーミングコントローラは、複数のアンテナサブエレメントのそれぞれのビームフォーミング重みを動的に調整して、複数のアンテナサブエレメントのそれぞれの位相シフト又は振幅のうちの少なくとも一方を修正してよい。ビームフォーミングコントローラは、トラッキングサブシステムから受信したトラッキングデータに基づいて、複数のアンテナサブエレメントのそれぞれのビームフォーミング重みの値を直接的に計算してよい。ビームフォーミングコントローラは、トラッキングサブシステムから受信したトラッキングデータに基づいて、複数のアンテナサブエレメントのそれぞれのビームフォーミング重みの値をメモリから取得してよい。RF送信機は、30GHz~300GHzの間の1つ又は複数の周波数帯域で動作してよい。RF送信機は、60GHzの周波数帯域で動作してよい。
【0006】
トラッキングサブシステムにより生成されるトラッキングデータはさらに、トラッキング対象体積内での携帯型無線デバイスの向きを示す方位データを含んでよい。トラッキングサブシステムは、トラッキングされる携帯型無線デバイス以外の、トラッキング対象体積内にある少なくとも1つの対象物の物理的位置を示すトラッキングデータを生成してよい。ビームフォーミングコントローラは、他の少なくとも1つの対象物の物理的位置を示すトラッキングデータに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整してよい。他の少なくとも1つの対象物は、ハンドヘルドコントローラ、人体の一部、静止した物体、又はトラッキング対象体積の物理的境界のうちの少なくとも1つを含んでよい。トラッキングデータは、携帯型無線デバイスの今後の物理的位置を示す予測データを含んでよい。ビームフォーミングコントローラは、携帯型無線デバイスの今後の物理的位置を示す予測データに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整してよい。ビームコントローラは、無線データ伝送システムと携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信し、受信した品質データに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整してよい。ビームコントローラは、無線データ伝送システムと携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信し、品質データ及び対応するトラッキングデータを格納し、格納した品質データ及び対応するトラッキングデータを分析し、分析した品質データ及び対応するトラッキングデータに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整してよい。RF送信機は、アンテナアレイを介して携帯型無線デバイスにビデオデータを無線で送信してよい。
【0007】
RF送信機は第1のRF送信機であり、無線データ伝送システムはさらに、動作に際して第1のRF送信機とは異なるRF帯域を用いて非ビデオデータを送信する第2のRF送信機を含んでよい。トラッキングサブシステムは、ビデオトラッキング、自己位置推定及び地図作成の同時実行(SLAM)トラッキング、音響トラッキング、慣性トラッキング、磁気式トラッキング、又は光学式トラッキングのうちの少なくとも1つを実装してよい。ビームコントローラは、過去のトラッキングデータ及び過去の品質データに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整してよい。ビームコントローラは、無線データ伝送システムと携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信し、受信した品質データを品質限界値と比較してよく、品質データが品質限界値に満たないという判定に応答して、トラッキングデータ以外の基準に基づき、アンテナアレイのビームフォーミングパターンを動的に調整してよい。他の基準は、無線接続の品質を示す受信した品質データを含んでよい。携帯型無線デバイスは、ヘッドマウントディスプレイ(HMD)、タブレットコンピュータ、スマートフォン、又はウェアラブルコンピュータを含んでよい。ビームフォーミングコントローラは、動作に際して、位置依存性を有する予め導出されたチャネル状態情報を受信し、受信したチャネル状態情報に少なくとも部分的に基づいて、係数、重み、ストリームエンコーディングのうちの1つ又は複数を選択する複数入力複数出力(MIMO)コントローラを含んでよい。
【0008】
無線データ伝送システムを動作させる方法が、トラッキング対象体積内での携帯型無線デバイスの物理的位置を示すトラッキングデータを生成する段階と、生成したトラッキングデータをトラッキングサブシステムから受信する段階と、トラッキングデータに基づいてアンテナアレイのビームフォーミングパターンを動的に調整する段階と、携帯型無線デバイスがトラッキング対象体積内を移動している間に、アンテナアレイを介してビデオデータを無線伝送する段階とを含んでいると要約されてよい。アンテナアレイのビームフォーミングパターンを動的に調整する段階は、アンテナアレイの複数のアンテナサブエレメントのそれぞれのビームフォーミング重みを動的に調整して、複数のアンテナサブエレメントのそれぞれの位相シフト又は振幅のうちの少なくとも一方を修正する段階を含んでよい。トラッキングデータを生成する段階は、トラッキング対象体積内での携帯型無線デバイスの向きを示す方位データを生成する段階を含んでよい。
【0009】
本方法はさらに、無線データ伝送システムと携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信する段階と、受信した品質データに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整する段階とを含んでよい。
【0010】
本方法はさらに、無線データ伝送システムと携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信する段階と、品質データ及び対応するトラッキングデータを格納する段階と、格納した品質データ及び対応するトラッキングデータを分析する段階と、分析した品質データ及び対応するトラッキングデータに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整する段階とを含んでよい。
【0011】
本方法はさらに、ビデオデータの送信に用いられるRF帯域とは異なるRF帯域を用いて、携帯型無線デバイスに非ビデオデータを送信する段階を含んでよい。トラッキングデータを生成する段階は、ビデオトラッキング、自己位置推定及び地図作成の同時実行(SLAM)トラッキング、音響トラッキング、慣性トラッキング、磁気式トラッキング、又は光学式トラッキングのうちの少なくとも1つを実装する段階を含んでよい。
【0012】
本方法はさらに、無線データ伝送システムと携帯型無線デバイスとの間の無線接続の品質を示す品質データを受信する段階と、受信した品質データを品質限界値と比較する段階と、品質データが品質限界値に満たないという判定に応答して、受信したトラッキングデータの代わりに、受信した品質データに基づいて、アンテナアレイのビームフォーミングパターンを動的に調整する段階とを含んでよい。
【0013】
無線データ伝送システムを動作させる方法が、操縦可能型フェーズドアレイアンテナを介して、トラッキング対象体積内に存在する携帯型無線デバイスにビデオデータを無線伝送する段階と、ビデオデータの無線伝送時に、携帯型無線デバイスの物理的位置を繰り返しトラッキングする段階と、操縦可能型フェーズドアレイアンテナのビームフォーミングパターンを動的に調整して、トラッキング対象体積内での携帯型無線デバイスの動きをトラッキングする段階とを含んでいると要約されてよい。ビームフォーミングパターンを動的に調整する段階は、操縦可能型フェーズドアレイアンテナのビームフォーミング重みを動的に調整する段階を含んでよい。
【図面の簡単な説明】
【0014】
本図面では、全く同じ参照番号によって、同様のエレメント又は動作が識別されている。図面内のエレメントのサイズ及び相対位置は、必ずしも正確な縮尺率で描かれていない。例えば、様々なエレメントの形状及び角度は必ずしも正確な縮尺率で描かれていない。また、これらのエレメントの一部は、図面の読みやすさを向上させるために、任意に拡大され、配置されていることがある。さらに、描かれているエレメントの特定の形状は、特定のエレメントの実際の形状に関する任意の情報を伝えることを必ずしも意図しているわけではなく、図面を認識しやすくするために選択されているだけであってよい。
【0015】
【
図1】本開示で説明される少なくともいくつかの技法を実行するのに好適な1つ又は複数のシステムを含むネットワーク環境の概略図である。
【0016】
【
図2】説明される技法のうちの少なくとも一部が、ローカルのビデオレンダリングコンピューティングシステムに無線で結合され且つ仮想現実による表示をユーザに提供することになる例示的なヘッドマウントディスプレイデバイスと共に用いられる、例示的な環境を示す絵図である。
【0017】
【
図3】HMDデバイスなどの、限定されない1つの例示した実装形態による携帯型無線デバイスと無線で通信するために、操縦可能型フェーズドアレイアンテナシステムが用いられる無線データ伝送システムの一実施形態に関する概略図である。
【0018】
【
図4A】限定されない1つの例示した実装形態による、4個のアンテナサブエレメントを含む例示的な平面フェーズドアレイアンテナを示している。
【0019】
【
図4B】限定されない1つの例示した実装形態による、4個のサブエレメントが2列に配置された8個のアンテナサブエレメントを含む例示的な平面フェーズドアレイアンテナを示している。
【0020】
【
図5】限定されない1つの例示した実装形態による、データを携帯型無線デバイスに提供する無線データ伝送システムを動作させる方法のフロー図である。
【発明を実施するための形態】
【0021】
以下の説明では、開示される様々な実装形態の十分な理解を提供するために、特定の具体的な詳細が記載されている。しかしながら、当業者であれば、これらの具体的な詳細のうちの1つ又は複数がなくても、又は他の方法、コンポーネント、材料などを用いても、実装形態が実施され得ることを認識するであろう。他の例では、実装形態の説明を不必要にあいまいにしないように、コンピュータシステム、サーバコンピュータ、及び/又は通信ネットワークと関連したよく知られている構造が、詳細に示されていない又は説明されていない。
【0022】
文脈上他の意味に解すべき場合を除き、本明細書及び続く特許請求の範囲の全体を通して、「comprising(含む)」という単語は「including(含む)」と同義であり、包括的又は非限定的である(すなわち、記載されていない別のエレメント又は方法の動作を排除しない)。
【0023】
本明細書全体を通して、「1つの実装形態」又は「一実装形態」への言及は、その実装形態に関連して説明される特定の特徴、構造、又は特性が少なくとも1つの実装形態に含まれていることを意味している。したがって、本明細書の全体を通して様々な箇所に「1つの実装形態において」又は「一実装形態において」という語句が出現しても、必ずしも全てが同じ実装形態を指しているわけではない。さらに、この特定の特徴、構造、又は特性は、任意の好適な方式で1つ又は複数の実装形態に組み合わされてもよい。
【0024】
本明細書及び添付した特許請求の範囲で用いられる場合、単数形の「a」、「an」、及び「the」は、文脈上明確に他の意味に解すべき場合を除き、複数形の指示対象を含む。「又は」という用語は概して、文脈上明確に他の意味に解すべき場合を除き、「及び/又は」を含む意味で使用されていることにも留意されたい。
【0025】
本明細書において提供される見出し及び要約書は便宜のために提供されているだけであり、実装形態の範囲又は意味を説明するものではない。
【0026】
本開示の1つ又は複数の実装形態は、仮想現実アプリケーション、拡張現実アプリケーション、又はビデオアプリケーションなどの様々なアプリケーションに、低遅延且つ高帯域幅の無線データ伝送を提供するシステム及び方法に関する。少なくともいくつかの実装形態では、フェーズドアレイアンテナなどの、そのビームを電子制御入力に基づいて選択的に操縦するように動作可能な電気操縦可能型アンテナを含む無線データ伝送システムが提供される。無線データ伝送システムは、携帯型無線デバイス(例えば、HMD、タブレットコンピュータ、スマートフォン)がトラッキング対象体積内を動き回ると、携帯型無線デバイスをトラッキングするように動作可能なトラッキングサブシステムを含んでよい。有利なことに、この無線データ伝送システムは、トラッキングサブシステムからデータ(例えば、ビデオデータ)を受信する携帯型無線デバイスの既知の現在の位置又は予測される今後の位置、及び/又は向きを利用し、トラッキングサブシステムから受信するトラッキングデータに少なくとも部分的に基づいて、操縦可能型アンテナのビームフォーミングパターンを選択的に調整することにより、携帯型無線デバイスの動きを補償する。
【0027】
とりわけ、この特徴により、バッファリングの量を減らすことができ、これによって遅延が減少する。遅延は、MTPが重要な業界測定基準となるVRアプリケーションなどの一部のアプリケーションでは決定的なパラメータである。さらに、少なくともいくつかの実装形態では、1つ又は複数のハンドヘルドコントローラなどの他の対象物からのトラッキングデータも用いて、ユーザの手が携帯型無線デバイスの受信機アンテナをさえぎるかもしれない方向にいつ移動しているかを検出してよい。ユーザの手による部分的な妨害でさえも、例えば、バッファリング、インターリービング、又は順方向誤り訂正に大きく頼らなければ、著しいデータ損失を引き起こす可能性があることが分かっている。
【0028】
図1は、ローカルメディアレンダリング(LMR)システム102(例えば、ゲーミングシステム、デスクトップ型コンピューティングシステム、ラップトップコンピュータ)を含むネットワーク環境100の概略図である。LMRシステム102は、本明細書で説明する少なくとも一部の技法を実行するのに好適なローカルコンピューティングシステム104及び携帯型表示デバイス106(例えば、2つの表示パネルを有するHMD、タブレットコンピュータ、ラップトップコンピュータ、スマートフォン)を含む。
図1に示す実施形態において、ローカルコンピューティングシステム104は、以下でさらに説明するように、無線伝送リンク108を介して携帯型表示デバイス106に通信可能に接続される。少なくともいくつかの実施形態において、ローカルコンピューティングシステム104は、有線リンク又は無線リンクを介して、TV、コンソール、又はモニタなどのパネル表示デバイス(不図示)に表示するための画像データを提供してよい。様々な実施形態において、ローカルコンピューティングシステム104は、限定されない例として、汎用コンピューティングシステム、ゲーミングコンソール、ビデオストリーム処理デバイス、携帯型コンピューティングデバイス(例えば、携帯電話、PDA、又は他の携帯型デバイス)、VR処理デバイス又はAR処理デバイス、あるいは他のコンピューティングシステムを含んでよい。
【0029】
示されている実施形態において、ローカルコンピューティングシステム104は、1つ又は複数の汎用ハードウェアプロセッサ(例えば、中央処理ユニット、すなわち「CPU」)110、プロセッサ可読メモリ又はストレージ112、様々なI/O(「入力/出力」)ハードウェアコンポーネント114(例えば、キーボード、マウス、1つ又は複数のゲーミングコントローラ、スピーカ、マイク、IR送信機及び/又は受信機、カメラ、バイオフィードバックセンサなど)、1つ又は複数の専用ハードウェアプロセッサ(例えば、グラフィックス処理ユニット、すなわち「GPU」)118とビデオメモリ(VRAM)120とを含むビデオサブシステム116、コンピュータ可読ストレージ150、及び1つ又は複数の有線若しくは無線ネットワーク接続122を含むコンポーネントを有する。少なくともいくつかの実装形態において、ローカルコンピューティングシステム104は、統合メモリアーキテクチャを実装してよく、ここでは、1つ又は複数のCPUと1つ又は複数のGPUとの間で、管理メモリのプールが共有される。
【0030】
ローカルコンピューティングシステム104は、示されている実施形態において、1つ又は複数のリンク138を介して、表示のためにローカルコンピューティングシステム104にコンテンツをさらに提供し得る例示的なネットワークアクセス可能メディアコンテンツプロバイダ140にも、1つ又は複数のコンピュータネットワーク134及びネットワークリンク136を介して通信可能に接続されてよい。メディアコンテンツプロバイダ140は、それぞれローカルコンピューティングシステム104と同様のコンポーネント(1つ又は複数のハードウェアプロセッサ、I/Oコンポーネント、ローカルストレージデバイス及びメモリを含む)を有し得る1つ又は複数のコンピューティングシステム(不図示)を含んでよいが、いくつかの詳細は、説明を簡単にするために、メディアコンテンツサーバコンピューティングシステムには示されていない。
【0031】
ローカルコンピューティングシステム104及び携帯型無線デバイス106は単なる一例にすぎず、本開示の範囲を限定する意図はないことも理解されるであろう。コンピューティングシステムは、代わりに、相互に作用する複数のコンピューティングシステム又はデバイスを含んでもよく、インターネットなどの1つ又は複数のネットワーク、ウェブ、又はプライベートネットワーク(例えば、移動体通信ネットワークなど)を介するなどして、示されていない他のデバイスに接続されてもよい。より一般的には、コンピューティングシステム又は他のコンピューティングノードが、相互に作用し且つ説明した種類の機能を実行し得るハードウェア又はソフトウェアの任意の組み合わせを含んでよい。そのような組み合わせには、限定されることはないが、デスクトップ又は他のコンピュータ、ゲームシステム、データベースサーバ、ネットワークストレージデバイス及び他のネットワークデバイス、PDA、携帯電話、ワイヤレス電話、ページャ、電子手帳、インターネット家電、(例えば、セットトップボックス及び/又はパーソナル/デジタルビデオレコーダを用いる)テレビベースのシステム、及び適切な通信機能を含む様々な他の消費者向け製品が含まれる。
【0032】
携帯型無線デバイス106は同様に、様々な種類及び形式の1つ又は複数の表示パネルを有する1つ又は複数のデバイスを含んでよく、必要に応じて、様々な他のハードウェア及び/又はソフトウェアコンポーネントを含んでよい。例えば、例示した実装形態において、携帯型無線デバイス106は、コントローラ144(例えば、1つ又は複数のマイクロコントローラ、プロセッサ)、1つ又は複数のディスプレイ146、ローカルコンピューティングシステム104にトラッキングデータを提供するのに用いられ得る且つ以下でさらに説明されるデータ取得サブシステム148、並びにローカルコンピューティングシステム104又は他のデバイス(例えば、1つ又は複数のゲームコントローラ)との無線通信を容易にするのに用いられ得る無線通信サブシステム150及び関連するアンテナ152を含んでいるものとして示されている。
【0033】
様々な項目が、使用中にメモリ又はストレージに格納されているものとして示されているが、これらの項目又はその一部は、メモリの管理及びデータの整合性を目的として、メモリと他のストレージデバイスとの間で転送されてよいことも理解されるであろう。したがって、いくつかの実施形態では、説明された技法の一部又は全部が、1つ又は複数のソフトウェアプログラム及び/又はデータ構造によって(例えば、1つ又は複数のソフトウェアプログラムのソフトウェア命令を実行することによって、且つ/又はそのようなソフトウェア命令及び/又はデータ構造を格納することによって)構成される場合などに、1つ又は複数のプロセッサ又は他の構成済みハードウェア回路及び/又はメモリ及び/又はストレージを含むハードウェア手段によって実行されてよい。コンポーネント、システム、及びデータ構造の一部又は全部が、非一時的なコンピュータ可読記憶媒体に(例えば、ソフトウェア命令又は構造化データとして)格納されてもよく、そのような非一時的なコンピュータ可読記憶媒体には、ハードディスク若しくはフラッシュドライブ又は他の不揮発性ストレージデバイス、揮発性メモリ若しくは不揮発性メモリ(例えば、RAM)、ネットワークストレージデバイス、又は適切なドライブによって若しくは適切な接続を介して読み出される移動可能なメディア製品(例えば、DVDディスク、CDディスク、光ディスクなど)などがある。システム、コンポーネント、及びデータ構造は、いくつかの実施形態において、生成されたデータ信号として(例えば、搬送波又は他のアナログ伝搬信号若しくはデジタル伝搬信号の一部として)、無線ベース及び有線/ケーブルベースの媒体を含む様々なコンピュータ可読伝送媒体で伝送されてもよく、また(例えば、単一若しくは多重化されたアナログ信号の一部として、又は複数の別個のデジタルパケット若しくはフレームとして)様々な形態をとってよい。そのようなコンピュータプログラム製品は、他の実施形態において、他の形態をとってもよい。したがって、本発明は、他のコンピュータシステム構成で実施されてもよい。
【0034】
ローカルコンピューティングシステム104は、(例えば、VRビデオゲームをプレイ中に)携帯型無線デバイス106がトラッキング対象体積内を動き回ると、携帯型無線デバイス106の予測される今後の位置、向き、及び/又は動きの傾向をトラッキングするように動作可能なトラッキングサブシステム132も含んでよい。以下でさらに説明されるように、トラッキングサブシステム132は、無線伝送リンク108を介してデータ取得サブシステム148からデータを受信してよい。少なくともいくつかの実装形態において、トラッキングサブシステム132又はデータ取得サブシステム148は、トラッキング対象体積内に又はトラッキング対象体積に近接して固定して配置される1つ又は複数のトラッキング基地局142を利用してよく、このトラッキング基地局によって、トラッキング対象体積内での携帯型無線デバイス106のトラッキングが容易になる。トラッキングサブシステム132の実装形態に関する限定されない様々な例が、以下で説明される。
【0035】
ローカルコンピューティングシステム104は、複数のアンテナサブエレメント128を含む電子操縦可能型アンテナアレイモジュール126(「アンテナアレイ」)に動作可能に結合されている無線周波数(RF)送受信機124も含んでよい。ローカルコンピューティングシステム104は、アンテナアレイ126のビームフォーミングパターンを動的に選択的に調整するように動作可能なビームフォーミングコントローラ130も含む。少なくともいくつかの実装形態において、ビームフォーミングコントローラ130は、ビームフォーミング重み又は係数131を動的に調整し、複数のアンテナサブエレメントのそれぞれの位相シフト及び振幅のうちの少なくとも一方を選択的に修正し、建設的/相殺的干渉を提供して、アンテナアレイ126のビームフォーミングパターンを所望の方向に効果的に操縦又は調整する。以下でさらに説明されるように、ビームフォーミングコントローラ130は、トラッキングサブシステム132からトラッキングデータ133を受信し、このトラッキングデータを利用して、アンテナアレイ126のビームフォーミングパターンに携帯型無線デバイス106をトラッキングさせることにより、トラッキング対象体積内での携帯型無線デバイス106の動きを補償する。これにより、必要なバッファリング量が減少することになるので、遅延を減らすことができる。
【0036】
RF送受信機124(又はRF送信機)、ビームフォーミングコントローラ130、及びアンテナアレイモジュール126は、本明細書で説明される機能を実現するために、任意の種類又は組み合わせのコンポーネントを有してよい。一般に、これらのコンポーネントは、フェーズドアンテナアレイ又は「電子走査アレイ」を含み、これは複数のアンテナサブエレメントによる平面型アレイであっても非平面型アレイであってもよく、ここでは、アンテナを物理的に動かさずにビームを電子的に操縦して、アレイの前方の広角度にわたってビームが任意の方向を指し示すようにすることができる。動作に際して、送信機124からの電流がアンテナアレイモジュール126の位相シフタを通じて各コンポーネントアンテナに供給される。位相シフタは、コントローラ(例えば、ビームフォーミングコントローラ130)が複数のサブエレメントのそれぞれに対する個々のビームフォーミング重み又は係数を変えることによって制御される。供給電流の相対的な位相及び振幅を変えることで、ビームを即座に異なる方向に向けることができる。複数のアンテナサブエレメントは、位相シフタを通じて単一の送信機又は受信機から給電されてもよく、それぞれのアンテナサブエレメントが、ビームフォーミングコントローラ130により制御される独自の送信機モジュール及び/又は受信機モジュールを有してもよい。
【0037】
少なくともいくつかの実装形態において、RF送受信機124(又はRF送信機)は、ミリ波帯域(すなわち、30GHz~300GHz)で、例えば60GHz(例えば、IEEE 802.11ad)で動作する。ミリ波帯域は、送信ビームフォーミング及び/又は受信ビームフォーミングを利用して、マルチギガビットの速度での交信距離を広げるのに有利である。そのようなミリメートル波長では、搬送周波数に比例する伝搬路損失が一般に大きすぎるため、無線リンクの片側又は両側でビームフォーミングを利用せずに、許容可能な交信距離を可能にすることはできない。現在のアプリケーションでは、ビームフォーミングによる解決手法が、テレビ又はモニタなどの不可動対象に対して最適化されている。VR/ARアプリケーションにビームフォーミングを用いるために、本システムは、バッファリング又はビームフォーミングコントローラの必要性に応えられる他の方法を利用して、ユーザがトラッキング対象体積内を動き回ると、システム自体を最適なデータスループットに再構成してよい。固定受信機アプリケーションでは、ビームフォーミングコントローラは偶然変動を補償するだけでよく、そのため、必要なバッファリングが少ない。有利なことに、本開示の1つ又は複数の実装形態がトラッキングサブシステム132からのトラッキングデータ133(例えば、位置データ、方位データ)を用いて、アンテナアレイ126のビームフォーミングパターンを動的に調整し、携帯型無線デバイス106がトラッキング対象体積に移動すると、これをトラッキングする。
【0038】
図2は、例示的な環境200を示している。ここでは、説明される技法のうちの少なくともいくつかが例示的なHMDデバイス202と共に用いられ、このHMDデバイスは、仮想現実による表示を人間ユーザ206に提供するために、無線接続を介してビデオレンダリングコンピューティングシステム204に結合されている。この例において、無線通信機能は、コンピューティングシステム204に動作可能に結合される別個の無線通信モジュール212によって提供されてよい。他の実装形態では、無線通信機能は、コンピューティングシステム204に設けられても、2つ又はそれより多くのコンピューティングシステムを用いて提供されてもよい。
【0039】
ユーザは、HMDデバイス202を着用し、HMDデバイスを介してコンピューティングシステム204から、実際の物理環境とは異なるシミュレート環境の表示情報を受信する。コンピューティングシステムは、シミュレート環境の画像(コンピューティングシステムで実行するゲームプログラム及び/又は他のソフトウェアプログラムにより生成される画像など)をユーザに表示するためにHMDデバイスに供給する画像レンダリングシステムの役割を果たす。ユーザはさらに、この例では実際の物理環境200のトラッキング対象体積201内を動き回ることができ、さらに、ユーザがシミュレート環境とさらにやり取りできるようにする1つ又は複数のI/O(「入力/出力」)デバイスを有してよく、この例のI/Oデバイスにはハンドヘルドコントローラ208及び210が含まれる。
【0040】
環境200は、HMDデバイス202並びに/又はコントローラ208及び210のトラッキングを容易にし得る1つ又は複数の基地局214を含んでよい(ラベルが付いた2つの基地局214a及び214bが示されている)。ユーザが場所を移動する且つ/又はHMDデバイス202の向きを変えると、シミュレート環境の対応する部分をHMDデバイス上でユーザに表示できるようにHMDデバイスの位置がトラッキングされ、コントローラ208及び210はさらに、コントローラの位置をトラッキングする際に用いるために(また必要に応じて、HMDデバイスの位置を判断する且つ/又は確認するのに役立つこの情報を用いるために)同様の技法を利用してよい。トラッキングされたHMDデバイス202の位置を確認した後に、対応する情報がコンピューティングシステム204に無線で伝送される。コンピューティングシステム204は、トラッキングされた位置情報を用いて、ユーザに表示するシミュレート環境の1つ又は複数の次の画像を生成し、アンテナアレイ126のビームフォーミングパターンを動的に操縦する。
【0041】
本開示の様々な実装形態に用いられ得る位置トラッキングの様々な方法は多数あり、限定されることはないが、音響トラッキング、慣性トラッキング、磁気式トラッキング、光学式トラッキング、これらの組み合わせなどが含まれる。
【0042】
少なくともいくつかの実装形態において、HMDデバイス202は、トラッキング機能又は本開示の他の態様を実装するのに用いられ得る1つ又は複数の光受信機又はセンサを含んでよい。例えば、基地局214はそれぞれ、トラッキング対象体積201の全域にわたって光信号を走査してよい。それぞれの特定の実装形態の要件に応じて、各基地局214は、1つより多くの光信号を生成してよい。例えば、6自由度トラッキングには、通常1つの基地局214で十分であるが、ロバストなルームスケールのトラッキングをHMDデバイス及び周辺機器に提供するには、複数の基地局(例えば、基地局214a、214b)がいくつかの実施形態において必要又は望ましいかもしれない。この例では、HMDデバイス202及び/又は他のトラッキング対象物(コントローラ208及び210など)に、光受信機が組み込まれている。少なくともいくつかの実装形態では、これらの光受信機は、各トラッキング対象デバイスにおいて、低遅延センサ融合をサポートするために、加速度計及びジャイロスコープを組み込んだ慣性測定ユニット(「IMU」)と組み合わされてよい。
【0043】
少なくともいくつかの実装形態において、各基地局214は、直交軸上のトラッキング対象体積201の全域にわたって線状ビームを走査するために2つのロータを含む。各走査サイクルの開始時に、基地局214は、トラッキング対象物上の全センサで確認できる全方向式光パルス(「同期信号」と呼ばれる)を放射してよい。したがって、各センサは、同期信号とビーム信号との間の間隔を計時することで、走査対象体積内での独自の角位置を計算する。センサの距離及び向きが、単一の剛体に固定されている複数のセンサを用いて求められてよい。
【0044】
トラッキング対象物(例えば、HMDデバイス202、コントローラ208及び210)に配置された1つ又は複数のセンサは、ロータからの変調光を検出できる光電子デバイスを含んでよい。可視光又は近赤外(NIR)光の場合、シリコンフォトダイオード及び好適な増幅器/検出器回路が用いられてよい。環境200は基地局214の信号と類似した波長を持つ静的な時変信号(光学的ノイズ)を含むことがあるため、少なくともいくつかの実装形態では、基地局からの光は、任意の干渉信号と区別しやすくするような方法で、且つ/又は基地局信号の波長以外の任意の放射波長からセンサをフィルタリングしやすくするような方法で変調されてよい。
【0045】
インサイドアウト方式トラッキングも、HMDデバイス202及び/又は他の対象物(例えば、コントローラ208及び210、タブレットコンピュータ、スマートフォン)の位置をトラッキングするのに用いられ得る一種の位置トラッキングである。インサイドアウト方式トラッキングは、HMDの位置を判断するのに用いられるカメラ又は他のセンサの位置によるアウトサイドイン方式トラッキングとは異なる。インサイドアウト方式トラッキングの場合、カメラ又はセンサはHMDに配置されている、すなわち、対象物がトラッキングされる。これに対して、アウトサイドイン方式トラッキングでは、カメラ又はセンサは環境内の固定位置に配置されている。
【0046】
インサイドアウト方式トラッキングを利用するHMDでは、HMDの位置が環境に対してどのように変わるかを判断するために「外を見る」1つ又は複数のカメラが利用される。HMDが移動すると、センサがルーム内での自身の場所を再調整し、それに応じて仮想環境はリアルタイムで応答する。この種の位置トラッキングは、環境内に配置されるマーカの有無にかかわらず実現され得る。HMDに配置されるカメラは、周囲環境の特徴を観察する。マーカを用いる場合、マーカは、トラッキングシステムによって容易に検出されるように設計され、特定の領域に配置される。「マーカを用いない」インサイドアウト方式トラッキングでは、HMDシステムは、環境内にもともと存在する顕著な特徴(例えば、地勢)を用いて、位置及び向きを判断する。HMDシステムのアルゴリズムは、特定の画像又は形状を識別し、その画像又は形状を用いて、空間内でのデバイスの位置を計算する。加速度計及びジャイロスコープからのデータも、位置トラッキングの精度を上げるために用いられてよい。
【0047】
図3は、環境300の概略ブロック図である。ここでは、無線データ伝送システム302が、限定されない1つの例示した実装形態による、本明細書で説明される高帯域幅且つ低遅延の技法を用いて、ビデオデータなどのデータを携帯型無線デバイス306に送信するのに用いられてよい。限定されない例として、無線データ伝送システム302は、
図1及び
図2のそれぞれのローカルコンピューティングシステム104及び204に類似していても、これらと全く同じであってもよく、また携帯型無線デバイス306は、
図1及び
図2のそれぞれの携帯型無線デバイス106及び202に類似していても、これらと全く同じであってもよい。無線データ伝送システム302は、上述したように、RF送受信機と操縦可能型アンテナアレイ304とを含む。携帯型無線デバイス306は、RFアンテナ308と関連する受信機回路を含む。
【0048】
図3に提供された簡略図において、携帯型無線デバイス306は、時間T1(
図3の上段)、T2(
図3の中段)、及びT3(
図3の下段)での3つの異なる位置に示されており、携帯型無線デバイスが環境内を移動していることが示されている。携帯型無線デバイス306が環境内を移動すると、無線データ伝送システム302は、上述した技法を用いて携帯型無線デバイスの動きをトラッキングし、アンテナアレイ304のビームフォーミングパターンを携帯型無線デバイスに向けられるように動的に調整する。
【0049】
示されている例において、無線データ伝送システム302のRF送受信機は、時間T1での携帯型無線デバイス306の位置に向けられるビーム310を用いて、時間T1でアレイアンテナ304を介してアウトバウンドデータを含むアウトバウンドRF信号を伝送し、時間T2での携帯型無線デバイス306の位置に向けられるビーム312を時間T2で送信し、時間T3での携帯型無線デバイス306の位置に向けられるビーム314を時間T3で送信する。より一般的には、無線データ伝送システム302は、携帯型無線デバイス306が環境内を動き回ると、このデバイスに向かって動的に向けられ得る複数の異なるビームフォーミングパターンを提供するようにアンテナアレイ304を動的に構成する。
【0050】
図4Aは、本開示の特徴を実装するのに用いられ得る平面アンテナアレイ400の限定されない例を示している。アンテナアレイ400は、2つのアンテナサブエレメント402を2列含む(すなわち、2×2のアレイ)。
図4Bは、本開示の特徴を実装するのに用いられ得る平面アンテナアレイ404の限定されない例を示している。アンテナアレイ404は、4個のアンテナサブエレメント406を2列含む(すなわち、2×4のアレイ)。アンテナサブエレメントの形状、構成、及び数は、所与のアプリケーションの具体的な要件に基づいて選択されてよいことを理解されたい。したがって、2×8、2×10、2×12、8×8、4×10などの他のアンテナサブエレメント構成、非矩形の形状などが、本開示の機能を実装するのに用いられてよい。
【0051】
図5は、HMDデバイスなどの携帯型無線デバイスに高帯域幅且つ低遅延でデータを無線で送信する無線データ伝送システムを動作させる方法500のフロー図を示している。方法500は、
図1及び
図2のそれぞれの無線データ伝送システム104及び204のうちの一方に類似した又はこれと全く同じデバイスによって実装されてよく、データは、
図1及び
図2のそれぞれの携帯型無線デバイス106及び202のうちの一方に類似した又はこれと全く同じデバイスによって受信されてよい。
【0052】
502において、無線データ伝送システムは、トラッキング対象体積内での携帯型無線デバイスの物理的位置を示すトラッキングデータを生成してよい。例えば、無線データ伝送システムは、無線携帯デバイスの取得ユニット(例えば、取得サブシステム148)により取得されるデータを受信してよく、このデータは、上述したように、1つ又は複数の基地局から検出される信号に応答する1つ又は複数のセンサから得られるデータを含んでよい。トラッキングデータはさらに、トラッキング対象体積内での携帯型無線デバイスの向き又は動きを示す方位データ又はモーションデータを含んでよい。
【0053】
少なくともいくつかの実装形態において、トラッキングデータは、トラッキング対象体積内の、トラッキングされる携帯型無線デバイス以外の少なくとも1つの対象物、例えば、1つ又は複数のコントローラ、1つ又は複数の静止した物体(例えば、壁、天井、床)、1つ又は複数の可動対象物(ユーザの体又は別の人の体の部分)などの物理的位置、向き、又は動きを示すデータを含んでよい。少なくともいくつかの実装形態において、トラッキングデータは、1つ又は複数の対象物の過去の動きを確認する又は今後の動きを予測するのに用いられ得る過去のデータを含んでよく、これにより、トラッキング機能の向上が促進される。トラッキングサブシステムは、任意の多数の種類のトラッキング技術を利用してよく、そのような技術には、限定されることはないが、ビデオトラッキング、自己位置推定及び地図作成の同時実行(SLAM)トラッキング、音響トラッキング、慣性トラッキング、磁気式トラッキング、光学式トラッキング、これらの組み合わせなどが含まれる。
【0054】
504において、無線データ伝送システムのビームフォーミングコントローラが、生成されたトラッキングデータをトラッキングサブシステムから受信してよい。上述したように、ビームフォーミングコントローラは、フェーズドアレイアンテナなどの操縦可能型アンテナアレイに動作可能に結合されている。少なくともいくつかの実装形態において、アンテナアレイは、対応する複数の可調整位相シフタに結合された複数のアンテナサブエレメントを有する平面フェーズドアレイアンテナを含む。一例として、携帯型無線デバイスを着用しているユーザが、VRゲームをプレイしているときなどにトラッキング対象体積内を動き回ると、ビームフォーミングコントローラは、更新済みトラッキングデータを周期的に(例えば、10msごと、20msごと、100msごとに)繰り返し受信してよい。トラッキングデータは、位置データ、携帯型無線デバイスの向きを示す方位データ、携帯型無線デバイスの過去の動き若しくは予測される動きを示すモーションデータ、又は他の静止した物体(例えば、壁、天井、家具、障害物)若しくは可動対象物(例えば、ハンドヘルドコントローラ、ユーザの体)に関連するトラッキングデータを含んでよい。
【0055】
506において、ビームフォーミングコントローラは、受信したトラッキングデータに少なくとも部分的に基づいて、操縦可能型アンテナアレイのビームフォーミングパターンを動的に調整してよい。上述したように、ビームフォーミングコントローラは、アンテナアレイの複数のアンテナサブエレメントのそれぞれの位相シフト及び振幅を選択的に調整するビームフォーミング重み又は係数を修正することで、アンテナアレイのビームフォーミングパターンを動的に調整してよい。
【0056】
508において、無線データ伝送システムは、アンテナアレイを用いて携帯型デバイスにデータ(例えば、ビデオデータ)を無線伝送してよく、無線データ伝送システムのビームは、携帯型無線デバイスがトラッキング対象体積内を動き回ると、そのデバイスに動的に向けられる。上述したように、少なくともいくつかの実装形態において無線データ伝送システムは、ミリ波帯域(例えば、60GHz帯域)で動作するRF送信機を利用してよく、ミリ波帯域は、送信ビームフォーミング及び/又は受信ビームフォーミングを利用して、帯域幅を広げ、低遅延を提供するのに有利である。
【0057】
少なくともいくつかの実装形態において、ビームフォーミングコントローラは、コントローラ、ユーザの体の一部、又は静止障害物若しくは可動障害物の位置などの、他の少なくとも1つの対象物の現在又は予測される今後の物理的位置を示すトラッキングデータに少なくとも部分的に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整する。一例として、ビームフォーミングコントローラは、トラッキングデータを分析して、無線データ伝送システムのアンテナアレイと携帯型デバイスの受信機との間の直線経路を、コントローラが現在さえぎっているか、又は近いうちにさえぎることになるかを判断してよい。そのような検出に応答して、ビームフォーミングコントローラは、良好な無線接続を提供するために、確認されている又は予測される方向にビームフォーミングパターンを修正してよい。例えば、ビームフォーミングコントローラは、直接視準経路ではなく反射経路を提供するために、ビームフォーミングパターンを天井、床、又は壁に向けてよい。ビームフォーミングは、高品質の無線接続を提供する経路を求めて、複数のパターンを使って繰り返しても、走査してもよい。好適又は最適であると判断されたそのような経路は、今後の同様な状況に(例えば、その後受信機がさえぎられるたびに)用いるために格納されてよい。
【0058】
少なくともいくつかの実装形態において、そのような代替経路は、(例えば、品質データを監視しながらビームフォーミングパターンを走査する)反復プロセスを利用し、リアルタイムのトラッキングデータと、接続品質データ(例えば、受信信号強度インジケータ(RSSI))とに基づいて選択されてよい。少なくともいくつかの実装形態において、代替経路は、過去のトラッキングデータ及び過去の品質データに基づいて選択されてよく、本システムは、特定の状況(例えば、受信機の妨害、トラッキング対象体積内での位置、ユーザの動きの種類)に対して、どのビームパターンが最良の無線接続を提供できる可能性が高いかを、較正プロセスを用いて又は通常の使用時に時間の経過と共に学習する。
【0059】
ビデオと同じ帯域幅を必要としない制御データ、ステータスデータ、トラッキングデータ、又は他のデータなどのビデオデータ以外のデータが、ビデオデータの送信に用いられるチャネルとは異なる1つ又は複数の通信チャネルを用いて、無線データ伝送システムと携帯型無線デバイス(又は他のデバイス)との間で伝達されてよい。例えば、ビデオデータは、上述したようにミリ波帯域で動作する第1のRF送信機により送信されてよく、その他のデータは、2.4GHz(例えば、IEEE 802.11g、Bluetooth(登録商標))又は5.0GHz(例えば、IEEE 802.11ac)で動作する1つ又は複数の別の送信機を介して伝達されてよい。
【0060】
少なくともいくつかの実装形態において、ビームコントローラは、受信した接続品質データ(例えば、RSSI)を品質限界値と比較してよい。そのような実装形態では、トラッキングデータを用いている間、品質データが品質限界値に満たないという判定に応答して、ビームコントローラは、トラッキングデータ以外の基準に基づいて、アンテナアレイのビームフォーミングパターンを動的に調整してよい。例えば、ビームコントローラは、トラッキングデータを用いると何らかの理由で(例えば、信号経路がさえぎられているために)満足な無線接続が提供されないと判断してよく、そのような判断に応答して、良好な経路を見つけるために、受信した接続品質データを用いてビームパターンを制御してよい。そのような場合に、ビームコントローラは、トラッキングデータを用いたときの性能が従来のビームフォーミング方法を用いて実現され得る性能より良好なレベルまで改善したかどうかを確認するために、トラッキングデータを用いたビーム操縦に繰り返し戻ってよい。したがって、そのような実装形態では、従来のビームフォーミング方法が性能下限の役割を果たしてよく、可能であれば性能を改善するために、本明細書で説明したトラッキングベースのビームフォーミング方法を用いる。
【0061】
有利なことに、本明細書で説明したトラッキングデータを用いることで、フェーズドアレイアンテナの最適な係数が、従来のシステムよりはるかに速く求められ得る。従来の「トラッキングなし」システムでは、送信機/受信機の組み合わせに最適なアンテナ構成を求めるために、1つ又は複数の指向性走査を含むビームフォーミング訓練プロセスが行われることがある。例えば、いくつかの従来のシステムでは、ビームを向けるいくつかの方向領域又は区域のうちの1つを決定するために、最初の広範な走査が行われてよい。次いで、ビームの方向をさらに最適化するために、選択した区域で2回目の微調整が行われてよい。そのようなプロセスは時間がかかる上に、妨害又は著しい動きが生じるたびにプロセスを繰り返さなければならない。本明細書で開示されたトラッキングありシステムでは、受信システムの物理的位置がトラッキングデータから確認されているため、そのような走査を必要とせずに係数を直接的に計算してよい。本システムは、複数の位置にうまく機能するように決定された係数もメモリに格納してよく、トラッキングされた受信システムの位置に基づいて、適切な係数をメモリから読み出してよい。追加的に又は代替的に、本システムは、1つ又は複数の広範な走査ではなく、受信システムの既知の位置を用いて比較的狭い領域を(例えば、狭走査で)探索してよく、これにより、最適なアンテナ構成をもたらす係数を求めるのに必要な時間が大幅に削減される。さらに、上述したように、本システムは受信システムの今後の位置を予測できるため、問題のある妨害又は動きの発生が生じるより前に、この係数を適合させることができる。これによりさらに、受信システムに向かってビームを操縦するのに必要な時間が削減される。遅延及びバッファリングの改善に加えて、良好な係数を選択することによって、データリンクがその高いデータレートで頻繁に動作することが可能になる。満足な経路選択ができないと、送信機はあまり積極的ではない変調方式の使用を強いられるため、許容可能なエラーレートをもたらすのに、より低いデータレートが用いられることになる。
【0062】
少なくともいくつかの実装形態において、本システムは、データリンク品質に基づいて、バッファ長を動的に再交渉することができ、これにより、遅延を著しく(例えば、2ms、5msまで)低減することができる。例えば、リンク整合性が高いと本システムが判断した場合、本システムは、バッファ(例えば、循環バッファ)のサイズを低減して、システムの遅延を低減することができる。トラッキングシステムによって、上述したように、高いリンク整合性をもたらす良好な経路選択が可能になるため、本システムは概して、遅延の低減をもたらす小型バッファを利用してもよい。リンク整合性が(例えば、環境条件又は受信機の妨害によって)低い場合、バッファサイズは、リンク整合性が向上するまで動的に増やしてよい。
【0063】
少なくともいくつかの実装形態において、本明細書で提供されるシステム及び方法は、ビームフォーミングを行うために複数入力複数出力(MIMO)技術を利用してよい。そのような場合、送信システムは複数のアンテナ(例えば、アンテナアレイ)を含んでよく、受信システムは1つ又は複数のアンテナを含んでよい。MIMOは、送信アンテナと受信アンテナとの間で伝送されるデータが環境からのフィルタリングを受けるという事実を利用している。信号は対象物(例えば、壁、家具)に反射されてよく、これらの反射は、関連した遅延、減衰、到来方向を有することになる。複数の経路を利用して、速くて信頼できるデータ転送を提供するために、アンテナエレメント間の空間チャネルが特徴づけられてよい。この特徴づけはチャネル状態情報(CSI)と呼ばれ、実質的に、各アンテナと受信システムとの間の空間転送機能の集合である。CSIは、アンテナアレイから送信され且つアンテナアレイにより受信されるデータをデジタル方式でエンコード及びデコードするのに用いられてよい。CSIは、(例えば、受信システムが環境内を移動すると)正確な情報を維持するために、必要に応じて更新されてよい。したがって、そのような実装形態では、ビームコントローラはMIMO技術を利用し、MIMOコントローラは位置依存性を有する予め導出されたCSIを受信してよく、また受信したCSIに基づいて、係数、重み、又はストリームエンコーディングのうちの1つ又は複数を選択してよい。さらに、MIMO変数は、非MIMOビームフォーミングよりも直接的に計算するのが難しいため、少なくともいくつかの実装形態では、そのような変数をオンザフライで直接的に計算するのではなく、検索のためにメモリを用いて、係数、重み、及び/又はストリームエンコーディングの様々な組み合わせを格納することが有利になり得る。
【0064】
前述の詳細な説明には、ブロック図、概略図、及び実施例を使用して、デバイス及び/又はプロセスの様々な実装形態が記載されている。そのようなブロック図、概略図、及び実施例が、1つ又は複数の機能及び/又は動作を含む限りにおいて、そのようなブロック図、フローチャート、又は実施例に含まれる各機能及び/又は各動作が、個別に且つ/又は集合的に、広範なハードウェア、ソフトウェア、ファームウェア、又はこれらの実質的にあらゆる組み合わせによって実装されてよいことを当業者は理解するであろう。1つの実装形態において、本主題は、特定用途向け集積回路(ASIC)を用いて実装されてよい。しかしながら、当業者であれば、本明細書に開示した実装形態が、全体的に又は部分的に、1つ又は複数のコンピュータで動作する1つ又は複数のコンピュータプログラム(例えば、1つ又は複数のコンピュータシステムで動作する1つ又は複数のプログラム)として、1つ又は複数のコントローラ(例えば、マイクロコントローラ)で動作する1つ又は複数のプログラムとして、1つ又は複数のプロセッサ(例えば、マイクロプロセッサ)で動作する1つ又は複数のプログラムとして、ファームウェアとして、あるいはこれらの実質的にあらゆる組み合わせとして標準的な集積回路に等価的に実装されてよいこと、またソフトウェア及び/又はファームウェア用の回路を設計する且つ/又はコードを記述することが本開示に照らせば十分当業者の技能の範囲内であることを認識するであろう。
【0065】
当業者であれば、本明細書で詳述した方法又はアルゴリズムの多くが、別の動作を利用してもよく、いくつかの動作を省略してもよく、且つ/又は明記されているのと異なる順序で動作を実行してもよいことを認識するであろう。
【0066】
さらに、当業者であれば、本明細書で教示されたメカニズムはプログラム製品として様々な形態で配布が可能であること、また配布を実際に行うのに用いられる特定の種類の信号記録媒体にかかわらず、例示的実装形態が等しく適用されることを理解するであろう。信号記録媒体の例には、限定されることはないが、フロッピーディスク、ハードディスクドライブ、CD-ROM、デジタルテープ、及びコンピュータメモリなどの追記型媒体が含まれる。
【0067】
上述した様々な実装形態は、さらなる実装形態をもたらすために組み合わされてもよい。上記の詳細な説明に照らせば、これらの変更及び他の変更が実装形態に施されてもよい。一般に、次の特許請求の範囲では、用いられる用語は、本明細書及び特許請求の範囲に開示されている特定の実装形態に特許請求の範囲を限定するものと解釈されるべきではなく、そのような特許請求の範囲が対象とする均等な形態の全範囲と併せて全ての可能な実装形態を含むものと解釈されるべきである。したがって、特許請求の範囲が本開示によって限定されることはない。
【0068】
本願が優先権を主張する、2019年1月25日出願の米国特許出願第16/258,342号が、その全体の参照により本明細書によってここに組み込まれている。
【国際調査報告】