(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-03-29
(54)【発明の名称】エネルギー貯蔵プラント及びプロセス
(51)【国際特許分類】
F02C 6/10 20060101AFI20220322BHJP
F03G 7/00 20060101ALI20220322BHJP
F02C 1/10 20060101ALI20220322BHJP
F02C 6/16 20060101ALI20220322BHJP
H02J 15/00 20060101ALI20220322BHJP
【FI】
F02C6/10
F03G7/00 B
F03G7/00 H
F02C1/10
F02C6/16
H02J15/00 H
H02J15/00 E
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021546826
(86)(22)【出願日】2019-12-17
(85)【翻訳文提出日】2021-09-27
(86)【国際出願番号】 IB2019060896
(87)【国際公開番号】W WO2020039416
(87)【国際公開日】2020-02-27
(31)【優先権主張番号】102019000002385
(32)【優先日】2019-02-19
(33)【優先権主張国・地域又は機関】IT
(81)【指定国・地域】
(71)【出願人】
【識別番号】521353506
【氏名又は名称】エナジー ドーム エス.ピー.エー.
【氏名又は名称原語表記】ENERGY DOME S.P.A.
(74)【代理人】
【識別番号】100107456
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【氏名又は名称】野田 雅一
(72)【発明者】
【氏名】スパダチーニ, クラウディオ
(57)【要約】
エネルギー貯蔵プラント(1)は、雰囲気と圧力の平衡状態にある大気以外の気相の作業流体の貯蔵のための筐体(5)と、臨界温度に近い温度を有する液相又は超臨界相にある前記作業流体の貯蔵のためのタンク(9)とを備え、前記臨界温度は周囲温度に近い。プラント(1)は、前記筐体(5)と前記タンク(9)との間で、密閉熱力学サイクル変換(TTC)をまず一方向に充電形態で実施し、次いで逆方向に放電形態で実施するように構成され、プラント(1)は、充電形態で熱及び圧力を貯蔵し、放電形態でエネルギーを生成する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
雰囲気と圧力の平衡状態にある大気以外の気相の作業流体の貯蔵のための筐体(5)と、
臨界温度に近い温度を有する液相又は超臨界相にある前記作業流体の貯蔵のためのタンク(9)と
を備えるエネルギー貯蔵プラントであって、
前記臨界温度が周囲温度に近く、好ましくは0℃~100℃であり、
前記エネルギー貯蔵プラントは、前記筐体(5)と前記タンク(9)との間で、密閉サイクル熱力学的変換(TTC)をまず一方向に充電形態で実行し、次いで逆方向に放電形態で実行するように構成され、前記エネルギー貯蔵プラントは、前記充電形態で熱及び圧力を貯蔵し、前記放電形態でエネルギーを生成する、エネルギー貯蔵プラント。
【請求項2】
前記作業流体は、0℃~200℃の臨界温度、25℃で0.5kg/m
3~10kg/m
3の密度という化学物理特性を有し、及び/又は好ましくはCO
2、SF
6、N
2Oを含む群から選択される、請求項1に記載のエネルギー貯蔵プラント。
【請求項3】
互いに機械的に接続された圧縮器(3)及びモータと、
互いに機械的に接続されたタービン(2)及びジェネレータであって、前記筐体(5)が、雰囲気に外部で接触しており、雰囲気圧又は実質上雰囲気圧で前記作業流体を収容するように構成された容積部の範囲を内側で定めており、前記容積部が、前記圧縮器(3)の入口(3a)又は前記タービン(2)の出口(2b)と選択的に流体連通しており、任意選択で前記筐体(5)が圧力バルーンである、タービン(2)及びジェネレータと、
前記圧縮器(3)の出口(3b)又は前記タービン(2)の入口(2a)と選択的に流体連通している一次熱交換器(7)であって、前記タンク(9)が、前記作業流体を蓄積するために前記一次熱交換器(7)と流体連通している、一次熱交換器(7)と、
前記一次熱交換器(7)と前記タンク(9)との間又は前記タンク(9)内で動作上活動状態にある二次熱交換器(10)と
を備え、
前記エネルギー貯蔵プラントは、前記充電形態又は前記放電形態で動作するように構成され、
前記充電形態で、前記筐体(5)は、前記圧縮器(3)の前記入口(3a)と流体連通し、前記一次熱交換器(7)は、前記圧縮器(3)の前記出口(3b)と流体連通しており、前記タービン(2)は静止状態にあり、前記モータは動作しており、前記筐体(5)からくる前記作業流体を圧縮するように前記圧縮器(3)を駆動し、前記一次熱交換器(7)は、前記圧縮された作業流体から熱を除去して前記作業流体を冷却し、熱エネルギーを貯蔵するためのクーラとして機能し、前記二次熱交換器(10)は、前記圧縮された作業流体から追加の熱を除去して追加の熱エネルギーを貯蔵するためのクーラとして機能し、前記タンク(9)は、前記圧縮及び冷却された作業流体を受け取って貯蔵し、前記タンク(9)内に貯蔵されている前記作業流体は、その独自の臨界温度に近い温度を有し、
前記放電形態で、前記筐体(5)は、前記タービン(2)の前記出口(2b)と流体連通し、前記一次熱交換器(7)は、前記タービン(2)の前記入口(2a)と流体連通しており、前記圧縮器(3)は静止状態にあり、前記二次熱交換器(10)は、前記タンク(9)からくる前記作業流体へ熱を解放するためのヒータとして機能し、前記一次熱交換器(7)は、前記作業流体へさらなる熱を解放して前記作業流体を加熱するためのヒータとして機能し、前記タービン(2)は、前記加熱された作業流体によって回転させられて、前記ジェネレータを駆動してエネルギーを生成し、前記作業流体は、前記筐体(5)内で雰囲気圧又は実質上雰囲気圧に戻る、
請求項1又は2に記載のエネルギー貯蔵プラント。
【請求項4】
前記充電形態では前記圧縮器(3)内で前記作業流体を圧縮前に予熱し、又は前記放電形態では前記タービン(2)からの前記作業流体を冷却するように、前記筐体(5)と前記圧縮器(3)との間及び前記筐体(5)と前記タービン(2)との間に動作可能に配置された追加の熱交換器(13)を備える、請求項3に記載のエネルギー貯蔵プラント。
【請求項5】
前記モータ及び前記ジェネレータが別個の要素であり、又は前記モータ及び前記ジェネレータは、単一のモータジェネレータ(4)によって画定され、前記エネルギー貯蔵プラントは、前記モータジェネレータ(4)を前記圧縮器(3)又は前記タービン(2)に機械的に交互に接続するように、前記モータジェネレータ(4)と前記圧縮器(3)及び前記タービン(2)との間に接続デバイスを備える、請求項3又は4に記載のエネルギー貯蔵プラント。
【請求項6】
前記二次熱交換器(10)及び前記一次熱交換器(7)は、前記作業流体の超臨界変換を行うように構成され、したがって前記作業流体は、超臨界相で前記タンク(9)内に蓄積され、任意選択で、前記二次熱交換器(10)は、前記一次熱交換器(7)と前記タンク(9)との間に配置される、請求項3~5のいずれか一項に記載のエネルギー貯蔵プラント。
【請求項7】
前記タンク(9)は、超臨界相の前記作業流体のための可変容積部(32)を有する第1のチャンバと、非圧縮性の流体、任意選択で水を収容する補償回路(34)と流体連通している可変容積部(33)を有する第2のチャンバとに、前記タンク(9)を内部で分離するように構成された分離膜(31)を備える、請求項6に記載のエネルギー貯蔵プラント。
【請求項8】
前記二次熱交換器(10)及び前記一次熱交換器(7)は、前記作業流体の未臨界変換を行うように構成され、したがって前記作業流体は、液相で前記タンク(9)内に蓄積され、任意選択で、前記二次熱交換器(10)は、前記タンク(9)内に一体化される、請求項3~5のいずれか一項に記載のエネルギー貯蔵プラント。
【請求項9】
前記一次熱交換器(7)は、固定若しくは移動層蓄熱器であり、又は少なくとも1つの一次貯蔵チャンバ(17、18)を有する水、油、若しくは塩の一次回路(15)を備える、請求項3~8のいずれか一項に記載のエネルギー貯蔵プラント。
【請求項10】
前記二次熱交換器(10)は、少なくとも1つの二次貯蔵チャンバ(21、22)を有する二次空気又は水回路(20)を備え、100℃を下回る温度、任意選択で0℃~50℃の温度で、任意選択で周囲温度に近い温度で、前記充電形態では前記作業流体から熱を除去するように、又は前記放電形態では前記作業流体へ熱を伝達するように構成される、請求項3~9のいずれか一項に記載のエネルギー貯蔵プラント。
【請求項11】
任意選択で請求項1~10のいずれか一項に記載のエネルギー貯蔵プラントによって実施されるエネルギー貯蔵プロセスであって、
雰囲気と圧力平衡状態にある大気とは異なる気相の作業流体の貯蔵のための筐体(5)と、臨界温度に近い温度を有する液相又は超臨界相にある前記作業流体の貯蔵のためのタンク(9)との間で、密閉熱力学サイクル変換(TTC)をまず一方向に充電形態/充電相で実施し、次いで逆方向に放電形態/放電相で実施することを含み、前記臨界温度が、周囲温度に近く、好ましくは0℃~100℃であり、前記プロセスは、前記充電相で熱及び圧力を蓄積し、前記放電相でエネルギーを生成する、エネルギー貯蔵プロセス。
【請求項12】
前記充電相は、
雰囲気に外部で接触しており、雰囲気圧又は実質上雰囲気圧で前記作業流体を収容してエネルギーを吸収するように構成された容積部の範囲を内側で定める前記筐体(5)からくる前記作業流体を圧縮することと、
前記作業流体の温度をその独自の臨界温度に近づけるように直列に配置された一次熱交換器(7)及び二次熱交換器(10)を介して前記圧縮された作業流体を注入することであって、前記一次熱交換器(7)が、前記圧縮された作業流体から熱を除去して前記作業流体を冷却し、熱エネルギーを貯蔵するためのクーラとして機能し、前記二次熱交換器(10)が、前記圧縮された作業流体からさらなる熱を除去してさらなる熱エネルギーを貯蔵するためのクーラとして機能する、注入することと、
前記冷却された作業流体を前記タンク(9)内に蓄積することと
を含み、
前記二次熱交換器(10)及び前記一次熱交換器(7)は、前記作業流体の超臨界変換を実施し、したがって前記作業流体は、超臨界相で前記タンク(9)内に蓄積され、又は前記二次熱交換器(10)及び前記一次熱交換器(7)は、前記作業流体の未臨界変換を実施し、したがって前記作業流体は、液相で前記タンク(9)内に蓄積され、任意選択で、前記タンク(9)内に蓄積されている前記作業流体の温度は0℃~100℃であり、前記タンク(9)内に蓄積されている前記作業流体の圧力は10バール~150バールである、請求項11に記載のエネルギー貯蔵プロセス。
【請求項13】
前記作業流体は、0℃~200℃の臨界温度、25℃で0.5kg/m
3~10kg/m
3の密度という物理化学特性を有し、及び/又は好ましくは、CO
2、SF
6、N
2Oを含む群から選択される、請求項11又は12に記載のエネルギー貯蔵プロセス。
【請求項14】
エネルギーの前記放電相及び生成は、
前記タンク(9)からの前記作業流体を前記二次熱交換器(10)及び前記一次熱交換器(7)に通すことであって、前記二次熱交換器(10)が、前記タンク(9)からくる前記作業流体へ熱を伝達するためのヒータとして機能し、前記一次熱交換器(7)が、前記作業流体へさらなる熱を伝達して前記作業流体を加熱するためのヒータとして機能する、通すことと、
前記加熱された作業流体をタービン(2)に通すことであって、前記タービン(2)が、前記加熱された作業流体によって回転させられて、前記ジェネレータを駆動してエネルギーを生成し、前記作業流体が前記タービン(2)内で膨張して冷却される、通すことと、
前記タービン(2)からくる前記作業流体を前記筐体(5)内へ雰囲気圧又は実質上雰囲気圧で再注入することと
を含む、請求項12又は13に記載のエネルギー貯蔵プロセス。
【請求項15】
前記放電相及びエネルギー生成で、前記一次熱交換器(7)と前記タービン(2)との間において、追加の熱源(230)を介して前記作業流体をさらに加熱することが提供され、前記追加の熱源(230)は、任意選択で太陽光源、産業廃熱回収、ガスタービンの排熱から選択される、請求項14に記載のエネルギー貯蔵プロセス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の目的は、電気エネルギーの貯蔵のためのプラント及びプロセスである。より詳細には、本発明の目的は、利用可能性の超過及び/又は消費の欠乏が明らかになったときにネットワーク又はシステムからの電気エネルギーを吸収/使用することが可能であり、時間内に貯蔵エネルギーを維持することが可能であり、前記電気エネルギーが要求されたときに貯蔵エネルギーを再び電気エネルギーに変換してネットワークに戻すことが可能なシステムである。詳細には、本発明は、電位エネルギー(圧力)及び熱的/熱力学的エネルギーの形態で電気エネルギーを貯蔵するシステムに関する。本発明は、陸上及び海洋の両方の応用例に対する中規模及び大規模エネルギー貯蔵システムの一部であり、典型的に電力は数百kWから最大数十MW(例えば、20~25MW)だけでなく、数百MWにもなり、貯蔵容量は数百kWhから最大数百MWh、さらには最大数GWhである。本発明はまた、陸上及び海洋の両方で、家庭用及び商業用の応用例に対する小規模エネルギー貯蔵システムの分野で配置することができ、典型的に電力は数kWから最大数百kWであり、貯蔵容量は数kWhから最大数百kWhである。
【定義】
【0002】
本説明及び添付の特許請求の範囲では、次の定義を使用する。
熱力学サイクル(CT):点Xから点Yへの熱力学的変換であり、XはYに一致し、CTは、以下のTTC(熱力学サイクル変換)とは異なり、サイクル内に質量蓄積(エネルギー目的で重要)は存在しないのに対して、TTCは典型的に、作業流体の2つの貯蔵部間で作用し、2つの貯蔵部のうちの一方は初期貯蔵部であり、他方は最終貯蔵部である。
熱力学サイクル変換(TTC):点Xから点Yへ、また点Yから点Xへの熱力学的変換であり、必ずしも同じ中間点を通過するとは限らない。
密閉CT及び/又はTTC:雰囲気との質量交換(エネルギー目的で重要)なし。
開放CT及び/又はTTC:雰囲気との質量交換(エネルギー目的で重要)あり。
【背景技術】
【0003】
近年、生産の変動性及び予測不能性を特徴とする再生可能源から、特に風力及び光起電力源からのエネルギー生産のためのシステムの普及がかつてないほど増えているため、電気エネルギー貯蔵システムもますます重要になっている。
【0004】
電気エネルギー貯蔵システムは、分離式及び相互接続式の両方のネットワークに対する様々な基本機能を実行することができ、そのような基本機能には、周波数の調整/動的慣性の供給、「フレキシブルランピング(flexible ramping)」システムの供給、すなわち緊急生産システムの開始を可能にすること、生産がより大きく要求がより少ない時間から、他方ではより大きい要求及び/又は生産の不足を呈する時間への「エネルギーシフティング(energy shifting)」、季節的な補償などが含まれる。
【0005】
典型的に高いコスト及び制限された有用寿命を有する電気化学的原理に従って動作するシステム(電池)、少量の貯蔵エネルギーのみに好適な機械的原理に従って動作するシステム(フライホイール)に加えて、現在使用若しくは開発中であり又は他の形で知られているシステムには、次のものが含まれる。
【0006】
主に使用されているシステムは、水力発電用の圧送貯蔵システム(PUMPED HYDRO STORAGE、PHS)であり、これは現在、世界的に設置されている貯蔵容量の90%超を担っている。これらのシステムは、長期及び短期の両方の貯蔵に好適であり、コストの面でも非常に競争力があるが、特定の地形学的条件を有する場所にしか構築することができないという欠点がある。前記PHSシステムは、電位式、特に重力式のエネルギー貯蔵システムの1つとして数えることができる。また、英国特許出願公開第2518125号に開示されているシステムは、重力システムの一種である。
【0007】
使用されている第2のシステムは、いわゆるCAES(圧縮空気エネルギー貯蔵)システムであり、これは電位エネルギー(圧力)及び(場合により)熱エネルギーへの変換によって蓄積する開放TTCからなる。このCAESシステムは、基本(非断熱)構成及びより高度なAA-CAES(高度断熱CAES、米国特許第4,147,205号「Compressed Air Storage Installation」参照)構成の両方で知られている。これらのシステムは、長期及び短期の両方の貯蔵に好適であり、コストの面で非常に競争力があるが、「ラウンドトリップ効率(Round Trip Efficiency)」の面ではPHSシステムより非効率的であり、特定の地形学的条件を有する場所にしか構築することができないという欠点もある。
【0008】
またCAESシステムには、タンク/洞穴の圧力がその充電レベルとともに変動するという追加の欠点がある。これは、TTCの効率及びTTCを実行するターボ機械の効率の両方に影響を及ぼす。
【0009】
CAESシステムに対する地下洞穴の不在に対処するためのシステムも知られている。特に、地下洞穴を必要とすることなく、地上のタンク内にエネルギーを貯蔵することを経済的に実行可能にしようとする解決策が知られている。一例は、「LIGHTSAIL」という米国特許出願公開第2011/0204064号にあり、普通なら地上システムに対する前記CAESのコストは不採算になるはずであるが、地上貯蔵タンクのコストを抑えようとして、特別な構造のタンクが提案されている。これらの解決策もまた、開放TTCに従って機能するシステムに属する。
【0010】
2つの従来のシステムを組み合わせたシステムも知られており(米国特許第7,663,255号参照)、CAES及びPHSの組合せもまた、CAESシステムが一定の圧縮圧力で動作することを可能にする。これらのシステムもまた、開放TTCに従って機能する。
【0011】
「Novel concept of compressed air energy storage and thermos-electric energy storage」(THESE N.5525(2012)-Ecole Polytechnique Federale de Lousanne)という文献は、あらゆるタイプのCAESエネルギー貯蔵システムを開示している。とりわけ、一定の圧縮圧力を可能にするためにPHSと組み合わせた非断熱、断熱、等温のCAESシステムが開示されており、このシステムは、PHSと組み合わせた定圧CAESと呼ばれる。これらもまた、開放TTCに従って機能するシステムである。
【0012】
同文献はまた、ABB Corporate Research Centerによって提案されたいわゆるTEES(熱電気エネルギー貯蔵)を開示している(欧州特許出願公開第2532843号及び欧州特許出願公開第2698506号も参照されたい)。これは、密閉CTによって機能するシステムのうちの1つであり、PHESシステムの1つとして数えることができる。PHES(圧送熱電気貯蔵)システムは、例えばランキン、ブレイトン、又はカリナCTを使用して熱エネルギーに変換することによって電気/機械エネルギーを貯蔵するシステムである。
【0013】
トランスクリティカル及び超臨界CO2サイクル又は他の流体サイクル、したがって可逆性のトランス超臨界ランキンサイクルを使用する上記のシステムに加えて、典型的にアルゴンだけでなく空気も使用するブレイトンサイクルを有するPHESシステムが知られている(等エントロピーの欧州特許第2220343号及び米国特許出願公開第2010/0257862号、並びにLaughlinの米国特許出願公開第2016/0298455号を参照されたい。これは、密閉CTに従って機能するシステムのうちの1つであり、PHESシステムの1つとして数えることができる。)。
【0014】
PHES/TEESシステムの1つとして数えることができる別のシステムは、充電及び放電相のために2つの異なるサイクルを組み合わせたシーメンス-ガメサのシステム(米国特許出願公開第2014/0223910号及び米国特許第8,991,183号及び米国特許第8,966,902号参照)であり、これは特に、高温の熱貯蔵タンクの充電相のためのブレイトンサイクル又は電気抵抗を伴う簡単な放散、及び電気エネルギーの放電/発電相のための蒸気ランキンサイクルを提供する。このタイプの解決策は、PHESシステムのうちの1つである。この解決策は、いくつかの開放及び/又は密閉CTによって実施される。
【0015】
TEESとも呼ばれるすべてのPHESシステムは、「密閉」及び可逆性の熱力学サイクル原理に基づいていることに留意されたい。提案されている様々な解決策に応じて、これらを「密閉」ランキン又はブレイトンサイクルとすることができるが、いずれにせよ、ほぼ可逆性であるモータ/ヒートポンプの作業流体は、「密閉」熱力学サイクルに従って変換を実行し、必要とされる貯蔵容量に従ってサイズ設定された中間蓄積は存在しない。
【0016】
代わりに、あらゆるタイプのあらゆるCAESシステムは、「開放」熱力学サイクルに従って、変換をまず一方向に実施し、次いで他方向に変換を実施し、すなわち雰囲気からの空気の取込み及び雰囲気への空気の返還を行うシステムである。
【0017】
別の知られているエネルギー貯蔵方法は、いわゆるLAESシステム(液体空気エネルギー貯蔵、米国特許出願公開第2009/0282840号参照)である。LAES方法は、「開放」熱力学的変換に従った変換を伴い、すなわち雰囲気からの空気の取込み及び雰囲気への空気の返還を行う。さらに、このシステムは、-200°に近い極低温の温度で機能するものであり、これは技術的に非常に困難である。これもまた、開放TTCに従って機能するシステムに属する。
【0018】
Qing He、Yinping Hao、Hui Liu、Wenyi Liuによる「Analysis of the exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method」では、エネルギー貯蔵システムに対する作業流体としてのCO2の使用も提案されている。提案されたシステム(SC-CCES(超臨界圧縮二酸化炭素エネルギー貯蔵)と呼ばれる)は、「貯蔵池としての2つの塩水帯水層」と指定されるものを使用する。このSC-CCESシステムでは、圧縮器送達からのCO2が貯蔵池へ直接送られ、いかなる熱交換器及び/又は熱エネルギー貯蔵部システムも介在しない。さらに、放電サイクル中、タービンから放出されるCO2はレキュペレータによって加熱され、同じCO2がタービンに入る。この解決策は、密閉TTCに従って、すなわち2つの密閉タンク間で機能するシステムに属する。
【0019】
また、「Green Energy Storage:“The Potential Use of compressed Liquid CO2 and Large Sub-Terrain Cavities to Help Maintain a Constant Electricity Supply”」(Dalgaard JZ)という文献は、地下空洞におけるCO2の使用について述べている(同文献の文献名及び要約、並びに本文で)。
【発明の概要】
【0020】
本出願人は、現在の電気エネルギー貯蔵システムには、様々な状況で経済的に使用することを可能にする特徴がないことを指摘している。
【0021】
特に、いくつかの場合(例えば、PHS及びCAES)、これらのシステムは、見つけるのが困難な非常に特殊な地形学的状況を必要とする。いくつかの場合(例えば、PHS)、そのようなシステムの実装には、環境的影響の大きい貯蔵池の製造が必要となる。
【0022】
他の場合(AA-CAES)、熱エネルギー貯蔵部システムの実現には低コストで解決するのが困難な問題が伴い、さらに、好適な地下洞穴を識別することが依然として必要とされている。上記はまた、満足のいくラウンドトリップ効率(RTE)の実現を難しくする。いずれにせよ、CAESシステムがPHSシステムと組み合わされない限り、貯蔵タンク内の可変圧力とともに機能するという問題は残り、これには明らかな追加コストの難題及び適正な地質学的条件の識別が伴う。
【0023】
本出願人は、表面CAESシステムを構築しようとする試みが、システム自体を構築することを可能にするために競争力のあるコストで加圧空気貯蔵タンクを構築することは事実上不可能であるという問題に直面していることをさらに観察した。
【0024】
本出願人は、現在のところ、LAESシステムを構築しようとする試みが、また極低温条件で機能することに固有の問題のために、経済的に実行可能なシステムを開発することができていないことをさらに観察した。層同士の間に真空を含む2重層タンク内に極低温エネルギーを貯蔵するという問題、及び他の高価なデバイスのため、この技術ではコストの面で最適化することが困難である。
【0025】
本出願人は、ほぼ可逆性のランキンサイクルを含むPHESシステムを構築しようとする試みが、満足のいくラウンドトリップ効率(RTE)(すなわち、60%超)を同時に合理的なコストで実現することが、RTEが機器内の温度差に関連するため、非常に困難であることをさらに観察した。
【0026】
同様に、ブレイトンサイクルに基づくPHESシステムは、これらのシステムが各サイクルに対して充電及び放電の両方で圧縮器及びタービンを使用することに対処しなければならない。これには、より高い投資コストだけでなく、さらなる不可逆性が伴い、これは、高温貯蔵と低温貯蔵との間で非常に高い温度差を維持することによってのみ、高TENを得るために補償することができる。
【0027】
この文脈で、本出願人は、エネルギー貯蔵プロセス及びプラント、すなわちエネルギー貯蔵システムを設計及び実施するという目的を設定し、これは、
異なる地形学的状況で行うことが可能であり、特定の地理的又は地域的条件を実現することを必要とせず、また最終的に特定のサイズで海洋/地上の応用例で使用することができ、
高RTE、並びにいずれにせよ70%より高く、最大75%及びさらには最大80%及びそれ以上を得ることが可能であり、
後述する様々なシステムによって、調整可能な貯蔵タンク圧力で機能することが可能であり、
簡単且つ経済的であり、好ましくは構築コストを100USD/kWh未満にすることを標的とし、特に圧力下及び高エネルギー密度(m3
storage/kWhstored)での貯蔵を可能にし、
周囲温度の変動を使用することによって、そのRTEを増大させることが可能であり、
安全で環境に優しく、例えば特に有害な流体を使用せず、
モジュール式であり、
小型であり、
30年の有用寿命まで存続し、又は30年という長い有用寿命を有し、
可撓性を有し、迅速に動作状態に入ることが可能であり、
容易且つ経済的に維持可能であり、
耐腐食性を有し(特に、海洋の応用例の場合)、
低い振動及びノイズレベルを有する。
【0028】
本出願人は、熱力学サイクル変換(TTC)によって、2つの別個のタンク内の作業流体の2つの蓄積間で、まず一方向に、次いで逆方向に動作するエネルギー貯蔵システムによって、上記その他の目的を実現することができることを見出し、2つのタンクのうちの一方(最低の圧力を有するタンク)は雰囲気中にあるが、大気ではなく、雰囲気と圧力平衡状態にある別の気体である。このシステムはまた、臨界温度に近い温度(例えば、ケルビンで臨界温度の1.2倍未満、好ましくは0.5~1.2倍)で、作業流体を最初の気体/蒸気状態から最終の液体又は超臨界状態へ変換するエネルギーを貯蔵することを特徴とする。このシステムはまた、この臨界温度が好ましくは、周囲温度からさほど遠くなく、好ましくは周囲温度に近い(好ましくは、0℃~200℃、より好ましくは0°~100℃)ことを特徴とする。
【0029】
作業流体は、好ましくは二酸化炭素(CO2)であるが、システムが動作する特定の環境条件にも関連して、システムの性能を改善するために、CO2及び他の物質の混合物を使用して、流体の臨界温度Tcを補正することもできる。SF6、N2Oなどの他の流体を使用することができ、そのような流体は、常に純粋であり、又は他の流体と混合される。
【0030】
本発明で提案するシステムには、圧縮器の送達から回収された熱の貯蔵部が存在する。システムが未臨界条件で動作するときも、システムが超臨界条件で動作するときも、場合により異なる制御方策によって、高圧タンク及び低圧タンクはどちらも、定圧で機能し、又はいずれにせよ特定の明確に画定された「範囲」内で調整される圧力で機能する。
【0031】
特に、上記その他の目的は、添付の特許請求の範囲及び/又は以下の態様に記載するタイプのエネルギー貯蔵のためのプラント及びプロセスによって実質上実現される。
【0032】
独立した態様では、本発明は、エネルギー貯蔵プラント(エネルギー貯蔵システム)に関する。
【0033】
プラントは、
雰囲気と圧力の平衡状態にある大気以外の気相の作業流体の貯蔵のための筐体と、
臨界温度に近い温度(例えば、ケルビンで臨界温度の1.2倍未満、0.5~1.2倍)を有する液相又は超臨界相にある前記作業流体の貯蔵のためのタンクとを備えることが好ましく、前記臨界温度は0℃~200℃、より好ましくは0℃~100℃であり、好ましくは周囲温度に近く、
プラントは、前記筐体と前記タンクとの間で、密閉サイクル熱力学的変換(TTC)をまず一方向に実施して充電形態/相になり、次いで逆方向に実施して放電形態/相になるように構成され、システムは、充電形態で熱及び圧力を蓄積し、放電形態でエネルギーを生成する。
【0034】
作業流体は、0℃~100℃の臨界温度、25℃で0.5~10kg/m3、好ましくは1~2kg/m3の密度という化学物理特性を有することが好ましい。
【0035】
作業流体は、CO2、SF6、N2O、若しくはこれらの混合物、又はさらには、例えば主にその結果得られる混合物の臨界温度のパラメータを修正してシステムの性能を最適化するために、添加物として作用する他の成分とこれらとの混合物を含む群から選択されることが好ましい。
【0036】
エネルギー貯蔵プラントは、
互いに機械的に接続された圧縮器及びモータと、
互いに機械的に接続されたタービン及びジェネレータ(発電機)であって、
前記筐体が、雰囲気に外部で接触しており、雰囲気圧又は実質上雰囲気圧で作業流体を収容するように構成された容積部の範囲を内側で定めており、前記容積部が、圧縮器の入口又はタービンの出口と選択的に連通している、タービン及びジェネレータと、
圧縮器の出口又はタービンの入口と選択的に流体連通している一次熱交換器(又はさらには、二次側で異なる流体とともに動作することもできる複数の一次熱交換器)であって、
前記タンクが、作業流体を蓄積するために一次熱交換器と流体連通している、一次熱交換器と、
一次熱交換器とタンクとの間又はタンク内で動作上活動状態にある二次熱交換器とを備えることが好ましい。
【0037】
このプラントは、充電又は放電形態で動作するように構成される。
【0038】
充電形態で、筐体は圧縮器の入口と流体連通し、一次熱交換器は圧縮器の出口と流体連通しており、タービンは静止状態にあり、モータは動作しており、筐体からくる作業流体を圧縮するように圧縮器を駆動し、一次熱交換器は、圧縮された作業流体から熱を除去して圧縮された作業流体を冷却し、熱エネルギーを貯蔵するためのクーラとして機能し、二次熱交換器は、圧縮された作業流体から追加の熱を除去して追加の熱エネルギーを貯蔵するためのクーラとして機能し、タンクは、圧縮及び冷却された作業流体を受け取って貯蔵し、タンク内に貯蔵されている作業流体は、その独自の臨界温度に近い温度(例えば、ケルビンで臨界温度の0.5~1.2倍)を有する。
【0039】
放電形態で、筐体はタービンの出口と流体連通し、一次熱交換器はタービンの入口と流体連通しており、圧縮器は静止状態にあり、二次熱交換器は、タンクからくる作業流体へ熱を解放するためのヒータとして機能し、一次熱交換器は、作業流体へさらなる熱を解放して作業流体を加熱するためのヒータとして機能し、タービンは、加熱された作業流体によって回転させられて、ジェネレータを駆動してエネルギーを生成し、作業流体は、筐体内で雰囲気圧又は実質上雰囲気圧に戻る。
【0040】
独立した態様では、本発明は、エネルギー貯蔵プロセスに関し、エネルギー貯蔵プロセスは、任意選択で前述の態様に記載又は以下の態様のうちの少なくとも1つに記載のプラントとともに実施される。
【0041】
プロセスは、雰囲気と圧力の平衡状態にある大気以外の気相の作業流体の貯蔵のための筐体と、臨界温度に近い温度(例えば、ケルビンで臨界温度の0.5~1.2倍)を有する液相又は超臨界相にある前記作業流体の貯蔵のためのタンクとの間で、密閉熱力学サイクル変換(TTC)をまず一方向に実施して充電形態/相にし、次いで逆方向に実施して放電形態/相にすることを含むことが好ましく、前記臨界温度は、周囲温度に近く、好ましくは0℃~100℃であるが、最高200℃にもなり、プロセスは、充電相で熱及び圧力を蓄積し、放電相でエネルギーを生成する。
【0042】
前記作業流体は、0℃~200℃、より好ましくは0℃~100℃であり、好ましくは周囲温度に近い臨界温度という化学物理特性を有することが好ましい。
【0043】
この作業流体は、CO2、SF6、N2O、若しくはこれらの混合物、又はさらには、例えば主にその結果得られる混合物の臨界温度のパラメータを修正してシステムの性能を最適化するために、添加物として作用する他の成分とこれらとの混合物を含む群から選択されることが好ましい。
【0044】
このプロセスは、エネルギー充電相と、エネルギーの放電及び生成相とを含むことが好ましい。
【0045】
充電相は、
雰囲気に外部で接触しており、雰囲気圧又は実質上雰囲気圧で前記作業流体を収容してエネルギーを吸収するように構成された容積部の範囲を内側で定める前記筐体からくる作業流体を圧縮するステップと、
作業流体の温度をその独自の臨界温度に近づけるように直列に配置された一次熱交換器(又はさらには、二次側で異なる流体とともに最終的に動作する複数の一次熱交換器)及び二次熱交換器によって圧縮された作業流体を注入するステップであって、一次熱交換器が、圧縮された作業流体から熱を除去して圧縮された作業流体を冷却し、熱エネルギーを貯蔵するためのクーラとして機能し、二次熱交換器が、圧縮された作業流体からさらなる熱を除去してさらなる熱エネルギーを貯蔵するためのクーラとして機能する、注入するステップと、
冷却された作業流体を前記タンク内に蓄積するステップとを含み、二次熱交換器及び一次熱交換器は、作業流体の超臨界変換を行い、したがって前記作業流体は、超臨界相でタンク内に蓄積され、又は二次熱交換器及び一次熱交換器は、作業流体の未臨界変換を行い、したがって前記作業流体は、液相でタンク内に蓄積される(好ましくは、圧力を比較的最小の/低い値に調節することも目的とする)。
【0046】
放電及び電力生成相は、
タンクからくる作業流体を二次熱交換器及び一次熱交換器に通すステップであって、二次熱交換器が、タンクからくる作業流体へ熱を伝達するためのヒータとして機能し(好ましくは、圧力を比較的高い/最大の値に調節することも目的とする)、一次熱交換器が、作業流体へ追加の熱を解放して作業流体を加熱するためのヒータとして機能する、通すステップと、
加熱された作業流体をタービンに通すステップであって、タービンが、加熱された作業流体によって回転させられて、ジェネレータを駆動してエネルギーを生成し、作業流体がタービン内で膨張して冷却される、通すステップと、
タービンからの作業流体を筐体内へ雰囲気圧又は実質上雰囲気圧で再注入するステップとを含む。
【0047】
本出願人は、本発明に記載のプロセス及び装置が、記載の目的の実現を可能にすることを確認した。
【0048】
特に、本出願人は、本発明が、海洋/洋上の応用例でも、安全に低い環境的影響で、特定の地形学的特徴のない場所でのエネルギーの貯蔵を可能にすることを確認した。
【0049】
本出願人はまた、本発明に記載の装置の製造及び後の保守が比較的安価であることを確認した。
【0050】
本出願人はまた、本発明が高RTEの実現を可能にすることを確認した。
【0051】
本出願人はまた、本発明が、貯蔵タンク内の圧力を調節することを可能にしながら、エネルギー貯蔵を行うことを可能にし、したがってシステムのより良好な動作可能性、RTEの面でターボ機械及びシステムの両方のより大きい効率を可能にすることを確認した。
【0052】
本発明の態様を以下に挙げる。
【0053】
一態様では、一次熱交換器は、熱貯蔵部(熱エネルギー貯蔵部、TES)に結合され、又は動作可能に結合される。
【0054】
一態様では、第1のパイプラインが、筐体と圧縮器入口との間及び筐体とタービン出口との間に生じ、筐体と圧縮器及びタービンとの間に流体を接続する。
【0055】
一態様では、少なくとも1つのバルブが、前記第1のパイプラインに動作可能に配置されており、圧縮器と筐体との間又はタービンと筐体との間に流体を交互に接続する。
【0056】
一点では、第2のパイプラインが、タービン入口と一次熱交換器との間及び圧縮器出口と一次熱交換器との間に生じ、前記一次熱交換器を前記圧縮器及びタービンと流体連通させる。
【0057】
一態様では、少なくとも1つのバルブが、前記第2のパイプライン上に動作可能に配置されており、圧縮器を一次熱交換器と、又は一次熱交換器をタービンと流体連通させる。
【0058】
一態様では、第3のパイプラインが、一次熱交換器と二次熱交換器との間に生じ、前記一次熱交換器を前記二次熱交換器と流体連通させる。
【0059】
一態様では、追加の熱交換器が、充電形態では圧縮器内で作業流体を圧縮前に予熱し、又は放電形態ではタービンからくる作業流体を冷却するように、筐体と圧縮器との間及び筐体とタービンとの間に動作可能に配置される。
【0060】
一態様では、追加の熱交換器は、第1のパイプラインに動作可能に付随する。
【0061】
一態様では、追加の熱交換器は、追加の熱エネルギー貯蔵デバイスを備える。
【0062】
一態様では、充電形態で、追加の熱交換器は、作業流体を予熱するためのヒータとして機能する。
【0063】
一態様では、放電形態で、追加の熱交換器は、作業流体を冷却して追加の熱エネルギーを貯蔵するためのクーラとして機能し、この追加の熱エネルギーは、充電形態で前記作業流体を予熱するために使用される。
【0064】
一態様では、タービンの出口に接続された第1のパイプラインの支流に、クーラが配置される。
【0065】
一態様では、追加の熱源に動作可能に付随するさらなる熱交換器が、タービンと一次熱交換器との間に動作可能に介在し、放電相でタービンに入る前に作業流体をさらに加熱するように構成される。
【0066】
一態様では、放電形態で、追加の熱源は、作業流体に追加の熱を提供する。
【0067】
一態様では、放電相及びエネルギー生成相で、一次熱交換器とタービンとの間において、追加の熱源を介して作業流体をさらに加熱することが想定される。
【0068】
一態様では、追加の熱源は、太陽光源(例えば、太陽光場)、及び/又は産業廃熱回収(廃熱回収)、及び/又はガスタービン(GT)からの排熱である。
【0069】
一態様では、作業流体が放電相でタービンに入る直前に追加の熱源及びさらなる熱交換器を介して運ばれる温度は、充電相中の圧縮の終了時の作業流体の温度より大きい。
【0070】
一態様では、作業流体が追加の熱源及び追加の熱交換器を介して運ばれる温度は、圧縮の終了時の作業流体の温度と比較するとより大きく、約100℃であるが、200℃又は300℃又は400℃にもなる。
【0071】
本出願人は、追加の熱源による作業流体のさらなる加熱が、ラウンドトリップ効率(RTE)の大幅な増大を可能にすることを確認した。
【0072】
一態様では、筐体は変形可能である。
【0073】
一態様では、筐体はガス計量器の構造を有する。
【0074】
一態様では、筐体は圧力バルーンである。
【0075】
一態様では、筐体は、可撓性材料、好ましくはプラスチック、例えばPVCで被覆されたポリエステル布から作られる。
【0076】
一態様では、モータ及びジェネレータは別個の要素であり、モータは、好ましくは圧縮器に恒久的に接続され、ジェネレータは、好ましくはタービンに恒久的に接続される。
【0077】
一態様では、モータ及びジェネレータは、単一のモータジェネレータによって画定される。
【0078】
一態様では、プラントは、モータジェネレータを圧縮器又はタービンに機械的に交互に接続するように、モータジェネレータと圧縮器との間及びモータジェネレータとタービンとの間に、好ましくはクラッチタイプの接続デバイスを備える。
【0079】
一態様では、モータジェネレータ、圧縮器、及びタービンは、同じ軸線上に配置される。
【0080】
一態様では、圧縮器内の作業流体の圧縮は、断熱、中間冷却、又は等温である。
【0081】
一態様では、タービン内の作業流体の膨張は、断熱、中間加熱、又は等温である。
【0082】
一態様では、補助熱貯蔵部(熱エネルギー貯蔵部、TES)が、圧縮器及びタービンに接続される。
【0083】
一態様では、補助熱蓄積部は、圧縮器内で充電相中に、1つ又は複数の中間冷却による中間冷却圧縮を実現するように構成される。
【0084】
一態様では、補助熱蓄積部は、タービン内で放電相中に、1つ又は複数の中間加熱による中間加熱膨張を実行するように構成される。
【0085】
一態様では、充電相で複数の中間冷却を実行し、これらの中間冷却の一部のみの熱(補助熱蓄積部内に蓄積)を使用して、中間冷却の数より少ない数の中間加熱を実行することが想定される。
【0086】
一態様では、充電相で複数の中間冷却を実行し、放電相で、最後の中間冷却のみの熱(補助熱蓄積部内に蓄積)を使用することによって、単一の中間加熱を実行することが想定される。
【0087】
本出願人は、追加の熱源による作業流体のさらなる加熱と、中間冷却及び上述した中間加熱との組合せにより、ラウンドトリップ効率(RTE)を100%より大きい値まで増大させることが可能になることを確認した。
【0088】
一態様では、一次熱交換器は、固定若しくは移動層蓄熱器であり、又はそれを備える。
【0089】
一態様では、固定又は移動層蓄熱器は、作業流体によって包まれた少なくとも1つの熱質量を備える。
【0090】
一態様では、固定又は移動層蓄熱器は、作業流体によって包まれておらず壁によって作業流体から分離された少なくとも1つの熱質量を備え、この壁は典型的に、圧力を収容することが可能な金属から作られており、したがって質量は雰囲気圧である。
【0091】
一態様では、熱質量は、一貫しない材料、任意選択で砂利又は金属又はセラミック球を含む。
【0092】
一態様では、熱質量は、一貫した材料、任意選択でセメント又はセラミック又は金属を含む。
【0093】
一態様では、一次熱交換器は、一次流体によって交差される一次回路、又はいくつかの一次流体によって交差されるいくつかの一次回路を備え、一次流体は、任意選択で水、油、又は塩である。
【0094】
一態様では、一次回路は、作業流体と熱を交換するように構成された熱交換部分を備える。
【0095】
一態様では、一次回路は、前記一次流体のために、少なくとも1つの一次貯蔵チャンバ、好ましくは2つの貯蔵チャンバを備える。
【0096】
一態様では、一次回路は、装置/プロセスの充電形態/相で作業流体から熱を除去した後に蓄積される高温の一次流体のための高温の一次貯蔵チャンバと、装置/プロセスの放電形態/相で作業流体へ熱を伝達した後に蓄積される低温の一次流体のための低温の一次貯蔵チャンバとを備える。
【0097】
一態様では、一次回路は固定層蓄熱器を備えており、固定層蓄熱器は、好ましくは雰囲気圧で動作し、一次流体によって包まれる。
【0098】
一態様では、二次熱交換器は、二次流体によって交差される二次回路を備え、二次流体は、任意選択で空気又は水である。
【0099】
一態様では、二次回路は、作業流体によって包まれるように構成された熱交換部分を備える。
【0100】
一点では、二次回路は、この二次流体のための少なくとも1つの二次貯蔵チャンバを備える。
【0101】
一態様では、二次回路は、装置/プロセスの充電形態/相で作業流体から熱を除去した後に蓄積される高温二次流体のための高温二次貯蔵チャンバと、装置/プロセスの放電形態/相で作業流体へ熱を解放した後に蓄積される低温二次流体のための低温二次貯蔵チャンバとを備える。
【0102】
一態様では、二次熱交換器は、一次熱交換器と前記タンクとの間に位置する。
【0103】
一態様では、二次熱交換器は、タンクに一体化される。
【0104】
一態様では、二次熱交換器は、二次流体、典型的には水又は空気の流量及び/又は温度を調節するためのシステムを備えており、このシステムは、システムが未臨界条件で動作するとき、貯蔵タンク内の圧力を特定の限度内で調節することが可能である。
【0105】
温度制御は、雰囲気から熱を加えること、又は雰囲気へ熱を除去することによって、1日の異なる時間における空気及び水の周囲温度の正常変動も利用して実施することができる。
【0106】
一態様では、二次熱交換器は、1つのチャンバ又は2つのチャンバからなる水で満杯の容器の中に配置される。前記二次熱交換器内では、好ましくは浸漬ポンプによって水を循環させることによって、作業流体が充電相中に凝縮され、放電相で蒸発させられる。前記容器の2つのチャンバは、充電相での凝縮のために水がそこから循環するチャンバが常に周辺環境によって冷却され、放電相での蒸発のために水がそこから循環するチャンバが常に周辺環境によって加熱され、場合によりカバーによって温かく維持されるように、カバーされてもカバーされなくてもよく、環境と連通しても連通しなくてもよい。
【0107】
一態様では、上記は、すべてシステムのRTEを改善するために、対流及び放射式に環境との熱の吸収又は熱の解放を行う特別な交換システムによってさらに支持することができる。このように、システムが未臨界条件下で動作しているときの圧力調整が実行される。
【0108】
一態様では、二次熱交換器の熱交換部分は、タンク内に収容される。
【0109】
一態様では、二次回路は、100℃を下回る温度、任意選択で0℃~50℃の温度、任意選択で周囲温度に近い温度で、充電形態で作業流体から熱を除去するように、又は放電形態で作業流体へ熱を伝達するように構成される。
【0110】
一態様では、充電形態/相で、二次熱交換器は周囲温度に近い条件で機能するため、流体が周囲温度に近い臨界温度を有することにより、二次熱交換器による熱除去相を、雰囲気との直接的又は間接的な交換相によって支援することが可能になる。
【0111】
一態様では、放電形態/相で、二次熱交換器は周囲温度に近い条件で機能するため、流体が周囲温度に近い臨界温度を有することにより、二次熱交換器による熱供給相を、雰囲気との直接的又は間接的な交換相によって支援することが可能になる。
【0112】
一態様では、タンクは球形又は実質上球形である。
【0113】
一態様では、タンクは円筒形又は実質上円筒形である。
【0114】
一態様では、タンクの外壁は金属から作られる。
【0115】
一態様では、タンク内に蓄積している作業流体の温度は0℃~100℃である。
【0116】
一態様では、作業流体がタンク内に蓄積される圧力は、10バール~150バール、好ましくは10バール~150バール、好ましくは50~100バール、好ましくは65~85バールである。
【0117】
一態様では、タンク内に収容されているときの作業流体の密度と、筐体内に収容されているときの作業流体の密度との比は、200~500である。
【0118】
一態様では、二次熱交換器及び一次熱交換器は、作業流体の超臨界変換を行うように構成され、したがって前記作業流体は、超臨界相でタンク内に蓄積される。
【0119】
一態様では、T-S図で作業流体が臨界温度及びアンドリュースのベルを上回る温度になるまで、一次熱交換器内で作業流体から熱を除去することが提供される。
【0120】
一態様では、作業流体を超臨界相にしてアンドリュースのベルの右側部分を追従させることによって、二次熱交換器内で作業流体から熱を除去することが提供される。
【0121】
一態様では、タンクは、超臨界相の作業流体のための可変容積部を有する第1のチャンバと、非圧縮性の流体、任意選択で水を収容する補償回路と流体連通している可変容積部を有する第2のチャンバとに、タンクを内部で分離するように構成された分離膜を備える。
【0122】
一態様では、補償回路は、タンクの第1の可変容積部チャンバ内に収容されている超臨界作業流体内で実質上定圧を維持するように、又は少なくとも常に特定の最小値を上回る状態で作業流体圧力を維持するように構成される。
【0123】
一態様では、補償回路は、非圧縮性の流体のための補助タンクを備えており、この補助タンクは、任意選択で雰囲気圧であり、第2の可変容積部チャンバと流体連通している。
【0124】
一態様では、補償回路は、補助ジェネレータに接続された補助タービンを備えており、この補助タービンは、装置/プロセスの充電形態/相で第2の可変容積部チャンバからくる非圧縮性の流体によって回転させられるように構成される。
【0125】
一態様では、充電相にある補償回路の液体(典型的に、水)の膨張エネルギーは、圧縮器による貯蔵システムの充電エネルギーの1/100~7/100である。
【0126】
一態様では、補償回路は、補助モータに接続されたポンプを備えており、このポンプは、装置/プロセスの放電形態/相で非圧縮性の流体を補助タンクから第2の可変容積部チャンバ内へ圧送するように構成される。
【0127】
一態様では、放電相にある補償回路の液体(典型的に、水)の圧送エネルギーは、タービンによる貯蔵システムの放電エネルギーの1/100~7/100である。
【0128】
一態様では、二次熱交換器及び一次熱交換器は、作業流体の未臨界変換を行うように構成され、したがって作業流体は、液相でタンク内に蓄積される。
【0129】
一態様では、T-S図で作業流体が臨界温度を下回る温度及びアンドリュースのベルの左側部分の点になるまで、一次熱交換器内で作業流体から熱を除去することが提供される。
【0130】
一態様では、作業流体が液相に到達するまで、作業流体を飽和蒸気区間に通すことによって、二次熱交換器内で作業流体から熱を除去することが提供される。
【0131】
さらなる特徴及び利点は、本発明によるエネルギー貯蔵のためのプラント及びプロセスの排他的ではなく好ましい実施形態の詳細な説明においてより詳細に示す。
【0132】
この説明は、限定ではなく図示を目的として提供される添付の図面を参照して以下に記載される。
【図面の簡単な説明】
【0133】
【
図1】本発明によるエネルギー貯蔵プラントの一実施形態を概略的に示す図である。
【
図3】
図1又は
図2のプラントで実施される本発明によるプロセスを示すT-S図である。
【
図4】本発明によるエネルギー貯蔵プラントのさらなる実施形態を示す図である。
【
図6】
図4又は
図5のプラントで実施される本発明によるプロセスを示すT-S図である。
【
図7】
図4又は
図5のプラントで実施される本発明によるプロセスの一部を示すT-Q図である。
【
図8】
図2のプラントの一部分の変形形態を示す図である。
【
図9】
図2のプラントの一部分の変形形態を示す図である。
【
図10】
図2のプラントの一部分の変形形態を示す図である。
【
図13】本発明によるエネルギー貯蔵プラントのさらなる実施形態を示す図である。
【発明を実施するための形態】
【0134】
添付の図を参照すると、参照番号1によって、本発明によるエネルギーの貯蔵(エネルギー貯蔵)のためのプラントが全体的に示されている。
【0135】
プラント1は、例えば、大気以外の作業流体とともに動作する。
【0136】
例えば、プラント1は、二酸化炭素CO2、六フッ化硫黄SF6、亜酸化窒素N2Oを含む群から選択された作業流体とともに動作する。以下の説明では、記載するプラント1と組み合わせて使用される作業流体は、二酸化炭素CO2である。
【0137】
プラント1は、密閉サイクル熱力学的変換(TTC)をまず一方向に実行して充電形態/相になり、次いで逆方向に実行して放電形態/相になるように構成され、プラント1は、充電形態で熱及び圧力を貯蔵し、放電形態で電気エネルギーを生成する。
【0138】
図1を参照すると、プラント1は、単一のモータジェネレータ4のシャフトに機械的に接続されたタービン2及び圧縮器3を備える。モータジェネレータ4、圧縮器3、及びタービン2は、同じ軸線上に配置される。タービン2のシャフトは、例えばクラッチタイプの接続デバイスによって、モータジェネレータ4のシャフトの一端に結合されており、この接続デバイスは、コマンドに応じてタービン2をモータジェネレータ4に接続すること及びタービン2をモータジェネレータ4から切断することを可能にする。同様に、圧縮器3のシャフトは、例えばクラッチタイプの接続デバイスによって、モータジェネレータ4のシャフトの他端に結合されており、この接続デバイスは、コマンドに応じて圧縮器3をモータジェネレータ4に接続すること及び圧縮器3をモータジェネレータ4から切断することを可能にする。ここに示されていない他の実施形態では、モータは圧縮器3に堅固に接続され、ジェネレータはタービン2堅固に接続される。そのような場合、モータは圧縮器3に恒久的に接続され、ジェネレータはタービン2に恒久的に接続される。
【0139】
プラント1は筐体5を備えており、筐体5は、好ましくは、可撓性材料、例えばPVCで被覆されたポリエステル布から作られた圧力バルーンによって画定される。圧力バルーンは、地表に配置されており、大気に外部で接触している。圧力バルーンは、雰囲気圧又は実質上雰囲気圧で、すなわち雰囲気と圧力の平衡状態で、作業流体を収容するように構成された容積部の範囲を内側で定める。筐体5はまた、過剰圧力が低い又は過剰圧力がないガス計量器又は任意の他のガス貯蔵システムとして設計することができる。
【0140】
第1のパイプライン6が、筐体5と圧縮器3の入口3aとの間及び筐体5とタービン2の出口2bとの間に生じ、筐体5の内部容積部を前記圧縮器3及びタービン2に接続する。示されていないバルブ又はバルブシステムを、第1のパイプライン6に動作可能に配置することができ、筐体5を圧縮器3の入口3aに、又はタービン2の出口2bを筐体5に、交互に流体連通させる。
【0141】
プラント1は、圧縮器3の出口3b又はタービン2の入口2aと選択的に流体連通することができる一次熱交換器7を備える。この目的で、第2のパイプライン8が、タービン2の入口2aと一次熱交換器7との間及び圧縮器3の出口3bと一次熱交換器7との間に生じる。示されていないバルブ又はバルブシステムが、第2のパイプライン8に動作可能に位置し、一次熱交換器7をタービン2の入口2aに、又は圧縮器3の出口3bを一次熱交換器7に接続する。好ましい実施形態では、1つのバルブ又はバルブシステムのみが第2のパイプライン8に位置する。
【0142】
タンク9が、一次熱交換器7と流体連通しており、液相又は超臨界相の作業流体を貯蔵するように構成される。
【0143】
タンク9は、好ましくは、金属から作られ、球形の外壁を有する。
【0144】
二次熱交換器10が、一次熱交換器7とタンク9との間又は前記タンク9内で動作上活動状態にあり、タンク9内に蓄積されている又は蓄積相にある作業流体に対して動作するように構成される。
図1の実施形態に示す内容によれば、二次熱交換器10は、タンク9内に収容された独自の熱交換部分11を有するという意味で、タンク9内に一体化されており、前記タンク9内に収容されている作業流体によって接触されるように構成される。第3のパイプ12が、一次熱交換器7とタンク9との間に生じ、前記一次熱交換器7を前記タンク9及び前記二次熱交換器10に流体連通させる。
【0145】
図1の概略図で、プラント1はまた、筐体5と圧縮器2との間及び筐体5とタービン2との間に動作可能に配置された追加の熱交換器13を備えることができ、場合により、タービン2の出口2bに接続された第1のパイプライン6の支流に位置決めされたクーラ13aを備えることができる。
【0146】
プラント1はまた、同じプラント1の異なる要素に動作可能に接続された示されていない制御ユニットを備えており、制御ユニットは、その動作を管理するように構成/プログラムされる。
【0147】
プラント1は、充電形態若しくは放電形態で動作するように、又はエネルギー充電相並びに放電及びエネルギー生成相を含むプロセスを実行するように構成される。
【0148】
充電形態で、プラント1は第1の状態から開始し、第1の状態では、気体状態の作業流体(CO
2)がすべて、雰囲気圧又は実質上雰囲気圧、及び周囲温度に実質上等しい温度で、筐体5内に収容されている(
図3のT-S図の点A)。筐体5は、バルブシステムを介して、圧縮器3の入口3aに接続されるが、タービン2の出口2bとの連通は阻止される。加えて、バルブシステムによって、一次熱交換器7が圧縮器3の出口3bと流体連通しており、タービン2の入口2aとの連通は阻止される。モータジェネレータ4は、圧縮器3のみに結合され、タービン2(静止状態にある)から切り離されており、筐体5からくる作業流体を圧縮するように圧縮器3を駆動するためのモータとして機能する。
【0149】
圧縮器3に入る前に、作業流体は追加の熱交換器13を通過し、追加の熱交換器13は、作業流体を予熱するためのヒータとして作用する(
図3のT-S図の点B)。作業流体は次いで、圧縮器3内で圧縮されて加熱される(
図3のT-S図の点C)。作業流体は次いで、一次熱交換器7を通って流れ、一次熱交換器7は、圧縮された作業流体から熱を除去して作業流体を冷却し(
図3のT-S図の点D)、作業流体から除去された熱エネルギーを貯蔵するためのクーラとして機能する。点Dで、作業流体は、作業流体の臨界温度より低い温度であり、わずかに過熱状態でアンドリュースのベルの左側の点、又はベルのわずかに外側である。この圧縮は、断熱、中間冷却、又は等温とすることができる。
【0150】
作業流体はタンク9に入り、タンク9内では、この構成でクーラとして機能する二次熱交換器10が、作業流体からさらなる熱を除去し、さらなる熱エネルギーを蓄積する。作業流体は、飽和蒸気区間を通過した後、液相に到達する(
図3のT-S図の点E)。したがって、タンク9は、その独自の臨界温度T
cより低い温度で液相の作業流体を蓄積する。この第2の状態で、液体状態の作業流体(CO
2、T
c=31℃)が、例えば20℃で、すべてタンク9内に収容される。したがって、二次熱交換器10及び一次熱交換器9は、作業流体の未臨界変換を実行するように構成され、したがって作業流体は、タンク9内に液相で蓄積される。
【0151】
放電形態で、プラント1は第2の状態から開始する(
図3のT-S図の点F)。筐体5は、バルブシステムを介して、タービン2の出口2bと連通するが、圧縮器3の入口3aとの連通は阻止される。加えて、バルブシステムによって、一次熱交換器7がタービン2の入口2aと流体連通しており、圧縮器3の出口3bとの連通は阻止される。モータジェネレータ4は、タービン2のみに結合され、圧縮器3(静止状態にある)から切り離されており、膨張した作業流体によって駆動されるタービン2によって回転駆動されるジェネレータとして機能する。
【0152】
二次熱交換器10は、ヒータとして機能し、充電形態で前に蓄積されていた熱の一部をタンク9内の作業流体へ伝達する。作業流体は、飽和蒸気区間を通過した後、蒸気相に到達する(
図3のT-S図の点G)。作業流体は一次熱交換器7を通過し、一次熱交換器7は次にヒータとして機能し、充電形態で前に蓄積されていた追加の熱を作業流体へ解放して作業流体を加熱する(
図3のT-S図の点H)。
【0153】
加熱された作業流体はタービン2に入り、膨張して冷却され(
図3のT-S図の点I)、タービン2の回転を引き起こす。加熱された作業流体によって回転させられたタービン2はモータジェネレータ4を駆動し、モータジェネレータ4はジェネレータとして機能して、電気エネルギーを生成する。タービン内の作業流体の膨張は、断熱、中間加熱、又は等温とすることができる。
【0154】
タービン2からくる作業流体は、追加の熱交換器13内で冷却され(
図3の
図T-Sの点J)、雰囲気圧又は実質上雰囲気圧で筐体5へ戻る。この相の追加の熱交換器13は、追加の熱エネルギーをそれぞれの追加の熱エネルギー貯蔵デバイスに貯蔵し、この追加の熱エネルギーは、次の充電相で作業流体を予熱するために使用される。
【0155】
図3に示す変換で、二次回路20は、例えば約20℃の周囲温度に近い温度で、充電形態で作業流体から熱を除去するように、又は放電形態で作業流体へ熱を伝達するように構成される。
【0156】
充電形態/相及び放電形態/相の両方で、二次熱交換器10は周囲温度に近い条件で動作するため、流体が周囲温度に近い臨界温度を有することにより、二次熱交換器による熱除去相及び/又は熱供給相を、雰囲気との直接的又は間接的な交換相によって支援することが可能になる。
【0157】
例えば、タンク9内に蓄積されている作業流体(CO2)の温度は24℃であり、タンク9内に蓄積されている作業流体の圧力は65バールである。25℃及び雰囲気圧でのCO2の密度は、約1.8kg/m3である。タンク9内のCO2の密度は、約730kg/m3である。したがって、示されている条件下でタンク9内に収容されているときの作業流体の密度と、雰囲気条件下で筐体5内に収容されているときの同じ作業流体の密度との比は約400である。この点で、CO2の代わりに、タンク9内に65バール及び24℃で貯蔵された大気が使用された場合、その密度は78kg/m3にしかならず、理論的に必要とされるタンク9の容積部は、約10倍大きくなるはずであることに留意されたい。
【0158】
例えば、100MWhのエネルギーを貯蔵することが可能な本発明によるプラント1の場合、圧力バルーンの容積部は約400000m3であり、タンクの容積部は約1000m3である。
【0159】
図2の変形形態は、例えば金属球からなる熱質量14を備えるタイプの一次熱交換器7、すなわち固定層蓄熱器を示す。充電形態/相で、熱質量14は、高温の圧縮された作業流体によって包まれており、この作業流体は、金属球へ熱を伝達し、金属球は熱エネルギーを貯蔵する。放電形態/相で、熱質量14は、低温の作業流体によって包まれており、この作業流体は、金属球から熱を吸収して加熱される。示されていない変形形態では、蓄熱器はまた、移動層タイプとすることができる。したがって、一次熱交換器7は熱貯蔵部(熱エネルギー貯蔵部、TES)である。
【0160】
図2に示す固定層蓄熱器の代わりに、他のタイプの蓄熱器を使用することもできる。
【0161】
例えば、可能な一次熱交換器7が
図11に示されている。
図11に示すように、一次熱交換器7は、水、油、又は塩などの一次流体によって交差される一次回路15を備える。一次回路15は、作業流体と熱を交換するように構成された熱交換部分16を備える。例えば、上記に示す概略的な実施形態では、第2のパイプライン8のうち作業流体が流れる区間は、熱交換区間16を通過し、したがって一次流体が前記区間に触れる。一次回路15は、装置/プロセスの充電形態/相で作業流体から熱を除去した後に蓄積される高温の一次流体のための高温の一次貯蔵チャンバ17と、装置/プロセスの放電形態/相で作業流体へ熱を伝達した後に蓄積される低温の一次流体のための低温の一次貯蔵チャンバ18とを備える。熱交換部分16は、高温の一次貯蔵チャンバ17と一次低温貯蔵チャンバ18との間に配置される。装置/プロセスの充電形態/相で、一次流体は、低温の一次貯蔵チャンバ18から高温の一次貯蔵チャンバ17へ流れ、作業流体から熱を除去する。装置/プロセスの放電形態/相で、一次流体は、高温の一次貯蔵チャンバ17から低温の一次貯蔵チャンバ18へ流れ、作業流体から熱を解放する。
【0162】
異なる可能な一次熱交換器7が
図12に示されている。
図12に示す内容によれば、一次熱交換器7の一次回路15は、一次回路15のうち第2のパイプライン8を通過する作業流体によって包まれた区間によって画定された熱交換部分16を備える。一次回路15はまた、固定層蓄熱器19を備えており、固定層蓄熱器19は、好ましくは雰囲気圧で動作し、好ましくは上記のものと同様に、一次流体によって包まれる。
【0163】
図2の変形形態は、追加の熱交換器13を備えておらず、したがって対応するT-S図は示されていないが、
図3に対して点B及びJを示さない。
【0164】
図2の変形形態はまた、二次熱交換器10の特別な構造を有する。示されている二次熱交換器10は、空気又は水などの二次流体によって交差される二次回路20を含む。二次回路20は、タンク9内に収容された熱交換部分11に加えて、装置/プロセスの充電形態/相で作業流体から熱を除去した後に蓄積される二次高温流体のための二次高温貯蔵チャンバ21と、装置/プロセスの放電形態/相で作業流体へ熱を解放した後に蓄積される二次低温流体のための二次低温貯蔵チャンバ22とを備える。上述したチャンバ21、22はまた、上述した熱交換部分11に加えて、ラジエータ23を介して互いに接続されており、ラジエータ23は、夜間に二次流体を冷却し、日中に二次流体を加熱するファン24及び再循環ダクトを備える。
【0165】
図8、
図9、及び
図10は、タンク9に付随する二次熱交換器10の他の変形形態を示す。
【0166】
図8で、二次回路20は、熱交換部分11に加えて、追加の熱交換部分25を備えており、追加の熱交換部分25を介して、例えば空気又は海水と熱を交換する。
【0167】
図9で、二次回路20は、補助冷却器27に動作可能に接続された水/氷を有する二次タンク26又は別の2相システムを備える。
【0168】
図10で、二次回路20は、いくつかのチャンバ28a、28b、28cからなる水で満杯の容器内に位置する。
図10に示す実施形態は、高温の水の貯蔵のためのチャンバ28aと、低温の水の貯蔵のためのチャンバ28bと、他のチャンバと流体連通して二次回路20の一部を収容するチャンバ28cとを示す。二次回路20内の二次流体は、容器内の水によって冷却又は加熱される。作業流体は、好適に循環される水によって、好ましくは浸漬ポンプ及び二次流体によって、充電相で凝縮され、放電相で蒸発する。前記容器のチャンバ28は、充電中の凝縮のために水がそこから循環するチャンバが常に周辺環境によって冷却され、放電中の蒸発のために水がそこから循環するチャンバが常に周辺環境によって加熱され、場合によりカバーによって温かく維持されるように、適当なパネル29によってカバーされてもカバーされなくてもよく、環境と連通しても連通しなくてもよい。上記は、すべてシステムのRTEを改善するために、対流式及び放射式の両方で環境との熱の吸収又は熱の解放を行う特別な交換システムによってさらに支持することができる。
【0169】
図4及び
図5の実施形態は、二次熱交換器10が一次熱交換器7とタンク9との間に配置され、すなわちタンク9内に一体化されていないことから、前述したものとは構造的に異なる。二次熱交換器10は、第3のパイプライン12上に並んでいる。
図4は、汎用の二次熱交換器10を概略的に示す。
図5は、二次熱交換器10の概略的な設計例を示す。
【0170】
図5に示す二次熱交換器10は、二次流体、例えば水によって交差される二次回路20を備える。二次回路20は、第3のパイプライン12を通過する作業流体によって包まれた熱交換部分11を有し、熱交換部分11は、作業流体と熱を交換するように構成される。
【0171】
図5の二次回路20は、装置/プロセスの充電形態/相で作業流体から熱を除去した後に蓄積される二次高温流体のための二次高温貯蔵チャンバ21と、装置/プロセスの放電形態/相で作業流体へ熱を解放した後に蓄積される二次低温流体のための二次低温貯蔵チャンバ22とを備える。
【0172】
熱交換部分11は、二次高温貯蔵チャンバ21と二次低温貯蔵チャンバ22との間に位置する。装置/プロセスの充電形態/相で、二次流体は、二次低温貯蔵チャンバ22から二次高温貯蔵チャンバ21へ流れて、作業流体から熱を除去する。装置/プロセスの放電形態/相で、二次流体は、二次高温貯蔵チャンバ21から二次低温貯蔵チャンバ21へ流れて、作業流体から熱を解放する。二次回路20はまた、熱交換部分11内の二次流体の流量及びこの二次流体と熱を交換する作業流体の温度変動を調整/変更するために、1つ又は複数の中間の二次貯蔵チャンバ30を備える。
図5は、2つの中間の二次貯蔵チャンバ30を示す。
【0173】
図4及び
図5の実施形態は、タンク9が、超臨界相の作業流体のための可変容積部32を有する第1のチャンバと、水を収容する補償回路34と流体連通している可変容積部33を有する第2のチャンバとに、タンク9を内部で分離するように構成された分離膜31を備えることから、また前述したものとは構造的に異なる。補償回路34は、タンク9の第1の可変容積部チャンバ32内に収容されている二次熱交換器20からくる超臨界作業流体内で実質上定圧を維持するように構成される。
【0174】
補償回路34は、雰囲気圧の水のための補助タンク35を備えており、補助タンク35は、適当なパイプラインを介して、タンク9の下部及び第2の可変容積部チャンバ33と流体連通している。補助タービン36が、第2の可変容積部チャンバ33と連通している入口と、補助タンク35に接続された出口とを有する。補助タービン36は、補助ジェネレータ37に接続されており、装置/プロセスの充電形態/相で第2の可変容積部チャンバ33からくる水によって回転させられるように構成される。ポンプ38が、補助タンク35と連通している入口と、第2の可変容積部チャンバ33に接続された出口とを有する。ポンプ38は、補助モータ39に接続されており、装置/プロセスの放電形態/相で水を補助タンク35から第2の可変容積部チャンバ33内へ圧送するように構成される。
【0175】
【0176】
図7は、
図5の実施形態によって実施される熱力学的変換の一部に関するT-Q図を示す。
【0177】
図4及び
図5の実施形態の二次熱交換器10及び一次熱交換器7は、作業流体の超臨界変換を行うように構成され、したがって前記作業流体は、超臨界相でタンク内に蓄積される。実際には、
図3に示したものとは異なり、一次熱交換器7は、臨界温度より高くアンドリュースのベルを上回る温度になるまで(
図6の点D)、作業流体から熱を除去する。その後、二次熱交換器10は作業流体を超臨界相(点E)にし、作業流体はアンドリュースのベルの右側をたどる。
図7は、充電相中の点Dから点Eへの作業流体の温度の低下、及び
図5の二次熱交換器10の二次作業流体の対応する温度の上昇(点U、V、W、Z)を示す。同じ
図7はまた、放電相中の点Fから点Gへの作業流体の温度の上昇、及び
図5の二次熱交換器10の二次作業流体の対応する温度の低下(点Z、W、V、U)を示す。
【0178】
例えば、タンク9内に超臨界相で蓄積されている作業流体(CO2)の温度は25℃であり、タンク9内に超臨界相で蓄積されている作業流体の圧力は100バールである。25℃及び雰囲気圧でのCO2の密度は、約1.8kg/m3である。タンク9内のCO2の密度は、約815kg/m3である。したがって、示されている条件下でタンク9内に収容されているときの作業流体の密度と、雰囲気条件下で筐体5内に収容されているときの同じ作業流体の密度との比は約450である。
【0179】
図10の二次熱交換器の構造は、
図4及び
図5の実施形態でも採用することができることに留意されたい。
【0180】
加えて、二次熱交換器は、二次流体、典型的には水又は空気のための流量及び/又は温度制御システムを備えることができ、この流量及び/又は温度制御システムは、システムが未臨界条件で動作するとき、貯蔵タンク内の圧力を特定の限度内で調節することが可能である。温度制御は、例えば、雰囲気から熱を加えること、又は雰囲気へ熱を除去することによって、1日の異なる時間における空気及び水の周囲温度の正常変動も利用して実施することができる。
【0181】
CO2を作業流体として使用する示されている実施形態では、回路内で起こり得る炭酸の形成を避けるために、好ましくは、CO2脱水システム、例えばゼオライトによる除湿器も存在する。
【0182】
図13は、プラント1のさらなる変形形態を示す。
図13は、
図1に共通する主要要素、すなわちタービン2、圧縮器3、モータジェネレータ4、筐体5、一次熱交換器7(TES、熱貯蔵部)、タンク9、及び二次熱交換器10を示す。ここに示されているプラント1はまた、追加の熱交換器13を備える。
図4に示す実施形態と同様に、二次熱交換器10は、一次熱交換器7とタンク9との間に位置しており、すなわちタンク9内に一体化されていない。
図2に示すプラントと同様に、二次熱交換器10は、二次流体、例えば水によって交差される二次回路20を備える。二次回路20は、熱交換部分11に加えて、装置/プロセスの充電形態/相で作業流体から熱を除去した後に蓄積される二次高温流体、及び装置/プロセスの放電形態/相で作業流体へ熱を解放した後に蓄積される二次低温流体のための二次貯蔵チャンバ200を備える。上述した二次貯蔵チャンバ200はまた、再循環ダクト上に配置された1つ又は複数のファン24を備えるラジエータ23と組み合わせられ、ラジエータ23は、例えば、夜間に二次流体を冷却し、日中に二次流体を加熱する。上述した二次貯蔵チャンバ200はまた、対応する回路210を介して追加の熱交換器13に接続される。
【0183】
この実施形態では、プラント1はまた、追加の熱源230から熱を受け取る少なくとも1つの追加の熱交換器220を備える。追加の熱交換器220は、第2のパイプライン8上で、タービン2の入口2aと一次熱交換器7との間に位置する。追加の熱源230は、例えば排他的ではないが、太陽光源(例えば、太陽光場)、産業回収(廃熱回収)から出る残留熱、ガスタービンからの排熱などである。追加の熱源230は、放電相中に追加の熱を提供する。作業流体が放電相中にタービン2に入る直前に追加の熱源230及び追加の熱交換器220を介して運ばれる温度は、充電相中の圧縮の終了時に得られる作業流体の温度より高い。例えば、作業流体が追加の熱源230及び追加の熱交換器220によって運ばれる温度は約100℃であるが、200℃又は300℃又は400℃にもなり、これは圧縮の終了時の作業流体の温度より高い。
【0184】
プラント1はまた、圧縮器3内で(充電相中)、中間冷却圧縮(1つ又は複数の中間冷却による)を実現し、タービン2内で(放電相中)、中間加熱膨張(1つ又は複数の中間加熱による)を実現するために、適当な回路を介して圧縮器2及びタービン2に接続された補助熱貯蔵部240(熱エネルギー貯蔵部、TES)を備える。中間冷却圧縮中に補助熱蓄積部240内に蓄積される熱は、全体的又は部分的に、中間加熱膨張を実現するために使用される。
【0185】
図13のプラントによって実行されるプロセスの一実施形態では、充電相で中間冷却を実施しないこと、及び放電相で中間加熱を実施しないこと、並びに放電相で追加の熱源230及び追加の熱交換器220を介して追加の熱を提供することが提供される。
【0186】
図13のプラントによって実行されるプロセスの変形形態では、放電相で追加の熱源230及び追加の熱交換器220を介して追加の熱を提供することに加えて、充電相における1つ又は複数の中間冷却、及び放電相における等しい数の中間加熱を行うことが提供される。
【0187】
図13のプラントによって実行されるプロセスのさらなる実施形態では、追加の熱源230及び追加の熱交換器220による追加の熱を含む熱に加えて、最後の中間冷却の熱(補助熱蓄積部240内に蓄積)のみを使用して、充電相で複数の中間冷却を実施すること、及び放電相で単一の中間冷却を実施することが提供される。補助熱貯蔵部240に貯蔵されている残りの中間冷却からくる熱は、他の目的、例えばコージェネレーションに使用することができる。
【符号の説明】
【0188】
1 エネルギー貯蔵プラント
2 タービン
2a タービン入口
2b タービン出口
3 圧縮器
3a 圧縮器入口
3b 圧縮器出口
4 モータジェネレータ
5 筐体
6 第1のパイプライン
7 一次熱交換器
8 第2のパイプライン
9 タンク
10 二次熱交換器
11 二次熱交換器の熱交換部分
12 第3のパイプライン
13 追加の熱交換器
13a クーラ
14 熱質量
15 一次回路
16 一次回路の熱交換部分
17 一次高温貯蔵チャンバ
18 一次低温貯蔵チャンバ
19 固定層蓄熱器
20 二次回路
21 二次高温貯蔵チャンバ
22 二次低温貯蔵チャンバ
23 ラジエータ
24 ファン
25 さらなる熱交換部分
26 二次タンク
27 補助冷却器
28a、28b、28c 水容器チャンバ
29 パネル
30 中間二次貯蔵チャンバ
31 分離膜
32 第1の可変容積部チャンバ
33 第2の可変容積部チャンバ
34 補償回路
35 補助タンク
36 補助タービン
37 補助ジェネレータ
38 ポンプ
39 補助モータ
200 二次貯蔵チャンバ
210 追加の熱交換器回路
220 追加の熱交換器
230 追加の熱源
240 補助熱貯蔵部
【国際調査報告】