(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-03-31
(54)【発明の名称】磁気によりガイドされた材料取扱いロボット
(51)【国際特許分類】
H01L 21/677 20060101AFI20220324BHJP
B25J 5/02 20060101ALI20220324BHJP
B65G 54/02 20060101ALI20220324BHJP
B65G 49/07 20060101ALI20220324BHJP
【FI】
H01L21/68 A
B25J5/02 A
B65G54/02
B65G49/07 D
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021547683
(86)(22)【出願日】2020-02-12
(85)【翻訳文提出日】2021-10-11
(86)【国際出願番号】 US2020017915
(87)【国際公開番号】W WO2020167939
(87)【国際公開日】2020-08-20
(32)【優先日】2019-02-14
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】514062448
【氏名又は名称】パーシモン テクノロジーズ コーポレイション
【氏名又は名称原語表記】PERSIMMON TECHNOLOGIES, CORP.
【住所又は居所原語表記】200 Harvard Mill Square Wakefield, MA 01880 US
(71)【出願人】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100127188
【氏名又は名称】川守田 光紀
(72)【発明者】
【氏名】ホシェク マルチン
(72)【発明者】
【氏名】サー スリパティ
(72)【発明者】
【氏名】フラッシュ スコット
【テーマコード(参考)】
3C707
3F021
5F131
【Fターム(参考)】
3C707AS05
3C707AS24
3C707BS15
3C707CS04
3C707HS26
3C707HS27
3C707NS13
3F021AA01
3F021BA02
3F021CA01
3F021DA02
3F021DA04
3F021DA07
5F131AA02
5F131AA03
5F131AA12
5F131AA32
5F131BB03
5F131BB04
5F131BB05
5F131CA12
5F131CA31
5F131DA02
5F131DA32
5F131DA33
5F131DA36
5F131DB04
5F131DB52
5F131DB62
5F131DB72
5F131DB76
5F131DB86
5F131DB87
5F131DB95
5F131DD03
5F131DD33
5F131DD43
5F131DD56
5F131DD92
5F131JA08
5F131JA12
5F131JA33
5F131KA02
5F131KA12
5F131KA34
5F131KA35
5F131KA47
5F131KA72
5F131KB12
5F131KB32
5F131KB58
(57)【要約】
その上で基板を支持するように構成された第1のデバイスと、前記第1のデバイスが接続された第1の搬送機構と、を備える装置。前記第1の搬送機構は、レール又は磁気浮上ガイドと、前記レール又は磁気浮上ガイドの上方に、前記第1のデバイスと前記レール又は磁気浮上ガイドとの間に隙間を空けて、前記第1のデバイスを垂直に置くように構成された磁気システムと、前記レール又は磁気浮上ガイドに沿って前記第1のデバイスを動かすように構成されたリニアアクチュエータと、を備える。前記磁気システムは、前記第1のデバイスの第1の側の第1の角部にある第1の電磁アクチュエータと、前記第1のデバイスの前記第1の側の第2の角部にある第2の電磁アクチュエータと、前記第1のデバイスの対向する第2の側にあり、前記第1のデバイスの3つの側の角部に近接配置されない第3の電磁アクチュエータと、を備える。【選択図】
図20
【特許請求の範囲】
【請求項1】
その上で基板を支持するように構成された第1のデバイスと、
前記第1のデバイスが接続された第1の搬送機構と、
を備える装置であって、
前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、
前記第1の搬送機構は、
・ 少なくとも2つのガイドと、
・ 前記少なくとも2つのガイドの上方に、前記第1のデバイスと前記少なくとも2つのガイドとの間に隙間を空けて、前記第1のデバイスを垂直に置くように構成された磁気システムと、
・ 前記少なくとも2つのガイドに沿った前記経路に前記第1のデバイスを動かすように構成されたリニアアクチュエータと、を備え、
前記磁気システムは、
・ 前記第1のデバイスの第1の側の第1の角部にある第1の電磁アクチュエータと、
・ 前記第1のデバイスの前記第1の側の第2の角部にある第2の電磁アクチュエータと、
・ 前記第1のデバイスの対向する第2の側にあり、前記第1のデバイスの3つの側の角部に近接配置されない第3の電磁アクチュエータと、
を備える、
装置。
【請求項2】
前記第1、第2、及び第3の電磁アクチュエータは、前記少なくとも2つのガイドの垂直上方に前記第1のデバイスを置く単一アクチュエータである、請求項1に記載の装置。
【請求項3】
前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のガイドとの間に相反する水平力を生成するように構成される、請求項1に記載の装置。
【請求項4】
前記第3の電磁アクチュエータは、前記第1のデバイスと前記第2のガイドとの間に水平力を生成するように構成されていない、請求項3に記載の装置。
【請求項5】
前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のガイドとの間に第1の方向に水平力を生成するように構成され、
前記装置は、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接する第4の電磁アクチュエータ及び第5の電磁アクチュエータをさらに備え、
前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のガイドとの間に反対の第2の方向に水平力を生成するように構成される、請求項1に記載の装置。
【請求項6】
前記第1のデバイスと前記第1のガイドとの間に第1の方向に水平力を生成するように構成される、前記第1のデバイスの前記第1の側に近接して配置された第4の電磁アクチュエータと、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接する第4の電磁アクチュエータ及び第5の電磁アクチュエータと、をさらに備え、
前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のガイドとの間に反対の第2の方向に水平力を生成するように構成される、請求項1に記載の装置。
【請求項7】
前記少なくとも2つのガイドは、前記第1のガイドと前記第2のガイドとの間に第3のガイドを備え、
前記装置は、前記第3のガイドに第4の電磁アクチュエータ及び第5の電磁アクチュエータをさらに含み、
前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第3のガイドとの間に相反する水平力を生成するように構成される、請求項1に記載の装置。
【請求項8】
前記第1のデバイスは、その中にロボットモータを有するロボット筐体と、前記ロボットモータに接続されたロボットアームと、を備え、
前記ロボットアームは前記ロボット筐体の外側に配置され、
前記ロボットアームはその上で前記基板を支持するように構成されたエンドエフェクタを備え、
前記第1の側は前記ロボット筐体の第1の側面であり、前記第2の側は前記ロボット筐体の第2の対向する側面である、請求項1に記載の装置。
【請求項9】
前記第1の電磁アクチュエータに第1のセンサを、前記第2の電磁アクチュエータに第2のセンサを、前記第3の電磁アクチュエータに第3のセンサを、さらに備え、
前記センサは、前記第1及び第2のガイドに対する前記第1のデバイスの位置を測定するように構成される、請求項1に記載の装置。
【請求項10】
前記装置とは個別のコントローラと通信するよう構成された無線通信デバイスをさらに備える、請求項1に記載の装置。
【請求項11】
前記無線通信デバイスは、前記コントローラへ、前記装置のモータアンプからの周期的な全ての運動軸の位置、前記装置の入出力モジュールからのデジタル及びアナログ入力のステータス、及び前記装置の前記入出力モジュールからのデジタル入力変更のタイミングを送信するように構成される、請求項10に記載の装置。
【請求項12】
前記無線通信デバイスは、前記コントローラへ、前記モータアンプからのデジタル及びアナログ入力のステータス、及び/又は前記モータアンプからのデジタル入力変更のタイミングを送信するように構成される、請求項11に記載の装置。
【請求項13】
前記無線通信デバイスは、前記コントローラから、モータアンプへの各運動軸についてのコマンドされた電流、及び入出力モジュールへのデジタル及びアナログ出力を設定するための情報を受信するように構成される、請求項10に記載の装置。
【請求項14】
前記無線通信デバイスは、前記コントローラから、前記モータアンプへのデジタル及びアナログ出力を設定するための情報を受信するように構成される、請求項13に記載の装置。
【請求項15】
第1のデバイスの第1の側の第1の角部に近接して第1の電磁アクチュエータを接続することと、
前記第1のデバイスの前記第1の側の第2の角部に近接して第2の電磁アクチュエータを接続することと、
前記第1のデバイスの対向する第2の側に近接して第3の電磁アクチュエータを接続することと、
前記第1のデバイスを少なくとも2つのガイドの上方に配置することと、
を含む方法であって、
前記第1の角部は前記第1のデバイスの3つの側にあり、前記第1のデバイスはその上で基板を支持するように構成され、前記第1の電磁アクチュエータは、前記第1のデバイスが接続された第1の搬送機構の磁気システムの一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、
前記第2の電磁アクチュエータは、前記磁気システムの一部であり、前記第2の角部は前記第1のデバイスの3つの側にあり、
前記第3の電磁アクチュエータは、前記磁気システムの一部であり、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に近接配置されず、
前記第1及び第2の電磁アクチュエータは前記ガイドのうちの第1のガイドに配置され、前記第3の電磁アクチュエータは前記ガイドのうちの異なる第2のガイドに配置される、
方法。
【請求項16】
前記第1、第2、及び第3の電磁アクチュエータは、前記少なくとも2つのガイドの垂直上方に前記第1のデバイスを置く単一アクチュエータである、請求項15に記載の方法。
【請求項17】
前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のガイドとの間に相反する水平力を生成するように構成される、請求項15に記載の方法。
【請求項18】
前記第3の電磁アクチュエータは、前記第1のデバイスと前記第2のガイドとの間に水平力を生成するように構成されていない、請求項17に記載の方法。
【請求項19】
前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のガイドとの間に第1の方向に水平力を生成するように構成され、
前記装置は、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接する第4の電磁アクチュエータ及び第5の電磁アクチュエータをさらに備え、
前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のガイドとの間に反対の第2の方向に水平力を生成するように構成される、請求項15に記載の方法。
【請求項20】
前記第1のデバイスと前記第1のガイドとの間に第1の方向に水平力を生成するように構成された第4の電磁アクチュエータを、前記第1のデバイスの前記第1の側に近接して接続することと、
前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接して前記第4の電磁アクチュエータ及び第5の電磁アクチュエータを接続することと、をさらに含み、
前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のガイドとの間に反対の第2の方向に水平力を生成するように構成される、請求項15に記載の方法。
【請求項21】
第4の電磁アクチュエータ及び第5の電磁アクチュエータを前記第1のデバイスに接続することをさらに含み、
前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと第3のガイドとの間に相反する水平力を生成するように構成され、
前記第3のガイドは前記第1のガイドと前記第2のガイドとの間に配置される、請求項15に記載の方法。
【請求項22】
前記第1のデバイスは、その中にロボットモータを有するロボット筐体と、前記ロボットモータに接続されたロボットアームと、を備え、
前記ロボットアームは前記ロボット筐体の外側に配置され、
前記ロボットアームはその上で前記基板を支持するように構成されたエンドエフェクタを備え、
前記第1の側は前記ロボット筐体の第1の側面であり、前記第2の側は前記ロボット筐体の第2の対向する側面である、請求項15に記載の方法。
【請求項23】
前記第1の電磁アクチュエータに第1のセンサを提供し、前記第2の電磁アクチュエータに第2のセンサを提供し、前記第3の電磁アクチュエータに第3のセンサを提供することをさらに含み、
前記センサは、前記第1及び第2のガイドに対する前記第1のデバイスの位置を測定するように構成される、請求項15に記載の方法。
【請求項24】
第1のガイドの上方に第1のデバイスの第1の角部を垂直に置くように磁気システムの第1の電磁アクチュエータを制御することと、
前記第1のガイドの上方に前記第1のデバイスの異なる第2の角部を垂直に置くように前記磁気システムの第2の電磁アクチュエータを制御することと、
第2のガイドの上方に前記第1のデバイスを垂直に置くように前記磁気システムの第3の電磁アクチュエータを制御することと、
を含む方法であって、
第1の電磁アクチュエータは、前記第1のガイド及び前記第2のガイドの上方に、前記第1のデバイスと前記ガイドとの間に隙間を空けて、前記第1のデバイスを磁気により垂直に置くように構成された第1の搬送機構の一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、前記第1の角部は前記第1のデバイスの3つの側にあり、前記第1のデバイスはその上で基板を支持するように構成され、
前記第2の角部は前記第1のデバイスの3つの側にあり、前記第1及び第2の角部は前記第1のデバイスの第1の側にあり、
前記第3の電磁アクチュエータは、前記第1のデバイスの対向する第2の側に配置され、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に近接配置されない、
方法。
【発明の詳細な説明】
【技術分野】
【0001】
例示的かつ非制限的な実施形態は、概して、基板搬送ロボットアセンブリに関する。
【従来技術の簡単な説明】
【0002】
基板を搬送するためのロボットが知られている。米国特許出願公開第2016/0229296号明細書、第2013/0071218号明細書、第2015/0214086号明細書、及び第2017/0028546号明細書(これらは、その全体が参照により本明細書に組み込まれる)に記載されているような基板搬送ロボットの搬送のためのリニア駆動システムも知られている。
【摘要】
【0003】
以下の摘要は、単に例示的であるように意図される。この摘要は、特許請求の範囲を制限することを意図したものではない。
【0004】
一態様によれば、装置が提供される。当該装置は、その上で基板を支持するように構成された第1のデバイスと、前記第1のデバイスが接続された第1の搬送機構と、を備える。前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成される。前記第1の搬送機構は、少なくとも2つのレールと、前記少なくとも2つのレールの上方に、前記第1のデバイスと前記少なくとも2つのレールとの間に隙間を空けて、前記第1のデバイスを垂直に置くように構成された磁気システムと、前記少なくとも2つのレールに沿った経路に前記第1のデバイスを動かすように構成されたリニアアクチュエータと、を備える。前記磁気システムは、前記第1のデバイスの第1の側の第1の角部にある第1の電磁アクチュエータと、前記第1のデバイスの前記第1の側の第2の角部にある第2の電磁アクチュエータと、前記第1のデバイスの対向する第2の側にあり、前記第1のデバイスの3つの側の角部に近接配置されない第3の電磁アクチュエータと、を備える。
【0005】
別の態様によれば、方法が提供される。当該方法は、第1のデバイスの第1の側の第1の角部に近接して第1の電磁アクチュエータを接続することと、前記第1のデバイスの前記第1の側の第2の角部に近接して第2の電磁アクチュエータを接続することと、前記第1のデバイスの対向する第2の側に近接して第3の電磁アクチュエータを接続することと、前記第1のデバイスを少なくとも2つのレールの上方に配置することと、を含む。前記第1の角部は前記第1のデバイスの3つの側にあり、前記第1のデバイスはその上で基板を支持するように構成され、前記第1の電磁アクチュエータは、前記第1のデバイスが接続された第1の搬送機構の磁気システムの一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成される。前記第2の電磁アクチュエータは、前記磁気システムの一部であり、前記第2の角部は前記第1のデバイスの3つの側にある。前記第3の電磁アクチュエータは、前記磁気システムの一部であり、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に近接配置されない。前記第1及び第2の電磁アクチュエータは前記レールのうちの第1のレールに配置され、前記第3の電磁アクチュエータは前記レールのうちの異なる第2のレールに配置される。
【0006】
別の態様によれば、方法が提供される。当該方法は、第1のレールの上方に第1のデバイスの第1の角部を垂直に置くように磁気システムの第1の電磁アクチュエータを制御することと、前記第1のレールの上方に前記第1のデバイスの異なる第2の角部を垂直に置くように前記磁気システムの第2の電磁アクチュエータを制御することと、第2のレールの上方に前記第1のデバイスを垂直に置くように前記磁気システムの第3の電磁アクチュエータを制御することと、を含む。前記第1の電磁アクチュエータは、前記第1のレール及び前記第2のレールの上方に、前記第1のデバイスと前記レールとの間に隙間を空けて、前記第1のデバイスを磁気により垂直に置くように構成された第1の搬送機構の一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、前記第1の角部は前記第1のデバイスの3つの側にあり、前記第1のデバイスはその上で基板を支持するように構成される。前記第2の角部は前記第1のデバイスの3つの側にあり、前記第1及び第2の角部は前記第1のデバイスの第1の側にある。前記第3の電磁アクチュエータは、前記第1のデバイスの対向する第2の側に配置され、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に近接配置されない。
【図面の簡単な説明】
【0007】
前述の態様及び他の特徴は、以下の説明で添付図面と共に説明される。
【0008】
【
図1】本明細書に記載されるような特徴を含む基板処理装置の概略上面図である。
【0009】
【
図2】
図1に示す基板処理装置の基板搬送装置の斜視図である。
【0010】
【0011】
【
図4】基板処理装置の搬送チャンバの内側に示された、
図2及び
図3に示す基板搬送装置の斜視図を端から見た図である。
【0012】
【
図5】
図1~
図4に示す基板搬送装置のロボットの側面図である。
【0013】
【0014】
【0015】
【
図8】基板処理装置の搬送チャンバの内側の基板搬送装置を端から見た図である。
【0016】
【
図9】
図1に示す装置と一緒に使用される各種システムを示す図である。
【0017】
【
図10】
図1に示す基板処理装置の搬送チャンバの内側の基板搬送装置の概略上面図である。
【0018】
【
図10A】
図10に示す基板処理装置の搬送チャンバの内側の基板搬送装置の端断面図である。
【0019】
【
図11】
図10に示すような搬送チャンバの内側の基板搬送装置を端から見た図である。
【0020】
【
図12】
図10及び
図11に示すリニアモータの磁気駆動部及び被駆動部材のうちの1つを示す斜視図である。
【0021】
【0022】
【0023】
【
図14A】
図14に示す複数の電力モジュールの相対的レイアウトを示す斜視図である。
【0024】
【
図15】
図14及び14Aに示す電力モジュールを使用する電力結合を示す図である。
【0025】
【
図16】
図15に示す1つの例示的な実施形態の結合の等角図である。
【0026】
【0027】
【
図18】搬送チャンバの底壁上の基板搬送装置の斜視図である。
【0028】
【
図18A】搬送チャンバの底壁上の基板搬送装置の代替の実施形態の斜視図である。
【0029】
【
図19】本明細書に記載されるような特徴を含む基板処理装置の概略上面図である。
【0030】
【
図20】磁気支持システム及び制御システムのガイドにおけるロボット駆動部の筐体の概略図である。
【0031】
【
図20A】磁気浮上ガイドにおける電磁アクチュエータの概略図である。
【
図20B】磁気浮上ガイドにおける電磁アクチュエータの概略図である。
【
図20C】磁気浮上ガイドにおける電磁アクチュエータの概略図である。
【0032】
【
図20D】筐体に対する電磁アクチュエータの三角形レイアウトを示す概略図である。
【0033】
【
図20E】筐体の他の形状に対する電磁アクチュエータの三角形レイアウトを示す概略図である。
【
図20F】筐体の他の形状に対する電磁アクチュエータの三角形レイアウトを示す概略図である。
【0034】
【
図20G】磁気支持システム及び制御システムのガイドにロボット駆動部の筐体を備える、
図20と同様の代替の実施形態の概略図である。
【0035】
【
図21】磁気支持システム及び制御システムのガイドにロボット駆動部の筐体を備える、
図20と同様の代替の実施形態の概略図である。
【0036】
【
図22】磁気支持システム及び制御システムのガイドにロボット駆動部の筐体を備える、
図20と同様の代替の実施形態の概略図である。
【0037】
【0038】
【
図23】磁気支持システム及び制御システムのガイドにロボット駆動部の筐体を備える、
図20と同様の代替の実施形態の概略図である。
【0039】
【0040】
【0041】
【0042】
【
図27】
図20~
図23に示す磁気支持システムで活用される電磁アクチュエータの例の概略図である。
【0043】
【
図28A】生成された垂直及び水平力の例の概略図である。
【
図28B】生成された垂直及び水平力の例の概略図である。
【0044】
【
図28C】磁気支持システム及び制御システムのガイドにロボット駆動部の筐体を備える、
図20と同様の代替の実施形態の概略図である。
【0045】
【
図29】生成された垂直及び水平力の例の概略図である。
【0046】
【
図30】磁気支持システム及び制御システムのガイドにロボット駆動部の筐体を備える、
図20と同様の代替の実施形態の概略図である。
【0047】
【
図31】リニア磁気浮上軌道/ガイドと磁気浮上隙間センサターゲットとの間の移行を説明するために、複数のセンサの使用を示す図である。
【0048】
【
図32】リニアロボット制御システムの例を示す図である。
【
図33】リニアロボット制御システムの例を示す図である。
【
図34】リニアロボット制御システムの例を示す図である。
【
図35】リニアロボット制御システムの例を示す図である。
【
図36】リニアロボット制御システムの例を示す図である。
【
図37】リニアロボット制御システムの例を示す図である。
【
図38】リニアロボット制御システムの例を示す図である。
【
図39】リニアロボット制御システムの例を示す図である。
【
図40】リニアロボット制御システムの例を示す図である。
【
図41】リニアロボット制御システムの例を示す図である。
【実施形態の詳細説明】
【0049】
図1を参照すると、例示的な実施形態の特徴を組み込んだ装置10の概略上平面図が示されている。図面に示す例示的実施形態を参照に、特徴が説明されるが、これらの特徴は、実施形態の様々な代替的形態で実施可能であることが理解されよう。さらに、要素又は材料について、任意の好適なサイズ、形状、又は種類が使用され得る。
【0050】
この例では、装置10は基板処理装置である。基板処理装置10は概して、基板搬送装置12(リニア真空ロボットとも称する)と、複数の基板処理チャンバ14と、搬送チャンバ15と、装置フロントエンドモジュール(EFEM)16と、基板カセットエレベータ18とを備える。搬送チャンバ15は、例えば真空チャンバ又は不活性ガスチャンバとして維持され得る。搬送装置12は、チャンバ15内に配置され、例えばチャンバ14、15と、定置移送チャンバ又はロードロック22との間で、半導体ウェハ又はフラットパネルディスプレイなどの基板20を搬送するように構成される。EFEM16は、基板カセットエレベータ18と、定置移送チャンバ22との間で基板20を搬送するように構成される。この例では、EFEMは、スカラアームを有するロボット24を有する。ロボット24は、矢印Aで示すように、EFEM内で直線移動するように構成される。但し、任意の好適な種類のEFEMが提供され得る。装置10は、コントローラ50を有する。コントローラ50は、少なくとも1つのプロセッサ52と、コンピュータプログラムコード56を含む少なくとも1つのメモリ54とを備える。コントローラ50は、装置10の各種デバイス及びロボットの動作を制御するように構成される。
【0051】
図2~
図4をさらに参照すると、基板搬送装置12の斜視図及び端から見た図が示される。この例では、基板搬送装置12は、ロボット26と、ロボット筐体28と、リニア駆動システム30とを備える。
図2、
図3は、搬送チャンバ15の側及び上壁を不図示として、搬送チャンバ15の底壁上の基板搬送装置12を示す。
図4は、搬送チャンバ15の上壁のみを不図示として、搬送チャンバ15の底壁又は床上の基板搬送装置12を示す。ロボット26は、ロボット筐体28に接続され、ロボット筐体28は、リニア駆動システム30により、チャンバ15に対して移動可能である。リニア駆動システム30は、搬送チャンバ15の床上のガイド32と、筐体の外底側上のトラック又は台車部33とを備える。磁気浮上型リニア駆動システムに対して、磁気/電磁気により維持された間隔により、ガイド32からトラックが離れ得る。非磁気浮上型リニア駆動の場合、ガイドは、トラックが走行するレールを含み得る。一例において、トラック33は、レール32上を走行する、筐体の底側に取り付けられた車輪を有し得る。リニア駆動システム30は、ロボット筐体28を動かし、それにより、
図1の矢印Bで示すように直線経路で、レール32に沿って、搬送チャンバ15内で基板搬送装置12を動かすように構成される。代替の実施形態においては、筐体ではなく、ロボット26が、トラックを有し、レール/ガイド32上を走行する非閉鎖型のスライド又はプラットフォームに取り付けられ得る。別の代替の例において、ガイド及びトラックは、チャンバ15の床に加えて、又は代えて、チャンバ15の側面壁に設けられ得る。
【0052】
さらに
図5~
図7を参照すると、ロボット26は概して、ロボット駆動部34と、ロボット駆動部34に接続されたロボットアームアセンブリ36とを備える。
図5~
図7に示すロボット26は、基板を動かすための複数のエンドエフェクタを有するロボットの単なる一例であり、限定的と解されるべきではない。任意の好適な種類のロボット、ロボット駆動部、及びロボットアームが提供され得る。この例では、ロボットアームアセンブリ36は、2アーム構成である。ロボットアームアセンブリ36のアーム36a、36bのそれぞれは、ロボット駆動部34の同軸駆動シャフト40a、40b、40cにより駆動されるアームリンク、プーリ、バンド、及び基板支持エンドエフェクタ38を有する。代替の例では、駆動部は、互いに非同軸配置となる複数の駆動シャフトを含み得る。ロボット駆動部34は、各駆動シャフト用のモータ42a、42b、42cと、モータ46を含む垂直駆動システム44と、モータ42及び/又は駆動シャフト40及び垂直駆動システム44用の各種位置エンコーダ/センサ48a、48b、48cとを含む。
【0053】
ロボットアームアセンブリ36を除く、ロボット26のほぼ全てがロボット筐体28内に配置されるように、ロボット26はロボット筐体28に搭載される。これは、例えば
図3、
図4に最もよく示される。具体的には、ロボットアームアセンブリ36は、ロボット筐体28の上側に近接して、筐体28の外側に配置され、駆動シャフト40a、40b、40cは、筐体28内に配置された駆動部34の残部から、ロボット筐体28の上側内の開口58(
図3参照)を通じて延在する。駆動シャフト40a、40b、40cを、垂直駆動システム44により動かされた場合に軸回転し、垂直移動可能としながら、開口58を封止するため、開口58にシール60(
図3参照)が設けられる。この種の実施形態によると、筐体28内の領域は、チャンバ15内の領域とは異なる環境を有し得る。例えば、筐体内の領域は単に大気圧の空気環境にあり、チャンバ15内の(筐体28外)の領域は、真空環境又は不活性ガス環境であり得る。
【0054】
入れ子環境
【0055】
図8は、一例において使用され得る、「入れ子」型構成を概略的に示す。ロボット筐体28は、開口58を通じて延在する、駆動シャフトのごく一部を除いて、ロボット駆動部34に対する密閉ロボット筐体を提供し得る。より具体的には、モータ42、44の全て、センサ48の全て、電気配線の全て、及び駆動シャフト40の大部分(
図7参照)が、ロボット筐体28内に密封される。センサ及びモータを含むロボット駆動部34のアクティブ電気ハードウェアの全ては、搬送チャンバ15の領域17内のロボット筐体28外の環境から分離され、
図8に示す領域29で密閉ロボット筐体28内に保持され得る。領域17は、外部大気環境13から分離した、搬送チャンバ15内の分離環境として維持され得る。したがって、環境29は環境17内に入れ子となっており、環境17は、環境29を、外部大気環境13(チャンバ15外の通常大気13)から分離する。環境29は、真空環境であり得るが、環境17が真空環境であっても真空環境である必要はない。ロボット筐体28内の環境29が真空環境である必要がないことは、ロボット筐体28内の構成要素からの蒸気のガス放出の防止に寄与し得る。このように環境を入れ子にすることは(領域29が領域17内に入れ子になっている)は特に、搬送チャンバ15の長さに沿った直線相対移動を妨害する、又はそれに干渉されることなく、搬送チャンバ15内で移動可能なロボット筐体28に適用される。
【0056】
さらに
図9を参照すると、この例で装置10は、リニア駆動システム30と、電力結合システム62と、データ通信結合システム64と、伝熱結合システム66とを有する。電力結合システム62は、筐体28内の構成要素に電力を提供するのに使用され得る。データ通信結合システム64は、筐体28内の構成要素に(及び/又はアーム内の構成要素に、筐体を通じて)データ信号を送信するのに、及び/又は筐体28内の構成要素から、チャンバ15の外のデータプロセッサに(及び/又はアーム内の構成要素から筐体を通じて)データ信号を送信するのに使用され得る。伝熱結合システム66は、筐体28内の構成要素から、チャンバ15外に伝熱するために使用され得る。代替の例示的な実施形態において、電力結合システム62及びデータ通信結合システム64は、チャンバ15の領域17内の構成要素数を低減するために、少なくとも部分的に組み合わされ得る。一部の実施形態では、上述のシステムの全ては備えない装置が提供され得る。
【0057】
図示の例では、これらのシステム30、62、64、66の全てが、
図8に示す入れ子環境を妨害又は干渉しないように構成され得る。言い換えると、4つのシステム30、62、64、66全てが動作する際に、筐体28内の環境が、チャンバ15内の環境から分離されるようにこれらのシステム30、62、64、66が構築されることが好適である。
【0058】
リニアモータ
【0059】
さらに
図10及び
図11を参照すると、リニア駆動システム30は概してリニアモータ70を備える。リニアモータ70は、その固定子と回転子とが、原則的に「非回転」とされた電気モータである。したがって、トルク(回転)を生成する代わりに、その長さに沿った直線の力を生成する。この例が、全体が参照により本明細書に組み込まれる米国特許公開第2015/0214086号明細書に開示されている。図には、筐体28の下に配置されたリニアモータが示される。但し、代替の実施形態では、リニア駆動部の1つ以上の構成要素は、筐体28の下に配置されなくてもよい。例えば、リニアモータ及び/又はリニア駆動システム30の構成要素は、筐体28及びチャンバ15の側面に配置され得る。
【0060】
例示的な一実施形態では、リニア駆動システム30は、非接触磁気支持誘導サブシステムを利用した磁気浮上システムを備え得る。
図12、
図13も参照すると、図示の例におけるリニアモータ70は、固定磁気駆動部72及び被駆動部材76を含むモジュール式設計を利用する。駆動部72は、この例では略「コの字」形状を有する。略「コの字」形状はスロット73を形成し、スロット73の上及び底側に対向する電磁石74が設けられる。
図10に最もよく示すように、駆動部72は、チャンバ15の底壁上に、整列して固定的に搭載され、被駆動部材76は、ロボット筐体28の底側の外部に取り付けられる。代替の例では、駆動部72は、ロボット筐体28に取り付けられ得、レール76は、搬送チャンバ15に固定的に取り付けられ得る。
【0061】
リニアレールの周りにシールドが設けられ得る。
図10Aも参照すると、移送チャンバ15は、リニアレール32及びトラック30を有するロボットを収容する。リニアレール及びトラックは、部分的又は完全にシールド31内に封入され得る。シールドの目的は、ロボットのレールの方向の運動を可能にしたまま、好ましくない粒子状又は汚染材料の、レール又はトラックから移送チャンバへの上方向の移動を低減又はなくすことである。さらに、単一部品又は部品のアセンブリであり得るシールドは、材料、粒子、ウェハ破片の、移送チャンバからリニアレールの動作領域内への移動を防止する。これは、リニアレール機構の汚染/詰まり防止に寄与する。
【0062】
移送チャンバはさらに、通気口16及びポンプ口17を含み得、通気口は、チャンバ15の上に略向けて配置され、ポンプ口はシールド31のシールド領域の下部又は内部に配置される。このような配置はさらに、シールド領域から移送チャンバ内への汚染物質の移動を防止する。通気口が稼働していれば、通気口からの分子は、ポンプ口に向かって移動し、その際に、如何にわずかでも空中の汚染物質を運ぶ。通気口が閉じていても、ポンプを稼働すれば、チャンバからシールド領域内へ、あらゆる汚染物質を引き込む。
【0063】
図12に最もよく示すように、被駆動部材76は、「コの字」形状駆動部72のスロット内へと延在する。したがって、駆動部72はロボット筐体28の底側から延在する同じレール76を、自律的に利用し得る。代替の態様において、例えば、チャンバ15の側壁上など、ガイドレールは他の配置でより少なく又はより多く設けられ、配置され得る。上述のように、モジュール式リニア駆動システムは、非接触磁気駆動フォーサーサブシステムを利用し得る。このサブシステムは、1つ以上のリニアモータモジュールと、1つ以上の位置フィードバックモジュールとを含み得る。上述の例を使用すると、筐体28は、筐体28内に配線を一切通す必要なく、
図1の矢印Bに示すように、チャンバ15内で直線移動し得る。リニアモータ70は、完全に筐体28の外にあり、したがって、リニアモータ70を設けても、2つの領域17、29間の干渉のリスクを増すことがない。さらに、被駆動部材76は、駆動部72のいずれにも接触せず、被駆動部材の駆動は単純に磁気制御であるため、領域17において被駆動部材76及び駆動部72からの汚染物質のリスクが低減される。駆動部72への電力供給は、
図1に示すコントローラ50により制御され得る。駆動部72又は駆動部72の部分は、被駆動部材76を直線方向Bに動かす(例えば、加速及び減速)、さらに筐体28をチャンバ14及び22の前の固定位置に適宜磁気により位置固定するように、磁界を生成するために通電され得る。
【0064】
各リニアモータモジュールは、固定受動磁気ステンレス鋼部分を有し得る。固定受動磁気ステンレス鋼部分は、対応する一次フォーサーと相互作用する、歯付き部分を有し得る。受動部分は、磁石を有しても、有さなくてもよい。複数の支持体が、自律的に同じ二次フォーサーを利用し得る。各リニアモータモジュールは、支持体に結合された一次フォーサーを有し得る。ここで、一次フォーサーは、三相配線と、永久磁石とを有し得る。代替の態様において、永久磁石は、重力及びダイナミックロードを打ち消すために、被駆動部材の一部として設けられ得る。代替の態様において、永久磁石は、重力及びダイナミックロードを打ち消すために、磁気ベアリングのうちの1つ以上の一部として設けられ得る。あり得る一次フォーサー及び二次フォーサーのトポロジーの例として、シーメンスの1FN6設計が挙げられる。代替の態様において、任意の好適なフォーサーが設けられ得る。フォーサーの永久磁石は、磁気ベアリングが通常動作時に電力使用を最小限とするように、効率的なスラスト(配線に結合)の生成、及びペイロードの打ち消しの両方を促進する構成要素として設けられ得る。ここで、フォーサーと対応する受動レールとの間の引力は、この力が、重力による力を打ち消して、最小電力消費となるように、公称の隙間に設定され得る。さらに、隙間の設定点は、ペイロードが変化すると、上記引力が重力による力を打ち消すように隙間が調整されるように変化し得る。その結果、ペイロードの変化に合わせて、最小電力消費となる。例えば、左のフォーサーの隙間は、右のフォーサーのものとは独立して変化し得る。固定受動磁気ステンレス鋼二次フォーサーに対する支持体へのスラストを生成するため、高度制御サブシステムにより、電圧を一次フォーサーの磁気コイルに選択的に印加し得る。各固定受動磁気ステンレス鋼二次フォーサーは、歯が垂直に下を向くように搭載され得る。これにより、一次フォーサーの永久磁石の引力が、支持体の重量と、ペイロードを打ち消し得、非接触磁気支持誘導サブシステムの垂直コイルにより印加する必要のあるDC構成要素が最小限に抑えられる。
【0065】
電力結合システム
【0066】
さらに
図14を参照すると、この例示的な実施形態では、電力結合システム62は、磁気誘導共振効果を使用して、筐体28内の構成要素に対する使用するためなどの電力を基板搬送装置12に送るように構成される。電力結合システム62は、一般に、搬送チャンバ15の内底壁上の動力結合又はモジュール78と、ロボット筐体28の外底側の動力結合又はモジュール80とを備える。
図14A、
図4、
図10及び
図11に最もよく示されるように、複数の一次モジュール78は、搬送チャンバ15の底壁上に整列して配置され得、二次モジュール80は、筐体28の外底側に取り付けられた一次モジュール78の列の上に配置され得る。基板搬送装置の誘導電力伝達の例は、全体が参照により本明細書に組み込まれる米国特許公開第US2016/0229296号明細書に開示されている。電力結合は、通信デバイスと組み合わせてもよい。
【0067】
図15を参照すると、電力結合システム62の例示的な一実施形態のブロック図表現が示されている。図示のように、電力結合システム62は、交流(AC)電源82と、少なくとも1つの一次モジュール78及び少なくとも1つの二次モジュール80との電力結合と、任意の整流器回路84とを含み得る。交流電力86は一次モジュール78に供給され、一次モジュール78はギャップ88を介して二次モジュール80に電力を提供し、二次モジュール80は整流器回路84に交流電力90を提供する。二次モジュール80は、一次モジュール78が静止した状態で、ロボット筐体28と共に移動する。但し、代替の例では、一次及び二次モジュールは、並進、回転、又はこれら2つの組合せを含めて、互いに対して移動できるように構成され得る。一次及び二次モジュールは、一次又は二次コア、あるいは一次又は二次レールであり得る。代替の態様において、任意の適切な組合せ又は形状が提供され得る。例えば、モジュール80からの電線(複数可)は、筐体28の封止された開口を通じて延在し、例えば、ロボットのモータ42及び/又はコントローラ(例えば、サーボモータコントローラなど)、及び/又は筐体28内の通信機器及び/又はセンサ、又はその後、ロボットアームアセンブリ36内又は上のデバイスに電気を供給し得る。代替の実施形態では、2つ以上のモジュール80が提供され得、筐体28の1つ以上の側面に設けられ得る。モジュール78、80は互いに接触しないため、モジュール80がモジュール78に対して移動する際の、チャンバ15内の汚染のリスクが低減される。
【0068】
ここで
図16を参照すると、電力結合62aの一例の代替実施形態の等角図が示されている。
図14に最もよく示すように、一次モジュール(複数可)78は、一次コア又はレール94と、一次巻線又はコイル96とからなり得る。これらは、例えば、交流電源82によって供給され、一次巻線96を通じた交流電流が一次コア又はレール94に交流磁束を生成するように構成され得る。一次コア又はレール94は、一次モジュール78と二次モジュール80との間の相対運動Bの方向に沿った延長部98を特徴とし得る。二次モジュール80は、二次コア又はレール100と、二次コア又はレール100内の交流磁束が二次巻線102内に電圧を誘導するように構成された二次巻線又はコイル102とからなり得る。二次コア又はレール100は、二次モジュールの一部として一次コア又はレール94の延長部98に沿って移動し得、磁束が一次コア又はレールと、二次コア又はレール100との延長部98間の空隙104を横切るシュー部分で、一次コア又はレール及び二次コア又はレールの延長部間を通過し得るように、配置され得る。二次巻線102の出力は、交流電源として直接使用することができ、又は直流電力が必要な場合、二次巻線は、整流器回路84(例えば、筐体28の内部など)に給電にし得、これが
図15に示すように直流電源92として機能し得る。一次巻線96及び二次巻線102は、二次巻線の出力電圧の振幅がAC電源82によって供給される電圧の振幅に実質的に等しくなるように、実質的に同じ巻数を特徴とし得る。必要な出力電圧がより高い場合、二次巻線102の巻数は、一次巻線96の巻数よりも多くてもよい。逆に、必要な出力電圧がより低い場合、二次巻線102の巻数は一次巻線96の巻数よりも少なくてもよい。一次コア94及び二次コア100は、
図16に図式的に示されるようにC字形であってもよく、E字形であってもよく、又は一次モジュール78と二次モジュール80との間の誘導結合を可能にする任意の好適な形状を特徴とすることができる。一次コア94の延長部98は、一次モジュール78と二次モジュール80との間の直線運動に対応するために直線状であり得るか、又は湾曲又は回転運動に対応するために湾曲し得る。一次コア94、延長部98、及び二次コア100は、軟磁性材料、例えば、ケイ素鋼、軟磁性複合材料、磁束を導くのに適した別の材料、又はそのような材料の組合せから製造され得る。積層構造が利用され得る。ここで、一次及び二次モジュールは、巻線がコイルである誘導セクションとみなされ得る。二次モジュール80の全ての電気配線は、配線が領域17内に配置されないように、ロボット筐体28の内部に配置され得る。一次モジュール78の全ての電気配線は、配線が領域17内に配置されないように、搬送チャンバ15の外側に配置され得る。
【0069】
データ通信結合システム
【0070】
この例では、データ通信結合システム64は、
図10、
図11、及び
図17に最もよく示されるように、第1の部材108及び第2の部材110を含む光通信システム106を備える。第1の部材108は、ロボット筐体28の外底側に接続されている。代替の例では、第1の部材108は、筐体を貫通する光学窓を有する筐体の内側にあり得るか、又は底面以外の筐体の側面に配置され得る。第2の部材110は、搬送チャンバ15の側壁に接続される。第2の部材110は、領域17の外側に配置され得、それでも2つの部材108、110が互いに光学的に通信するための窓を搬送チャンバ15が有し得る。別の例では、第2の部材110は、チャンバ15の内側にあり得る。
【0071】
2つの部材108、110は、1つ以上のレーザビーム又は他の光信号112を使用して、筐体がチャンバ15内を移動する際に、筐体28とチャンバ15との間の変化する距離でデータ信号を送受信し得る。データ信号は、その後、ロボット26及び/又はリニア駆動システム30を制御するため、及び基板搬送装置12のセンサからのデータをコントローラ50に送信するなどのために、ロボット筐体28内の構成要素に対して送受信され得る。配線が領域17内に一切配置されないように、第1の部材108からの全ての配線(電気的及び/又は光学的)は、ロボット筐体28内に配置され得る。配線が領域17内に一切配置されないように、第2の部材110からの全ての配線(電気的及び/又は光学的)は、搬送チャンバ15の外側に配置され得る。これにより、これらの配線からのガス放出などの、領域17内の汚染のリスクが低減される。この通信システムは、電力供給と組み合わされ得る。
【0072】
伝熱結合システム
【0073】
上記のように、装置10はさらに、伝熱結合システム66を備え得る。伝熱結合システム66を使用して、ロボット筐体28の内から搬送チャンバ15外に熱を伝達するように、ロボット筐体28内の基板搬送装置12の構成要素に関する熱管理が提供され得る。これは、領域17が伝熱能力の低い真空環境である場合に特に重要であり得る。移動するロボット筐体28は、基板搬送装置12と共に移動する高度制御サブシステムの全てを収容するように機能する。移動するロボット筐体28はさらに、移動する支持体と協働して1つ以上の基板を複数の位置間で搬送するロボット搬送アームを支持するように機能する。例えば、モータ42などの移動するロボット筐体28に結合されたアクティブ構成要素が存在するため、アクティブ構成要素によって生成された熱は、熱管理サブシステムによって放散され得る。真空中の移動する支持体の場合、熱は、放射によって、又は媒体を介した伝導によって、例えばガスを介して、又はベローズを移動する支持体に結合し、冷却剤を介してガス又は液体冷却剤を循環させることによって、放散され得る。放射のみ(又は放射と対流の組合せ)による冷却の場合、可動部分の全部又は一部とチャンバとの間の許容温度差が、例えば、摂氏50度などに指定され得る。図示の例示的な実施形態では、非接触インターリーブフィン状構造120、122(
図2から
図4、
図10、
図11を参照)を使用して、対向する表面積を最大化することができる。高放射率コーティングを利用して、表面積に関連する伝熱を最大化することもできる。適切なコーティングの例としては、酸化アルミニウム、窒化アルミニウム、又は任意の適切な高放射率コーティングが挙げられ得る。代替の態様において、任意の適切な表面又はコーティングが提供され得る。ガス又は不活性環境での移動する支持体の場合、熱は放射又は対流、あるいはその両方によって放散され得る。移動する支持体28に結合されたアクティブ構成要素があるため、電力及び通信は、上記の例で説明したように、電力結合システム62及び通信結合システム64を備えた移動支持体サブシステムに送られ得る。電力及び通信は、上記の例で説明したように、誘導結合、サービスループ、又はこれらの手法の組合せによって、移動支持体サブシステムに無線で送られ得る。
【0074】
支持体に結合されたアクティブ構成要素は、真空対応のポッティング又はエポキシでポッティングされるか、又は筐体28内で密閉するか、あるいはこれらの両方の組合せとなり得る。好適な移動支持体サーマルシンクサブシステムの例は、Hosek M.及びHofmeister C.(2012年9月14日出願、米国特許出願第13/618,117号、米国特許公開第2013/0071218号明細書、発明の名称「低変動ロボット(Low Variability Robot)」)に開示されており、その全体が参照により本明細書に組み込まれる。但し、ロボット筐体28が使用されるため、ポッティング又はエポキシは、使用量が減らされるか、使用されなくてもよい。
【0075】
代替例
【0076】
さらに
図18を参照すると、代替の例示的な実施形態が示されている。この実施形態は、
図2から
図4に示されるものと同様であるが、フォームファクターが減らされている。リニアモータは密閉されており、シールドリニアベアリングと保護された光リンクが存在する。状況によっては、伝熱フィンが不要であり得る。さらに
図18Aを参照すると、代替の別の例示的な実施形態が示されている。この実施形態は、
図18に示されるものと同様であるが、この例では、筐体28は、伝熱フィンを含まない。この種の実施形態では、冷却用のフィンがない場合にチャンバ壁を通して冷却剤を流すなどの壁冷却が、筐体28の壁及び/又は真空チャンバの壁に提供され得る。但し、このような冷却システムはフィンと組み合わせて使用され得る。
図18Aは、チャンバ15'の壁にある冷却管15aの例を示している。
【0077】
一部の実施形態では、ロボットの冷却は、真空チャンバ壁の冷却によって促進され得る。熱は、放射又は対流、あるいはその2つの組合せによって、ロボット駆動部から真空チャンバの壁に伝達され得る。ロボット駆動部から真空チャンバへの伝熱のメカニズムに関係なく、熱が伝達される量と速度は、チャンバ壁の冷却によって増加し得る。チャンバ壁の冷却は、いくつかの異なる方法、又はそれらの組合せによって実現され得る。例示的な一実施形態では、冷却は、真空チャンバ壁上に直接的又は間接的に、ベントの冷却経路を一体化することによって実現され得る。液体、気体、又は2つの組合せであり得る作動流体が真空チャンバ壁温度よりも低い初期入口温度を有するように、作動流体の連続的又は断続的な流れを使用して、真空壁温度の低減が実現され得る。これにより、ロボット駆動部の冷却が促進される。代替の実施形態では、熱電冷却タイルを使用して真空チャンバの表面が冷却され得、熱電タイルの高温側でより高い温度で熱が排除され、したがってより効果的な冷却が可能になる。
【0078】
図19をさらに参照すると、代替の例示的な実施形態が示されている。この例では、システムは2つのクラスターツール150a、150bの間で使用される。チャンバ15は、ツール150a、150bに結合された両端にロードロック152を有する。ロボット筐体28及び取り付けられたロボット26は、ツールロボット154a、154b間で基板を搬送するために、矢印Bによって示されるように移動可能である。ロボットは、
図1のように真空EFEMでも使用され得る。
【0079】
特徴
【0080】
本明細書に記載の特徴の1つは、基板搬送装置12に必要な全ての構成要素を運ぶ搬送チャンバ15内を直線的に移動し、搬送チャンバ15との唯一の物理的接触がレール32上となるカートとして機能するロボット筐体28の能力である。但し、磁気浮上システムが使用される場合、そのレール32との接触すらなくてもよい。
【0081】
本明細書に記載の別の特徴は、ロボットアームアセンブリ36及びロボット駆動シャフトの上部を除く、基板搬送装置12の実質的に全ての構成要素が、領域29内において、ロボット筐体28内で隔離され得ることである。領域29は、領域17が真空であっても、真空以外の雰囲気を有し得る。これにより、ロボット26は、真空対応ロボットでなく(真空非対応ロボット)てもよい。真空非対応ロボットの場合、その設計と製造においてガス放出が重要な要素とならない。したがって、真空非対応ロボットは低又はゼロガス放出設計を提供する必要がなく、真空対応ロボットよりも安価である。ロボット筐体28はまた、部材108がロボット筐体28の完全に内側に配置され得るように、光通信のための窓を有し得る。ロボット筐体28の一部が、2つの電力結合78、80が誘導により適切に機能するための磁気により透明なセクションを有することで、電力結合80も、ロボット筐体28の完全に内側に配置され得る。搬送チャンバ15は、レール32上のロボット筐体28の直線位置を検出するために、
図10に示されるようにリニアエンコーダ156を備えていてもよい。ロボット筐体28内及び/又はロボット筐体28上の構成要素との全ての通信は、通信電線又は光ワイヤが領域17を横切る必要がないように、光又は無線で、又は電力結合を介して行われ得る。
【0082】
本明細書に記載の特徴により、ロボット駆動部34は、密閉されたロボット筐体28によって密封され得る。したがって、搬送チャンバ15は、基板搬送装置12がそれに沿って移動するためのレール32のみを必要とし、搬送チャンバ15による、ロボット筐体28又は基板搬送装置12に対するその他の直接的な物理的接触は生じない。非磁気浮上式の実施形態でも、レール32を除く他の全ての箇所で、搬送チャンバ15と基板搬送装置12との間でギャップ又は間隔が常に設けられ得る。このような非接触により、基板搬送装置12による領域17の汚染が低減される。
【0083】
磁気誘導システム
【0084】
レール上の車輪を例示的な実施形態の一種として上述したが、本明細書に記載されるような特徴は、軌道に沿って横断することができ、従来のソリューションで使用されていたレールとリニアベアリングの機械的接触に関連する望ましくない汚染及びガス放出効果をなくすることができる真空環境用途のための材料取扱いロボットを提供するために使用され得る。したがって、磁気浮上システムの一部として、レールを使用するのではなく、リニアガイドが使用され得る。
図20に示される32A'及び32B'などのガイドは、上記の実施形態におけるレールと同様に、チャンバ15の底床、又はチャンバ内壁の任意の適切な位置に配置され得る。
【0085】
例示的な実施形態が
図20に図式的に示されている。
図20に示すように、ロボット200は、筐体28と、筐体28の内側に配置されたロボット駆動部と、筐体の上面の外側にあり、ロボット駆動部に接続され、その上に基板を支持するように構成されたエンドエフェクタ38を有するロボットアーム202と、リニア作動システム204と、磁気支持システム及び制御システム206とからなり得る。ロボット駆動部200と、リニア作動システム204と、磁気支持システム及び制御システム206とは、
図1に示されるコントローラ50に結合され得る。
【0086】
リニア作動システム204は、少なくとも1つのリニアアクチュエータと、位置センサと、位置制御システムとを備え得る(これらは、ロボット制御システムに組み込まれ得ると便利である)。これは、例えば上述のリニアモータ70を備えるシステムと同様であり得る。
【0087】
リニア作動システムのリニアアクチュエータは、筐体28に取り付けられ得る可動部と、固定部とからなり得る。例えば、リニアアクチュエータは、
図12及び
図13に示されるような永久磁石リニアモータなどのリニアモータであり得る。この例では、可動部は複数のコイルを備えるフォーサーからなり得、固定部は磁石軌道204によって形成され得る。リニアアクチュエータは、リニアアクチュエータの可動部とリニアアクチュエータの固定部との間に、実質的にロボットの所望の横運動方向(
図20のx軸に沿った方向)に沿って力を生成するように構成され得る。
【0088】
リニア作動システムの位置センサ(複数可)は、所望の横運動方向(
図20のx軸に沿った方向)に沿ったロボット駆動部200の位置を測定するように構成され得る。一例として、これらのセンサは、光、磁気、誘導、又は容量性位置エンコーダなどの位置エンコーダ、レーザ干渉計、又は例えば、チャンバ15に対する相対的な移動などの所望の横運動方向に沿ったロボット駆動部の位置を測定することができる任意の他の適切なデバイスを含み得る。これらの位置センサからの測定値を利用して、リニアアクチュエータによって生成された力を使用して、ロボットの所望の横運動方向(
図20のx軸に沿った方向)に沿ったロボット駆動部の位置を制御し得る。
【0089】
磁気支持システムは、ロボットの所望の横運動方向(
図20のx軸に沿った方向)に沿ってロボット駆動部を支持及びガイドするように構成され得る。磁気支持システムは、ガイド32A'、32B'の上方に、垂直方向に間隔を置いた位置で筐体28を磁気により支持し得る。磁気支持システムは、ロボットの所望の横方向運動と実質的に平行な1つ以上の固定ガイド32A'、32B'と、及びロボット駆動部に取り付けられ、ロボット駆動部と固定ガイドとの間で力を生成するように構成される複数の電磁アクチュエータからなり得る。ガイドは、チャンバの長さに沿った単一の部品、又は端から端まで接続された2つ以上のガイドのアセンブリであり得る。磁気支持システムは、固定ガイドに対するロボット駆動部の位置を決定し得るセンサと、固定ガイドに対するロボット駆動部の位置を制御し得る制御システムをさらに含み得る(磁気支持システムの制御システムは、ロボット制御システムに組み込まれ得ると便利である)。
【0090】
図20の例示的な実施形態では、2つの実質的に平行な固定ガイド32A'、32B'が利用され得る。
図20Aをさらに参照すると、第1の電磁アクチュエータ208A対が、ガイドの表面に対して垂直な方向に、ロボット駆動部と固定ガイドとの間に相反する垂直力を生成できるように、ロボット駆動部の左前角部付近でロボット駆動部に取り付けられ得る(
図20において、電磁アクチュエータ208は円で示され、各円が1つ以上のアクチュエータを示し、アクチュエータが生成する力は矢印で示される)。この第1のアクチュエータ208A対を、左前垂直アクチュエータと称する。別の電磁アクチュエータ208B対も、ガイドの表面に対して垂直な方向に、ロボット駆動部と左固定ガイドとの間に相反する水平力を生成できるように、ロボット駆動部の左前角部付近でロボット駆動部に取り付けられ得る。この第2のアクチュエータ対を、左前水平アクチュエータと称する。これらの間隔を空けた、アクチュエータ208A、208Bの2対(即ち、左前角部にある合計4つのアクチュエータの垂直対及び水平対)は、2自由度リニア磁気ベアリングとして機能し得る。
【0091】
同様に、
図20Bを参照すると、第3の電磁アクチュエータ209A対が、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイドとの間に相反する垂直力を生成できるように、ロボット駆動部の左後角部付近でロボット駆動部に取り付けられ得る。このアクチュエータ対を、左後垂直アクチュエータと称する。同様に第4の電磁アクチュエータ209B対が、ガイドの表面に垂直な方向に、ロボット駆動部と左固定ガイドとの間に相反する水平力を生成できるように、駆動部の左後角部付近でロボット駆動部に取り付けられ得る。このアクチュエータ対を、左後水平アクチュエータと称する。これらの間隔を空けた、アクチュエータ209A、209Bの2対(即ち、左後角部にある合計4つのアクチュエータの垂直対及び水平対)は、別の2自由度リニア磁気ベアリングとして機能し得る。
【0092】
さらに
図20Cを参照すると、第5の電磁アクチュエータ210対は、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイド体との間に相反する垂直力を生成できるように、ロボット駆動部の右手側で、ロボット駆動部に取り付けられ得る。このアクチュエータ210対を、右手側垂直アクチュエータと称する。このアクチュエータは1自由度リニア磁気ベアリングとして機能し得る。
図20に確認できるように、第5の電磁アクチュエータ210対は、右側の前角部又は後角部に配置されていない。第5の電磁アクチュエータ210対は、これらの角部から離れた、右側の前角部及び後角部のおよそ中間にある。
【0093】
さらに
図20Dを参照すると、筐体28の上側に重ねられた仮想形状「コの字」で示されるように、略三角形状となったアクチュエータ208、209、210の配置(1側面の底角部に近接した2つの群208、209、及び対向する側面の両角部の間の1つの群210)では、必要なアクチェータ組は3つである。これにより、アクチュエータが搬送スライドの4つの底角部全てに設けられたシステムに対して、アクチュエータの数が低減される。これにより、搬送システムを製造するコストが低減し、さらにチャンバ15内の構成要素の数が低減し、チャンバ15内で起こり得る汚染が低減される。
図20E及び
図20Fは、
図20Dと同様であるが、異なる形状の筐体28'、28''を示す概略上面図である。これらも電磁アクチュエータのパターン/配置が三角形状を使用する。筐体は、単なる箱又は四角形状である必要はない。
【0094】
左固定ガイドに対する、又は同等なその他形状的基準に対する、ロボット駆動部の略垂直方向の位置を測定可能なセンサ212が、左前垂直アクチュエータの位置に、又はその近傍に配置され得る。同様に、左固定ガイドに対する、又は同等なその他形状的基準に対する、ロボット駆動部の略垂直方向の位置を測定可能なセンサ214が、左後垂直アクチュエータの位置に、又はその近傍に配置され得る。また、右固定ガイドに対する、又は同等なその他形状的基準に対する、ロボット駆動部の略垂直方向の位置を測定可能なセンサ216が、右手側垂直アクチュエータの位置に、又はその近傍に配置され得る。
【0095】
左固定ガイドに対する、又は同等なその他形状的基準に対する、ロボット駆動部の略水平方向の位置を測定可能なセンサ218が、左前水平アクチュエータの位置に、又はその近傍に配置され得る。同様に、左固定ガイド220に対する、又は同等なその他形状的基準に対する、駆動部の略水平方向の位置を測定可能なセンサが、後水平アクチュエータの位置に、又はその近傍に配置され得る。センサをアクチュエータ位置に、又はその近傍に配置することが数学的に便利であるが、ロボット駆動部の別の位置に配置された同じ又は異なる数のセンサにより、同じ機能的目的が達成され得る。
【0096】
一例として、垂直及び水平方向の、ガイドに対するロボット駆動部の位置を測定可能な上述のセンサは、光、磁気、誘導、又は容量性隙間センサなどの隙間センサであり得る。代替の例において、より多く又はより少ないセンサが設けられ得、任意の好適な位置に配置され得る。例えば加速度計又はジャイロスコープなどの、その他の種類のセンサからのデータ及び情報が、隙間センサと数学的モデルとの組合せで、又はその代わりに使用され得る。これにより、同様の目的を実現し、組み合わせた場合には追跡及び性能を実現する。隙間センサに関する実施形態の場合、隙間センサは、強磁性材料又は非鉄系材料をターゲット表面として使用し得る。いずれの場合にも、当該材料の薄層がコーティングとして塗布され、又はサーボターゲットとして金属テープが十分機能し得る。
【0097】
ロボット駆動部202は、空間内の単一の剛性体としてみなされ、したがって6自由度を有し得る。
図20の例示的な実施形態を考慮すると、6自由度は、例えばロボット駆動部上の基準点の3つの直交座標(例えば、x、y、及びz座標)と、3つの角度座標(例えば、x、y、z軸周りの回転を表す)により示され得る。有利には、x軸周りの回転を表す角度はロボット駆動部のロール角、y軸周りの回転を表す角度はロボット駆動部のピッチ角、z軸周りの回転を表す角度はロボット駆動部のヨー角と称され得る。
【0098】
センサからの測定値に基づき、ロボット駆動部の3自由度、即ち、z軸座標で示される垂直位置ならびにロボット駆動部のピッチ角及びロール角を制御するのに、3対の垂直アクチュエータ、即ち、左前垂直アクチュエータ、左後垂直アクチュエータ、及び右手側垂直アクチュエータが利用され得る。2対の水平アクチュエータ、即ち、左前水平アクチュエータ及び左後水平アクチュエータが、駆動部のさらなる2つの自由度、即ち、y軸座標で示される横方向位置、及びロボット駆動部のヨー角を制御するのに使用され得る。最後に、リニアアクチュエータが残りの自由度、即ち、x軸座標で示される所望の横運動方向に沿った、ロボット駆動部の位置を制御するのに利用され得る。
【0099】
図20Gに別の例示的な実施形態が図式的に示される。
図20Gに示すように、ロボット200は、筐体28と、筐体28内に配置されたロボット駆動部と、筐体の上側の外にありロボット駆動部201に接続され、その上で基板を支持するように構成されたエンドエフェクタ38を有するロボットアーム202と、リニア作動システムと、磁気浮上支持システム及び制御システム206とからなり得る。ロボット駆動部201、リニア作動システム204、及び磁気支持システム及び制御システム206は、
図1に示すコントローラ50に結合され得る。
【0100】
リニア作動システムは、少なくとも1つのリニアアクチュエータと、位置センサと、位置制御システム(ロボット制御システムに組み込まれ得ると便利である)とを備え得る。これは例えば、上述のリニアモータ70を備えるシステムと同様であり得る。
【0101】
リニア作動システムのリニアアクチュエータは、筐体28に取り付けられ得る可動部と、固定部とからなり得る。例えば、リニアアクチュエータは、
図12、
図13に示す永久磁石リニアモータなどのリニアモータであり得る。この例では、可動部は、複数のコイルを有するフォーサーからなり得、固定部は、磁石軌道204により形成され得る。リニアアクチュエータは、ロボットの所望の横運動方向(
図20Gにおけるx軸に沿った方向)に実質的に沿って、リニアアクチュエータの可動部とリニアアクチュエータ固定部との間で力を生成するように構成され得る。
【0102】
リニア作動システムの位置センサ(複数可)は、所望の横運動方向(
図20Gにおけるx軸に沿った方向)に沿った、ロボット駆動部201の位置を測定するように構成され得る。一例として、これらのセンサは、光、磁気、誘導、又は容量性位置エンコーダなどの位置エンコーダ、レーザ干渉計、又は例えば、チャンバ15に対する相対的な移動などの所望の横運動方向に沿ったロボット駆動部の位置を測定することができる任意の他の適切なデバイスを含み得る。これらの位置センサからの測定値を利用して、リニアアクチュエータによって生成された力を使用して、ロボットの所望の横運動方向(
図20Gのx軸に沿った方向)に沿ったロボット駆動部の位置を制御することができる。
【0103】
磁気支持システムは、ロボットの所望の横運動方向(
図20Gのx軸に沿った方向)に沿ってロボット駆動部を支持及びガイドするように構成され得る。磁気支持システムは、ガイド220、221の上方に、垂直方向に間隔を置いた位置で筐体28を磁気により支持し得る。磁気支持システムは、ロボットの所望の横方向運動と実質的に平行な1つ以上の固定ガイド220、221と、ロボット駆動部に取り付けられ、ロボット駆動部と固定ガイドとの間で力を生成するように構成される複数の電磁アクチュエータとからなり得る。ガイドは、チャンバの長さに沿った単一の部品、又は端から端まで接続された2つ以上のガイドのアセンブリであり得る。磁気支持システムは、固定ガイドに対するロボット駆動部の位置を決定し得るセンサと、固定ガイドに対するロボット駆動部の位置を制御し得る制御システムをさらに含み得る(磁気支持システムの制御システムは、ロボット制御システムに組み込まれ得ると便利である)。
【0104】
図20Gの例示的な実施形態では、2つの実質的に平行な固定磁気浮上ガイド220、221が利用され得る。電磁アクチュエータ210対が、ガイドの表面に対して垂直な方向に、ロボット駆動部と左固定ガイド220との間に相反する垂直力を生成できるように、ロボット駆動部201の左前角部付近でロボット駆動部に取り付けられ得る(
図20Gにおいて、電磁アクチュエータ210、211、212、213、214は円で示され、各円が1つ以上のアクチュエータを示し、アクチュエータが生成する力は矢印で示される)。このアクチュエータ210対を、左前垂直アクチュエータと称する。別の電磁アクチュエータ213対も、ガイドの表面に対して垂直な方向に、ロボット駆動部201と左固定ガイド220との間に相反する水平力を生成できるように、駆動部の左前角部角部付近でロボット駆動部に取り付けられ得る。このアクチュエータ213対を、左前水平アクチュエータと称する。これらのアクチュエータの2対、即ち、垂直210対及び水平213対は、2自由度リニア磁気ベアリングとして機能し得る。
【0105】
同様に、電磁アクチュエータ211対が、ガイドの表面に垂直な方向に、ロボット駆動部201と左固定ガイド220との間に相反する垂直力を生成できるように、ロボット駆動部の左後角部付近でロボット駆動部に取り付けられ得る。このアクチュエータ211対を、左後垂直アクチュエータと称する。別の電磁アクチュエータ214対が、ガイドの表面に垂直な方向に、ロボット駆動部201と左固定ガイド220との間に相反する水平力を生成できるように、やはり駆動部の左後角部付近でロボット駆動部に取り付けられ得る。このアクチュエータ214対を、左後水平アクチュエータと称する。これらのアクチュエータの2対、即ち、垂直対211及び水平対214は、別の2自由度リニア磁気ベアリングとして機能し得る。
【0106】
最後に、電磁アクチュエータ212対が、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイド221との間に相反する水平力を生成できるように、右手側でロボット駆動部201に取り付けられ得る。このアクチュエータ212対を、右手側垂直アクチュエータと称する。アクチュエータは、1自由度リニア磁気ベアリングとして機能し得る。
【0107】
左固定ガイド220に対する、ロボット駆動部の略垂直方向の位置を測定可能なセンサ241が、左前垂直アクチュエータ210の位置に、又はその近傍に配置され得る。同様に、左固定ガイド220に対する、ロボット駆動部の略垂直方向の位置を測定可能なセンサ242が、左後垂直アクチュエータ211の位置に、又はその近傍に配置され得る。また、右固定ガイド221に対する、ロボット駆動部の略垂直方向の位置を測定可能なセンサ243が、右手側垂直アクチュエータ212の位置に、又はその近傍に配置され得る。
図20Gにおいて、略垂直センサ241、242、243は、下向き三角形として示される。
【0108】
左固定ガイド220に対する、ロボット駆動部の略水平方向の位置を測定可能なセンサ231が、左前水平アクチュエータ213の位置に、又はその近傍に配置され得る。同様に、左固定ガイド220に対する、駆動部201の略水平方向の位置を測定可能なセンサ232が、後水平アクチュエータ214の位置に、又はその近傍に配置され得る。
図20Gにおいて、略水平センサ231、232は、横向き三角形として示される。
【0109】
一例として、上述のように、垂直及び水平方向の、ガイドに対するロボット駆動部の位置を測定可能な上述のセンサは、光、磁気、誘導、又は容量性隙間センサなどの隙間センサであり得る。代替の例において、より多く又はより少ないセンサが設けられ得、任意の好適な位置に配置され得る。例えば加速度計又はジャイロスコープなどの、その他の種類のセンサからのデータ及び情報が、隙間センサと数学的モデルとの組合せで、又はその代わりに使用され得る。これにより、同様の目的を実現し、組み合わせた場合には追跡及び性能を実現する。隙間センサに関する実施形態の場合、隙間センサは、強磁性材料又は非鉄系材料をターゲット表面として使用し得る。いずれの場合にも、当該材料の薄層がコーティングとして塗布され、又はサーボターゲットとして金属テープが十分であり得る。
【0110】
ロボット駆動部201は、空間内の単一の剛性体としてみなされ、したがって6自由度を有し得る。
図20Gの例示的な実施形態を考慮すると、6自由度は、例えばロボット駆動部上の基準点の3つの直交座標(例えば、x、y、及びz座標)と、3つの角度座標(例えば、x、y、z軸周りの回転を表す)により示され得る。有利には、x軸周りの回転を表す角度はロボット駆動部のロール角、y軸周りの回転を表す角度はロボット駆動部のピッチ角、z軸周りの回転を表す角度はロボット駆動部のヨー角と称され得る。
【0111】
センサからの測定値に基づき、ロボット駆動部201の3自由度、即ち、z軸座標で示される垂直位置ならびにロボット駆動部のピッチ角及びロール角を制御するのに、3対の垂直アクチュエータ、即ち、左前垂直アクチュエータ210、左後垂直アクチュエータ211、及び右手側垂直アクチュエータ212が利用され得る。2対の水平アクチュエータ、即ち、左前水平アクチュエータ213及び左後水平アクチュエータ214が、駆動部のさらなる2つの自由度、即ち、y軸座標で示される横方向位置、及びロボット駆動部のヨー角を制御するのに使用され得る。最後に、リニアアクチュエータが残りの自由度、即ち、x軸座標で示される所望の横運動方向に沿った、ロボット駆動部の位置を制御するのに利用され得る。
【0112】
図21に、本発明に係るロボットの別の例示的実施形態を図式的に示す。この例示的な実施形態では、2つの実質的に平行な固定ガイド32A'、32B'と、左前垂直アクチュエータ208A対と、左後垂直アクチュエータ209A対と、右手側垂直アクチュエータ210対と、垂直位置センサ212、214、216とが、先述の例示的な実施形態と実質的に同等の構成で利用され得る。
【0113】
電磁アクチュエータ208B1が、ガイドの表面に対して垂直な方向に、ロボット駆動部と左固定ガイド32A'との間に水平力を生成できるように、駆動部の左前角部付近でロボット駆動部に取り付けられ得る。電磁アクチュエータは、外向き又は内向きの力を生成するように構成され得る(即ち、右ガイドから離れる、又はこれに向かう。電磁アクチュエータの性質により、この力は2つの方向のうちの一方のみに生成され得る)。このアクチュエータ208B1を、左前水平アクチュエータと称する。
【0114】
別の電磁アクチュエータ208B
2が、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイド32B'との間に水平力を生成できるように、ロボット駆動部の右前角部付近でロボット駆動部に取り付けられ得る。電磁アクチュエータは、左前水平アクチュエータが生成する力の方向と、実質的に反対方向の力を生成するように構成され得る。このアクチュエータ208B
2を、右前水平アクチュエータと称する。
図21の例示的実施形態において、左前及び右前水平アクチュエータ208B
1、208B
2は、
図20の例示的な実施形態で利用される、左前水平アクチュエータ208B対の役割を担い得る。
【0115】
別の電磁アクチュエータ209B1が、ガイドの表面に垂直な方向に、ロボット駆動部と左固定ガイド32A'との間に水平力を生成できるように、ロボット駆動部の左後角部付近でロボット駆動部に取り付けられ得る。電磁アクチュエータは、外向き又は内向きの力を生成するように構成され得る(即ち、右ガイドから離れる、又はこれに向かう。電磁アクチュエータの性質により、この力は2つの方向のうちの一方のみに生成され得る)。このアクチュエータ209B1を左後水平アクチュエータと称する。
【0116】
別の電磁アクチュエータ209B
2が、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイド32B'との間に水平力を生成できるように、ロボット駆動部の右後角部付近でロボット駆動部に取り付けられ得る。電磁アクチュエータは、左後水平アクチュエータが生成する力の方向と、実質的に反対方向の力を生成するように構成され得る。このアクチュエータ209B
2を、右後水平アクチュエータと称する。
図21の例示的実施形態において、左後及び右後ろ水平アクチュエータ209B
1、209B
2は、
図20の例示的な実施形態で利用される、左後水平アクチュエータ209B対の役割を担い得る。
【0117】
図22に、本発明に係るロボットの別の例示的実施形態を図式的に示す。この例示的な実施形態では、2つの実質的に平行な固定ガイド32A'、32B'と、左前垂直アクチュエータ208A対と、左後垂直アクチュエータ209A対と、右手側垂直アクチュエータ210対と、垂直位置センサ(例えば、
図20の212、214、216を参照)とが、先述の2つの例示的な実施形態と実質的に同等の構成で利用され得る。
【0118】
図22に示すように、電磁アクチュエータ211が、ガイドの表面に対して垂直な方向に、ロボット駆動部と左固定ガイド32A'との間に水平力を生成できるように、ロボット駆動部の左手側でロボット駆動部に取り付けられ得る。電磁アクチュエータは、外向き又は内向きの力を生成するように構成され得る(即ち、右ガイドから離れる、又はこれに向かう。電磁アクチュエータの性質により、この力は2つの方向のうちの一方のみに生成され得る)。このアクチュエータを、左手側水平アクチュエータと称する。
【0119】
別の電磁アクチュエータ208B2が、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイド32B'との間に水平力を生成できるように、駆動部の右前角部付近でロボット駆動部に取り付けられ得る。電磁アクチュエータ208B2は、左手側水平アクチュエータが生成する力の方向と、実質的に反対方向の(即ち、内側又は外側を向く)力を生成するように構成され得る。このアクチュエータ208B2を、右前水平アクチュエータと称する。
【0120】
電磁アクチュエータ209B2が、ガイドの表面に垂直な方向に、ロボット駆動部と右固定ガイド32B'との間に水平力を生成できるように、駆動部の右後角部付近でロボット駆動部に取り付けられ得る。この電磁アクチュエータも、左手側水平アクチュエータが生成する力の方向と、実質的に反対方向の(即ち、内側又は外側を向く)力を生成するように構成され得る。このアクチュエータ209B2を、右後水平アクチュエータと称する。
【0121】
図22の例示的な実施形態において、左手側、右前、及び右後水平アクチュエータは、
図20の例示的な実施形態において利用される左前及び左後水平アクチュエータの役割、又は
図21の例示的な実施形態の左前、右前、左後、及び右後水平アクチュエータの役割を担い得る。さらに
図22Aを参照に示すように、これは、ロボット駆動部又は筐体に対する電磁アクチュエータの2つの三角レイアウトパターンC及びDを提供するのに使用され得る。「C」は垂直アクチュエータ用で、「D」は水平アクチュエータ用である。
【0122】
図23に、本発明に係るロボットの別の例示的実施形態を図式的に示す。この例示的な実施形態では、2つの実質的に平行な固定ガイド32A'、32B'と、左前垂直アクチュエータ208Aと、左後垂直アクチュエータ209Aと、右手側垂直アクチュエータ210と、垂直位置センサ(例えば、
図20の212、214、216を参照)とが、先述の例示的な実施形態と実質的に同等の構成で利用され得る。
【0123】
さらに
図23に示すように、磁気支持システムは、第3の固定ガイドと称される、別のガイド32C'を含み得る。これもロボットの所望の横運動方向に実質的に平行であり得る。第3のガイド32C'は、左及び右固定ガイド32A'、32B'の間の中央位置に示されているが、任意の別の好適な位置に配置され得る。
【0124】
電磁アクチュエータ208B対が、ガイドの表面に対して垂直な方向に、ロボット駆動部と第3の固定ガイド32C'との間に相反する水平力を生成できるように、駆動部の前端付近でロボット駆動部に取り付けられ得る。このアクチュエータ208B対を、前水平アクチュエータと称する。
【0125】
同様に、電磁アクチュエータ209B対が、ガイドの表面に対して垂直な方向に、ロボット駆動部と第3の固定ガイド32C'との間に相反する水平力を生成できるように、ロボット駆動部の後端付近でロボット駆動部に取り付けられ得る。このアクチュエータ209B対を、後水平アクチュエータと称する。
【0126】
図23の例示的な実施形態において、前水平アクチュエータは、
図20の例示的な実施形態において利用される左前水平アクチュエータの役割を担い得る。後水平アクチュエータは、
図20の例示的な実施形態において利用される左後水平アクチュエータの役割を担い得る。
【0127】
本発明に係る、ロボットの磁気支持システムにおいて利用され得る電磁アクチュエータの例を、
図24A、
図24Bに図式的に示す。電磁アクチュエータは、積層鋼板、軟磁性複合材料、又はその他好適な強磁性材料製のコの字形状強磁性コア222と、コアに取り付けられて、コアを通じて磁束226を生成し得る巻線224又は巻線の組合せからなり得る。磁束は、コアと、ロボットの磁気支持システムのガイド32との間に引力を生成し得る。図において、磁束226の経路は点線で示される。矢印228は、アクチュエータにより生成され、そこに掛かる力を示す。
【0128】
本発明に係る、ロボットの磁気支持システムのための電磁アクチュエータの別の例を、
図25A、
図25Bに図式的に示す。この実施形態において、アクチュエータはE形状の鉄製コア232を利用し得る。当該コアは、ガイドに対して任意の態様で配向され得る。例えば、
図24、
図25においてコアはガイドに対して左から右に移動し得、あるいは図の平面内外に移動し得る。当該実施形態において、ガイドは左から右ではなく、図の平面内/外に延在する。
【0129】
本発明に係る、ロボットの磁気支持システムにおいて利用され得る電磁アクチュエータ構成のさらに別の例を、
図26A、
図26Bに図式的に示す。この実施形態において、2つのアクチュエータが、2つの巻線224a、224bと、コの字形状ガイド32''と干渉するように構成された共通鉄製コア242とを有する単一機械的アセンブリへと組み合わされ得る。2つの巻線が、鉄製コアの中央部分を共有するため、この構成は、より小さく、軽い、望ましいアクチュエータパッケージを提供し得る(2つの巻線が同時に励起されることはないため、鉄製コアの中央部分が共有され得る)。コの字形状ガイド32''は、非磁性垂直セクションHにより接続された2つの水平軟磁性部G、Iからなり得る。当該ガイド構成は、より複雑であるが、ロボットが真空チャンバ内に設置された際に、構造及び一体化に関して利点を提供する。
【0130】
垂直アクチュエータの役割における
図26A、
図26Bの例示的な実施形態及び水平アクチュエータの役割における
図25A、
図25Bの例示的な実施形態を組み合わせた例示的な配置が、
図27に図式的に示されている。
【0131】
本発明の各種実施形態の説明は、電磁アクチュエータが独立して垂直及び水平方向に力を生成するように配置されているものとするが、アクチュエータは、任意の適切な態様で配向され得る。例えば、
図20の実施形態の例の2自由度リニア磁気ベアリングは、
図28Aに図式的に示すように、垂直及び水平力を生成する電磁アクチュエータを利用し得、あるいは
図28Bに図式的に示すように、好ましくは直交するがこれに限られない、別の方向に力を生成する電磁アクチュエータを利用し得る。さらに、アクチュエータ及びセンサは別個の実体として説明されたが、これら2つは、検知及び作動の両方を行う、単一の二機能ユニットに組み合わせることができ、便利であり得る。例えば、全体が参照により本書に組み込まれる米国特許公開第2018/0090253号明細書を参照のこと。
図28Bの例示的な実施形態において、電磁アクチュエータは、電磁アクチュエータにより生成されたベクトルの和が、所望の垂直及び水平構成要素に分解されるようsに制御され得る。概して、センサとアクチュエータの両方は、多様な位置に配置及び配向され得る。磁気浮上レール又はガイド220、ロボット200、ロボットアーム202、リニア作動システム204、アクチュエータ210、211、212、213、センサ231、241、242、243、244を含む例を
図28Cに示す。
【0132】
本発明の各種実施形態の説明において、センサの例示的位置が提供されているが、これらのセンサから得られる測定値が、固定ガイドに対するロボット駆動部の位置を一意に決定するのに使用可能である限り、任意の好適なセンサ位置及び任意の数のセンサが使用され得る。
図29に、アクチュエータの非直交レイアウトの例が示されている。ここでは、ガイド220''と、2対のアクチュエータ224、226が示されている。
【0133】
本発明の各種実施形態に関連して記載されるアクチュエータは、個別のアクチュエータであってよく、複数のアクチュエータを組み合わせることにより形成されてもよく、及び/又は統合された磁気ベアリングを形成するために統合されてもよい。
【0134】
なお、リニア作動システムの制御システム及び磁気支持システムの制御システムは組み合わされ得、及び/又はそれらの機能性はロボット制御システムに組み込まれ得る。本明細書に記載されるような特徴は、全体が参照により本書に組み込まれる米国特許第10,269,604号に記載された特徴をさらに含んでもよい。
【0135】
なお、磁気浮上支持システムを走行するロボット駆動部は、完全に孤立しており、その他の何ものとも物理的に接触していない。このような状況では、静電荷蓄積がロボット駆動部上で生じ得る。過剰な静電荷蓄積は、ロボットの通常動作との干渉につながり得る。静電荷蓄積と、汚染問題を抑えるという2つの目的のために、ロボット本体から断続的に静電荷を放電するシステムがここに開示される。システムの例を
図30に示す。放電機構は、1つ以上の電気的接地接続点401、402、403の構成からなる。これらは、ロボット駆動部又はロボットアーム、あるいは移動するロボットのその他任意の構成要素と接触する。図示の例示的実施形態において、接地接続点401、402、403は、磁気浮上ガイド220、221上に示される。接点は、ロボットがX軸上の移動の終点に達すると接触するように配置され得る。これに代えて、接触はX軸運動範囲の途中で生じ得る。これに代えて、接点はガイド内に組み込まれ得る。接触が生じると、ロボット上の静電荷蓄積は、接点の設けられた接地経路を通じて接地に放電される。アークを避けるため、放電電流は、410で示すように電気抵抗器又はその他能動的又は受動的電気構成要素(複数可)を通じて流され得る。
【0136】
リニア真空ロボットに対するX軸運動範囲が極めて広範に及ぶと、前述のリニアアクチュエータシステムの一部である位置センサに対する位置軌道を構築するのが困難となる。この限定を解消するため、2位置センサによる分割位置軌道による手法がここに開示される。
図31を参照すると、ロボット駆動部がX方向に横断する際、両位置センサRH1、RH2は、センサRH1、RH2の一方、又は他方が、2つの位置軌道E1、E2の端間の移行を目標とする場合を除くあらゆる場合に、間隔長Fだけずらされた有効な位置データを生成する。なお、隙間又は移行N。開示のソリューションは、一方のセンサデータが無効の期間を、別のセンサに切り替えることで解消する。センサRH1、RH2は、ガイド/軌道E1、E2の長さについて互いに物理的にずれているため、センサRH1、RH2のうちの少なくとも1つは、有効な位置を報告する。軌道E1、E2間の移行Nの位置は設計値であるため、事前にわかっており、コントローラ206は、移行Nの既知の位置に基づいて、センサRH1、RH2間の切り替えについての判断を下す。他の実施形態では、有効なセンサの切り替え時に、漸次的又はスムーズなデータ移行を実現するために、センサRH1、RH2からのデータを使用、統合、又は組み合わせるのに、アルゴリズムが実施され得る。両センサからのデータが有効な期間においては、両方からのデータは、精度、解像度、信頼性、又はノイズ除去を向上するように、様々な方法で組み合わされ、又は統合され得る。
【0137】
なお、磁気浮上で支持されたロボットに対するX軸運動範囲が極めて広範に及ぶと、隙間センサが対象とする、スムーズで連続する表面を構築することが困難となる。
図31を参照すると、ターゲットT1、T2を目標とする2つの垂直センサP、Qが存在する。位置Lにおいて、ターゲットT1、T2の中断/移行が存在する。いずれかのセンサからの隙間測定も、センサが位置Lを移動中でない限り有効である。コントローラ206は、隙間センサがLを通じて移行している際に、センサRH1、RH2からのX軸運動位置に基づいて判断を下す。P又はQからの隙間データを使用するように、上述のアルゴリズムがコントローラ206上で実施される。
【0138】
例示的な実施形態には装置が設けられ得る。当該装置は、その上で基板を支持するように構成された第1のデバイスと、前記第1のデバイスが接続された第1の搬送機構と、を備える。前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成される。前記第1の搬送機構は、少なくとも2つのガイドと、前記少なくとも2つのガイドの上方に、前記第1のデバイスと前記少なくとも2つのガイドとの間に隙間を空けて、前記第1のデバイスを垂直に置くように構成された磁気システムと、前記少なくとも2つのガイドに沿った前記経路に前記第1のデバイスを動かすように構成されたリニアアクチュエータと、を備える。前記磁気システムは、前記第1のデバイスの第1の側の第1の角部にある第1の電磁アクチュエータと、前記第1のデバイスの前記第1の側の第2の角部にある第2の電磁アクチュエータと、前記第1のデバイスの対向する第2の側にあり、前記第1のデバイスの3つの側の角部に近接配置されない第3の電磁アクチュエータと、を備える。
【0139】
前記第1、第2、及び第3の電磁アクチュエータは、前記少なくとも2つのガイドの垂直上方に前記第1のデバイスを置く単一アクチュエータであってもよい。前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のガイドとの間に相反する水平力を生成するように構成されてもよい。前記第3の電磁アクチュエータは、前記第1のデバイスと前記第2のガイドとの間に水平力を生成しないように構成されてもよい。前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のガイドとの間に第1の方向に水平力を生成するように構成されてもよく、前記装置は、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接する第4の電磁アクチュエータ及び第5の電磁アクチュエータをさらに備え、前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のガイドとの間に反対の第2の方向に水平力を生成するように構成される。前記装置は、前記第1のデバイスと前記第1のガイドとの間に第1の方向に水平力を生成するように構成される、前記第1のデバイスの前記第1の側に近接して配置された第4の電磁アクチュエータと、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接する第4の電磁アクチュエータ及び第5の電磁アクチュエータと、をさらに備えてもよく、前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のガイドとの間に反対の第2の方向に水平力を生成するように構成される。前記少なくとも2つのガイドは、前記第1のガイドと前記第2のガイドとの間に第3のガイドを備えてもよく、前記装置は、前記第3のガイドに第4の電磁アクチュエータ及び第5の電磁アクチュエータをさらに含み、前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第3のガイドとの間に相反する水平力を生成するように構成される。前記第1のデバイスは、その中にロボットモータを有するロボット筐体と、前記ロボットモータに接続されたロボットアームと、を備えてもよく、前記ロボットアームは前記ロボット筐体の外側に配置され、前記ロボットアームはその上で前記基板を支持するように構成されたエンドエフェクタを備え、前記第1の側は前記ロボット筐体の第1の側面であり、前記第2の側は前記ロボット筐体の第2の対向する側面である。前記装置は、前記第1の電磁アクチュエータに第1のセンサを、前記第2の電磁アクチュエータに第2のセンサを、前記第3の電磁アクチュエータに第3のセンサを、さらに備えてもよく、これらのセンサは、前記第1及び第2のガイドに対する前記第1のデバイスの位置を測定するように構成される。
【0140】
別の例によると、方法が提供され得る。当該方法は、第1のデバイスの第1の側の第1の角部に近接して第1の電磁アクチュエータを接続することと、前記第1のデバイスの前記第1の側の第2の角部に近接して第2の電磁アクチュエータを接続することと、前記第1のデバイスの対向する第2の側に近接して第3の電磁アクチュエータを接続することと、前記第1のデバイスを少なくとも2つのレール又はガイドの上方に配置すること、を含む。前記第1の角部は前記第1のデバイスの3つの側にあり、前記第1のデバイスはその上で基板を支持するように構成され、前記第1の電磁アクチュエータは、前記第1のデバイスが接続された第1の搬送機構の磁気システムの一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成される。前記第2の電磁アクチュエータは、前記磁気システムの一部であり、前記第2の角部は前記第1のデバイスの3つの側にある。前記第3の電磁アクチュエータは、前記磁気システムの一部であり、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に近接配置されない。前記第1及び第2の電磁アクチュエータは前記レールのうちの第1のレールに配置され、前記第3の電磁アクチュエータは前記レールのうちの異なる第2のレールに配置される。
【0141】
前記第1、第2、及び第3の電磁アクチュエータは、前記少なくとも2つのレールの垂直上方に前記第1のデバイスを置く単一アクチュエータであってもよい。前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のレールとの間に相反する水平力を生成するように構成されてもよい。前記第3の電磁アクチュエータは、前記第1のデバイスと前記第2のレールとの間に水平力を生成しないように構成されてもよい。前記第1及び第2の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第1のレールとの間に第1の方向に水平力を生成するように構成されてもよい。本方法に係る構成は、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接する第4の電磁アクチュエータ及び第5の電磁アクチュエータをさらに備えてもよい。前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のレールとの間に反対の第2の方向に水平力を生成するように構成される。前記方法は、前記第1のデバイスと前記第1のレールとの間に第1の方向に水平力を生成するように構成された第4の電磁アクチュエータを、前記第1のデバイスの前記第1の側に近接して接続することと、前記第1のデバイスの3つの側のそれぞれ第3及び第4の角部に近接して前記第4の電磁アクチュエータ及び第5の電磁アクチュエータを接続することと、をさらに含んでもよく、前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと前記第2のレールとの間に反対の第2の方向に水平力を生成するように構成される。前記方法は、第4の電磁アクチュエータ及び第5の電磁アクチュエータを前記第1のデバイスに接続することをさらに含んでもよく、前記第4及び第5の電磁アクチュエータはそれぞれ、前記第1のデバイスと第3のレールとの間に相反する水平力を生成するように構成され、前記第3のレールは前記第1のレールと前記第2のレールとの間に配置される。前記第1のデバイスは、その中にロボットモータを有するロボット筐体と、前記ロボットモータに接続されたロボットアームと、を備えてもよく、前記ロボットアームは前記ロボット筐体の外側に配置され、前記ロボットアームはその上で前記基板を支持するように構成されたエンドエフェクタを備え、前記第1の側は前記ロボット筐体の第1の側面であり、前記第2の側は前記ロボット筐体の第2の対向する側面である。前記方法は、前記第1の電磁アクチュエータに第1のセンサを提供し、前記第2の電磁アクチュエータに第2のセンサを提供し、前記第3の電磁アクチュエータに第3のセンサを提供することをさらに含んでもよく、これらのセンサは、前記第1及び第2のレールに対する前記第1のデバイスの位置を測定するように構成される。
【0142】
ある例では方法が提供される。当該方法は、第1のレール又はガイドの上方に第1のデバイスの第1の角部を垂直に置くように磁気システムの第1の電磁アクチュエータを制御することと、前記第1のレールの上方に前記第1のデバイスの異なる第2の角部を垂直に置くように前記磁気システムの第2の電磁アクチュエータを制御することと、第2のレールの上方に前記第1のデバイスを垂直に置くように前記磁気システムの第3の電磁アクチュエータを制御することと、を含む。前記第1の電磁アクチュエータは、前記第1のレール及び前記第2のレール又はガイドの上方に、前記第1のデバイスと前記レールとの間に隙間を空けて、前記第1のデバイスを磁気により垂直に置くように構成された第1の搬送機構の一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、前記第1の角部は前記第1のデバイスの3つの側にあり、前記第1のデバイスはその上で基板を支持するように構成される。前記第2の角部は前記第1のデバイスの3つの側にあり、前記第1及び第2の角部は前記第1のデバイスの第1の側にある。前記第3の電磁アクチュエータは、前記第1のデバイスの対向する第2の側に配置され、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に近接配置されない。
【0143】
例示的な実施形態によると、装置が提供される。当該装置は、少なくとも1つのプロセッサと、コンピュータプログラムコードを含む少なくとも1つの非一時的メモリと、を備える。前記少なくとも1つのメモリ及び前記コンピュータプログラムコードは、前記少なくとも1つのプロセッサによって、前記装置に、第1のレール又はガイドの上方に第1のデバイスの第1の角部を垂直に置くように第1の電磁アクチュエータを制御させ、前記第1のレールの上方に前記第1のデバイスの異なる第2の角部を垂直に置くように前記磁気システムの第2の電磁アクチュエータを制御させ、第2のレールの上方に前記第1のデバイスを垂直に置くように前記磁気システムの第3の電磁アクチュエータを制御させるように構成される。第1の電磁アクチュエータは、前記第1のレール及び前記第2のレール又はガイドの上方に、前記第1のデバイスと前記レールとの間に隙間を空けて、前記第1のデバイスを磁気により垂直に置くように構成された第1の搬送機構の磁気システムの一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、前記第1の角部は前記第1のデバイスの3つの側に近接し、前記第1のデバイスはその上で基板を支持するように構成される。前記第2の角部は前記第1のデバイスの3つの側にあり、前記第1及び第2の角部は前記第1のデバイスの第1の側にある。前記第3の電磁アクチュエータは、前記第1のデバイスの対向する第2の側に配置され、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に配置されない。
【0144】
例示的な実施形態によると、装置が提供される。当該装置は、第1のレール又はガイドの上方に第1のデバイスの第1の角部を垂直に置くように第1の電磁アクチュエータを制御する手段と、前記第1のレールの上方に前記第1のデバイスの異なる第2の角部を垂直に置くように前記磁気システムの第2の電磁アクチュエータを制御する手段と、第2のレールの上方に前記第1のデバイスを垂直に置くように前記磁気システムの第3の電磁アクチュエータを制御する手段と、を備える。前記第1の電磁アクチュエータは、前記第1のレール及び前記第2のレール又はガイドの上方に、前記第1のデバイスと前記レールとの間に隙間を空けて、前記第1のデバイスを磁気により垂直に置くように構成された第1の搬送機構の磁気システムの一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、前記第1の角部は前記第1のデバイスの3つの側に近接し、前記第1のデバイスはその上で基板を支持するように構成される。前記第2の角部は前記第1のデバイスの3つの側にあり、前記第1及び第2の角部は前記第1のデバイスの第1の側にある。前記第3の電磁アクチュエータは、前記第1のデバイスの対向する第2の側に配置され、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に配置されない。
【0145】
例示的な実施形態によると、機械によって可読な非一時的プログラム記憶デバイスが提供され得、動作を実施するために前記機械によって実行可能な命令のプログラムを有形に実施する。前記動作は、第1のレール又はガイドの上方に第1のデバイスの第1の角部を垂直に置くように第1の電磁アクチュエータを制御することと、前記第1のレールの上方に前記第1のデバイスの異なる第2の角部を垂直に置くように前記磁気システムの第2の電磁アクチュエータを制御することと、第2のレールの上方に前記第1のデバイスを垂直に置くように前記磁気システムの第3の電磁アクチュエータを制御することと、を含む。前記第1の電磁アクチュエータは、前記第1のレール及び前記第2のレール又はガイドの上方に、前記第1のデバイスと前記レールとの間に隙間を空けて、前記第1のデバイスを磁気により垂直に置くように構成された第1の搬送機構の磁気システムの一部であり、前記第1の搬送機構は、水平経路に沿った移動のために前記第1のデバイスを支持するように構成され、前記第1の角部は前記第1のデバイスの3つの側に近接し、前記第1のデバイスはその上で基板を支持するように構成される。前記第2の角部は前記第1のデバイスの3つの側にあり、前記第1及び第2の角部は前記第1のデバイスの第1の側にある。前記第3の電磁アクチュエータは、前記第1のデバイスの対向する第2の側に配置され、前記第3の電磁アクチュエータは、前記第1のデバイスの3つの側の角部に配置されない。
【0146】
リニア真空ロボット制御システムアーキテクチャ
【0147】
リニアロボット制御システムの例示的な実施形態のブロック図を
図32に示す。
【0148】
マスタコントローラは、ユーザインタフェース、ホストコントローラとの通信(例えば、シリアル通信又はイーサネット通信の活用)、構成データ管理、高次運動計画(即ち、ロボットの動きのシーケンス)、軌跡の生成(各運動軸についての各動きの運動プロファイルの計算)、全ての運動軸についての位置制御、及び適応型配置システム(Adaptive Placement System:APS)といった機能を実施し得る。適応型配置システムの一例は米国特許第10,058,996号に記載されており、その全体が参照により本書に組み込まれている。
【0149】
マスタコントローラは、ホストコントローラから、構成、リクエスト、及びアクションコマンド(例えば、持ち上げ(pick)又は配置(place)動作を実施するためのコマンド)を含む各種コマンドを受信してもよく、ホストコントローラに対してコマンドの完了及びその他の情報の報告を返してもよい。
【0150】
マスタコントローラは、高速ネットワークを介して、全ての運動軸の位置(周期的にモータアンプから)、デジタル及びアナログ入力のステータス(I/Oモジュールから、適用可能な場合にはモータアンプから)、デジタル入力変更のタイミング(I/Oモジュールから、適用可能な場合にはモータアンプから)を受信してもよい。マスタコントローラは、高速ネットワークを介して、各運動軸についてのコマンドされた電流(周期的にモータアンプへと)及びデジタル及びアナログ出力(I/Oモジュールへと、適用可能な場合にはモータアンプへと)を設定するための情報を送信してもよい。レールベースのリニアシステムであれ磁気浮上リニアシステムであれ、制御システムは、光学通信リンク又はその他の無線通信リンクの使用を伴ってもよい。例えば、
図32及び
図36に示すように、システムは、真空チャンバ壁及びロボット駆動部壁における各ビューポートを有する2つの光学通信モジュールを備えてもよい。したがって、光学通信リンクが、外部コントローラとロボット駆動部(上述のように閉ループ制御を含み得る)との間に提供されてもよい。
【0151】
I/Oモジュールは、デジタル及びアナログ入力(APSセンサからの入力を含み得る)を読み取ってもよく、デジタル及びアナログ出力を設定してもよい。I/Oモジュールは、高速ネットワークを介して、デジタル及びアナログ出力(マスタコントローラから)を設定する情報を読み取ってもよく、高速ネットワークを介して、デジタル及びアナログ入力のステータス(マスタコントローラへと)及びデジタル入力変更のタイミング(さらにマスタコントローラへと)を送信してもよい。
【0152】
各モータアンプは、モータ整流アルゴリズム(複数可)の実行、電流制御ループの実行、デジタル及びアナログ入力の読取り、デジタル及びアナログ出力の設定といった機能を実施し得る。各モータアンプは、位置エンコーダ(複数可)から測定された位置(複数可)を周期的に読み取ってもよく、モータ(複数可)の制御についての出力電圧を設定してもよい。各モータアンプは、マスタコントローラから、高速ネットワークを介して、(周期的に)支持された運動軸(複数可)についてのコマンドされた電流(複数可)及びデジタル及びアナログ出力を設定するための情報を受信してもよい。各モータアンプは、高速ネットワークを介して、マスタコントローラへと、(周期的に)支持された運動軸(複数可)の測定された位置、デジタル及びアナログ入力のステータス、及び適用可能な場合にはデジタル入力変更のタイミングを送信してもよい。
【0153】
高速ネットワーク(例えば、EtherCAT)は、マスタコントローラとI/Oモジュール、さらにモータアンプとの間の通信を促進してもよい。アウトバウンドトラフィック(即ち、マスタコントローラからI/Oモジュール及びモータアンプへのトラフィック)は、各運動軸についてコマンドされた電流(マスタコントローラからモータアンプへと周期的に送信)及びデジタル及びアナログ出力を設定するための情報(マスタコントローラからI/Oモジュールへと、及び適用可能な場合にはモータアンプへと送信)を含んでもよい。インバウンドトラフィック(即ち、I/Oモジュール及びモータアンプからマスタコントローラへのトラフィック)は、測定された位置(モータアンプから)、デジタル及びアナログ入力のステータス(I/Oモジュールから、及び適用可能な場合にはモータアンプから)、及びデジタル入力変更のタイミング(I/Oモジュールから、及び適用可能な場合にはモータアンプから)を含んでもよい。
【0154】
APS(適応型配置システム)の機能性が必要な場合、APSセンサ(複数可)は、直接、又はI/O接続ボードを介して、I/Oモジュールの1つ以上の入力にルーティングされてもよい。任意のI/O接続ボードの目的は、I/Oモジュールにルーティングされた入力の数を減らすことである。
【0155】
リニアロボット制御システムの別の例示的な実施形態のブロック図を
図33に示す。この例示的な実施形態では、マスタコントローラは、外部コントローラの一部とは対照的に、ロボット駆動部内に配置されてもよい。
【0156】
図33の例示的な実施形態において、マスタコントローラは、先述の実施形態と実質的に同様に、高速ネットワークを介してモータアンプと通信してもよい。しかし、通信の別の手段が、マスタコントローラとI/Oモジュールとの間の通信のために使用されてもよい。一例として、個別の通信ネットワーク(例えば、イーサネット)が使用されてもよい。
図33に図式的に示すように、同じ通信ネットワークがさらにホストコントローラとの通信に活用されてもよく、この場合、ネットワークルータは便宜上、外部コントローラボードに組み込まれていてもよい。これに代えて、個別の通信手段が、ホストコントローラとマスタコントローラとの間の通信に、さらにマスタコントローラとI/Oモジュールとの間の通信に使用されてもよい。これらの2つの通信チャネルは、同一の物理的媒体(例えば、イーサネットを介したシリアル通信)を介して実現してもよく、又は異なる物理的媒体を使用してもよい。
【0157】
マスタコントローラとI/Oモジュールとの間の通信は、2つのデバイスで稼働しているクロックの同期を可能にしてもよく、又はAPSの計算目的(例えば、2つのクロック間のオフセットが周期的に特定され、デジタル入力変更が発生する際に適用され得る)のために、I/Oモジュール上のデジタル入力変更のタイミングを適切に決定するための別の機構を特徴付けてもよい。
【0158】
さらに別の例示的な実施形態では、双方向光ビームを介した高速通信は、電力結合を通じてルーティングされてもよい。電力結合は、送電について同じセットのコイルを、又はデータ送信のために追加のセットのコイルを使用してもよい。
図32と同等の例示的な実施形態を
図34に図式的に示し、
図33と同等の例示的な実施形態を
図35に図式的に示す。
【0159】
磁気支持システム(磁気浮上)の制御を伴うリニアロボット制御システムの追加の例示的な実施形態のブロック図を
図36~
図39に示す。
【0160】
磁気浮上コントローラは、ロボット駆動部の位置制御(例えば、ロボット駆動部の横方向位置、垂直位置、ピッチ角、ロール角、及びヨー角に関連付けられた5自由度の制御)を実施し、磁気支持システムの各アクチュエータについて電流制御ループを動作させてもよい。このプロセスにおいて、磁気浮上コントローラは、磁気支持システムの位置センサ(例えば、2つの水平センサ及び3つの垂直センサ)から測定された位置を周期的に読み取り、磁気支持システムの力アクチュエータ(例えば、2つの水平アクチュエータ対及び3つの垂直アクチュエータ対)についての出力電圧を設定してもよい。磁気浮上コントローラは、高速ネットワークを介して、各種コマンドをマスタコントローラから受信してもよく、これらのコマンドには、リフトオフのためのコマンド、所与の位置(ロボット駆動部と磁気支持システムのガイドとの間に隙間として便宜上表され得る)を維持するためのコマンド、ロボット駆動部を着地させるためのコマンドを含む。これに代えて、磁気浮上コントローラは、マスタコントローラから、コマンドされた位置のストリームを(例えば、周期的に送信されたデータフレームの形態で)受信してもよい。
【0161】
別の代替例としては、マスタ制御により、磁気支持システムを介したロボット駆動部の位置制御を実行してもよい。このプロセスにおいて、マスタコントローラは、磁気浮上コントローラから、高速ネットワークを介して、磁気支持システムのセンサから測定された位置を周期的に受信してもよく、磁気浮上コントローラへと、高速ネットワークを介して、磁気支持システムの各力アクチュエータについてのコマンドされた電流を周期的に送信してもよい。この配置において、磁気浮上コントローラはなおも、磁気支持システムの各アクチュエータについての電流制御ループを動作させてもよい。
【0162】
図37及び
図39の例示的な実施形態において、既存の高速通信ネットワークがマスタコントローラと磁気浮上コントローラとの間の通信を促進するために活用される。しかし、2つのデバイス間の別のネットワーク又はポイントツーポイントバスなどの任意の他の好適な通信手段が活用されてもよい。さらに、
図36~
図39には単一の磁気浮上コントローラを示すが、任意の好適な数の磁気浮上コントローラが活用され得、そのそれぞれが位置センサのサブセット及び磁気支持システムの力アクチュエータに割り当てられる。
【0163】
真空チャンバ(即ち、複数の部位からなる真空チャンバ)のモジュール設計を支えるために、リニア作動システムについての追加のエンコーダ読取りヘッド及び/又は磁気支持システムの追加の位置センサが、真空チャンバの個別の部位間のスムーズな移行を可能にするように活用されてもよい。これは、
図40及び
図41に図式的に示されており、これらはそれぞれ
図32及び
図36の例示的な実施形態に構築されている。
【0164】
上述の実施形態の全ては、簡潔にするために図面では省略された追加の特徴を含んでもよい。例えば、外部コントローラは、教示ペンダント、eストップ、インターロック、安全回路構成(固体構成要素及び電気機械接触器(複数可)を含む)、及びエネルギ貯蔵部(例えば、バッテリ及び/又はコンデンサ)のための支持部を備えてもよい。同様に、搭載されたコントローラは、安全回路構成(固体構成要素及び電気機械接触器(複数可)を含む)、逆起電力再生システム、及び蓄電部(例えば、バッテリ及び/又はコンデンサ)を特徴付けてもよい。
【0165】
図32~
図39に関して説明された上述の例示的な実施形態では3つの回転運動軸(T1、T2、及びT3)が示されているが、任意の数の回転軸が使用されてもよいし、回転軸が使用されなくてもよい。同様に、
図32~
図39の上述の例示的な実施形態では1つのz軸が示されているが、任意の数のz軸が使用されてもよいし、z軸が使用されなくてもよい。
図36~
図39には3つの水平センサ・アクチュエータ構成及び3つの垂直センサ・アクチュエータ構成を有する磁気支持システム(磁気浮上)の制御が示されているが、任意の好適な数の個別の、又は統合されたセンサ及びアクチュエータが使用されてもよい。
【0166】
以上の説明は単に例示のためであることが理解されよう。各種代替例や変形例が当業者によって考案され得る。例えば、各従属請求項に記載された特徴は、任意の好適な組合せ(複数可)で互いに組み合わされ得る。さらに、上述の異なる実施形態の特徴を選択的に組み合わせて、新たな実施形態とすることもできる。したがって、上記説明は、添付の請求項の範囲に当たるそのような代替例、変形例、及び変動の全てを網羅することを意図したものである。
【国際調査報告】