IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヌクレウス サイエンティフィック, インク.の特許一覧

特表2022-520685感覚入力およびそれを組み込んだ車両に基づき、反応システムを調整する方法ならびに装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-04-01
(54)【発明の名称】感覚入力およびそれを組み込んだ車両に基づき、反応システムを調整する方法ならびに装置
(51)【国際特許分類】
   B62D 21/14 20060101AFI20220325BHJP
   B62D 31/02 20060101ALI20220325BHJP
【FI】
B62D21/14
B62D31/02 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021519709
(86)(22)【出願日】2019-10-11
(85)【翻訳文提出日】2021-06-08
(86)【国際出願番号】 US2019055814
(87)【国際公開番号】W WO2020077194
(87)【国際公開日】2020-04-16
(31)【優先権主張番号】PCT/US2019/029793
(32)【優先日】2019-04-30
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/745,038
(32)【優先日】2018-10-12
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】514315012
【氏名又は名称】インディゴ テクノロジーズ, インク.
【氏名又は名称原語表記】INDIGO TECHNOLOGIES, INC.
(74)【代理人】
【識別番号】100107984
【弁理士】
【氏名又は名称】廣田 雅紀
(74)【代理人】
【識別番号】100182305
【弁理士】
【氏名又は名称】廣田 鉄平
(74)【代理人】
【識別番号】100096482
【弁理士】
【氏名又は名称】東海 裕作
(74)【代理人】
【識別番号】100131093
【弁理士】
【氏名又は名称】堀内 真
(74)【代理人】
【識別番号】100150902
【弁理士】
【氏名又は名称】山内 正子
(74)【代理人】
【識別番号】100141391
【弁理士】
【氏名又は名称】園元 修一
(74)【代理人】
【識別番号】100221958
【弁理士】
【氏名又は名称】篠田 真希恵
(74)【代理人】
【識別番号】100192441
【弁理士】
【氏名又は名称】渡辺 仁
(72)【発明者】
【氏名】ヒンソン ピーター
(72)【発明者】
【氏名】ワハブ アダム
(72)【発明者】
【氏名】クリストフェク グラント ダブリュー.
(72)【発明者】
【氏名】ハンター イアン ダブリュー.
【テーマコード(参考)】
3D203
【Fターム(参考)】
3D203AA37
3D203DA21
(57)【要約】
従来の車両は、通常、車両の設計段階中に定義される、固定された特性を持つ単一の剛体のように振る舞う。従来の車両の剛性な性質によって、異なる運転条件に順応する能力が制限され、それゆえ有用性および性能も制限される。これらの制限を克服するには、センサおよび反応システムを含む、反応性の高い車両を使用してもよい。センサは、運転者の位置および/もしくは配向、車両の運転条件、ならびに/または車両の周りの環境条件を監視し得る。反応システムは、センサによって取得されたデータに基づいて、車両の何らかの態様を調整してもよい。例えば、反応システムは、運転者の動きに基づいて変化する視野を持つ、ビデオベースのミラーを含んでもよい。別の例では、反応システムは、運転者の動きに基づいて、車両の物理的な構成を変更する、関節ジョイントを含んでもよい。
【選択図】図1
【特許請求の範囲】
【請求項1】
車両であって、
車体と、
運転者の頭部を収容する環境のRGB(赤緑青)画像および深度マップを捕捉するための、前記車体に結合されたセンサと、
作動時に前記運転者の視野(FOV)を調整するための、前記車体に結合された反応システムと、
前記RGB画像および前記深度フレームに基づいて、前記運転者の眼の基準点を決定し、前記眼の基準点に基づいて前記運転者の前記FOVを変更するために、前記反応システムを作動させるための、前記センサおよび前記反応システムへ動作可能に結合されたプロセッサと、を備える、車両。
【請求項2】
前記深度マップが、前記RGB画像をマスクするために使用され、それゆえ処理のために前記RGB画像の区域が減少する、請求項1に記載の車両。
【請求項3】
前記深度マップは、前記環境の深度が、前記RGB画像に捕捉された前記環境の場所に対応するように、前記RGB画像に位置合わせされる、請求項1に記載の車両。
【請求項4】
前記反応システムが、
シャーシ接続の構成要素と、
前記車体に結合された第一の端部、および前記シャーシ接続の構成要素に結合された第二の端部を有し、前記プロセッサへ動作可能に結合された関節ジョイントと、
前記第一の端部に対して前記第二の端部を移動させるための、前記関節ジョイントに結合されたアクチュエータと、を備え、
前記プロセッサが、前記ユーザの前記眼の基準点に基づいて、前記第一の端部に対して前記第二の端部を移動させるために、前記アクチュエータを作動させるよう構成され、それによって前記ユーザの前記FOVを変更する、請求項1に記載の車両。
【請求項5】
前記関節ジョイントによって、第一の軸と実質的に平行な第二の軸に沿って移動する、前記眼の基準点に応じて、前記車両の前記第一の軸に沿って、前記第一の端部に対して前記第二の端部を移動させる、請求項4に記載の車両。
【請求項6】
前記車体がキャビンを画定し、
前記環境が前記キャビンであり、
前記反応システムが、
前記車両の外側領域のビデオ画像を捕捉するための、前記車体上に取り付けられたカメラ、
前記キャビンの中に配置され、前記プロセッサおよび前記カメラへ動作可能に結合されたディスプレイを備え、
前記プロセッサが、前記運転者の前記FOVを変更するために、前記運転者の前記眼の基準点に基づいて、前記ビデオ画像を修正するように構成され、
前記ディスプレイが、前記プロセッサによって修正された前記ビデオ画像を示すように構成される、請求項1に記載の車両。
【請求項7】
前記プロセッサが、
前記眼の基準点と前記ディスプレイの中心点との間の距離を計算することと、
前記運転者の前記頭部の動作範囲に基づいて、変換の大きさをスケーリングすることと、
前記距離および前記変換の前記大きさに基づいて、前記ビデオ画像を調整することと、によって前記ビデオ画像を修正するように構成される、請求項6に記載の車両。
【請求項8】
前記カメラが第一のカメラであり、
前記第一のビデオ画像が第一のFOVをカバーし、
前記車両外側の前記領域が、前記車両外側の第一の領域であり、
前記反応システムが、前記車両外側にある第二の領域の第二のビデオ画像を、第二のFOVで捕捉するための、前記車体上に取り付けられた第二のカメラをさらに備え、
前記プロセッサは、前記ディスプレイが、前記第一のビデオ画像と前記第二のビデオ画像との間を途切れなく移行するように、前記第一のビデオ画像および前記第二のビデオ画像を組み合わせるように構成される、請求項6に記載の車両。
【請求項9】
車両の運転手の頭部の位置および/または配向を感知するための、前記車両のキャビンの中に配置された室内位置センサと、
前記車両の後方領域のビデオ画像を捕捉するための、前記車両上または前記車両の中に取り付けられたカメラと、
前記運転手の前記頭部の前記位置および/または配向に基づいて、前記運転手の眼の基準点を決定し、前記眼の基準点に基づいて前記ビデオ画像の視野(FOV)または画角のうちの少なくとも一つを修正するための、前記室内位置センサおよび前記カメラへ動作可能に結合されたプロセッサと、
前記プロセッサによって修正された前記ビデオ画像の少なくとも一部分を、前記運転手へ表示するための、前記車両の前記キャビンの中にあり、前記カメラおよびプロセッサへ動作可能に結合されたディスプレイと、を備える、反応性ミラーシステム。
【請求項10】
前記室内位置センサが、前記運転手の少なくとも前記頭部を表す深度マップを生じるための、ステレオ構成にある一対の赤外線(IR)カメラのうちの少なくとも一つ、または前記運転手の少なくとも前記頭部のRGB(赤緑青)画像を捕捉するための可視光カメラを備える、請求項9に記載の反応性ミラーシステム。
【請求項11】
前記室内位置センサが、少なくとも約60Hzの周波数で、前記運転手の前記頭部の前記位置および/または配向を感知するように構成される、請求項9に記載の反応性ミラーシステム。
【請求項12】
前記カメラが、約10度と約175度との間の範囲である視野(FOV)を有する、請求項9に記載の反応性ミラーシステム。
【請求項13】
前記カメラが、少なくとも1秒あたり約15フレームのフレームレートで、前記ビデオ画像を捕捉するように構成される、請求項9に記載の反応性ミラーシステム。
【請求項14】
前記ビデオ画像の前記一部分の輝度、前記ビデオ画像の前記一部分のコントラスト、前記ビデオ画像の前記一部分のパン位置、または前記カメラのFOVのうちの少なくとも一つを調整するための、前記車両の中にあり、前記カメラ、前記ディスプレイ、および前記プロセッサへ動作可能に結合された制御インターフェースをさらに備える、請求項9に記載の反応性ミラーシステム。
【請求項15】
車両の運転手に表示されるビデオ画像を変換する方法であって、
前記車両のキャビンを表現したものを測定することであって、前記表現が、深度マップまたはRGB(赤緑青)画像のうちの少なくとも一つを含み、前記表現が、前記車両を運転する前記運転手の頭部を示すことと、
前記表現に基づいて、前記運転手の眼の基準点を決定することと、
前記車両上または前記車両の中に取り付けられたカメラを用いて、前記車両外側の区域の前記ビデオ画像を取得することと、
前記眼の基準点に基づいて、前記ビデオ画像に変換を適用することと、
前記運転者に対して、前記車両の前記キャビン内のディスプレイ上に、前記ビデオ画像を表示することと、を含む、方法。
【請求項16】
前記表現が、前記深度マップおよび前記RGB画像を含み、前記眼の基準点を決定することが、
前記RGB画像を前記深度マップでマスクして、処理のために前記RGB画像の区域を減少させることを含む、請求項15に記載の方法。
【請求項17】
前記運転手の初期座位を較正することをさらに含む、請求項15に記載の方法。
【請求項18】
前記運転手の動作範囲を較正することをさらに含む、請求項17に記載の方法。
【請求項19】
前記ディスプレイの位置ずれを較正することをさらに含む、請求項18に記載の方法。
【請求項20】
前記ディスプレイの中心点を計算することをさらに含む、請求項19に記載の方法。
【請求項21】
前記変換が、
前記眼の基準点と前記ディスプレイの前記中心点との間の距離を計算することと、
前記運転者の前記動作範囲に基づいて、前記変換の大きさをスケーリングすることと、
前記距離および前記変換の前記大きさに基づいて、前記カメラの視野または前記カメラのパン位置のうちの少なくとも一つを調整することと、を含む、請求項20に記載の方法。
【請求項22】
前記変換が、
前記眼の基準点から前記ディスプレイの前記中心点までのベクトルに基づいて、標的視野および標的パン位置を計算することと、
カメラの焦点距離、カメラのアスペクト比、もしくはカメラのセンササイズのうちの少なくとも一つに基づいて、並進または倍率のうちの少なくとも一つを計算することと、
前記標的視野および前記標的パン位置をシミュレートするように、前記並進もしくは前記倍率のうちの前記少なくとも一つに基づいて、前記ビデオ画像の視野またはパン位置のうちの少なくとも一つを調整することと、を含む、請求項20に記載の方法。
【請求項23】
前記変換を適用する前に、
前記ビデオ画像の放射状歪みまたは接線方向歪みのうちの少なくとも一つを減少させるように、前記ビデオ画像に補正を適用することをさらに含む、請求項15に記載の方法。
【請求項24】
車両上または前記車両の中に取り付けられた、少なくとも一つのカメラを調整する方法であって、
前記車両のキャビンを表現したものを測定することであって、前記表現が、深度マップまたはRGB(赤緑青)画像のうちの少なくとも一つを含み、前記表現が、前記車両を運転する運転手の頭部を示すことと、
前記表現に基づいて、前記運転手の眼の基準点を決定することと、
前記眼の基準点に基づいて、前記少なくとも一つのカメラの視野(FOV)またはパン位置のうちの少なくとも一つを調整することと、
前記少なくとも一つのカメラによって取得された、前記車両外側にある区域の少なくとも一つのディスプレイ上に、ビデオ画像を表示することと、を含む、方法。
【請求項25】
前記少なくとも一つのカメラが、第一のビデオ画像を取得するための第一のカメラと、第二のビデオ画像を取得するための第二のカメラとを含む、請求項24に記載の方法。
【請求項26】
前記第一のカメラと前記第二のカメラとの間に途切れないFOVを提供するために、前記第一のビデオ画像を前記第二のビデオ画像とつなぎ合わせることをさらに含む、請求項25に記載の方法。
【請求項27】
前記運転手の初期座位を較正することと、
前記少なくとも一つのディスプレイ上に表示される、前記ビデオ画像の位置ずれを較正することと、
前記初期座位および前記位置ずれを使用して、前記少なくとも一つのディスプレイ上に表示される、前記ビデオ画像の中心点を計算することと、をさらに含む、請求項24に記載の方法。
【請求項28】
前記初期座位に対する前記運転手の動作範囲を較正することと、
前記運転手の前記動作範囲に基づいて、前記少なくとも一つのカメラのパン速度をスケーリングすることと、をさらに含む、請求項24に記載の方法。
【請求項29】
前記ビデオ画像を表示する前に、
一つ以上の歪み係数を使用して、放射状歪みまたは接線方向歪みの少なくとも一つを減少させるように、前記ビデオ画像に補正を適用することをさらに含む、請求項24に記載の方法。
【請求項30】
車両であって、
車体と、
シャーシ接続の構成要素と、
前記車体に結合された第一の端部、および前記シャーシ接続の構成要素に結合された第二の端部を有する関節ジョイントであって、
前記第一の端部および前記第二の端部に結合され、経路を画定するガイド構造であって、前記第二の端部が、前記経路に沿って前記第一の端部に対して移動可能である、ガイド構造、
前記経路に沿って前記第二の端部を移動させるための、前記ガイド構造に結合された駆動アクチュエータ、
起動するのに応じて、前記経路に沿って前記第二の端部を固定位置に保持するための、前記ガイド構造に結合されたブレーキ、を備える関節ジョイントと、
運転者および前記車両を囲む環境のうちの少なくとも一つを感知するための、前記車体に結合された一つ以上のセンサと、
前記運転者または前記車両を囲む前記環境のうちの前記少なくとも一つに基づいて、前記関節ジョイントを作動させるための、前記一つ以上のセンサおよび前記関節ジョイントへ動作可能に結合された、プロセッサと、を備える、車両。
【請求項31】
前記シャーシ接続の構成要素が、後部車体である、請求項30に記載の車両。
【請求項32】
前記シャーシ接続の構成要素が、車輪である、請求項30に記載の車両。
【請求項33】
前記車体が、前記運転者を収容するキャビンを画定し、
前記一つ以上のセンサが、前記キャビンを表現するものを生成するように構成され、前記表現が前記運転者の頭部を示す、請求項30に記載の車両。
【請求項34】
前記プロセッサが、前記キャビンの前記表現に基づいて、前記運転者の眼の基準点の動きを識別するように構成され、
前記プロセッサが、前記車両の第一の軸に沿った、前記運転者の前記眼の基準点の動きを識別するのに応じて、前記関節ジョイントが、前記環境に対して前記運転者の前記眼の基準点の前記変位を増加させるために、前記第一の軸と実質的に平行な第二の軸に沿って、前記車体を移動させるように構成される、請求項33に記載の車両。
【請求項35】
前記軸に沿った前記車体の動きによって、前記運転者の視野(FOV)を修正する、請求項34に記載の車両。
【請求項36】
前記プロセッサが、前記表現に基づいて、前記運転者が知覚するまぶしい光を検出し、前記運転者が知覚する前記まぶしい光を減少させるために、前記関節ジョイントを作動させるように構成される、請求項33に記載の車両。
【請求項37】
前記表現が、深度マップまたはRGB(赤緑青)画像のうちの少なくとも一つを含む、請求項33に記載の車両。
【請求項38】
前記一つ以上のセンサが、前記環境の領域のビデオ画像を捕捉するカメラを備え、前記ビデオ画像が運転者の頭部を示す、請求項30に記載の車両。
【請求項39】
前記プロセッサが、前記ビデオ画像の中で、前記運転者の前記頭部の相対位置を決定するように構成され、
前記一つ以上のセンサに対して、前記運転者の前記頭部が移動していることを検出するのに応じて、前記プロセッサが、前記関節ジョイントを作動させて、前記運転者の前記頭部が、前記ビデオ画像内の前記位置に戻るよう、前記車体を移動させるように構成される、請求項38に記載の車両。
【請求項40】
前記車体がキャビンを画定し、
前記車両の外側領域のビデオ画像を捕捉するための、前記車両上または前記車両の中に取り付けられ、前記プロセッサへ動作可能に結合されたカメラと、
前記ビデオ画像を前記運転者に表示するための、前記キャビンの中に配置され、前記カメラおよび前記プロセッサへ動作可能に結合されたディスプレイと、をさらに備える、請求項30に記載の車両。
【請求項41】
前記プロセッサが、前記ビデオ画像に基づいて、前記運転者の眼の基準点を決定し、前記運転者の前記眼の基準点に基づいて、前記ビデオ画像の第一の視野(FOV)または画角のうちの少なくとも一つを修正するように構成され、
前記ディスプレイが、前記プロセッサによって修正された、前記ビデオ画像の少なくとも一部分を示すように構成される、請求項40に記載の車両。
【請求項42】
前記車両の第一の軸に沿って移動する、前記運転者の前記眼の基準点に応じて、前記プロセッサが、前記関節ジョイントを作動させて、前記第一の軸と実質的に平行な第二の軸に沿って、前記車体を移動させ、それによって前記運転者のFOVを修正するように構成される、請求項41に記載の車両。
【請求項43】
車両を運転する方法であって、
第一のセンサを使用して、前記車両の運転者から第一の入力を受信することと、
第二のセンサを使用して、前記車両外側の環境から第二の入力を受信することと、
プロセッサを使用して、前記第一の入力と前記第二の入力との間の相関を識別することと、
前記プロセッサを使用して、前記相関に基づいて挙動ベースのコマンドを生成することであって、前記挙動ベースのコマンドが、前記車両のアクチュエータに適用されるとき、前記車両を事前に定義された挙動で移動させることと、
前記挙動ベースのコマンドと、前記プロセッサへ動作可能に結合された入力装置を介した、前記運転者からの明示的なコマンドと、前記第二の入力とに基づいて、組み合わせたコマンドを生成することと、
前記車両の安定性を維持するために、前記組み合わせたコマンドを調整、またはフィルタリングすることのうちの少なくとも一つと、
前記調整および/またはフィルタリングされた、組み合わせたコマンドを使用して、前記車両の前記アクチュエータを作動させることと、を含む、方法。
【請求項44】
前記第一の入力が、前記車両のキャビンを表現するものを含み、前記表現が前記運転者の頭部を示す、請求項43に記載の方法。
【請求項45】
前記事前に定義された挙動は、前記表現に基づいて、第一の軸と実質的に平行な第二の軸に沿って移動する、前記運転者の頭部の動きを、前記プロセッサが識別するのに応じて、前記第一の軸に沿って前記車両を移動させることを含む、請求項44に記載の方法。
【請求項46】
前記プロセッサが、前記表現に基づいて、前記運転者が知覚するまぶしい光を検出するように構成され、前記事前に定義された挙動が、前記運転者が知覚する前記まぶしい光を減少させるために、前記車両を移動させることを含む、請求項44に記載の方法。
【請求項47】
前記第二の入力が、前記車両の車輪のトラクション、前記環境の温度、または別の車両もしくは人のうちの少なくとも一つを示す前記環境の画像のうちの少なくとも一つを含む、請求項43に記載の方法。
【請求項48】
前記入力装置が、ハンドル、アクセル、またはブレーキのうちの少なくとも一つである、請求項43に記載の方法。
【請求項49】
前記明示的なコマンドが、前記挙動ベースのコマンドに優先する、請求項43に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連特許出願に対する相互参照
本出願は、2018年4月30日に出願された「ARTICULATED VEHICLE」と題する、米国出願第62/664,656号の優先権を主張する、2019年4月30日に出願された「ARTICULATED VEHICLES WITH PAYLOAD-POSITIONING SYSTEMS」と題する、国際出願第PCT/US2019/029793号の一部継続(CIP)出願である。本出願はまた、2018年10月12日に出願された「APPARATUS FOR A REACTIVE CAMERA MONITORING SYSTEM AND METHODS FOR THE SAME」と題する、米国出願第62/745,038号の優先権を主張する。これら出願の各々は、その全体を参照することにより本明細書に組み込まれる。
【背景技術】
【0002】
人が運転する車両(例えば、自動車)は、通常、車両のキャビンの中に位置する運転手によって制御される。車両を安全に運転するために、運転手は、好ましくは、車両近くの物体(例えば、人、道路の障壁、別の車両)に気づいているべきである。しかしながら、運転手の周囲環境に対する視野(FOV)は、人の目の周辺視野が限定されることが一部原因となり、主に運転手の目の前の領域に限定される。そのため、運転手は、車両の周囲を確認する(例えば、車線変更時に死角を確認する)ために、通常、運転手のFOVを車両の走行方向から移すという犠牲を払って、自身の目および/または頭部を移動させてFOVを移すべきである。運転手のFOVは、キャビンの構造(例えば、ドアパネル、窓のサイズ、A、B、またはCの柱)またはキャビン内の物体(例えば、別の乗客、大きな積み荷)など、車両キャビン内の障害物によってさらに制限され得る。
【0003】
従来の車両は、通常、運転手のFOVを拡張するためのミラーを含む。しかしながら、運転手のFOVの増大は限定的である。例えば、従来の自動車用ミラーは、通常、距離の歪みを減少させ、運転手の注意を車両の周りの特定区域に集中させるように、中程度のFOVを提供する。通常の視距離では、自動車に使用されるミラーの水平FOVは、典型的にはそれぞれ運転席側ミラーで10~15°、中央(内側)ミラーで23~28°、および助手席側ミラーで20~25°の範囲である。さらに、従来の車両は、運転中、主として単一の剛体である。したがって、キャビンのFOVは、主に車両の設計段階中に決定され、それゆえ、高価なおよび/または時間のかかる修正を行わない限り、製造後、容易には再構成できない。
【発明の概要】
【0004】
本明細書に記載する実施形態は、運転者(「運転手」とも呼ぶ)の位置および/または配向の変化に一部応答する、反応システムを含む車両を対象とする。(反応システムを持つ車両は、反応性の高い車両と呼ばれる場合がある。)例えば、運転者が自身の頭部を移動すると、反応システムによって、運転者のFOVを調整し得る。これは、環境に対する運転者の位置を変更するために、車両の関節ジョイントを物理的に作動させることによって、または運転者に表示される、車両の外側領域のビデオ画像を調整することによってなど、いくつかの手段で達成され得る。このように、反応システムによって運転者のFOVを拡大し、それゆえ、運転者が車両の走行方向に対して意識を維持することが可能になると同時に、運転者に車両の周囲に関するより優れた状況認識を提供し得る。また反応システムで、従来の車両では不可能な、車両上のカメラまたは車両自体の位置を調整することによって、運転者が物体の周りおよび/または物体の先を見ることが可能になり得る。
【0005】
一態様では、運転手の位置および/または配向は、車両に結合された一つ以上のセンサによって測定され得る。センサは、運転者に関連付けられた、さまざまなタイプのデータを捕捉するように構成されてもよい。例えば、センサは、運転者のRGB(赤緑青)画像を取得するためのカメラと、運転者の深度マップを取得するための深度マップセンサとを含んでもよい。RGB画像および深度マップを使用して、運転手の頭部の眼の基準点など、運転者に関連付けられた、さまざまな顔および/または姿勢の特徴の座標を決定してもよい。運転者のさまざまな特徴の座標は、時間の関数として測定され、反応システムを作動させるための入力として使用され得る。
【0006】
運転者の特徴を決定するために、さまざまなデータタイプを使用することで、誤検知の発生(すなわち、偽の特徴を検出)を減少させ、さまざまな照明条件下で特徴検出が可能になり得る。これら特徴の検出は、畳み込みニューラルネットワークなど、いくつかの方法を使用して達成され得る。動作フィルタリングシステム(例えば、カルマンフィルタ)も使用して、例えば、運転者のRGB画像の望ましくないジッタを減少させることによって、運転者の測定された特徴が、時間の関数として滑らかに変化することを保証してもよい。また深度マップは、いくつかの手段でRGB画像と共に使用してもよい。例えば、深度は、RGB画像のより小さな部分が、特徴検出に使用されるように、RGB画像をマスクし、それによって計算コストを低減し得る。
【0007】
また一つ以上のセンサは、道路表面のタイプ、車両速度および加速度、車両近くの障害物、ならびに/または降水の有無など、さまざまな環境条件も測定し得る。測定された環境条件はまた、反応システムへの入力として使用してもよい。例えば、環境条件によって、車両の速度(例えば、高速道路での操縦に対して都市での操縦)に基づいて、反応システムの応答の大きさを修正(例えば、車高を調整)してもよい。一部の事例では、環境条件はまた、特定の条件(例えば、車両速度、曲がる時の速度、車輪のトラクション)が満たされる場合に、運転者および車両の安全を維持するために、反応システムの起動を禁止し得る、制限ゲートとして使用されてもよい。
【0008】
反応システムは、カメラおよびディスプレイを使用して組み立てられた、ビデオベースのミラーを含み得る。カメラは、車両に結合され、車両(例えば、車両の後部)外側の領域のビデオ画像を取得するように配向されてもよい。ディスプレイは、その領域のビデオ画像を、運転者に示すように使用され得る。運転手が移動すると、ディスプレイ上に示されるビデオ画像は、カメラが捕捉する領域のFOVを調整するために、変換されてもよい。例えば、運転者が自身の頭部を回転させ、ビデオ画像をそれに対応してシフトさせて(例えば、カメラをパンするか、またはディスプレイ上に示されているビデオ画像の一部分を移すことによって)、従来のミラーに類似した応答をエミュレートし得る。反応システムは、カメラの集合的なFOVが、車両の周囲を実質的にカバーするような、複数のカメラを含んでもよく、それゆえに、車両を運転する時に運転者の死角を減少させるか、または一部の例では排除する。複数のカメラによって取得されたビデオ画像は、一つ以上のディスプレイに表示されてもよい。
【0009】
反応システムは、車両の構成を物理的に変更するための、関節ジョイントを含み得る。関節ジョイントは、車両の傾き/車高、および/または車両の車体形状を変化させる(例えば、車両の尾部に対して、車両の前部を回転させる)ヒンジを調整する、車両のアクティブサスペンションなど、一つ以上の機構を含み得る。一例では、関節ジョイントは、車両の第一の部分が、経路に沿って第二の部分に対して移動可能である経路を画定するガイド構造と、経路に沿って車両の第一の部分を移動させる駆動アクチュエータと、経路に沿ってある特定の位置で、車両の第一の部分を保持するブレーキとを含み得る。
【0010】
関節ジョイントは、環境に対する運転者の位置を修正するように使用されてもよい。例えば、反応システムによって、運転者が自身の頭部を傾けて、物体(例えば、別の車両)の周りを見るときに、関節ジョイントを使用して車両を傾けてもよい。別の例では、反応システムによって、運転者が物体(例えば、障壁)を見渡すために、自身の頭部を上方へと合わせるときに、車両の車高を増大させてもよい。このような場合、反応システムは、車両安定性を損なわないような形で、関節ジョイントを作動させるように構成され得る。例えば、反応システムによって、作動の大きさを減少させてもよく、または一部の例では、車両が高速で走行しているときに、関節ジョイントが作動するのを防止してもよい。また反応システムによって、明示的な運転者コマンド(例えば、ハンドル、アクセル、ブレーキなどの入力装置から受信するコマンド)と併せて、関節ジョイントを作動させてもよい。
【0011】
(反応性の高い)車両を運転する別の方法は、第一のセンサを使用して車両の運転者から第一の入力を受信することと、第二のセンサを使用して車両外側の環境から第二の入力を受信することとを含む。プロセッサによって、第一の入力と第二の入力との間の相関を識別し、その相関に基づいて挙動ベースのコマンドを生成する。この挙動ベースのコマンドが、車両のアクチュエータに適用されると、車両を事前に定義した挙動で移動させる。プロセッサによって、挙動ベースのコマンドと、プロセッサへ動作可能に結合された入力装置を介した、運転者からの明示的なコマンドと、第二の入力とに基づいて、組み合わせたコマンドを生成する。そして、車両の安定性を維持するように、組み合わせたコマンドを調整および/またはフィルタリングし、その後、調整および/またはフィルタリングされた組み合わせたコマンドを使用して、車両のアクチュエータを作動させる。
【0012】
上の反応システムの例は、運転者および/またはカメラのFOVを修正する文脈で記載しているが、反応システムおよびその中にあるさまざまな構成要素はまた、他の用途にも使用され得る。例えば、反応システムは、車両用のセキュリティシステムとして使用してもよい。反応システムによって、他の個人のアクセスを妨げ(例えば、侵入を防止するために、車両を作動させることによって)ながら、承認された個人の車両へのアクセスを認識し許可し得る。別の例では、運転者が、容易に車両を見つけることができる(例えば、複数の車両を収容する駐車場で)ように、反応システムによって、関節ジョイントを介して、車両に音を発せさせる(例えば、クラクションを鳴らす)か、および/もしくはヘッドライトを点灯/点滅させてもよい。別の例では、車両は、反応システムが、車両の外側に位置する運転者に従うよう、車両に命令するように構成される、自律運転モードを有してもよい。これは、例えば、運転者が環境内を移動する際に、運転者のビデオ画像を記録するように使用され得る。別の例では、反応システムによって、運転者の眼球領域上のまぶしい光を減少させるために、運転者の位置を調整(例えば、関節ジョイントによって)してもよい。
【0013】
前述の概念、および以下でより詳細に論じる追加的概念のすべての組み合わせは(このような概念が相互に矛盾していないという前提で)、本明細書に開示する本発明の主題の一部であると考えられる。特に、本開示の最後に現れる特許請求される主題のすべての組み合わせは、本明細書に開示する本発明の主題の一部であると考えられる。また当然のことながら、参照により組み込まれる任意の開示においても現れる場合がある、本明細書で明示的に用いられる用語には、本明細書に開示する特定の概念と最も一致する意味を与えるべきである。
【図面の簡単な説明】
【0014】
当業者であれば、図面が主として例示的な目的であること、そして本明細書に記載する本発明の主題の範囲を制限することを意図していないことを理解するだろう。図面は必ずしも一定の比率ではなく、いくつかの実例では、本明細書に開示する本発明の主題のさまざまな態様は、異なる特徴の理解を容易にするために、図面内で誇張または拡大されて示される場合がある。図面では、同様の参照文字は概して、同様の特徴(例えば、機能的に類似したおよび/または構造的に類似した要素)を意味する。
図1図1は、対向車両からのヘッドライトの光に応じて、運転手の視野を移すように関節でつながれた、多関節車両を示す。
図2図2は、原点を運転手の頭部の中心に置く、座標系を示す。
図3図3は、反応性の高い車両システム用の較正特徴部を持つ座席を示す。
図4図4は、車両の例示的な反応性ミラーを示す。
図5A図5Aは、従来の車両の中および車両上に配置された、図4の反応性ミラーのさまざまな構成要素と、各カメラの視野(FOV)とを示す。
図5B図5Bは、多関節車両の中および車両上に配置された、図4の反応性ミラーのさまざまな構成要素と、各カメラのFOVとを示す。
図6図6は、運転者の位置および/または配向に基づいて、図4の反応性ミラーのカメラによって取得された、ビデオ画像を取得し変換する方法を示す。
図7A図7Aは、関節ジョイントを持つ、例示的な車両の側面断面図を示す。
図7B図7Bは、図7Aの車両の側面図を示す。
図7C図7Cは、図7Bの車両の上面図を示す。
図7D図7Dは、尾部の外殻を取り外した、低い外形構成にある図7Bの車両の側面図を示す。
図7E図7Eは、尾部の外殻を取り外した、高い外形構成にある図7Bの車両の側面図を示す。
図8A図8Aは、車両の例示的な関節ジョイントの斜視図を示す。
図8B図8Bは、図8Aの関節ジョイントの側面図を示す。
図8C図8Cは、図8Aの関節ジョイントの上面側面斜視図を示す。
図8D図8Dは、図8Aの関節ジョイントの底面側面斜視図を示す。
図8E図8Eは、図8Aのガイド構造における、リフトブラケットおよび軌道システムの上面側面斜視図を示す。
図8F図8Fは、図8Eの軌道システムの上面側面斜視図を示す。
図8G図8Gは、図8Fの軌道システムの中にあるレールの軸受の断面図を示す。
図9図9は、車両の反応システムを操作するための方法の流れ図を示す。
図10A図10Aは、車両を制御している運転者に関連付けられた、さまざまな入力パラメータと、車両が曲がっているときの入力パラメータの例示的な範囲とを示す。
図10B図10Bは、車両を囲む環境に関連付けられた、さまざまな入力パラメータと、車両が曲がっているときの入力パラメータの例示的な範囲とを示す。
図11図11Aは、変位に対する限界が、安定性を維持するように調整される、運転手位置の関数として、関節接合軸に沿った多関節車両の変位を示す。図11Bは、安定性を維持するように変位の変化率を調整する、運転手位置の関数として、関節接合軸に沿った多関節車両の変位を示す。
図12A図12Aは、センサによって取得されたビデオ画像および深度マップを使用して、第二の車両の位置を監視するように、センサを装備した多関節車両を示す。
図12B図12Bは、傾いている図12Aの多関節車両を示し、これによって、多関節車両上のセンサに対して測定された第二の車両の位置を変更する。
図13図13は、運転者および/またはセンサのFOVを増大させるように、車高が調整される多関節車両を示す。
図14図14Aは、第二の車両の存在のために、FOVが限定される多関節車両を示す。図14Bは、第二の車両の周りを見るために傾いた、図14Aの多関節車両を示す。
図15A図15Aは、多関節車両の上面図と、多関節車両のFOVとを示す。
図15B図15Bは、多関節車両の正面図と、図15Aの多関節車両のFOVとを示す。
図15C図15Cは、一連の階段をジグザグに登る、図15Aの多関節車両の側面図を示す。
図16図16は、人が車両に近づくことを識別し、必要な場合、その人が多関節車両にアクセスするのを防止するように反応する、多関節車両を示す。
図17図17は、多関節車両外側に位置する運転者のビデオ画像を取得する、多関節車両を示す。
【発明を実施するための形態】
【0015】
以下は、反応性の高い車両システム、反応性ミラーシステム、多関節車両、および前述の使用方法に関係するさまざまな概念、およびそれらの実装についてのより詳細な説明である。上で紹介し、以下でより詳細に論じる概念は、複数の手段で実施され得る。特定の実装および適用の例は、当業者にとって明らかである実装および代替を、当業者が実践することを可能とするために、主に例示的な説明のために提供される。
【0016】
以下で説明する図および実施例は、本実装の範囲を単一の実施形態に限定することを意味していない。記載もしくは図示する要素の一部またはすべてを交換することによって、他の実装が可能である。さらに、開示する実装例のある特定の要素が、既知の構成要素を使用して部分的または完全に実装され得る場合、場合によっては、本実装の理解に必要なそのような既知の構成要素のそれら部分のみを記載し、本実装を不明瞭にしないために、そのような既知の構成要素の他の部分の詳細な説明は省略する。
【0017】
以下の考察では、車両、反応システム、反応性ミラー、および関節機構のさまざまな例について説明する。所与の例に関して論じる一つ以上の特徴は、本明細書に開示するさまざまな特徴が、本開示による所与のシステムで容易に組み合わせられてもよい(それぞれの特徴が互いに矛盾しないことを条件に)ように、本開示による他の実施例で用いられてもよい。
【0018】
センサおよび反応システムを持つ車両
図1は、車体4100を持つ(多関節)車両4000を示す。外部カメラ4202および内部カメラ4204を含む一つ以上のセンサは、運転者(例えば、運転手4010)の姿勢および/または配向、車両4000の動作パラメータ(例えば、速度、加速度、車輪のトラクション)、ならびに環境条件(例えば、環境光)が含むが、これらに限定されない、車両4000に関連付けられた、さまざまな入力を測定するように、車体4100に取り付けられてもよい。反応システム(図1に関節ジョイント4300として示す)は、センサ4202および4204によって測定された入力に一部基づいて、車両4000の何らかの態様を修正(例えば、運転者4010のFOVを変更、可変の地形を横断など)するように、車両4000に結合されてもよい。図1では、例えば、反応システム4300は、外部カメラ4204によって検出されるような、対向車両のヘッドライトの光上の経路から、ユーザの頭部を移動させるように車両を関節でつないでいる。車両4000はまた、センサ4202および4204、ならびに反応システム4300だけでなく、車両4000のさまざまな構成要素と、車両4000のそれぞれのサブシステムとの間で、データおよび/またはコマンドの転送を管理するためのプロセッサ(図示せず)を含んでもよい。
【0019】
反応システム4300は、車両4000に関連付けられた、さまざまなタイプのデータを取得するように、一つ以上のセンサを含んでもよく、またはそれらに結合されていてもよい。例えば、室内カメラ4204は、車両4000のキャビンならびに/または運転者4010の深度および赤緑色青色(RGB)データの両方を取得してもよい。深度フレームの各ピクセルは、ピクセルに対する物体と、深度マップセンサの熱くされた捕捉元との間の距離を表し得る。深度フレームは、構造化赤外線(IR)投影と、ステレオ構成(または類似の深度捕捉)にある二つのカメラとを使用して取得され得る。深度フレームは、運転者4010および車両キャビンの深度マップ表現を生成するために使用される。RGBフレームは、標準的な可視光カメラを使用して取得されてもよい。センサ4200によって取得された他のタイプのデータには、運転者の心拍数、運転者4010の歩行認識、および顔認識を含み得るが、これらに限定されない。
【0020】
外部カメラ4202、および/または慣性計測装置もしくはジャイロスコープを含む他のセンサは、車両4000の配向、車両4000の速度、サスペンションの移動量、加速速度、道路表面のトポロジー、降水量、昼夜感知、道路表面タイプ(例えば、滑らかな舗装、粗い舗装、砂利、泥)、車両4000近くの他の物体/障害物(例えば、別の車、人、障壁)を含むが、これらに限定されない、さまざまな車両パラメータおよび/または環境条件を取得するように構成されてもよい。これらセンサの動作周波数は、少なくとも60Hz、および好ましくは、120Hzであってもよい。
【0021】
各センサに関連付けられた、さまざまな動作パラメータが記憶されてもよく、センサに関係する固有パラメータ(例えば、解像度、寸法)、および外因性パラメータ(例えば、車両4000の座標空間内にある内部カメラ4204の位置および/または配向)を含むが、これらに限定されない。各センサの動作パラメータは、そのセンサに関連付けられたローカル座標系と、車両座標系との間で変換するために使用され得る。参考までに、本明細書で使用する座標系は、国際標準化機構(ISO)16505-2015に基づく、右手座標系であってもよい。この座標系では、正のx軸は、車両4000の前方への動きの方向とは反対の方向に沿って向けられ、z軸は、接地面に直交して上を向き、y軸は、前方への動きの方向を見るときに右を指す。
【0022】
プロセッサ(本明細書では「マイクロコントローラ」とも呼ぶ)を使用して、センサによって取得された入力データを処理すること(例えば、ノイズのフィルタリング、さまざまなセンサからのデータを組み合わせること)、変換を計算すること、および/または反応システム4300を修正するためのコマンドを生成すること、ならびに車両4000のさまざまなサブシステムを(例えば、外部カメラ4204を反応システム4300に)通信可能に結合することを含むがこれらに限定されない、さまざまな機能を行ってもよい。例えば、プロセッサは、運転者4010の位置および/または配向を決定し、ビデオ画像に適用される、画像変換を生成するために使用され得る。プロセッサは、概して、通信可能に共に結合される、一つ以上のプロセッサを構成し得る。一部の事例では、プロセッサは、フィールドプログラマブルゲートアレイ(FPGA)であってもよい。
【0023】
上述のように、内部カメラ4202は、車両座標空間で運転者4010(例えば、運転者の頭部または体)の位置および/または配向を検出し得る。以下の例では、内部カメラ4202は、運転者4010の深度およびRGBデータの両方を取得する。特徴検出の前に、プロセッサは、RGBおよび深度データのフレームのいずれかのピクセル座標を使用して、対応する色または深度データにアクセスし得るように、内部カメラ4202によって取得されたRGB画像および深度フレームを、最初に位置合わせしてもよい。深度マップの処理には、通常、RGBフレームの処理と比較して、より少ない計算資源が使用される。一部の事例では、深度マップを使用して、処理のためにRGBフレームの区域を限定および/またはマスクしてもよい。例えば、深度マップは、特徴検出のために約0.1mから約1.5mの深度範囲に対応する、RGBフレームの一部分を抽出するように使用され得る。このようにRGBフレームを減少させることによって、誤検知の発生を減少させるのはもちろん、RGBフレームを処理するために使用する計算能力をも大幅に減少させ得る。
【0024】
特徴検出は、いくつかの手段で達成されてもよい。例えば、事前にトレーニングされた機械学習モデル(例えば、畳み込みニューラルネットワーク)は、深度、RGB、および/または組み合わせた(RGBD)データを利用して、運転者4010の特徴を検出し得る。モデルの出力は、体、頭部、および/または顔の特徴に対応するピクセル領域を含み得る。またモデルによって、運転者の姿勢の推定を提供し得る。一部の事例では、プロセッサ4400が運転者の頭部を識別すると、プロセッサ4400によってその後、運転者4010の眼の基準点(例えば、図2に示すような、運転者の目の間の中点)が推定され得る。次いで、眼の基準点は、射影変換の逆を行い(de-projected)、車両基準フレーム内の座標に変換されてもよい。説明の通り、特徴を検出するのはソフトウェア構築物であってもよく、それゆえ、特徴検出に使用されるモデルは、コンピュータビジョンの進歩を組み込むため、および/または性能を改善するために、製造時の後に更新されてもよい。
【0025】
センサ(例えば、内部カメラ4202)および反応システム4300はまた、運転者4010に合わせて較正されてもよい。概して、車両4000のキャビン内にいる、運転者の高さおよび場所(例えば、異なる運転位置)は、経時的に変化し得る。車両4000が、特に運転者4010に合わせて較正されてはいない場合、運転者の位置および配向の変動によって、反応システム4300が、運転者4010を支援するために、車両4000を適切に調整することができない。運転者4010は、物理ボタンを押すこと、車両4000の制御コンソール上にある較正オプション(例えば、インフォテイメントシステム)を選択すること、および/または音声コマンドを使用することを含むがこれらに限定されない、車両4000のさまざまな入力を使用して、較正モードを起動してもよい。
【0026】
概して、較正は、(1)運転者の物理的な位置および動き、ならびに(2)運転者個人の嗜好に関するグループに分けられてもよい。運転者の物理的な位置および動きに関係する較正には、車両4000内の車両座標の中で車両4000を運転中の、運転者の初期座位および運転者の通常の眼の一点と、運転者の頭部の位置の変化に対する、反応システム4300の応答範囲に影響を与える、運転者の動作範囲との確立を含む場合がある。センサ4200は、運転者の物理的な位置および動きを取得するように使用してもよく、結果として生じる眼の基準点は、反応システム4300を作動させるときに、後で使用するために記憶することができる。
【0027】
較正中、運転者4010は、ある特定の様式で自信の体を動かすように指示され得る。例えば、車両のスピーカーおよびディスプレイからの音声または視覚的プロンプトによって、運転者4010を正常に座る、右に動く、または左に動くように促してもよい。プロセッサによって、各位置での眼の基準点を記録して、初期位置および動作範囲を確立する。プロンプトは、車両のインフォテイメントシステムに示される視覚的な合図および/または命令、ならびに車両のスピーカーによる音声命令を含むが、これらに限定されない、いくつかの手段で運転者4010に送達され得る。プロセッサによって、反応システム4300のさまざまな構成要素に対する入力として、眼の基準点を使用できるように、車両4000の座標系の観点から、眼の基準点を記録してもよい。
【0028】
また内部カメラ4202は、車両4000の中にある座席に合わせて較正されてもよく、これによって、車両4000内の内部カメラ4202(および運転手4010)を見つけるように、より標準化された基準を提供し得る。図3は、センサ4200によって検出される較正パターン4120を含む、座席4110を示す。較正パターン4120の形状および設計は、予め知られていてもよい。これらは、可視インクまたは不可視インク(例えば、近赤外線波長でのみ可視であるインク)で印刷されてもよい。代替的にまたは追加的に、座席4110は、較正用の基準マーカーとして使用できる、特徴的な形状または特徴(例えば、非対称の特徴)を有してもよい。較正パターン4120(および座席4110)を撮像することによって、座席に対するセンサ4200の相対的な距離および/または配向を見出し得る。一部の事例では、較正パターン4120は、可視波長(例えば、人の目で直接観察可能)または赤外線波長(例えば、人の目に見えず、赤外線撮像センサのみを使用して検出可能)で形成され得る。
【0029】
運転者個人の嗜好に関係する較正は、使用されている反応システム4300のタイプに基づいて変化してもよい。例えば、反応システム4300は、運転者4010が、以前のサイドミラーを調整するのと類似の様式で示されるビデオ画像を、手動で調整することが可能になる、ビデオベースのミラーを利用してもよい。別の例では、反応システム4300は関節ジョイントを含んでもよい。運転者4010は、関節ジョイントの作動の大きさおよび/または速度を調整することができ得る(例えば、より穏やかな作動によって、より快適さが増す場合があり、より迅速で積極的な作動によって、より大きな性能を提供してもよい)。
【0030】
ビデオベースのミラーを持つ反応システム
図4は、ビデオベースのミラー4320を含む、例示的な反応システム4300を示す。示すように、ミラー4320は、車両4000の外側環境4500の領域のソースビデオ画像4332(「ソースビデオストリーム」とも呼ぶ)を取得するように、プロセッサ4400(マイクロコントローラユニット(MCU)4400とも呼ぶ)に結合された、カメラ4330を含んでもよい。ミラー4320はまた、変換されたビデオ画像4342(例えば、ソースビデオ画像4332の一部分)を運転者4010に示すように、MCU4400に結合されたディスプレイ4340を含んでもよい。プロセッサ4400は、ソースビデオ画像4332に変換を適用して、運転者4010の動きを検出するセンサ4200に応じて、運転者4010に示される変換されたビデオ画像4342を調整(例えば、FOVおよび/または画角)してもよい。このように、ビデオベースのミラー4320は、車両4000における従来のミラー(例えば、サイドミラー、バックミラー)を補完または置換し得る。例えば、ビデオベースのミラー4320は、従来のミラーを使用する際に、通常遭遇する空力抵抗を減少させるために使用され得る。一部の事例では、ミラー4320は、ISO16505-2015によって定義される、カメラ監視システム(CMS)として分類されてもよい。
【0031】
ミラー4320は、車両4000の安全な運転を可能にするように、車両周囲の充分な部分をカバーする、ソースビデオ画像4332を取得してもよい。加えて、ミラー4320によって、ディスプレイ4340上に示される、変換されたビデオ画像4342のスケール歪みおよび/もしくは幾何学的歪みを減少または軽減し得る。ミラー4320はまた、現地の規制を遵守するように構成されてもよい。従来のドライバサイドミラーおよびセンターミラーは、概して、これら所望の特性を表すことができない。例えば、サイドミラーおよびセンターミラーは、米国では等倍を提供するべきであり、これは、表示される物体の高低角および角度幅が、同じ距離で直接眺めるのと同じ物体の高低角および角度幅と合致するべきであることを意味する(米国連邦自動車安全基準第111号)。
【0032】
カメラ4330は、車両4000の外側環境4500のそれぞれの領域を各々カバーする、カメラ4330の配列として、個別にまたはその一部として使用され得る。カメラ4330は、組み合わせてカメラ4330のFOV4334を画定する、ソースビデオ画像4332を取得するための、レンズ(図示せず)およびセンサ(図示せず)を含んでもよい。
【0033】
図5Aおよび5Bは、車両4000の外側の左側、右側、および後部領域をそれぞれカバーする、カメラ4330a、4330b、および4330c(総称して、カメラ4330)を各々含む、多関節車両4000ならびに従来の車両4002を示す。各車両4000、4002はまた、カメラ4330a、4330b、および4330cによって取得される、変換されたビデオ画像4342を示す、対応するディスプレイ4340aならびに4340bも含む。(従来の車両はまた、バックミラーの代わりに追加ディスプレイ4340cを含み得る。)示すように、カメラ4330は、異なるカメラ4330間に、死角が形成されないように、一部重複するFOV4334を有するように配向されてもよい。
【0034】
車両4000上のカメラ4330の配置は、いくつかの要因に左右され得る。例えば、カメラ4330は、環境4500の所望のFOV4334を捕捉するように、車体4100上に置かれ得る(図5Aおよび5Bに示すように)。カメラ4330はまた、車両4000上の空力抵抗を減少させるように、位置付けられてもよい。例えば、各カメラ4330は、車体4100のドアおよび/もしくはサイドパネル、または車両4000のトランクの後方を向いた部分の上にある、陥凹開口部内に取り付けられてもよい。カメラ4330の配置はまた、車両4000が使用されている場所に基づく、現地の規制および/またはガイドライン(例えば、ISO16505)に一部左右され得る。
【0035】
カメラ4330のFOV4334は、プロセッサ4400によってソースビデオ画像4332に適用される、一つ以上の所望の画像変換をサポートできるほど充分に大きくてもよい。例えば、ディスプレイ4340上に示される、変換されたビデオ画像4342は、カメラ4330によって取得されたソースビデオ画像4332の一部分に対応し、それゆえ、FOV4334よりも小さいFOV4344を有してもよい。カメラ4330のセンサは、変換されたビデオ画像4342が、サポートされている画像変換の範囲にわたって、ディスプレイ4340の最低解像度に少なくとも適合するような、充分な高解像度でソースビデオ画像4332を取得してもよい。
【0036】
FOV4334のサイズは、カメラ4330で使用される光学素子に、一部基づいてもよい。例えば、カメラ4330は、FOV4334を増加させるために広角レンズを使用し、それゆえ、環境4500のより大きな領域をカバーし得る。カメラ4330のFOV4334はまた、カメラ4330を車両4000の車体4100に結合する、電動マウントによって調整されてもよい。電動マウントによって、カメラ4330を回転および/またはパンし、それゆえ、カメラ4330のFOV4334が移ってもよい。これは、例えば、カメラ4330がより長い焦点距離を持つレンズを含むときに、使用され得る。電動マウントは、運転者4010に示されるビデオ画像4342に対する、所望の応答性が可能になる周波数で、カメラ4330を作動させるように構成されてもよい。例えば、電動マウントによって、約60Hzでカメラ4330を作動させ得る。電動マウントによって、より低い周波数(例えば、15Hz)でカメラ4330を作動させる場合、プロセッサ4400は、ディスプレイ4340上に示されるビデオ画像4342をアップサンプリングするために、追加のフレームを生成(例えば、補間によって)してもよい。
【0037】
各カメラ4330は、照明条件および所望の露出設定に応じて、可変フレームレートでソースビデオ画像4332を取得し得る。例えば、カメラ4330は、名目上、少なくとも1秒あたり約30フレーム(FPS)、および好ましくは60FPSのフレームレートで、ソースビデオ画像4332を取得し得る。しかしながら、微光状況において、カメラ4330は、少なくとも約15FPSのより低いフレームレートで、ソースビデオ画像4332を取得し得る。
【0038】
各カメラ4330はまた、可視、近赤外(NIR)域、中間赤外(MIR)域、および遠赤外(FIR)域を含むがこれらに限定されない、さまざまな波長範囲で、ソースビデオ画像4332を取得するように構成されてもよい。一部の用途では、車両4000上に配置されるカメラの配列4330は、ミラー4320を操作するとき複数の様式を可能にするために、一つ以上の波長範囲をカバーするように使用され得る(例えば、一つのカメラ4330が可視ビデオ画像を取得し、別のカメラ4330がNIRビデオ画像を取得する)。例えば、センサ4200により、車両4000が視界不良条件(例えば、夜間の運転、霧)で運転しているのを検出すると、プロセッサ4400によって、ディスプレイ4340上にIRビデオ画像のみを示してもよい。
【0039】
反応システム4300は、光学素子および/またはセンサの特性に関係する固有パラメータ(例えば、焦点距離、アスペクト比、センササイズ)、外因性パラメータ(例えば、車両4000の座標空間内におけるカメラ4330の位置および/または配向)、ならびに歪み係数(例えば、放射状のレンズ歪み、接線方向のレンズ歪み)を含むがこれらに限定されない、各カメラ4330に関連付けられた、さまざまな動作パラメータを記憶してもよい。カメラ4330の動作パラメータを使用して、ソースビデオ画像4332に適用される変換を修正してもよい。
【0040】
ディスプレイ4340は、FOV4344に対応する、変換されたビデオ画像4342を示すように、構成された装置であってもよい。図5Aおよび5Bに示すように、車両4000は、一つ以上のディスプレイ4340を含み得る。ディスプレイ4340は、概して、一つ以上のカメラ4330によって取得された、ビデオ画像4332を示し得る。例えば、ディスプレイ4340は、複数のカメラ4330の変換されたビデオ画像4342を、分割画面配置(例えば、並んで表示される、二つの変換されたビデオ画像4342)で表示するように構成されてもよい。別の例では、プロセッサ4400によって、ディスプレイ4340上に示される、変換されたビデオ画像4342が、一つのカメラ4330から別のカメラ4330に途切れなく移行するように、複数のカメラ4330によって取得された、ソースビデオ画像4332を変換してもよい(例えば、ソースビデオ画像4332が、途切れなくつなぎ合わせられる)。車両はまた、車両4000上のカメラ4330に各々対応する、複数のディスプレイ4340を含んでもよい。
【0041】
ディスプレイ4340の配置は、いくつかの要因に左右され得る。例えば、ディスプレイ4340の位置および/または配向は、運転者4010の公称位置または車両4000の車両の運転席に、一部基づいてもよい。例えば、一つのディスプレイ4340は、ハンドルの左側に位置付けられてもよく、別のディスプレイ4340は、ハンドルの右側に位置付けられてもよい。一対のディスプレイ4340は、車両4000の左右側面に位置する、それぞれのカメラ4330からの変換されたビデオ画像4342を示すように使用され得る。ディスプレイ4340は、運転者4010が、走行方向に沿って車両の周囲を見失うことなく、変換されたビデオ画像4342を見ることが可能になるように置かれてもよい。加えて、ディスプレイ4340の場所は、カメラ4330と同様に車両4000が使用されている場所に基づく、現地の規制および/またはガイドラインにも左右され得る。
【0042】
一部の事例では、ディスプレイ4340はまた、ビデオベースのミラー4320を制御する、明示的なコマンドを入力する能力を、運転者4010に提供するために、タッチセンサ式であってもよい。例えば、運転者4010は、ディスプレイ4340に手で触れ、ディスプレイ4340上に示される変換されたビデオ画像4342の一部分を、パンおよび/またはスケーリングするために、スワイプ動作を適用してもよい。ビデオベースのミラー4320を較正するとき、以下でより詳細に論じるディスプレイ4340のずれが、タッチインターフェースによって調整され得る。加えて、運転者4010は、タッチインターフェースを使用して、輝度およびコントラストを含むがこれらに限定されない、ディスプレイ4340のさまざまな設定を調整してもよい。
【0043】
反応システム4300は、ディスプレイ4340の固有特性(例えば、ディスプレイ解像度、リフレッシュレート、タッチ感度、ディスプレイ寸法)、外因性特性(例えば、車両4000の座標空間内における、ディスプレイ4340の位置および/または配向)、および歪み係数(例えば、ディスプレイ4340の湾曲)を含むがこれらに限定されない、各ディスプレイ4340に関連付けられた、さまざまな動作パラメータを記憶し得る。ディスプレイ4340の動作パラメータは、プロセッサ4400によって使用されて、ビデオ画像4332への変換を行ってもよい。
【0044】
上述のように、プロセッサ4400は、反応システム4300を制御するために使用され得る。ビデオベースのミラー4320の場合、プロセッサ4400は、使用される、ある特定タイプのカメラ4330および/またはディスプレイ4340に一部基づく(例えば、カメラ4330のビットレート、ディスプレイ4340の解像度および/またはリフレッシュレート)、高速通信バスを使用して、ディスプレイ4340ならびにカメラ4330と通信し得る。一部の事例では、通信バスはまた、使用されるプロセッサ4400のタイプ(例えば、中央処理装置および/またはグラフィックスプロセッシングユニットのクロック速度)に一部基づいてもよい。プロセッサ4400はまた、CAN(Controller Area Network)バスなどの共有通信バスを使用して、ビデオベースのミラー4320および/または車両4000の他のサブシステムのさまざまな構成要素と通信してもよい。
【0045】
反応システム4300のビデオベースのミラー4320は、運転者4010の動きに基づいて修正され、ディスプレイ4340上に変換されたビデオ画像4342として示される、ソースビデオ画像4332を取得してもよい。これらの修正は、ソースビデオ画像4332の適切な部分を抽出し、運転者4010に表示するビデオ画像4332の一部分を準備する、ソースビデオ画像4332への変換を適用することを含み得る。別の例では、変換を使用して、ミラー4320が従来のミラーと類似の様式で応答するように、変換されたビデオ画像4342のFOV4344を修正し得る。例えば、FOV4344は、運転者4010がディスプレイ4340のより近くに移動するにつれて幅が広がってもよい。加えて、変換されたビデオ画像4342のFOV4344は、運転者4010が左右に位置を変えると、パンしてもよい。
【0046】
図6は、運転者4010の頭部の位置および/または配向の変化に一部基づいて、カメラ4330によって取得されたソースビデオ画像4332を変換する方法600を示す。方法600は、センサ4200を使用して、運転者の頭部の位置および/または配向を感知することから始まってもよい(ステップ602)。上述のように、センサ4200は、運転者の頭部のデータ(例えば、RGB画像および/または深度マップ)を取得し得る。次いで、プロセッサ4400によって、センサ4200が取得したデータに基づいて、運転者4010の眼の基準点を決定してもよい(ステップ604)。プロセッサ4400により、眼の基準点を決定することができる場合(ステップ606)、変換が計算され、ソースビデオ画像4332を修正するように適用される(ステップ610)。
【0047】
変換は、車両4000のビデオベースのミラー4320およびセンサ4200のモデルを使用して、計算されてもよい。モデルは、眼の基準点、カメラ4330の動作パラメータ(例えば、固有および外因性パラメータ、歪み係数)、ディスプレイ4340の動作パラメータ(例えば、固有および外因性パラメータ、歪み係数)、ならびにメーカーおよびユーザ較正パラメータを含むがこれらに限定されない、さまざまな入力を受信してもよい。パン、回転、およびスケーリングを含むがこれらに限定されない、さまざまなタイプの変換が、ソースビデオ画像4332に適用され得る。変換には、一連のマトリクス変換および信号処理操作を、ソースビデオ画像4332に適用することを含み得る。
【0048】
一例では、ソースビデオ画像4332に適用される変換は、眼の基準点およびユーザ較正パラメータのみに基づいてもよい。特に、運転者4010の眼の基準点と初期座位との間の距離(較正済み)は、単純なアフィン変換を使用して、ソースビデオ画像4332の一部分上でパンおよび/またはズームインするように使用され得る。例えば、変換の大きさは、運転者4010の較正された動作範囲にスケーリングされてもよい。加えて、パン速度および/またはズーム率は、変換されたビデオ画像4342が、運転者の頭部による動きに均一に応答するように、一定であってもよい。一部の事例では、ミラー4320の均一な応答は、ディスプレイ4340と運転者4010の眼の基準点との間の距離に左右されない場合がある。
【0049】
この変換は、ディスプレイ4340が、運転者4010の前方に位置する車両4000で、および/またはミラー4320が、運転者の頭部の位置の変化にのみ応答する(運転者4010の視野角、またはディスプレイ4340と運転者4010との間の距離など、他のパラメータの変化には応答しない)ように構成されるときに、好ましい場合がある。このように、この変換によって、車両4000の中にあるカメラ4330およびディスプレイ4340のさまざまな配置に、より標準化された応答を提供する一方で、実施がより簡単で、かつ計算コストが手ごろに(それゆえ、より速く行える)なり得る。加えて、この変換は、運転者の頭部の動きに基づいて、ソースビデオ画像4332に適用され得る。
【0050】
別の例では、ソースビデオ画像4332に適用される変換は、部分的に、ディスプレイ4340に対する運転者4010の視野角、および運転者4010の眼の基準点とディスプレイ4340との間の距離に一部基づいてもよい。ディスプレイ4340に対する運転者4010の位置、視野角、および距離に基づく調整を含む変換によって、従来のミラーの挙動をより良くエミュレートしてもよく、運転者4010にとってより自然に感じられ得る。プロセッサ4400によって、運転者4010の眼の基準点から、ディスプレイ4340の中心までの、ベクトル
【数1】

を決定してもよい。その後、ベクトルを使用して、変換されたビデオ画像4342について、標的FOVおよびパン位置を決定してもよい。例えば、レイキャスティング法を使用して、運転者4010の眼の基準点から、ディスプレイ4340のそれぞれの角に、光線が投げられるFOVを画定してもよい。
【0051】
次のステップは、標的FOVに対応するソースビデオ画像4332の一部分の抽出である。これは、変換されたビデオ画像4342に使用される、ソースビデオ画像4332の一部分の場所およびサイズの決定を伴い得る。ソースビデオ画像4332の一部分のサイズは、カメラ4330の固有パラメータのうちの一つである、カメラ4330の角度分解能(例えば、1ピクセル当たりの度数)に一部左右され得る。カメラ4330の角度分解能を使用して、抽出されるビデオ画像4332の一部分の寸法を決定してもよい。例えば、標的FOVの水平軸は、45度の角度範囲をカバーしてもよい。カメラ4330の角度分解能が、1ピクセル当たり0.1度である場合、ビデオ画像4332の一部分は、標的FOVを満たすために、水平軸に沿って450ピクセルを有するはずである。
【0052】
カメラ4330によって捕捉されたソースビデオ画像4332から抽出された、変換されたビデオ画像4342の場所は、ディスプレイ4340に対する運転者4010の視野角に左右され得る。視野角は、ベクトル
【数2】

と、ディスプレイ4340の中心と交差し、かつ垂直であるベクトル
【数3】

との間の角度として定義され得る。したがって、
【数4】

および
【数5】

の共線性は、ディスプレイ4340の中心に位置合わせされている、運転者4010の眼の基準点に対応するであろう。運転者の頭部が動くと、結果として生じる視野角によって、変換されたビデオ画像4342の場所を、ソースビデオ画像4332内の位置にシフトさせ得る。位置のシフトは、視野角(すなわち、水平視野角および垂直視野角)のそれぞれの構成要素に、カメラ4330の角度分解能を乗じることによって決定され得る。このように、トリミングされた部分の中心点(例えば、XおよびYのピクセル位置)は、ソースビデオ画像4332に対して見出され得る。
【0053】
プロセッサ4400によって、運転者4010の眼の基準点を決定することができない場合、初期設定または以前の変換を、ソースビデオ画像4332に適用してもよい(図6のステップ608)。例えば、眼の基準点の以前の測定に対応する以前の変換は、眼の基準点が検出されない場合に、変換されたビデオ画像4342が変化しないように維持され得る。別の例では、変換は、運転者の動きの予測に基づいて計算されてもよい。眼の基準点が、時間の関数として測定される場合、運転者4010の眼の基準点の場所を予測するように、以前の測定値を外挿してもよい。以前の測定値の外挿は、線形外挿(例えば、運転者の動きは、充分に小さな時間増分とおおよそ線形になる)、および特定の行動(例えば、車線を変更するときに、運転者の頭部が、実質的に反復可能な様式で、ディスプレイ4340に向かって動く)をするときの、運転者の挙動のモデリングを含むがこれらに限定されない、一つ以上の手段で達成され得る。このように、眼の基準点の検出を突然中断しても、変換されたビデオ画像4342が飛び、および/または途切れ途切れに見えることはない。
【0054】
変換を決定する(例えば、新しい計算された変換、初期設定/以前の変換)と、その後、変換がソースビデオ画像4332に適用されて、変換されたビデオ画像4342を生成し、次いでこれがディスプレイ4340上に示される(図6のステップ612)。このソースビデオ画像4332を変換する方法600は、少なくとも約60Hzの動作周波数で行われてもよい。加えて、カメラ4330および/またはディスプレイ4340の歪み係数を使用して、ソースビデオ画像4332の放射状および/または接線方向歪みを補正してもよい。さまざまな技術を使用して、以前の較正に基づいて、補正されたピクセル位置を計算し、その後、ソースビデオ画像4332(すなわち、ソースビデオストリーム)のピクセル位置を、変換されたビデオ画像4342(すなわち、変換されたビデオストリーム)の補正されたピクセル位置に再マッピングするなど、歪みを補正してもよい。
【0055】
上述のように、センサ4200および/または反応システム4300を、運転者4010に対して較正してもよい。ビデオベースのミラー4320に対して、較正は、ディスプレイ4340上に示される変換されたビデオ画像4342を調整して、運転者の身長、および/または運転者の頭部とディスプレイ4340との間の距離に基づいて変化し得る、運転者の頭部と整列することを含み得る。加えて、前述したように、運転者の動作範囲および/または初期位置(例えば、車両4000における運転者の運転位置)を使用して、ソースビデオ画像4332に適用される変換を調整してもよい。例えば、変換されたビデオ画像4342が、より大きなソースビデオ画像4332にわたってパンすることができるように、運転者の動作範囲を使用して、変換をスケーリングしてもよい(例えば、変換されたビデオ画像4342のFOV4344が、ソースビデオ画像4332のFOV4344をカバーしてもよい)。
【0056】
別の例では、運転者の初期位置は、「ベースライン」位置として使用され得る。ベースライン位置は、各ディスプレイ4340(すなわち、二つ以上のディスプレイ4340を持つ車両4000の中にある)の好ましいFOVを有する、運転者4010に対応してもよい。例えば、各ディスプレイ4340上に示される、変換されたビデオ画像4342は、対応する各カメラ4330によって取得されたソースビデオ画像4332に対して、実質的に中心にあってもよい。別の例では、好ましいFOVは、車両4000について現地の規制または製造業者の仕様に左右され得る。一部の事例では、運転者4010の初期位置は、運転者4010の平均位置(例えば、運転者4010が座っているときの平均位置)、および/または運転者4010が車両4000を使用するときの動作範囲に基づいて、ミラー4320が異なる運転者4010に適応する、動的較正アプローチを使用して決定され得る。
【0057】
ミラー4320の較正は、動作範囲および初期位置を測定するために、運転者4010に特定の行動(例えば、自身の四肢を動かす)をするように指示する、半自動の様式で行われてもよい。前述したように、運転者4010は、車両4000のインフォテイメントシステムまたは車両のスピーカーなどのさまざまなシステムを使用して、較正についての指示を受信してもよい。ビデオベースのミラー4320については、ディスプレイ4340もまた、運転者4010への視覚的な命令および/または合図を提供するために使用され得る。命令および/または合図には、車両4000、道路、および/または運転者4010にスケーリングおよび配向の感覚を提供する、別の基準物体を重ね合わせた、一つ以上のグラフィックを含み得る。これらの測定が行われると、プロセッサ4400によって、車両周囲の適切なFOVを提供するために、各ディスプレイ4340上に示される、変換されたビデオ画像4342を調整するように試み得る。
【0058】
運転者4010にはまた、ミラー4320を直接調整するように、制御が提供されてもよい。このように、運転者4010は、運転手が車両のサイドミラーまたはバックミラーを調整できる方法に類似する、自身の個人的な嗜好に従ってミラー4320を較正し得る。タッチコントロール(例えば、インフォテイメントシステム、ディスプレイ4340)、物理ボタン、およびジョイスティックを含むがこれらに限定されない、さまざまな制御入力が、運転者4010に提供され得る。制御入力によって、運転者4010が、変換されたビデオ画像4342を、上下左右に手動でパンすること、および/または変換されたビデオ画像4342の倍率を増減するように、倍率ずれを調整することが可能になり得る。
【0059】
これらの調整は、ソースビデオ画像4332に適用された変換を修正する(例えば、ソースビデオ画像4332から抽出された、変換されたビデオ画像4342のサイズおよび場所を調整する)ことによって、ならびに/またはカメラ4330を物理的に回転および/もしくはパンすることによって行われ得る。加えて、変換されたビデオ画像4342が、運転者4010によってパンおよび/またはスケーリングされ得る程度は、ソースのFOV4334と、ソースビデオ画像4332の解像度とによって、一部制限されてもよい。一部の事例では、現地の規制によってもまた、変換されたビデオ画像4342に適用されるパンおよび/またはスケーリングの調整に制限が課され得る。さらに、これらの手動による調整は、運転者4010を特定の様式で位置付けることなくなされてもよい(例えば、運転者4010は、初期位置にいる必要はない)。
【0060】
ミラー4320が較正された後、車両4000の各ミラー4320に対する運転者の初期位置、動作範囲、および個々のずれが記憶され得る。まとめて、車両4000を制御するときに、初期位置にいる運転者4010に示す環境のFOVを表す、各ディスプレイ4340の「中心点」を、これらのパラメータが画定してもよい。中心点は、初期座位および各ディスプレイ4340のずれのみを使用して、決定され得る。一部の事例では、中心点は、運転者4010の眼の基準点が検出されないとき、変換されたビデオ画像4342の初期設定FOV4344に対応してもよい。
【0061】
運転者4010の動作範囲は、変換されたビデオ画像4342が、パンおよび/またはスケーリングされる速度をスケーリングするために使用され得る。加えて、動作範囲が、車両4000のキャビンによって制約され、および/またはそうでない場合、見えなくなる場合がある。したがって、変換されたビデオ画像4342の倍率調整は、車両4000のキャビンの中にいる運転者4010の検出可能な動作範囲に一部左右され得る。運転者4010が、充分な確実性を持って所定の時間内に見つからない場合、ミラー4320は、デフォルトで、各ディスプレイ4340の較正された中心点に対応する、変換されたビデオ画像4342を表示してもよい。
【0062】
関節ジョイントを持つ反応システム
反応システム4300はまた、運転者4010の挙動に一部基づいて、車両4000の物理的な構成を変更する、関節ジョイントを含んでもよい。例えば、関節ジョイントは、車両4000の車輪とシャーシとの間の距離を調整する、車両4000上のアクティブサスペンションシステムの一部であってもよい。車両4000は、各車輪が車高を変更し、および/または車両4000を傾けるための、独立して制御される複数の関節ジョイントを含み得る。別の例では、関節ジョイントによって、車体4100の形態および/または形状を変更してもよい。これは、トラックの荷台を作動させる、関節ジョイントを含む場合がある。
【0063】
加えて、関節ジョイントによって、車体4100のさまざまな部位を曲げ、および/またはそうでなければ、ねじ曲げてもよい(図7A~7Eの例示的な車輛4000を参照)。例えば、一つ以上の関節ジョイントおよび/または他のアクチュエータによって、車両自体ではなく、ペイロード支持機構を作動させ得る。例えば、これらのアクチュエータは、座席の位置およびリクライニング角度を調整して、車両を必ずしも関節でつなぐことなく、特に個々の運転者のために快適さおよび/または可視性を最大化し得る。座席調整は、運転者が車両に入った直後に、または運転者が車両に入ることを見越して行うことができる。後に起こる座席部分およびリクライニング角度の調整は、運転者が時間の経過とともに落ち着いたとき、車両が移動している間に行われ得る。こうしたシナリオでは、車両を関節でつなぐのは、非効率または安全ではない場合がある。
【0064】
車両の車体4100の両方の関節接合、およびそのサスペンションの作動によって、車両4000の性能および/または動作に対して、特定の望ましい特性を各々が提供する、いくつかの構成が可能になり得る。車両4000は、センサ4200によって測定されるような、運転者4010の位置および/または配向の変化に基づいて、これらの構成間を能動的に移行するように構成されてもよい。一部の事例では、運転者4010による明示的な入力(例えば、ウィンカーの起動、窓の下降)および運転者の挙動の組み合わせによって、車両4000の関節ジョイントの応答を制御し得る。
【0065】
例えば、車両4000は、車両4000の高さが、道路のより近くにまで下降する、低い外形構成をサポートしてもよい(図7Dを参照)。低い構成で、車両4000の抗力係数および/または前面区域を減少させることによって、空力性能を向上させ得る。また、低い外形構成によって、車両4000のホイールベースが増加し、および/または重心が下がってもよく、これによって、より大きな安定性およびより速いコーナリング速度を提供することで、運転性能が改善する。プロセッサ4400は、運転者4010が車両4000の運転に集中している(例えば、眼の基準点は、運転者4010が車両4000の真正面にある周囲に集中していることを示す)、および/または高速で運転している(例えば、高速道路上)と判定すると、プロセッサ4400によって、車両4000を低い外形構成に移行および/または維持し得る。
【0066】
別の例では、車両4000は、車両4000の高さが道路の上方へ持ち上がる、高い外形構成をサポートしてもよい(図7Eを参照)。高い外形構成は、車両4000の進入および/または退出を支援するように使用され得る。関節座席機構と組み合わせた場合、座席(またはより広くは、積み荷台)は、運転者4010(例えば、労働者、ロボット式自動装置)が、車両4000に格納されたペイロードにアクセスするのに適した高さで提示され得る。また上昇位置では、周囲環境を監視するように、運転者4010のFOVが増大し、および/または車両4000上に配置された任意のセンサが増加し、それによって状況認識を増大させ得る。運転者4010のFOVが、環境の中にある障害物(例えば、別の車両、障壁、人)によって遮断されたとき、および/またはプロセッサ4400によって、運転者4010が障害物の周りを積極的に見ようと試みている(例えば、眼の基準点は、運転者の頭部が障害物を見渡すように上方を向いていることを示す)と判定したときに、プロセッサ4400によって、車両4000を高い外形構成に移行および/または維持し得る。
【0067】
車両4000はまた、前述の低い外形構成と高い外形構成との間の中間状態として画定されてもよい、中間外形構成をサポートしてもよい。したがって、中間外形構成によって、低い外形特性と高い外形特性との混合を提供し得る。例えば、中間外形構成によって、動的性能を改善するために低重心を維持しながら、運転者4010により良好な可視性を提供し得る。この構成は、都市環境で車両4000を運転するとき、および/または他の車両もしくは装置と相互作用するときに遭遇する、多数のシナリオを受け入れるために使用され得る。
【0068】
中間外形構成のさまざまな使用事例には、限定するものではないが、郵便ポスト、自動現金預払機(ATM)、ドライブスルー窓口、および道路の脇に立っている別の人(例えば、隣人または自転車に乗った人)との相互作用を容易にするために、車高を調整することが含まれる。車両4000が、積み荷を(おそらくは自律的に)輸送するために使用される場合、中間状態によって、送達および/または搬出口、ロボット、および人とのより優れた人間工学的ならびに機械的相互作用が可能になる。これらの使用事例には、運転者4010(または積み荷)の予測可能な動きを伴い得る。例えば、運転者4010は、窓を下げ、自身の手を突き出して、環境の中にある物体または人と相互作用してもよい。窓が下がっていることを、センサ4200が検出し、プロセッサ4400によって、運転者4010が自身の手を突き出していると判定される場合、プロセッサ4400は、運転席側の窓近くで検出された物体の高さに合わせて、車両4000の高さを調整し得る。
【0069】
図7A~7Eは、関節ジョイント106(関節機構とも呼ばれる)、変形部123、およびペイロード2000(例えば、運転手、乗客、積み荷)を支持するための、ペイロード位置決めジョイント2100(ペイロード位置決め機構とも呼ばれる)を組み込む、車両4000を示す。この例では、車両4000は後輪操舵の三輪電気車両である。関節ジョイント106によって、車両4000が、車両4000の長さに沿って、中間位置を関節でつなぐか、または中間位置の周りで曲がることが可能になり、そのため車両4000が再構成される。
【0070】
車両4000の関節接合範囲は、二つの特徴的な構成、(1)図7A、7B、7Dに示すように、ホイールベースが拡大し、運転手が地面近くにくる低い外形構成、ならびに(2)図7Eに示すように、運転手が、地面上方の上昇位置に置かれる高い外形構成によって画定され得る。車両4000を関節接合して、低い外形構成と高い外形構成との間のいかなる構成にもなり得る。一部の事例では、関節ジョイント106によって、車両4000の構成を飛び飛びの数に制限し得る。これは、関節ジョイント106に対する、より単純な設計および/または低電力設計が好ましい例で、望ましい場合がある。
【0071】
車両4000は、関節ジョイント106によって共に結合される、車両前部102および尾部104にさらに分割されてもよい。前部102は、限定するものではないが、ユニボディ、モノコックフレーム/シェル、スペースフレーム、およびフレーム形式構造(例えば、シャーシ上に取り付けられた車体)を含む、さまざまなタイプの車両支持構造であってもよい、車体108を含んでもよい。図7A~7Eでは、車体108は、モノコックフレームとして示されている。車体108は、取り外し可能なサイドパネル(または車輪フェアリング)116、固定された側窓125、車両4000に結合された透明な天蓋110、および平行な構成で配設され、下にある車体108上に取り付けられた二つの前輪112を含み得る。尾部104は、後部外殻121、後面ガラス124、および操舵可能な車輪126を含み得る。変形部123は、前部102と尾部104との間に結合されて、さまざまな構成で滑らかで連続的な室外表面を車両4000の下に維持してもよい。図7Dおよび7Eでは、後部外殻121および後面ガラス124が、少なくとも関節ジョイント106に関係する、下にある構成要素が見えるように取り外されている。
【0072】
天蓋110は、天蓋110を開閉することが可能になるように、ヒンジ付きの配置によって車体108に結合され得る。ペイロード2000が運転手である場合、天蓋110には、図7Eの高い外形構成にあるときに、車両4000の上面に向けてヒンジが付いていてもよく、そのため、運転手が、二つの前輪112の間で、車両4000の中におよび/または車両4000から外へ踏み出すことによって、車両4000に出入りしてもよい。
【0073】
前輪112は、電気ハブモータによって電力供給されてもよい。後輪126もまた、電気ハブモータによって電力供給されてもよい。一部の例示的な電気モータは、2014年6月14日に発行され、「Rotary Drive with Two Degrees of Movement」と題する米国特許第8,742,633号、ならびに 「Guided Multi-Bar Linkage Electric Drive System」と題する米国特許公開第2018/0072125号に見出すことができ、それら両方が、参照によりそれら全体が本明細書に組み込まれる。
【0074】
車両前部102の後部表面は、尾部104が、関節ジョイント106を介して前部102に対して移動するにつれて、後部外殻121内で入れ子になり、尾部104の後部外殻121と車両前部102の後部表面との間の間隙が、小さいままであるように形成され得る。示すように、関節ジョイント106によって、回転軸111を中心に前部102に対して尾部104を回転させることによって、車両4000を再構成し得る。図7B、7C、および7Eでは、回転軸111は、車両4000を二等分する平面と垂直である。平面は、(1)車両4000の長手方向軸(例えば、車体108の最前部分と、後部外殻121の最後部分を横切る軸)と、(2)車両4000がこのように載っている水平表面に垂直な縦軸とを収容するように画定され得る。
【0075】
関節ジョイント106は、関節ジョイント106の関節動作輪郭を決定する、ガイド構造107(ガイド機構とも呼ばれる)を含み得る。図7A~7Eに示す例示的な車輛4000では、ガイド構造107は、前部102に結合された軌道システムと、尾部104に結合されたリフトブラケット538を含み得る。あるいは、軌道システム536は尾部104に結合されていてもよく、リフトブラケット538は前部102に結合されていてもよい。リフトブラケット538は、軌道システム536によって画定される経路に沿って移動してもよく、それによって、車両4000に構成を変更させる。関節ジョイント106はまた、軌道システム536に沿ってリフトブラケット538を所望の構成に移動させる、駆動アクチュエータ540(駆動機構とも呼ばれる)を含んでもよい。駆動アクチュエータ540は、電気的に制御可能であってもよい。関節ジョイント106はまた、軌道システム536に沿った特定の位置に、リフトブラケット538を保持するためのブレーキ1168を含んでもよく、それゆえ、車両4000が所望の構成を維持することが可能になる。
【0076】
車体108はまた、その中にペイロード位置決めジョイント2100を収容してもよい。ペイロード位置決めジョイント2100によって、車両4000の構成の関数として、ペイロード2000を好ましい配向に合わせてもよい。関節ジョイント106が車両4000の構成を変更すると、ペイロード位置決めジョイント2100によって、車両4000(特に前部102)に対するペイロード2000の配向が同時に再構成され得る。例えば、ペイロード位置決めジョイント2100は、車両4000が、低い外形構成から高い外形構成に移行するときに、運転手が自身の頭部を再度位置付ける必要がないように、地面に対して好ましい運転手の配向を維持するように使用され得る。別の例では、ペイロード位置決めジョイント2100は、車両4000が関節接合するときの、小包内に収容された物体への損傷の可能性を低減するために、小包の好ましい配向を維持するように使用され得る。
【0077】
図7A~7Eに示す車両4000は、関節ジョイント106、変形部123、およびペイロード位置決めジョイント2100の一つの例示的な実装である。関節ジョイント106、変形部123、およびペイロード位置決めジョイント2100のさまざまな設計について、それぞれ車両4000を参照して論じる。しかしながら、関節ジョイント106、変形部123、およびペイロード位置決めジョイント2100は、別々にまたは組み合わせてのいずれかで、他の車輛構造に実装されてもよい。
【0078】
図7A~7Eの多関節車両4000は、車両4000の構成を変更するために、尾部104が前部102に対して回転する、単一の関節接合DOF(すなわち、回転軸111)を有するように示している。このトポロジーは、特に周囲環境(例えば、コンパクトな/自走式立体駐車場、小空間での操縦性、低速視認性、高速空力形態)との中間およびエンドポイントの相互作用を考慮する場合に、都市環境および高速道路の両方を走行する一人の通勤者または乗客にとって好ましい場合がある。前述のトポロジーおよび使用事例のサポートをする、さまざまなメカニズムは、より広くは、より広範な車両、車隊構成、および/または他のトポロジーに適用され得る。
【0079】
例えば、車両4000は、各々関節でつながれ得る、一つ以上のDOFをサポートし得る。関節接合は軸の周りで発生し、回転動作をもたらし、それゆえ、図7A~7Eの回転軸111など、回転DOFを提供してもよい。関節接合はまた、軸に沿って発生し、並進動作、およびそれゆえ並進DOFをもたらしてもよい。本明細書に記載する、さまざまな機構(例えば、関節ジョイント106、ペイロード位置決めジョイント2100)はまた、一つ以上のDOFに沿った動作を制約するようにも使用され得る。例えば、関節ジョイント106によって経路を画定してもよく、車両4000の構成要素が、その経路に沿って移動する(例えば、リフトブラケット538は、軌道システム536によって画定される経路に沿って移動するように制約される)。また、関節ジョイント106によって、経路に沿った動作範囲を画定してもよい。これは一部、関節ジョイント106によって達成されてもよく、厳しい公差を使用して組み立てられ、および/または外力を介して接触するように押し付けられる、高強度ならびに高剛性の構成要素の組み合わせを使用して、所望のDOFに沿った小さい力での入力によって誘導される、滑らかな動作を提供すると同時に、他のDOFに沿った機械的制約を提供する。
【0080】
本明細書に記載する機構によって、関節ジョイント106上に物理的に位置付けられ得る、もしくは位置付けられえない、軸または点(例えば、遠隔動心)に対する動作を画定し得る。例えば、図7A~7Eに示す関節ジョイント106によって、リフトブラケット538および軌道システム536とは別個に位置する、車体108の室内区画を横切る、回転軸111の周りに回転動作を引き起こす。別の例では、ペイロード位置決めジョイント2100は、プラットフォーム(例えば、運転席)の並進動作を画定する、一つ以上のレール2112を有してもよい。
【0081】
加えて、各DOFに沿った動作はまた、独立して制御可能であってもよい。例えば、車両4000の各所望のDOFは、別個の対応する関節ジョイント106を有してもよい。各関節ジョイント106の駆動システムによって、他のDOFとは独立して、各DOFに沿った動作を誘導し得る。図7A~7Eに関して、回転軸111の周りに回転を引き起こす関節ジョイント106は、車両4000でサポートされる他のDOFに依存しない場合がある。
【0082】
ただし、一部の事例では、車両4000の一つのDOFに沿った関節接合は、車両4000の別のDOFに依存し得る。例えば、車両4000の一つ以上の構成要素は、関節接合されている他方の構成要素に応じて、別の構成要素に対して移動し得る。この依存性は、複数のDOFを機械的に結合することによって達成され得る(例えば、一つの関節ジョイント106は、単一の駆動アクチュエータ540によって、両方の関節ジョイント106を連続的にまたは同時に作動させ得るように、別の関節ジョイント106に機械的に連結される)。別のアプローチは、別個の駆動アクチュエータ540を共に連結することによって、別個のDOFを電子的に結合することである。例えば、車両4000が再構成されると、運転手が好ましい配向を維持するように、関節ジョイント106が車両4000を再構成するのに応じて、ペイロード位置決めジョイント2100によって、車載モータを使用して運転席を作動させ得る。
【0083】
関節ジョイント106は、概して、動作輪郭、したがって関節ジョイント106の関節DOFを画定する、ガイド構造107を含んでもよい。ガイド構造107は、互いに対して移動する、二つの基準点を含み得る。第一の基準点は、車両4000の一つの構成要素に結合されてもよく、第二の基準点は、車両4000の別の構成要素に結合されてもよい。例えば、前部102は、ガイド構造107の第一の基準点に結合されてもよく、尾部104は、前部102が尾部104に対して関節でつながるように、ガイド構造107の第二の基準点に結合されてもよい。
【0084】
一態様では、ガイド構造107によって、関節ジョイント106自体と物理的に共には位置しない、軸および/または点の周りに関節接合を提供してもよい。例えば、関節ジョイント106は、遠隔動作中心(RCM)機構であってもよい。RCM機構は、移動する機構と同じ場所に、物理的回転ジョイントを有さないと定義される。こうしたRCM機構を使用して、例えば、ペイロード2000が位置する、車体108の室内キャビンなど、車両4000の他の点で不都合な部分、または例えば、ステアリングアセンブリ、バッテリーパック、もしくは電子機器が存在する車両サブシステムに位置する、回転ジョイントを提供し得る。
【0085】
以下に、RCM機構としての関節ジョイント106の、いくつかの例について記載する。しかしながら、関節ジョイント106は、DOFが画定される軸または点が、関節ジョイント106の構成要素と共に物理的に位置し得る、RCM機構ではない場合がある。
【0086】
一実施例では、ガイド構造107は、車台軌道タイプの機構であってもよい。図7A図7Eに示される関節ジョイント106は、このタイプの機構の一例である。ガイド構造107は、図8A図8Gにさらなる詳細が示される、車台および軌道システム536を含み得る。図8Aに示す通り、軌道システム536は、前部102に取り付けられ得る。車台538は、尾部104の一部であり得る。図8Eおよび図8Fに示す通り、車台538は、軌道システム536によって画定される垂直に配向された湾曲経路に沿ってライドし得る。駆動アクチュエータ540は、車台538上に取り付けられて、電気制御下で軌道システム536に沿って車台538を機械的に移動させ得る。
【0087】
軌道システム536は、互いに平行に走り、両方が前部車両部102の裏面に連結されている二つの湾曲レール642を含み得る。湾曲レール642は、設計において類似し得る。車体108は、レール642が取り付けられる裏面を形成する凸状に湾曲した裏面(すなわち、後方から前部車両部102を見ると凸状)を有する、成形された剛性のカーボンファイバーシェルから作製され得る。レール642が取り付けられ、それらが適合する裏面領域は、軸が回転軸111に対応する円筒形の表面のセグメントを表す。言い換えれば、レール642は、車台538が移動する領域を通して一定の曲率半径を有し得る。レール642が延在する弧は、約90°~約120°であり得る。
【0088】
各レール642はまた、レール642の長さの一部分にわたる凹部643を含み得る。凹部643は、それを通してボルト(図示せず)がレール642をカーボンファイバーシェル108に取り付けることができる一つ以上の穴Zを含み得る。各レール642は、台形の狭い側が、それが取り付けられる前方本体シェル108に近接するレール642の底側上、かつ台形のより広い側がレール642の上側上にある、形状が実質的に二等辺台形である断面を有し得る。レール642は、酸化、カーボンファイバー、ファイバーグラス、硬質プラスチック、および硬化鋼を低減するために、アルミニウム、ハードコートアルミニウム(例えば、窒化チタンを含む)を含むがこれに限定されない、任意の適切な材料で作製され得る。
【0089】
図8Aおよび図8Eに示す車台538は、車両4000の尾部104を支持する。尾部104は、さらに、リアシェル121、ステアリング機構200、および車輪アセンブリー201を含み得る。車台538は、一つ以上の軸受を使用して、軌道システム536に連結され得る。図8Gに示す通り、二つの軸受644が各レール642に使用される。各軸受644は、上部プレート645および上部プレート645に固定された二つの先細側壁646の三つの部品のアセンブリーを含み得る。組み立てられた軸受644は、使用中に動きを容易にするためにレール642よりもわずかに大きい寸法とし得る、レール642(例えば、二等辺台形)に実質的に類似した断面を有する開口部を画定し得る。示す通り、軸受644は、したがって、レール642に結合されて、軸受644の内側側壁がレール642の先細の外側側壁と接触し得る、「湾曲ダブテール」配置を形成し得る。軸受644は、回転軸111の周りの回転運動によって画定される所望のDOF以外の任意の他のDOFに沿って、レール642から分離されない場合がある。図8Gは、図示の目的で、軸受644とレール642との間の公差の誇張された表現を示す。公差は、実際には、図示よりも実質的に小さくあり得る。プレート645および側壁646は、湾曲レール642に適合するように湾曲し得る。
【0090】
一実施例では、軸受644は、軸受644の内側上面および側面が、レール642の上部および側壁表面に対してそれぞれ、取り付けられたときに摺動する、すべり軸受であってもよい。軸受644はまた、車台538の残りの部分を軌道システム536に連結する(例えば、ボルトを介して)上部プレートのねじ穴を含み得る。
【0091】
軸受644の長さ(例えば、レール642に平行な方向に沿って画定される長さ)は、軸受644の幅より大きくあり得る。幅に対する長さの比率は、軸受表面上の荷重の分布を調整し、軸受644とレール642との間の結合の可能性を低減するように調整され得る。例えば、比率は、約3~約1の範囲であり得る。軸受644はまた、低摩擦、高力、低摩耗の作業面(例えば、特にレール642に接触する表面)を有し得る。例えば、軸受644の作業面は、テフロンコーティング、グラファイトコーティング、潤滑剤、および研磨されたベアリング644および/またはレール642を含み得るが、これらに限定されない。さらに、複数の軸受644は、結合を低減し、剛性を増大させ、動きの範囲を増大させるために、約1~約1.6の範囲の長さと幅との比率を有する占有面積を有するように配置され得る。通常、より長い基部を有する軸受644は、より狭い動作範囲を有し得、一方、より狭い基部を有する軸受644は、より低い剛性を有し得、それゆえ、軸受644の長さは、動作範囲と剛性とのバランスを取るように選択され得、これはさらに、車両4000内へのサイズおよび/または配置など、軸受644に課される他の制約に依存し得る。
【0092】
車台538はさらに、二つのフレーム部材539を含み得、各フレーム部材539は、対応するレール642と整列する。レール642に近接する車台538の側面上で、二つのクロスバー854および856を使用して、二つのフレーム部材539を互いに強固に接続し得る。軸受644は四つの取り付け点848a~dでフレーム部材539に取り付けられ得る。レール642から最も遠い車台538の側面上で、二つの支持バー851を使用して、車輪アセンブリー201およびステアリング機構200を支持し得る。二つの支持バー851は、別のクロスバー850によって一緒に接続され得る。
【0093】
上述の車台538および軌道システム536は、軌道タイプの関節ジョイント106の一例に過ぎない。他の例示的な関節ジョイント106は、単一のレールまたは二つ以上のレールを含み得る。上に示す通り、RCMは、ペイロード2000がその空間に侵入するいかなる構成要素および/または構造も有さず位置する、車両4000のキャビンに位置し得る。しかしながら、他の例示的な関節ジョイント106では、RCMは、関節ジョイント106上、車両サブシステム内(例えば、前部102内、尾部104内)、および車両4000の外側を含むがこれに限定されない、車両4000に対する他の場所に位置し得る。
【0094】
上述のように、反応システム4300の関節ジョイントは、運転者のFOVなど、車両4000のいくつかの態様および/または特性を修正するために、車両4000の物理的な構成を変更し得る。しかしながら、一部の事例では、関節ジョイントは、車両4000が機械的に不安定になる程度に車両4000の物理的な構成を修正することが可能であり得、車両4000の制御を部分的または完全に喪失させ得る。車両4000を操作する際にこうした安定性の喪失を防止するために、反応システム4300は、関節ジョイントに制約を課す(例えば、作動範囲を限定し、作動速度を限定する)安定性制御ユニットを含み得る。
【0095】
例えば、運転者4010は、後方視野ディスプレイの視野角を調整するためにレーンを変更するときに車両4000の一方の側に傾くことができ、それによって運転者4010は後方から車両が接近しているかどうかをチェックすることができる。運転者の動きに応じて、車両4000の関節ジョイントは、運転者4010が利用可能なFOVを増大させるために、車両4000を能動的に回転させ得る。しかし、プロセッサ4400によって命令されFOVを増強する回転の量は制限されるか、または一部の例では、車両安定性の喪失および/または車両4000の横転を防止するために、安定性制御ユニットに優先され得る。
【0096】
関節ジョイントに安定性制御ユニットによって課される制約は、車両4000の動作条件に基づいて変化し得る。例えば、安定性制御ユニットは、車両4000が低速(例えば、車線変更するときなど)で走行している時、高速時(例えば、回転ホイールのジャイロ安定化効果が、より大きな車両安定性をもたらす)と比較して、許容される回転の量により多くの制限を課し得る。このようにして、安定性制御ユニットは、車両安定性が影響を受ける場合、運転者の快適さを改善することを意図した関節ジョイントに対するアクチュエータコマンドを先制的にフィルタリングし得る。
【0097】
図9は、反応システム4300における関節ジョイントを管理する例示的な制御システム5000を示す。示す通り、制御システム5000は、部分的には、運転者の行動に基づく挙動ベースのコマンドを生成する挙動制御サブシステム5200を含む。制御システム5000はまた、運転者4010、環境4500、および挙動制御サブシステム5200からの入力を受信し、関節ジョイントを含む車両4000の様々なアクチュエータを作動させるために使用される入力に基づいてコマンドを生成する、車両制御サブシステム5100を含み得る。
【0098】
車両制御サブシステム5100は、以前の車両制御システムと同様に動作し得る。例えば、サブシステム5100は、運転者4010(例えば、ステアリング入力、アクセル入力、ブレーキ入力)および環境4500(例えば、降水、温度)によるコマンドを受信し、車両の安定性を評価し、および/または実行前にコマンドを変更する。したがって、車両制御サブシステム5100は、挙動制御サブシステム5200によって拡張されているとみなされてもよく、これは、運転者の挙動に基づく車両4000の関節屈曲などのさらなる機能を提供する。
【0099】
制御システム5000は、運転者生成入力5010および環境生成入力5020を受信し得る。運転者生成入力5010は、明示的なコマンド、すなわち、ハンドル、アクセルペダル、ブレーキペダル、および/または方向指示ノブなどの車両4000の入力装置と物理的にインターフェースする、運転者4010に由来するコマンドを含み得る。運転者生成入力5010はまた、暗黙のコマンド、例えば、運転者4010が後方視野ディスプレイをチェックするためにその頭部を傾けるおよび/または運転者4010がグレアのためにその目を細めるなど、運転者4010の動きに基づいて生成されるコマンドを含み得る。環境生成入力5020は、道路障害(例えば、くぼみ、道路表面のタイプ)、天候関連の影響(例えば、雨、雪、霧)、道路障害物(例えば、他の車両、歩行者)、および/または車両4000内にいないときの運転者4010など、車両4000の動作に影響を与える様々な環境条件を含み得る。
【0100】
図9に示すように、運転者生成入力5010および環境生成入力5020はそれぞれ、車両制御サブシステム5100および挙動制御サブシステム5200の両方に対する入力として使用され得る。挙動制御サブシステム5200は、運転者生成入力5010(明示的コマンドおよび黙示的コマンドの両方)および環境生成入力5020を測定するための、様々なセンサ、ヒューマンインターフェースデバイス、およびカメラアレイを含む、動作監視システム5210および外部監視システム5220を含み得る。挙動制御サブシステム5200はまた、運転者生成入力5010および環境生成入力5020を処理およびマージする、状況認識エンジン5230を含み得る。状況認識エンジン5230はまた、車両4000の望ましくない関節屈曲の可能性を低減するために、入力5010および5020をフィルタリングし得る(例えば、関節ジョイントは、運転者が乗客を見ているか、または音楽を聴いている間に頭部を動かしている時に起動すべきではない)。
【0101】
状況認識エンジン5230は、特定の車両挙動に関連付けられた組み合わされた入力と較正された入力との間の事前に定義した相関を識別することを試みる、挙動エンジン5240に組み合わされた入力を送信し得る。例えば、様々な入力(例えば、ハンドル角度、運転者の頭部の傾斜、運転者4010の注視方向、および/または方向指示灯の存在)は、車両4000が曲がる時に、特性値を示し得る。
【0102】
図10Aおよび10Bは、様々な例示的な運転者生成入力5010および環境生成入力5020のそれぞれの表を示し、さまざまな入力の公称範囲と、左折する車両4000にに関連付けられた入力値とを比較する。挙動エンジン5240が、組み合わされた入力が車両4000に関連付けられた特性入力値と実質的に類似した値を有すると決定する場合、挙動エンジンは、車両4000が左折していると結論付け、適切な挙動ベースのコマンドを生成し得る。さもなければ、挙動エンジン5240は、挙動ベースのコマンドを生成しない場合がある。
【0103】
挙動エンジン5240は、特定の車両挙動に関連付けられた組み合わされた入力と較正された入力との間のこの比較をいくつかの方法で実行し得る。例えば、組み合わされた入力は、各入力がパラメータ値に対応する二次元マトリックスとして表され得る。挙動エンジン5240は、組み合わされた入力と以前に較正された入力セットとの間の相互相関を実行し得る。結果として生じる相互相関が、十分な数のピーク(組み合わされた入力のうちの一つ以上を示すピークが、較正された入力値と一致する)を示す場合、挙動エンジン5240は、車両4000が、較正された入力に関連付けられた特定の挙動を示すと結論付け得る。
【0104】
挙動エンジン5240が挙動ベースのコマンドを生成する場合、コマンドはその後、車両制御サブシステム5100の車両制御ユニット5110に送信される。車両制御ユニット5110は、挙動ベースのコマンドを、運転者4010による明示的なコマンドおよび環境生成入力5020などの他の入力と組み合わせて、組み合わされたコマンドのセットを生成し得る。車両制御ユニット5110はまた、前述の安定性制御ユニットを含み得る。したがって、車両制御ユニット5110は、組み合わされたコマンドのセットが、車両安定性の喪失なしに実行し得るか否かを評価し得る。
【0105】
車両制御ユニット5110が、組み合わされたコマンドのセットが車両4000を不安定にさせると決定する場合、車両制御ユニット5110は、車両安定性が維持されるように、コマンドを調整および/またはフィルタリングし得る。これは、他の入力(例えば、重み係数を適用することによって)に対する挙動ベースのコマンドの大きさを低減することを含み得る。さらに、所定のルールセットに基づいて、特定の入力に優先順位を付し得る。例えば、運転者4010がブレーキペダルに圧力を加える時、車両制御ユニット5110は、車両4000が適切にブレーキをかけることができるように、挙動ベースのコマンドを無視し得る。より一般的には、運転者4010によって提供される明示的なコマンドは、車両4000および運転者4010の安全を確保するために、挙動ベースのコマンドよりも優先され得る。車両制御ユニット5110が組み合わされたコマンドセットを検証すると、コマンドはその後、車両の適切なアクチュエータ5120に適用されて、所望の挙動を行う。
【0106】
図11Aおよび図11Bは、車両基準フレームに対する、運転者4010の傾斜角の関数φ乗客としての慣性基準フレーム(例えば、重力ベクトルによって設定される)に対する、命令された車両ロール角φ車両の例示的な較正マップを示す。図11Aに示す通り、車両4000が、運転者4010の傾斜角の小さな変化に応答して感知できるほど回転しないことを確実にするために、φ車両は、φ乗客のより小さい値で小さくなり、車両4000の意図しない作動を防止し得る。φ乗客が増大すると、飽和する前に、φ車両が急速に増大する。飽和点は、安定性が維持されることを確実にするために、車両制御ユニット5110によって課される限界を表し得る。
【0107】
車両制御ユニット5110によって課される制約は、車両4000の動作条件に基づいて変化し得る。例えば、図11Aは、φ車両に対する上限は増大または低減し得ることを示す。上限の変更は、部分的には、車両4000の速度、および他の安定化効果(例えば、回転ホイールのジャイロ安定化効果)の存在に基づき得る。図11Bは、速度φ車両も、安定性を維持するように調整され得ることを示す。速度φ車両は、φ乗客の関数として変化し、車両4000の車高に基づいて変化し得る。車両4000が低い外形構成である場合、車両4000はより小さい慣性モーメントを有し、したがって安定性を失うことなくより速い速度で回転することができる。
【0108】
示す通り、車両4000は、運転者4010が頭部を傾けると、飽和限界まで回転し続け得る。さらに、車両4000は、運転者4010が車両4000内の元の位置に戻る場合、運転者4010への応答を停止し得る。センサ4200は、元の位置の連続的な更新を提供するために、車両4000内の運転者のデフォルト位置を連続的に較正し得る。一部の事例では、長い時定数を有するローパスフィルタリングを使用して、運転者4010の元の位置として扱われる基準位置を決定し得る。
【0109】
一つの例示的な使用事例では、運転者4010は、車両4000の近くに位置する障害物を見回すように、その頭部を傾け得る。ここで、運転者生成入力5010は、運転者の頭部の傾斜角(車両の基準フレームに対して取得される)を含み得、環境生成入力5020は、障害物の検出であり得る。例えば、環境生成入力5020は、図12Aおよび図12Bに示す通り、前向きRGBカメラで1Dまたは2D領域データ(例えば、ライダー、超音波、レーダーデータなど)を結合することにより構築された可視性マップであり得る。可視性マップは、領域データが障害物と車両4000との間の距離が事前に定義された閾値未満であると示す場合、障害物(例えば、別の車両)の存在を示し得る(図12Aおよび12Bの障害物マスクにおける黒いボックスを参照)。例えば、障害物が車両4000から10メートル離れている場合、運転者4010は障害物を見回すように傾いている可能性は低い。しかしながら、例えば、障害物が車両4000から2メートル未満しか離れていない場合、運転者4010は障害物を見回すように傾いているとみなされ得る。
【0110】
反応システムの用途
上述のように、センサ4200および反応システム4300は、車両4000の性能および/または有用性を改善するためのさらなる車両モダリティを可能にし得る。例えば、ビデオベースのミラー4320および関節ジョイントの上記の例は、主に運転者4010のFOVの修正を対象とする。例示的な使用事例として、図13は、車両4000の近くの駐車車両によって遮蔽される横断歩道を示す。車両4000が関節ジョイントを含む場合、車両4000の車高は、運転者4010および/または車両4000上のセンサが、横断歩道においてリカンベント自転車上のサイクリストおよびミニチュアダックスフンドを検出および検出することを可能にするように増大され得る。
【0111】
別の例では、車両4000は、車両形状を修正し、車両動的性能を改善するために、運転者4010の傾斜に応じて車両4000の傾斜(例えば、±45度)を可能にする、長い走行サスペンション要素を有し得る。例えば、狭い車両は、空気抵抗を低減する、都市部の占有面積を低減させる/操作性を増大させるという点で好ましい。しかしながら、狭い車両は、特に狭いトラック幅によりコーナリング時に、動的安定性が乏しい場合がある。運転者4010が高速でコーナリングする時、車両4000がオートバイのように曲がり角に傾斜するのが有益であり得る。
【0112】
図14Aおよび14Bは、車両4000が別の車両の後方に位置する別の例示的な使用事例を示す。運転者4010は、他の車両を見回すために頭部(または体)を傾け、それによってFOVおよびその状況認識を向上させ得る。車両4000は、他の車両を見回すために、運転者4010がキャビン内で傾いていることを検出し得、車両4000を傾けることによって応答し、運転者4010のFOVをさらに向上させ得る。一部の事例では、車両4000はまた、車両4000が傾くと、さらにFOVを向上させるために車高を増大させ得る。
【0113】
図15A図15Cは、車両4000が、自動セキュリティドローンが使用される事例を示す。この場合、反応システム4300は、完全に環境生成入力から応答し得る。車両4000は、周囲環境の360度FOVを有するカメラを含み得る。反応システム4300は、図14Aおよび図14Bの例示的な車両4000と実質的に同様の様式で応答するように構成され得るが、ただしこの場合、反応システム4300は、運転者4010の移動ではなく、環境のカメラによって取得されたビデオ画像に応答する。例えば、車両4000は環境中の障害物を検出するように構成され得、それに応じて反応システム4300は関節ジョイントを作動させて、カメラが障害物を見回すことおよび/または障害物との衝突を回避することを可能にし得る。
【0114】
カメラはまた、凹凸のある表面を検出するように構成され得る。これらの表面を横断するために、車両4000は、歩行動作を使用するように構成され得る。一部の事例では、車両4000は、車両4000の静的車高を拡張するための各ホイールのさらなる独立した作動を含み得る。この歩行動作はまた、関節DOFおよび/または長い走行サスペンションDOF由来の複合的動作によって、車両4000が一連の階段を横断することを可能にするために使用され得る(図15C参照)。この能力によって、制御不能な環境と折り合いをつけながら、自動運転車両の安全な操作が可能となり得る。車両4000が運転者4010用のキャビンを有する場合、車両4000が凹凸のある表面を走行する際に、運転者4010への不快感を低減させるために、キャビンを所望の配向(例えば、実質的に水平)に維持し得る。
【0115】
関節ジョイントはまた、車両4000の操作にいくつかの動的利益を提供し得る。例えば、車両安定性は、関節ジョイントを使用して車両4000を曲がり角に傾斜させることによって改善され得、これにより、安定性マージンを増大させ、トラクションを維持し、または一部の例では、横転を回避または除去するような方法で質量中心をシフトさせる。関節ジョイントは、関節ジョイントの動的幾何学的最適化を通して車両4000の回転の能動的制御を可能にすることによって、より大きなトラクションを可能にし得る。車両4000のコーナリング性能はまた、車両4000を傾斜させることによって改善され得る。さらに、倒立振子原理は、特に高密度の都市環境の低速車両において、車両4000を高外形構成に関節屈曲させること、および質量中心(COM)の高さを増大させることによって、使用され得る。車両4000はまた、一般的にこのような不快感を運転者4010に誘発する動的動作を予測および/または軽減することによって、乗り物酔いを防止し得る。
【0116】
反応システム4300はまた、運転者4010に、その車両4000を自分用に設定できる能力を提供し得る。例えば、車両4000は、車両4000が運転者の存在を認識するように車両4000が揺れ動く、および/または始動するように関節ジョイントを作動させることによって、運転者4010の存在に挨拶および/または認識するように構成され得る。これは、車両4000の所有者および/または顧客(配車またはシェア用途の場合)に挨拶するために使用され得る。
【0117】
別の例では、車両4000はまた、人格を有するように構成され得る。例えば、車両4000は、環境4500に反応し、様々な目標および/または意図を道路上の他の個人または車両に伝達するためのプラットフォームを提供するように構成され得る。例えば、車両4000は、高外形構成に関節屈曲し、一方の側に傾斜して車両4000が別の車両に道を譲る(例えば、一時停止の標識のある交差点で)ことを示すことができる。別の例では、車両4000は、高速道路を走行し得る。車両4000は、車両4000が他の車両を高速道路に合流させようとしていることを他の車両に示すために、左右に穏やかに揺れるように構成され得る。別の例では、車両4000は、動物(例えば、イヌのように、虎のように)のように挙動するように構成され得る。一部の事例では、車両4000によって実行される動作のタイプは、再構成可能であり得る。例えば、車両4000の性格を、運転者の好みに合わせてダウンロード、カスタマイズ、交換、進化、適合、および/またはさもなくば修正することが可能であり得る。
【0118】
別の例では、車両4000の関節ジョイントは、例えば、駐車場において、車両4000を運転者4010に認知させるためにも使用され得る。混雑した駐車場で車両を駐車した場所を忘れることがよくある。スポーツ・ユーティリティ・ビークル(SUV)やトラックの海では、非常に小さく軽量のモビリティプラットフォームを見つけるのは難しい場合がある。車両4000の関節屈曲および長距離移動の自由度(DOF)は、車両4000を関節屈曲して車両4000の高さを調整し、および/または揺れ/旋回動作を誘発することによって、車両4000をかなり目立つようにすることができる。一部の事例では、車両4000はまた、音を出す(例えば、関節ジョイントを介して音を鳴らしてクラクションを鳴らすなど)および/またはおよび/または車両4000のライトを点滅させ得る。
【0119】
車両4000はまた、仮想現実、拡張現実、ゲーム、映画、音楽、各地を巡るツアー、睡眠/健康監視、瞑想、および運動を含むがこれに限定されない、反応システム4300を活用できる輸送以外の機能も提供し得る。車両がより自律的になると、運転者4010は、車両4000で場所間を移動しながら、これらのサービスの一部を使用する自由を有し得る。概して、反応システム4300は、車両4000によって提供されるさらなるサービスの一つにより良く適合するように車両4000にその形状を変更させ得る。例えば、車両4000は、橋を横断して走行しながらその高さを調整し、運転者4010に、写真撮影(例えば、インスタグラムのインフルエンサーのための)用の風景の望ましい視界を提供するように構成され得る。
【0120】
車両4000はまた、グレアを低減するように関節屈曲され得る。例えば、センサ4200は、センサ4200によって取得されたRGB画像に基づいて、運転者の眼球領域上のグレア(例えば、太陽または対向車のヘッドライトからの)を検出し得る。これに応じて、車両4000は、グレアを低減するために、運転者の眼球領域の位置を変更するように、その車高および/または傾斜角を調整し得る。
【0121】
図16は、部分的にはセキュリティシステムとして使用される関節ジョイントを含む別の例示的な車両4000を示す。概して、車両4000は、人が車両4000を盗もうとするとき、それ自体が知らせるように構成され得る。例えば、車両4000は、音を発するか、そのライトを点滅させるか、または関節屈曲し得る。車両4000を盗もうとする試みがなされる場合、車両4000はまた関節ジョイントを使って、車両4000への侵入を防止すること、および/または車両4000の車体を窃盗犯にぶつける(例えば、バッキング動作で車両4000を回転させる)ことによって、窃盗犯を妨害し得る。
【0122】
車両4000はまた、潜在的泥棒を未然に防ぐために、状況認識を強化するための外部に面したカメラを含み得る。カメラは、(例えば、車両4000の後方から)車両4000に近づく個人に対して顔認識を行うために使用され得る。個人の計算された固有面は、承認された運転者のデータベースと相互参照され得る。合致が見つからなかった場合、その個人は法執行機関のデータベースと相互参照され、その個人が犯罪者であるかどうかを判断し得る。
【0123】
図17は、車両4000がツールとして使用される別の例示的な用途を示す。車両4000は、比較的コンパクトな占有面積、関節屈曲範囲、および空間認識を有し得、輸送を超えたタスクのための有望なツールとなる。例えば、車両4000は、図17に示す通り、現場でニュースアンカーを同時に撮影、照明、スムーズに追跡する車載カメラまたは搭載カメラを含み得る。アクティブサスペンションを使用して、ショットを安定させ得、一方で、関節屈曲によって、カメラを所望の高さに維持し得る。別の用途では、車両4000は、その周囲360°の視界を提供する車載カメラを用いて、サイト(例えば、空間マッピング用)を遠隔で監視および/または検査するために使用され得る。
【0124】
センサ4200によって測定される運転者4010の位置および/または配向、およびカメラデータは、車両4000の他のサブシステムでも使用され得る。例えば、典型的なマルチスピーカー構成のための所望のリスニング位置(「スイートスポット」)は、スピーカーの間隔、周波数応答、および他の空間特性に依存する、小さな固定領域である。ステレオイマージョンは、所望のリスニング位置の領域内で最大であり、リスナーがこの領域から抜け出ると急速に低下する。車両4000は、運転者4010の位置データおよび車両4000のキャビンの音響モデルを利用して、運転者の頭上に所望の聞き取り位置をマッピングする音声サブシステムを含み得る。運転者4010がキャビン内でシフトすると、各スピーカーの信号の時間遅延、フェーズ、および振幅は、運転者の頭上の所望のリスニング位置を維持するために、所望の聞き取り位置をシフトするように独立して制御され得る。
【0125】
別の例では、センサ4200によって取得された深度マップおよびRGBカメラデータは、運転者4010を識別するために使用され得る。例えば、車両4000は、事前にトレーニングされた一連の顔(または身体)に基づいて運転者4010を識別することができる識別サブシステムを含み得る。例えば、車両4000は、最初に識別サブシステムを較正するときに、運転者4010の画像を取得し得る。識別サブシステムは、限定されるものではないが、座席設定、音楽、および目的地を含むユーザープロファイルに従って、様々な車両設定を調整するために使用され得る。識別サブシステムはまた、無許可の人が車両4000にアクセスおよび/または運転することができるのを防ぐことにより、盗難防止のために使用され得る。
【0126】
別の例では、センサ4200によって取得された深度マップおよびRGBカメラデータは、運転者4010の注意度を監視するために使用され得る。例えば、運転者4010の疲労は、運転者の目および/または頭部の動きおよび/または位置に基づいて監視され得る。運転者4010が疲労していると判定された場合、車両4000は、運転者4010に車を路肩に停めて休むようにメッセージを提供し得る。
【0127】
結論
本明細書に記載するすべてのパラメータ、寸法、材料、および構成は例示であり、実際のパラメータ、寸法、材料、および/または構成は、発明の教示が使用される一つまたは複数の特定の用途に依存する。前述の実施形態は、主に例として提示されており、添付の特許請求の範囲およびその等価物の範囲内では、発明に関する実施形態は、具体的に記載および請求される以外の形で実践され得ることを理解されたい。本開示の発明に関する実施形態は、本明細書に記載する個々の特徴、システム、物品、材料、キット、および/または方法を対象とする。
【0128】
加えて、二つ以上のこうした特徴、システム、物品、材料、キット、および/または方法の任意の組み合わせは、こうした特徴、システム、物品、材料、キット、および/または方法が相互に矛盾しない場合、本開示の発明の範囲内に含まれる。本開示の範囲を逸脱することなく、例示的な実装のそれぞれの要素の設計、運転条件、ならびに配置において、他の置換、修正、変更、および省略を行うこともできる。数値範囲の使用は、同じ関数を同じ手段で満たす範囲から外れる等価物が、同じ結果を生成することを排除しない。
【0129】
上記の実施形態は、複数の手段で実施することができる。例えば、実施形態は、ハードウェア、ソフトウェア、またはそれらの組み合わせを使用して実施されてもよい。ソフトウェアに実装される場合、ソフトウェアコードは、単一のコンピュータに提供されるか、もしくは複数のコンピュータ間に分散されるかにかかわらず、適切なプロセッサまたはプロセッサの集合で実行することができる。
【0130】
さらに、コンピュータが、ラックマウントコンピュータ、デスクトップ型コンピュータ、ラップトップ型コンピュータ、またはタブレット型コンピュータなど、多数の形態のいずれかで具現化され得る。加えて、コンピュータは、概してコンピュータとみなされるデバイスではなく、パーソナルデジタルアシスタント(PDA)、スマートフォン、または任意の他の適切な携帯型もしくは固定型の電子デバイスを含む、適切な処理能力を有するデバイスの中に埋め込まれ得る。
【0131】
また、コンピュータは一つ以上の入力デバイスおよび出力デバイスを有し得る。これらのデバイスは、とりわけ、ユーザインターフェースを提示するために使用できる。ユーザインターフェースを提供するために使用できる出力デバイスの例には、プリンタまたは出力の視覚的表現のためのディスプレイ画面、およびスピーカーまたは出力の可聴表現のための他の音声発生デバイスが挙げられる。ユーザインターフェースに使用できる入力装置の例には、キーボード、ならびにマウス、タッチパッド、およびデジタイザタブレットなどのポインティングデバイスが含まれる。別の例として、コンピュータは、音声認識によってまたは他の可聴フォーマットで、入力情報を受信してもよい。
【0132】
このようなコンピュータは、ローカルエリアネットワーク、もしくはエンタープライズネットワークなどの広域ネットワーク、インテリジェントネットワーク(IN)、またはインターネットを含む、適切な形態の一つ以上のネットワークによって相互接続されてもよい。このようなネットワークは、適切な技術に基づいてもよく、適切なプロトコルに従って動作してもよく、無線ネットワーク、有線ネットワーク、または光ファイバーネットワークを含んでもよい。
【0133】
本明細書に概説するさまざまな方法またはプロセスは、さまざまなオペレーティングシステムまたはプラットフォームのうちのいずれか一つを用いる、一つ以上のプロセッサ上で実行可能なソフトウェアとしてコード化されてもよい。加えて、このようなソフトウェアは、多数の適切なプログラミング言語および/またはプログラミングもしくはスクリプトツールのうちのいずれかを使用して記述されてもよく、またフレームワークもしくは仮想マシン上で実行される、実行可能なマシン語コードまたは中間コードとしてコンパイルされてもよい。いくつかの実装では、実行を容易にするために、特定のオペレーティングシステムまたはプラットフォーム、ならびに特定のプログラミング言語および/またはスクリプトツールのうちの一つ以上を具体的に用いてもよい。
【0134】
また、さまざまな発明の概念が、一つ以上の方法として具現化されてもよく、そのうちの少なくとも一例を提供してきた。方法の一部として行われる行為は、一部の例では、異なる手段で順序付けられてもよい。したがって、一部の発明に関する実施では、所与の方法のそれぞれの行為が、具体的に例示するものとは異なる順序で行われてもよく、一部の行為を同時に行うことを含み得る(こうした行為が、例示的な実施形態では、連続する行為として示される場合であっても)。
【0135】
本明細書で言及するすべての出版物、特許出願、特許、および他の参考文献は、参照によりそれらの全体が組み込まれる。
【0136】
本明細書で定義および使用するすべての定義は、辞書定義、参照により組み込まれる文書の定義、および/または定義された用語の通常の意味を統制するものと理解されるべきである。
【0137】
本明細書および特許請求の範囲で使用する不定冠詞「a」および「an」は、明確にそうでないと示されない限り、「少なくとも一つ」を意味すると理解されるべきである。
【0138】
本明細書および特許請求の範囲で使用する「および/または」という語句は、結合された要素の「いずれかまたは両方」を意味し、すなわち一部の場合において接続的に存在し、他の場合において離接的に存在する要素を意味すると理解されるべきである。「および/または」で挙げられる複数の要素は、同じ様式、すなわち等位接続される要素のうちの「一つ以上」と解釈されるべきである。具体的に識別される要素に関連するかまたは関連しないかにかかわらず、「および/または」節によって具体的に識別される要素以外に、他の要素が随意に存在し得る。それゆえに、非限定的な例として、「Aおよび/またはB」への言及は、「含む」などの制限のない語法と連動して使われるときに、一実施形態においてAのみ(任意選択的にB以外の要素を含む)、別の実施形態においてBのみ(任意選択的にA以外の要素を含む)、さらに別の実施形態においてAとBの両方(任意選択的に他の要素を含む)などを指すことができる。
【0139】
本明細書および特許請求の範囲において使用する場合、「または」は、上で定義した「および/または」と同じ意味を有すると理解されるべきである。例えば、リスト内の項目を分離するとき、「または」または「および/または」は包括的なもの、すなわち多数の要素または要素のリスト、および任意選択的にリストに無い追加の項目のうちの少なくとも一つを含むが、二つ以上も含むと解釈されるものとする。それとは反対であると明確に指示される用語、例えば「のうちの一つのみ」もしくは「のうちのまさに一つ」、または特許請求の範囲において使用するときの「から成る」などの用語のみ、多数のまたは列挙された要素のうちのまさに一つの要素を包含することを指す。概して、本明細書で使用する「または」という用語は、「いずれか」、「のうちの一つ」、「のうちの一つのみ」、または「のうちのまさに一つ」など、排他的な用語が先行するときに、排他的な選択肢(すなわち「両方ではなく一方または他方」)を示すとのみ解釈されるものとする。「から基本的に成る」は、特許請求の範囲で使用する場合、特許法の分野において使用される通常の意味を有するものとする。
【0140】
本明細書および特許請求の範囲で使用する場合、一つ以上の要素のリストに関連する「少なくとも一つ」という語句は、要素のリストの中の要素のいずれか一つ以上から選択される、少なくとも一つの要素を意味するが、要素のリスト内で具体的に列挙したありとあらゆる要素のうちの、少なくとも一つを必ずしも含むわけではなく、要素のリストのいかなる要素の組み合せも除外するものではないと理解されるべきである。またこの定義によって、「少なくとも一つ」という語句が指す、要素のリスト内で具体的に識別される以外の要素が、具体的に識別される要素に関連するかまたは関連しないかにかかわらず、任意に存在し得ることも許容される。それゆえに、非限定的な例として、「AおよびBのうちの少なくとも一つ」(または等価的に「AまたはBのうちの少なくとも一つ」、もしくは等価的に「Aおよび/またはBのうちの少なくとも一つ」)は、一実施形態においてBは存在せず、任意選択的に二つ以上のAを含む、少なくとも一つのA(任意選択的にB以外の要素を含む)、別の実施形態においてAは存在せず、任意選択的に二つ以上のBを含む、少なくとも一つのB(任意選択的にA以外の要素を含む)、また別の実施形態において任意選択的に二つ以上のAを含む、少なくとも一つのA、および任意選択的に二つ以上のBを含む、少なくとも一つのB(任意選択的に他の要素を含む)を指すことなどができる。
【0141】
特許請求の範囲、ならびに上記の明細書で、すべての移行句、例えば、「備える(comprising)」、「含む(including)」、「持つ(carrying)」、「有する(having)」、「収容する(containing)」、「伴う(involving)」、「保持する(holding)」、「から構成される(composed of)」、および類似のものは制約がないと理解され、すなわち、含むがそれに限定はされないということを意味する。「から成る(consisting of)」および「から本質的に成る(consisting essentially of)」という移行句のみが、米国特許局の特許審査手続便覧、セクション2111.03に規定の通り、それぞれ閉鎖的または半閉鎖的な移行句であるものとする。
図1
図2
図3
図4
図5A
図5B
図6
図7A
図7B
図7C
図7D
図7E
図8A
図8B
図8C
図8D
図8E
図8F
図8G
図9
図10A
図10B
図11
図12A
図12B
図13
図14
図15A
図15B
図15C
図16
図17
【国際調査報告】