(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-04-04
(54)【発明の名称】デジタル式画像形成処理を備えるモジュール式走査共焦点光学プロファイル顕微鏡
(51)【国際特許分類】
G02B 21/00 20060101AFI20220328BHJP
G02B 21/36 20060101ALI20220328BHJP
G02B 21/06 20060101ALI20220328BHJP
G01N 21/64 20060101ALI20220328BHJP
【FI】
G02B21/00
G02B21/36
G02B21/06
G01N21/64 E
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021549210
(86)(22)【出願日】2020-01-17
(85)【翻訳文提出日】2021-10-19
(86)【国際出願番号】 US2020013986
(87)【国際公開番号】W WO2020176173
(87)【国際公開日】2020-09-03
(32)【優先日】2019-02-26
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】510239406
【氏名又は名称】ワシントン ステイト ユニバーシティー
(74)【代理人】
【識別番号】100141173
【氏名又は名称】西村 啓一
(72)【発明者】
【氏名】マクラスキー マシュー ダグラス
【テーマコード(参考)】
2G043
2H052
【Fターム(参考)】
2G043AA04
2G043BA16
2G043CA04
2G043DA02
2G043EA01
2G043EA13
2G043FA02
2G043HA01
2G043JA03
2G043KA09
2G043LA03
2H052AA08
2H052AA09
2H052AB01
2H052AC04
2H052AC15
2H052AC18
2H052AC27
2H052AC33
2H052AC34
2H052AD09
2H052AD20
2H052AD34
2H052AF14
2H052AF25
(57)【要約】
【解決手段】
一実施形態において、モジュール式共焦点光学顕微鏡内に構成された合焦レンズ手段の光軸に対して非同一線上に電磁放射線源を方向付けるように配置されたビームステアリング手段であって、合焦された非同一線上に方向付けられた電磁放射線源は、試験体における1または複数の標的部位の画像形成の基礎のために使用される、ビームステアリング手段と、試験体における1または複数の標的部位までのビーム経路に沿った複合共焦点面に構成された少なくとも1の整列された検出器であって、画像形成基礎を使用して1または複数の標的部位の焦点と画像品質を維持するために、自動補正情報を提供するようにさらに構成され、並びにN=2×2の配列からN=21×21の配列までの画素範囲において合成開口を構成するハイスループットを提供する、整列された検出器と、を備える、モジュール式共焦点顕微鏡が開示される。
【選択図】
図1A
【特許請求の範囲】
【請求項1】
モジュール式共焦点顕微鏡であって、
電磁放射線源と、
前記モジュール式共焦点顕微鏡内に構成された合焦レンズ手段の光軸に対して非同一線上に前記電磁放射線源を方向付けるように配置されたビームステアリング手段と、
試験体における1または複数の標的部位までのビーム経路に沿った複合共焦点面に構成された少なくとも1の整列された検出器と、
前記試験体の1または複数の前記標的部位の2次元特性、および/または、3次元特性を特定するように構成された、少なくとも1の前記整列された検出器に接続されたプロセッサと、
を備え、
合焦されて非同一線上に方向付けられた前記電磁放射線源は、前記試験体における1または複数の前記標的部位の画像形成基礎のために使用され、
前記整列された検出器は、前記画像形成基礎を使用して1または複数の前記標的部位の焦点と画像品質を維持するために、自動補正情報を提供するように構成され、
前記整列された検出器は、少なくともN=2×2の配列の画素範囲において合成開口を構成するハイスループットを提供する、
ことを特徴とするモジュール式共焦点顕微鏡。
【請求項2】
構成された前記合成開口は、N=2×2の配列からN=101×101の配列までの画素範囲にある、
請求項1記載のモジュール式共焦点顕微鏡。
【請求項3】
構成された前記合成開口は、N=2×2の配列からN=21×21の配列までの画素範囲にある、
請求項1記載のモジュール式共焦点顕微鏡。
【請求項4】
前記プロセッサに接続された、ステアリングミラー、または、x-y-zステージは、前記試験体をスキャンするように方向付けされる、
請求項1記載のモジュール式共焦点顕微鏡。
【請求項5】
少なくとも1の前記整列された検出器は、2次元整列された電荷結合検出器(CCD)である、
請求項1記載のモジュール式共焦点顕微鏡。
【請求項6】
2次元整列された前記電荷結合検出器(CCD)は、相補型金属酸化膜半導体(CMOS)、EMCCD、またはsCMOSから選択される、
請求項1記載のモジュール式共焦点顕微鏡。
【請求項7】
長距離ダイクロイックミラービームスプリッタと、立方体スプリッタと、ハーフミラーと、プリズムと、音響光学ビームスプリッタ(AOBS)と、から選択されるビームスプリッタを備える、
請求項1記載のモジュール式共焦点顕微鏡。
【請求項8】
電磁照明源と、
前記電磁照明源を受け取るように配置されたマイクロレンズアレイと、
複数の標的部位に複数のサブビームを集めて焦点を合わせるように構成された光学レンズ手段と、
第2ビーム経路に沿って構成され、さらに、誘導された反射光、および/または、合焦された複数の前記サブビームからの信号により提供される放出光により、結果としての複数の部位を画像形成するように構成された少なくとも1の整列された検出器と、
前記標的部位の2次元特性、および/または、3次元特性を特定するように構成された、少なくとも1の前記整列された検出器に接続されたプロセッサと、
を備え、
受け取られた前記電磁照明源は、前記マイクロレンズアレイにより第1ビーム経路に沿い隣接して走る複数の前記サブビームへと再構成され、
前記光学レンズ手段は、複数の前記標的部位に複数の前記サブビームを集めて焦点を合わせた後に、前記誘導された反射光、および/または、複数の前記標的部位のそれぞれからの前記放出光を集めて、前記第2ビーム経路に沿って方向付けし、
前記整列された検出器は、少なくともN=2×2の配列の画素範囲において合成開口を構成するハイスループットを提供する、
ことを特徴とするモジュール式マイクロレンズアレイ共焦点顕微鏡。
【請求項9】
構成された前記合成開口は、N=2×2の配列からN=101×101の配列までの画素範囲にある、
請求項8記載のモジュール式マイクロレンズアレイ共焦点顕微鏡。
【請求項10】
構成された前記合成開口は、N=2×2の配列からN=21×21の配列までの画素範囲にある、
請求項8記載のモジュール式マイクロレンズアレイ共焦点顕微鏡。
【請求項11】
前記光学レンズ手段の光軸に対して非同一線上に電磁放射線源を方向付けるように配置されたビームステアリング手段と、
前記試験体における1または複数の前記標的部位までのビーム経路に沿った複合共焦点面に構成された少なくとも1の前記整列された検出器と、
を備え、
合焦されて非同一線上に方向付けされた前記電磁放射線源は、前記試験体における1または複数の前記標的部位の画像形成基礎のために使用され、
前記整列された検出器は、前記画像形成基礎を使用して1または複数の前記標的部位の焦点と画像品質を維持するために、自動補正情報を提供するように構成される、
請求項8記載のモジュール式マイクロレンズアレイ共焦点顕微鏡。
【請求項12】
長距離ダイクロイックミラービームスプリッタと、立方体スプリッタと、ハーフミラーと、プリズムと、音響光学ビームスプリッタ(AOBS)と、から選択されるビームスプリッタを備える、
請求項8記載のモジュール式マイクロレンズアレイ共焦点顕微鏡。
【請求項13】
永続光伝導(PPC)を誘導するために、モジュール式共焦点顕微鏡を使用して材料を調整する方法であって、
永続光伝導を示す試験体における1または複数の標的部位を画像形成すると同時に調整するためにモジュール式共焦点顕微鏡を組み込む工程と、
電磁放射線源により提供される所定の発光スペクトルを選択する工程と、
前記モジュール式共焦点顕微鏡の共焦点幾何学的構造を介して初期接触点に照射する工程と、
照射を維持しながら、前記照射への前記試験体の曝露の経路を描くように前記試験体を平行移動させる工程と、
を含み、
前記モジュール式共焦点顕微鏡は、
前記電磁放射線源と、
前記モジュール式共焦点顕微鏡内に構成された合焦レンズ手段の光軸に対して非同一線上に前記電磁放射線源を方向付けるように配置されたビームステアリング手段と、
前記試験体における1または複数の前記標的部位までのビーム経路に沿った複合共焦点面に構成された少なくとも1の整列された検出器と、
前記試験体の1または複数の前記標的部位の2次元特性、および/または、3次元特性を特定するように構成された、少なくとも1の前記整列された検出器に接続されたプロセッサと、
を備え、
合焦されて非同一線上に方向付けられた前記電磁放射線源は、前記試験体における1または複数の前記標的部位の画像形成基礎のために使用され、
前記整列された検出器は、前記画像形成基礎を使用して1または複数の前記標的部位の焦点と画像品質を維持するために、自動補正情報を提供するように構成され、
前記整列された検出器は、少なくともN=2×2の配列の画素範囲において合成開口を構成するハイスループットを提供する、
ことを特徴とするモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項14】
構成された前記合成開口は、N=2×2の配列からN=101×101の配列までの画素範囲にある、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項15】
構成された前記合成開口は、N=2×2の配列からN=21×21の配列までの画素範囲にある、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項16】
永続光伝導を示す前記試験体は、酸化物である、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項17】
前記試験体は、チタン酸ストロンチウム(SrTiO
3)と酸化亜鉛(ZnO)から選択される少なくとも1の材料である、
請求項16記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項18】
永続光伝導を示す前記試験体は、窒化ガリウム(GaN)と、窒化ガリウムインジウムヒ素(GaInNAs)と、ガリウムヒ素(GaAs)と、から選択されるIII-V族半導体材料である、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項19】
前記材料は、少なくとも1年間、永続光伝導(PPC)を示す、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項20】
前記材料は、最高で1200℃までにおいてアニール処理される、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項21】
前記材料は、水蒸気下でアニール処理される、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【請求項22】
特定の電荷を有する所望の生物細胞を、調整されたPPC材料の表面上に付着させる工程を含む、
請求項13記載のモジュール式共焦点顕微鏡を使用して材料を調整する方法。
【発明の詳細な説明】
【技術分野】
【0001】
●関連出願の相互参照
本願は、米国特許法第119条35の下、「Using persistent photoconductivity to write a low-resistance path in SrTiO3」の名称にて2018年2月26日に出願された米国特許仮出願第62/635,134号の優先権の利益を主張するものであり、仮出願は、参照によりその全体が本明細書に組み入れられる。
【0002】
●政府権益
本発明は、全米科学財団により授与されたDMR1561419の下、国庫補助により為された。政府は、本発明において一定の権利を有する。
【0003】
本明細書における実施の形態は、共焦点顕微鏡を使用した、アーチファクトの迅速で非常に正確な画像形成、および/または、検出に関する。特に、本明細書において開示される共焦点顕微鏡のアレンジメント、および、技術を使用する本実施の形態は、広視野画像形成、アーチファクト検出、および、永続光伝導を示す材料の調整を対象とする。
【背景技術】
【0004】
●関連分野の説明
共焦点レーザ走査顕微鏡法(CLSM)は、生命科学において広く使用される成熟した技術である。共焦点レーザ走査顕微鏡法は、細胞、組織、微生物バイオフィルム、および脳切片についての詳細な情報を得るために使用されている。蛍光染料による細胞の標識は、光学画像のコントラストを提供する好ましい技術である。生物医学的研究に加えて、共焦点顕微鏡は、角膜疾患、皮膚癌、および他の状態を検出する臨床的可能性を有する。
【0005】
CLSMの有益な面は、焦点が合っていない光を退け、その結果として、鮮明で高解像度の画像を得るために、そのような器具を使用する点にある。広視野の蛍光顕微鏡により、試験体の広いエリアが光照射される。試験体の1のエリアから放出された光子は、別の位置へ散乱され、または、拡散され、そしてカメラにより収集される。この結果として、重要な細部を不明瞭にする「ボケ(haze)」が生じる。CLSMは、例えば、試験体のある点から点までを横切るレーザでスキャンされ、収集されたデータからの画像を再構築することにより、蛍光のブレの問題を解決する。その上、3次元(3D)用途の場合、焦点が合っていない特徴部は、各画像面に不鮮明なボケが加えられ、結果としてコントラストを低下させる。
【0006】
そのような技術により作製された高品質な画像は、通常、単式顕微鏡において200,000ドルを超える費用がかかる。スキャニングアレンジメントにおける主な費用は、レーザを試料へと導き、放出された光を検出器へと戻るように誘導する、スキャン/デスキャンシステムである。光学構成要素は、厳しい許容範囲に配置されなければならない。加えて、検出器(典型的には、光電子増倍管、または、PMT)は、高圧電源を必要とする。高性能の共焦点顕微鏡は、生物医学研究施設ではおなじみであるが、多くの個人の研究者、小さい企業、または大学生の団体では手が届かない。その上、顕微鏡は、携帯式でないため、現地または限定された空間でのその使用が制限される。
【0007】
さらにCLSMは、合焦された小さいレーザビームが試験体をスキャンするたびにデジタル画像が逐一構築されるため、本質的に遅い。例えば、現在実施されているような、そのような光学走査装置では、取得時間は、200×200点の画像で、およそ15分である。一般的に、これは、ほとんどの生物学的画像形成アプリケーションにおいて十分な信号対雑音比(S/N比)を得るために長い積分時間を必要とする分光学的マップの作製にとって問題ではない。しかし、ハイスループットが必要な場面では、このようなスキャン時間は望ましくない。
【0008】
共焦点レーザ走査顕微鏡システムに関する背景情報は、Mathew D. McCluskeyにより「Digital Confocal Optical Profile Microscopy」の名称で2013年9月5日に出願された特許文献1に記載され、権利請求されている。それには、「…ある特定の共焦点顕微鏡は、広視野顕微鏡よりも高い光学解像度を有することができる。しかしながら、そのような共焦点顕微鏡は、いくつかの欠点を有する。例えば、そのような共焦点顕微鏡におけるピンホールは、試料からの光信号に円形開口関数を適用するアナログ計算機として機能する。同ピンホールは、焦点のあった光信号を通過させるが、試料についての多くの情報を運ぶかもしれない焦点の合っていない信号を退ける。下記においてより詳細に説明されるように、本技術のいくつかの実施の形態は、試料からの光信号の実質的にビームプロファイル全体をモニタする。モニタされたビームプロファイルは、既存の共焦点顕微鏡よりも試料について追加の情報、および/または、より正確な情報をもたらすように、モデル化することができる。」と記載されている。
【0009】
前述の時間取得、および、スループットの問題に対処するための別の技術は、走査ディスク共焦点顕微鏡(SDCM)であり、それは、整列された回転するピンホールディスクアレイに光の焦点を合わせるために、回転するマイクロレンズアレイを使用する。連結されたマイクロレンズアレイおよびピンホールアレイディスクは、約5,000~10,000rpmで回転されるため、視野(FOV)は、いくらかの時間、合焦されたレーザビームスポットにより光照射される。ある用途では、蛍光が励起され、同時に試料の複数の点から画像が形成される。
【0010】
しかしながら、回転ディスクの回転とカメラの露光時間が、FOV内の全ての位置で、カメラ露光時間の間に同じ回数のレーザビーム露光を受けて、結果としてアーチファクトの画像をもたらすように連動しないという問題が存在する。その上、ピンホールアレイディスク上の複数のピンホールの存在は、他の焦平面からの焦点の合っていない光が、隣接するピンホールに入る原因になる。これは、z軸の解像度を損ない、z軸の解像度に関してSDCMをCLSMに劣らせる。CLSMの別の望ましくない面は、マルチカラーアプリケーションが、複数のカメラ、ダイクロイックミラー、およびフィルタホイールの必要性により、複雑になり得るということである。単式カメラを採用することができ、フィルタホイールは、異なる蛍光体を順番に励起し、検出するために迅速に切り替えることができるが、これは、複数プローブの高速取得を妨げる。
【0011】
光の焦点をピンホールに合わせるためにピンホールアレイディスクに対合されたマイクロレンズアレイディスクについて開示する走査ディスク共焦点顕微鏡システムに関する背景情報は、Favro et al.により1991年7月23日に「Confocal Microscope」の名称で出願された特許文献2に説明され、権利請求されている。それには、「…本発明は、試験体の一部に光照射する光源と、光源と試験体との間に配置された開口プレートとを含む共焦点顕微鏡を提供する。同開口プレートは、光源から試験体の一部の上に放出された光の一部を通過させるための開口部を含む。同光の一部の焦点を同開口プレートの開口の上に合わせるための手段が、光源と開口プレートとの間に配置される。試験体の一部に光照射するために、開口を通過した光の焦点を試験体の上に合わせるための対物手段が開口プレートと試験体との間に配置される。試験体の一部に照射される光により作製された画像を収集するために、光照射された試験体の一部に光学的に接続された手段が提供される。光の一部の焦点を開口プレートの開口の上に合わせることにより、開口プレートに向けて方向付けされた光のほとんどが、開口プレートを通過し、結果として、開口プレートを通る光の伝達効率を増加させる。本発明の好ましい実施の形態において、同合焦手段は、フレネルゾーンプレートを含む。代替の実施の形態において、同合焦手段は、フレネルレンズ、マイクロレンズ、またはマイクロファンネル集光器を含む。」と記載されている。
【0012】
ピンホールアレイディスクに接続されたマイクロレンズアレイを開示する共焦点顕微鏡システムに関する追加のバックグラウンド情報は、Hell et al.により2004年11月3日に「Two Microlens Arrays And a Pinhole Diaphragm Array」の名称で出願された特許文献3において説明され、権利請求されている。それには、「共焦点顕微鏡は、照明光の光束を、いくつかの測定点において同時に試料に光照射する複数の収束する部分的光束へと分割する、複数のマイクロレンズを有するマイクロレンズアレイと、照明光のビーム経路や試料の光照射に由来し、照明光に関して逆方向において捕捉される、試料光のビーム経路とを分離するビームスプリッタと、試料光のビーム経路に配置された複数のピンホールダイアフラムを有し、照明光を分割するマイクロレンズアレイのマイクロレンズに対応する、ピンホールダイアフラムアレイと、照明光を分割するマイクロレンズアレイのマイクロレンズに対応する複数のマイクロレンズを有するさらなるマイクロレンズアレイと、を含む。照明光を分割するマイクロレンズアレイの同マイクロレンズおよびさらなるマイクロレンズのマイクロレンズは、試料光のビーム経路に配置される。上記ビームスプリッタは、照明光を分割する上記マイクロレンズアレイと上記さらなるマイクロレンズアレイとの間に配置され、並びに上記ピンホールダイアフラムアレイの上記ピンホールダイアフラムは、照明光を分割する上記マイクロレンズアレイと上記さらなるマイクロレンズアレイとの間に配置されない。」と記載されている。
【0013】
前述の時間取得およびスループット問題に対処するための別の技術は、格子共焦点顕微鏡、しばしば構造化照明顕微鏡(Structured Illumination Microscopy:SIM)と呼ばれる技術であり、レンズまたはスキャニングを伴わない広視野の方法、である。そのようなシステム/方法論は、格子パターンを画像平面上に投影するために、光源と試料との間での励起光経路における可動式格子パターンの配置を頼りにする。蛍光試料の3つの画像が、3つの異なる位置における水平線の格子を用いて記録される。その計算は、焦点の合っていない光を除去し、焦点の合っている情報のみを含む単一の画像を後に残すものである。「通常の(regular)」広視野画像も、同3つの画像を一緒にまとめることにより、計算することができる。
【0014】
しかしながら、そのような方法の制限は、遅いことであり、試料がより厚い場合、計算のために必要な格子パターンが、ボケにおいて失われ得、多くの場合、画像における潜在する残留格子バターンに起因して、アーチファクトが残存し、並びに、画像が減算されるため、そのような、方法/システムは、ノイズを生じる傾向にある。その上、同方法は、単一の共焦点スライスを生成するために3つの連続する画像を頼りにするため、方法論として、試料が、3つの画像フレームのそれぞれの間の時間において移動することができるような、迅速で動的な、生きた細胞の画像形成にとって好適ではない。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】米国特許第9,891,422号
【特許文献2】米国特許第5,162,941号
【特許文献3】米国特許出願公開第2005/0094261(A1)号
【発明の概要】
【発明が解決しようとする課題】
【0016】
したがって、上記において説明したもの以外の新規の面を有し、広視野の高品質画像をハイスループットにおいて提供することができる、携帯式共焦点光学顕微鏡システムが必要とされる。加えて、本明細書の実施の形態および対応する方法は、現在のシステムよりはるかに低価格であり、共焦点顕微鏡の恩恵を提供する。それは、ハイエンドCLSMとは異なり、携帯式で、占有面積が小さく、可動部の数を最小限にする。本明細書の実施の形態は、そのようなニーズを対象とする。
【課題を解決するための手段】
【0017】
第1態様において、モジュール式共焦点顕微鏡であって、電磁放射線源と、モジュール式共焦点顕微鏡内に構成された合焦レンズ手段の光軸に対して非同一線上に電磁放射線源を方向付けるように配置されたビームステアリング手段であって、合焦されて非同一線上に方向付けられた電磁放射線源は、試験体における1または複数の標的部位の画像形成基礎のために使用される、ビームステアリング手段と、試験体における1または複数の標的部位までのビーム経路に沿った複合共焦点面に構成された少なくとも1の整列された検出器であって、画像形成基礎を使用して1または複数の標的部位の焦点と画像品質を維持するために、自動補正情報を提供するようにさらに構成され、N=2×2の配列からN=21×21の配列までの画素範囲において合成開口を構成するハイスループットを提供する、整列された検出器と、試験体の1または複数の標的部位の2次元特性、および/または、3次元特性を特定するように構成された、少なくとも1の整列された検出器に接続されたプロセッサと、を備える、モジュール式共焦点顕微鏡が開示される。
【0018】
本発明の第2態様において、電磁照明源と、電磁照明源を受け取るように配置されたマイクロレンズアレイであって、受け取られた電磁照明源は、マイクロレンズアレイにより第1ビーム経路に沿い隣接して走る複数のサブビームへと再構成される、マイクロレンズアレイと、複数の標的部位に複数のサブビームを集めて焦点を合わせるように構成された光学レンズ手段であって、複数の標的部位に複数のサブビームを集めて焦点を合わせた後に、誘導された反射光、および/または、複数の標的部位のそれぞれからの放出光を集めて、第2ビーム経路に沿って方向付けする、光学レンズ手段と、第2ビーム経路に沿って構成され、さらに、誘導された反射光、および/または、合焦された複数のサブビームからの信号により提供される放出光により、結果としての複数の部位を画像形成するように構成された少なくとも1の整列された検出器であって、N=2×2の配列からN=21×21の配列までの画素範囲において合成開口を構成するハイスループットを提供する、整列された検出器と、標的部位の2次元特性、および/または、3次元特性を特定するように構成された、少なくとも1の整列された検出器に接続された、プロセッサと、を備える、モジュール式マイクロレンズアレイ共焦点顕微鏡が開示される。
【0019】
本発明の第3態様において、永続光伝導を示す試験体における1または複数の標的部位を画像形成すると同時に調整するためにモジュール式共焦点顕微鏡を組み込む工程であって、モジュール式共焦点顕微鏡は、電磁放射線源と、モジュール式共焦点顕微鏡内に構成された合焦レンズ手段の光軸に対して非同一線上に電磁放射線源を方向付けるように配置されたビームステアリング手段であって、合焦されて非同一線上に方向付けられた電磁放射線源は、試験体における1または複数の標的部位の画像形成基礎のために使用される、ビームステアリング手段と、試験体における1または複数の標的部位までのビーム経路に沿った複合共焦点面に構成された少なくとも1の整列された検出器であって、画像形成基礎を使用して1または複数の標的部位の焦点と画像品質を維持するために、自動補正情報を提供するようにさらに構成され、N=2×2の配列からN=21×21の配列までの画素範囲において合成開口を構成するハイスループットを提供する、整列された検出器と、試験体の1または複数の標的部位の2次元特性、および/または、3次元特性を特定するように構成された、少なくとも1の整列された検出器に接続されたプロセッサと、を備える、組み込む工程と、光源により提供される所定の発光スペクトルを選択する工程と、モジュール式共焦点顕微鏡の共焦点幾何学的構造を介して初期接触点に照射する工程と、照射を維持しながら、照射への試験体の曝露の経路を描くように試験体を平行移動させる工程と、を含む、モジュール式共焦点顕微鏡を使用して材料を調整する、方法が開示される。
【0020】
したがって、本明細書において開示されるように、実施の形態は、ハイスループットにおいて広視野の高品質画像を提供する。加えて、本明細書の実施の形態および対応する方法は、現在のシステムよりはるかに低価格であって、共焦点顕微鏡の恩恵を提供する。それは、ハイエンドCLSMとは異なり、携帯式で、占有面積が小さく、可動部の数を最小限にする。
【図面の簡単な説明】
【0021】
【
図1A】デジタル画像処理を備えるモジュール式マイクロレンズアレイ共焦点光学顕微鏡(COP)システムの実施の形態を示す。
【
図1B】合成開口として作動するCCDアレイにより画像形成された蛍光レーザ誘導スポットを示す。
【
図2A】光源(すなわち、レーザ)を、試験体上に合焦されたスポットの配列に分割するマイクロレンズアレイの概念を示す。
【
図2B】CCDアレイにより画像形成されたマイクロレンズアレイから生じる蛍光スポットを示す。
【
図2C】強度値に変換されたマイクロレンズアレイから生じる蛍光スポットを示す。
【
図2D】レーザアレイ照明スポットのスキャンを示す。
【
図2E】試験体全体を網羅した後の画像の状態を示す。
【
図3】
図3Aは、デジタル画像処理能力を有するモジュール式走査共焦点光学顕微鏡(COP)の追加の実施の形態を示す。
図3Bは、同時に画像形成/処理しながら、本明細書におけるいずれかの顕微鏡の実施の形態が焦点上に留まることを可能にするための、軸はずれ合焦/画像形成技術を示す。
図3Cは、
図3Bに示された軸はずれ合焦/画像形成技術に基づくCCDアレイ画像の平行移動およびデフォーカス(信号強度減少)の一般原理を示す。
【
図4】光ファイバ検出曲線における測定された軸方向応答曲線およびCCDベースの検出画素クロッピングサイズを示す。
【
図5】光ファイバ共焦点スキャンによるチップキャリア試験体の画像を示す。特に、同画像は、光ファイバ検出からの取得された強度マップをプロットすることにより得られる3mm×3mmのチップキャリア上の100μm×100μmのエリアの画像である。
【
図6A】CCDベースの検出結果と比較するためのファイバ画像形成を示す。
【
図6B】2×2N画素クロップサイズのCCDベースの検出結果を示す。
【
図6C】6×6N画素クロップサイズのCCDベースの検出結果を示す。
【
図6D】11×11N画素クロップサイズのCCDベースの検出結果を示す。
【
図6E】21×21N画素クロップサイズのCCDベースの検出結果を示す。
【
図6F】31×31N画素クロップサイズのCCDベースの検出結果を示す。
【
図6G】41×41N画素クロップサイズのCCDベースの検出結果を示す。
【
図6H】51×51N画素クロップサイズのCCDベースの検出結果を示す。
【
図6I】101×101N画素クロップサイズのCCDベースの検出結果を示す。
【
図7A】特定のY位置での、極性マーカOの水平幅を示すための同極性マーカと、様々なピンホールサイズの電極(AB)とを貫く水平線の強度プロファイルを示す。
【
図7B】特定のX位置での、極性マーカOの垂直幅を示すための同極性マーカと、様々なピンホールサイズの電極(AB)とを貫く垂直線の強度プロファイルを示す。
【
図7C】光ファイバの事例および21×21画素のピンホールサイズを有するCCDの事例において測定されたXおよびY範囲全体の電極の全幅プロファイルを示す。
【
図8】405nm光への曝露後のSTO試料の抵抗を示す。測定は、暗所において行った。光照射前の試料の抵抗は、約1MXであった。
【
図9】KBrと混合した、6日間の大気曝露後のSrO粉末の吸収スペクトルを示す。KBrと混合した開封したばかりのSrO粉末をレファレンスとして使用した。
【
図10】真空下、1/2気圧水素ガス、または酸素ガス下において0.1gのSr(OH)
2と共にアニール処理したSTOの低温(125K)IRスペクトルを示す。光曝露前のスペクトルを吸光度プロットのためのレファレンスとして使用した。
【
図11】水蒸気中においてアニール処理したSTOの低温(125K)IRスペクトルを示す。光曝露前のスペクトルをレファレンスとして使用した。
【発明を実施するための形態】
【0022】
本明細書における発明の説明において、暗黙するか、または明確に理解されるか、または述べられない限り、単数形において現れる単語は、その複数形を包含し、複数形において現れる単語は、その単数形を包含することは理解されよう。その上、暗黙するか、または明確に理解されるか、または述べられない限り、本明細書において説明される任意の所定の成分または実施の形態に対して、その成分に対して一覧される可能な候補または代替策は、概して、個別に、またはお互いに組み合わせて使用してもよいことは理解されよう。その上、本明細書において示される図は、必ずしも一定の縮尺で描かれているわけではなく、要素のいくつかは、単に、本発明の明瞭化のために描かれ得ることは理解されるべきである。さらに、参照番号は、対応する要素または類似する要素を示すために、様々な図の間で繰り返される場合もある。さらに、暗黙するか、または明確に理解されるか、または述べられない限り、そのような候補または代替策の任意の一覧は、単に例示であって、限定ではないことは理解されるであろう。加えて、特に明記されない限り、本明細書および特許請求の範囲において使用される、原料、成分、反応条件などの量を表す数字は、用語「約」により修飾されるとして理解されるべきである。
【0023】
したがって、相反することが示されない限り、本明細書および添付の特許請求の範囲において説明される数値パラメータは、本明細書において提示される主題により得ようとする所望の特性に応じて変わり得る近似である。少なくとも、特許請求の範囲に対する均等論の適用を制限しようとするものではなく、少なくとも、各数値パラメータは、報告される有効数字の数を考慮して、並びに通常の丸め手法を適用することにより、解釈されるべきである。本明細書で提示される主題における広い範囲を説明する数値範囲およびパラメータは、近似であるにもかかわらず、特定の実施例において説明される数値は、可能な限り正確に報告される。しかしながら、いかなる数値も、本質的に、それぞれの試験測定において見出される標準的な偏差の結果として必然的に生じるある特定の誤差を含む。
【0024】
●概説
本明細書において開示される有益な実施の形態は、物理的ピンホールを材料科学の応用で置き換えるためにCCDカメラを使用する、モジュール式走査共焦点顕微鏡である。CCDにより収集されたデータは、試験体の画像を得るために、を処理される。記録されたCCD画像において有効画素数を選択することにより、仮想のピンホールが作製される。
【0025】
従来の共焦点顕微鏡の構成とは区別して、それを除いた、本明細書において開示される別の有益な実施の形態は、物理的ピンホールを材料科学の応用で置き換えるためにCCDカメラを使用するが、例えば、ハイスループットでの広視野スキャン/画像形成などを可能にするために、試料体上に合焦されたスポットの配列へとレーザを分割するため、固定されたマイクロレンズアレイも組み入れた、モジュール式共焦点光学顕微鏡である。
【0026】
本明細書における実施の形態の別の新規態様は、開示される実施の形態のいずれかに対して、光照射/画像形成のために使用される入力光源(例えば、レーザ光源)は、調査/調整される試験体/試料の画像形成を開始するために、対物レンズの光軸に対してわずかに非同一線上に(例えば、最大で約1度まで)方向付けすることができる。そのような構成により、元々はそのように画像形成されるが、その後は平行移動、および/または、傾斜させた試料面は、構成されたCCDアレイでの画素数において示されるような(x、y)でのデフォーカス、および、平行移動を示す画像を結果として生じさせる。そのような新規の技術は、焦点を維持し、データ収集の不完全性を緩和するために、本明細書の顕微鏡の構成により有益に使用される。特に、何らかの理由で、試料における最初に画像形成される部位が平行移動する場合(例えば、共焦点顕微鏡の合焦対象物に関してZ方向において移動する平面)、または、スキャンの際に、スキャンされるエリアの表面が均一でない場合、そのような事象は、適切な焦点を維持するように、自動補正され、結果として、多くの場合、顕微鏡が作動している間のデフォーカスに起因して、画素オフセット、および、信号強度低下をモニタすることによりリアルタイムで画像形成することができる。
【0027】
したがって、開示される全ての実施の形態において、本明細書において開示される方法論および対応するシステムは、広視野顕微鏡と共焦点顕微鏡の間の懸け橋を表す。そして、有益な態様は、反射画像形成だけでなく、通常はハードピンホールが典型的な共焦点幾何学構造に位置される場所で操作される整列されたCCDアレイにより収集されるような試験体により放出された誘導蛍光の画像形成も含む。
【0028】
加えて、本明細書における構成は、2次元画像形成にとって有益であると同時に、本明細書における実施の形態は、同様に、3次元光学セクショニングが可能であり、その場合、薄い均一な層での画像のレンダリングを、所望の対象の3次元表示へとデジタル的に積み重ねることができる。本明細書における実施の形態を使用するそのような方法論の例としては、蛍光染料で処理されているか、または、適切な照明の下で蛍光を発するように遺伝子組み換えされている生物試験体の画像形成する能力が挙げられる。
【0029】
反射および蛍光による画像形成は、本明細書における好ましい実施の形態であると同時に、本発明全体の趣旨および範囲から逸脱することなく、本明細書における光学画像形成および材料の処理/調整のために、本明細書の実施の形態を利用することができることも理解されるべきである。例えば、本明細書における実施の形態は、適切な光子がエリアに記録されるのを確実にするために、同時に標的を画像形成しつつ、永続光伝導(以下において詳細に説明される)を示す特定の広いバンドギャップ(2.9eV超)材料を処理/調整することができる。少なくとも1年間持続し、多くの場合には永久に持続するそのような永続光伝導材料は、多くの場合、チタン酸ストロンチウム(SrTiO3またはSTO)を含むが、様々な他の酸化物材料、例えば、これらに限定されるわけではないが、酸化亜鉛(ZnO)など、を含むこともできる。III-V半導体材料、例えば、窒化ガリウム(GaN)、窒化ガリウムインジウムヒ素(GaInNAs)、およびガリウムヒ素(GaAs)など、も、本明細書において開示されるように、調整/処理することができる。
【0030】
●詳細な説明
ここで、再び図を参照すると、
図1Aは、本発明の実施の形態による、概して数字100により表される、デジタル画像処理を備えるモジュール式マイクロレンズアレイ共焦点光学顕微鏡(COP)システムの一般的概略図である。
図1Aに示されるように、
図1AのCOP顕微鏡システム(100)は、電磁波源2、少なくとも1のレンズシステム4、第1ステアリングミラー6、ダイクロイックミラー8、リレーレンズ12(チューブレンズ)、対物レンズ14、光学フィルタ17、および検出器18、多くの場合、相補型金属酸化膜半導体(「CMOS」)検出器を含むための2次元電荷結合検出器(CCD)(例えば、8bitダイナミックレンジ、画素サイズ5.6μm×5.6μmのDMK 640×480画素アレイ)、並びにシステム100の操作においてユーザを支援するためのコントローラ/プロセッサ102を含む。実用的な例の実施の形態として、顕微鏡は、約1.5フィート(46cm)の高さ、および1平方フィート(30×30cm
2)未満の占有面積である。別のアレンジメントとして、広範囲伝達のために赤色LEDが使用される(図示されず)。ビームスプリッタ318は、コーティングされていない光学構成要素と、コーティングされたスプリッタ(例えば、多重波長選択性(ダイクロイック)を提供するための電子ビーム蒸着された層状コーティングスプリッタまたは任意の層状コーティングオプティック)、立方体スプリッタ、ハーフミラー、プリズム、および/または、他の好適な構成要素を含むことができる。
【0031】
例示される実施の形態において、コントローラ/プロセッサ102は、マイクロレンズアレイ共焦点光学顕微鏡(COP)101と通信する(二重矢印によりも示されるように)。コントローラ/プロセッサ102は、本明細書で開示される実例の構成のために、機器制御、データ解析などを提供するための、ネットワークサーバ、デスクトップコンピュータ、および/または、既知のタイプの様々な回路部品の他の好適なコンピューティングデバイス、例えば、これらに限定されるわけではないが、一般用または専用プロセッサ(デジタル信号プロセッサ(DSP))、ファームウェア、ソフトウェア、および/または、ハードウェア回路部品など、を含むことができる。
【0032】
そのような実例のコンピューティングデバイスの使用において、本明細書において開示されるように、組み込まれた個々のソフトウェアモジュール、コンポーネント、およびルーチンは、ソースコードとしてC、C#、C++、Java、および/または、他の好適なプログラミング言語で書かれたコンピュータプログラム、プロシージャ、またはプロセスであり得ることも理解されるべきであることは留意されたい。画像処理およびデータ解析は、多くの場合、MATLAB(登録商標)、および、Origin(登録商標)において行われる。コンピュータプログラム、プロシージャ、またはプロセスは、中間体、オブジェクトコード、またはマシンコードにコンパイルされ、上記において説明した好適な実例コンピューティングデバイスのいずれかによる実行のために提示され得る。ソース、中間体、および/または、オブジェクトコード、並びに関連するデータの様々な実装は、1または複数のコンピュータ可読記憶媒体、例えば、リードオンリーメモリ、ランダムアクセスメモリ、磁気ディスク記憶媒体、光学記憶媒体、フラッシュメモリデバイス、および/または、他の好適な媒体など、に格納され得る。本発明の態様により、コンピュータ可読媒体は、当業者により理解される既知の媒体を意味し、それらは、マシン/コンピュータ/プロセッサが読み取る(スキャン/感知する)ことができ、同マシン/コンピュータ/プロセッサのハードウェア、および/または、ソフトウェアが解釈することができる形態において提供されるコード化された情報を有する。本明細書で使用される場合、用語「コンピュータ可読記憶媒体」は、伝搬信号それ自体を除くことも理解されるべきである。
【0033】
上記に一覧した構成要素のいずれも、多くの場合、汚染から特定の構成要素を保護するために、および/または、輸送および設置が容易な統合されたコンパクトなシステムを有するように連結する目的のため、ハウジング15に収納されるか、またはハウジング15に連結されることは留意されたい。
図1Aのシステム100の構成要素ごとの説明は、例示の目的のために有益であると同時に、本明細書で開示される特定の実施の形態を使用する場合、光学顕微鏡/分光法の分野の当業者により既知であり、並びに理解されるような、図示された他の様々な構成要素(例示的構成要素のために
図3Aの説明を参照されたい)を有する他の代替の商業的、および、カスタムの構成を組み込むことも可能であることは理解されるべきであることも留意されたい。
【0034】
上記において述べたそれらの構成要素に関してより詳細には、電磁波源2は、多くの場合、実質的に、単色源、より多くの場合にはレーザ光源(本明細書の以下では4)、例えば、波長可変レーザ光源など、で構成されるが、発光ダイオード、ハロゲンランプ、水銀ランプ、および/または、特定の用途(画像形成、蛍光発光など)のための所望の周波数帯を有し、必要な強度を提供するように構成された照明ビームを生成するように構成される(例えば、フィルタリングにより)任意の他の好適なタイプの光源(例えば、白色光源)でもあり得る。例示的な非限定的蛍光の用途において、多くの場合、レーザ光源2は、多くの場合にマイクロレンズアレイ(本明細書の以下において4)であるレンズシステム4により受け取られるように構成された緑色レーザビーム(例えば、532nmの波長において4.5mWのレーザダイオード)であるが、必ずしもそうとは限らない。
【0035】
CCD画像を解析することにより、
図2Cに示されるように、各レーザスポットから生じる発光特徴は、多くの場合、強度値52(画素)に変換される。さらに、
図2Dは、ステアリングミラー6(例えば、ピアゾスキャニングミラー)をスキャンすること、または
図1Aに示されるx-y-zステージ19を、サブレンズ4’のピッチのサブ増分である適切な工程様式により操作すること、のどちらかによりスキャンされるレーザアレイ54を示す。レーザアレイは、各(x、y)点が網羅されるように試験体をスキャンする。この例示的な非限定的実施例に対するアプローチは、ハイエンド共焦点システムと同等な取得時間を可能にしつつ、同時に、約100ピンホール/検出器(4×5グリッドの場合)測定を効率的に実施する。
【0036】
しかしながら、追加のアレンジメントは、所望であれば、垂直方向スキャニングのための圧電対物スキャナおよび、水平方向スキャニング、および/または、z軸方向スキャニングのための圧電ナノポジショニングステージを含むことができることは留意されたい。さらに、x-y-zステージ19は、多くの場合、動力化された直線ステージ構成(例えば、ステッパモータ駆動式直線ステージ)であるが、大きなエリアの平行移動のために、動力化されたポジショニングと組み合わせて、手動でのポジショニングも利用可能である。当業者に既知であり理解されるステージを使用した実例のステッピング操作は、側方に約0.1マイクロメートルであるが、ビームコンディショニング、コレクション、およびフォーカシングオプティクス、例えば、リレーレンズ12、対物レンズ14、およびマイクロレンズ4’レンズアレイ(例えば、アレイ4’直径、f#など)により試験体1に提供される照明特性に応じて、任意のより大きい工程増分も対応可能である。
図2Eは、結果的に網羅される試験体1全体の表面の結果を示す。
【0037】
その後、光照射された一意の標的のアレイは、光学情報(例えば、反射による画像形成情報(すなわち、電磁波源2レーザスポットを画像形成する)、および/または、蛍光)を提供し、それは、戻り経路23に沿って、対物レンズ14、リレーレンズ12、目的の波長を透過するように構成されたダイクロイックスプリッタ8を通り、多くの場合、ハウジング15内の1または複数の窓(詳述されていない)、1または複数のバンドパスフィルタ17を通って、次いで、CCD検出器18上のそれぞれの画素へと方向付けされる。
【0038】
電荷結合検出器(CCD)18は、受け取ったビーム信号の断面積と等しくまたはより大きくなるように設計された検出エリア、または、光検出器18における複数のビーム信号を包含するエリア、により構成することができることに留意されたい。多くの場合、検出器に対するエリア自体は、受け取ったビーム信号または複数のビーム信号のエリアよりも少なくとも5倍大きい。検出器18は、x軸、y軸、またはz軸のうちの少なくとも1に沿って移動するように、動力化された制御(例えば、ステッパ制御(図示されず))によって構成され、それにより、検出器18は、共焦点方法において試験体1の画像形成を最大化することができる。しかしながら、それは、他の所望の技術のためにシステム100により提供される設計された焦点結像面から離れて配置することもできる。結果として、信号ビームにより満たされた光検出器90および70の検出エリアの割合は、目標値(例えば、約0.01、約0.02、約0.03、約0.04、約0.05、約0.06、約0.07、約0.08、約0.09、または約1.0)まで増加させてもよい。
【0039】
操作中、コントローラ102は、(ユーザまたは自動制御により)照明源2に照明用のビーム3を生じさせる。その後、マイクロレンズアレイ4は、概して
図1Aに示されるように、レーザ光源2のビーム3を受け取るように構成される。マイクロレンズアレイ4は、多くの場合、サブレンズ4’(マイクロレンズ)の2次元(2D)格子、より多くの場合には4×5の格子、において構成され、その場合、サブレンズ4’(レンズレット)のそれぞれは、レーザ光源2による初期波面を、スポットの配列(例えば、52)へと変更する。個々のサブレンズ4’の実例寸法は、数マイクロメートルから数十マイクロメートルまでの範囲の少なくとも1の寸法(例えば、直径)を含む。
【0040】
システム100の操作におけるマイクロレンズ4の役割をより良く理解するために、
図2A、
図2B、
図2C、
図2D、
図2Eは、この態様を示している。特に、マイクロレンズアレイ4の格子パターンは、レーザを、対応するスポットのアレイ(サブビーム50(
図2Aを参照されたい))へと分割し、結果として
図2B、
図2Cにおける受け取られて画像形成された最終的なスポット52、52’を生じるように、試験体1上に焦点を合わせられる。特に、
図2Bは、電荷結合検出器18により画像形成されるように示された蛍光スポット52を誘導するため、結果として生じる共焦点照明エリアの格子に対する、結果として生じる4×5(単純化のため1列が表される)を示している。
【0041】
さらにより詳細には、マイクロレンズアレイ4により提供されるそれぞれのサブレンズ4’は、(点線の楕円内に示される)その収集された量の光源2の光の焦点を、設計された焦平面55(点線の楕円内に示される)に合わせ、焦平面55は、この実例実施の形態において、マイクロレンズアレイ4’により方向付けされた全ての光の収集のために適切なレンズ直径を有する構成されたリレーレンズ12のための焦平面に対応する。しかしながら、リレーレンズ12は有益であると同時に、本明細書における実施の形態は、所望のすべての効果を結果として生じる、当技術分野において既知の任意の化合物光学アレンジメントも含むことができる。結論を言えば、ビーム光源2による波面は、マイクロレンズアレイ4内に構成されたそれぞれのサブレンズ4’(レンズレット)により、スポット(例えば、52)の配列(格子パターン)へと変更され、それは、初期ビーム経路21に沿って方向付けされる別々のチャンネルとして機能する。
【0042】
本明細書における実施の形態の例示目的のため、
図1Bは、受け取られた最終的ないくつかの蛍光画像(スポット52)を示しており、それは、サブビーム50の4×5の格子により光照射されることにより生じる(
図2Aを参照されたい)。しかしながら、特定のマイクロレンズアレイ4により提供されるサブビーム50の数は、20の格子(すなわち、フレームワーク)のみには限定されず、少なくとも2から20までの、所望の場合はさらに20超の、いくつかの格子フレームワークを含むことができる。
【0043】
マイクロレンズアレイ4のさらにより良い理解のため、構成された各サブレンズ4’は、新たな光源として作動するように、別々のチャンネルを形成する。個々の別々のチャンネルは、同アレイ(格子)構成に起因して、干渉効果(クロストーク)を避けるために、空間的に離間される。その結果、最終的に、結果として別々の一意の照明部位を生じ、その結果、別々の結像チャンネルを生じて、お互いに隣接して位置される複数の共焦点顕微鏡のように動作する。したがって、マイクロレンズアレイ4を通過した後、ビーム経路21に沿って方向付けされた隣接する別々のチャンネルは、最終的に、一意の部位において試験体1に光照射するように、対物レンズ14により受け取られ、かつ、方向付けられるように、ステアリングミラー6(例えば、ピエゾスキャニングミラー)により受け取られてダイクロイック構成要素8(多くの場合、蛍光用途のためのロングパスダイクロイックミラー)へと方向付けし直される。
【0044】
蛍光実例の実施の形態において、実用的な実施の形態を実証するために利用された試験体1を、600~750nmの範囲で蛍光する赤色染料で標識した。この例証のために蛍光について説明するが、所望の場合、試験体1の標的(すなわち、光源2が光照射する領域)からの反射を利用できることも理解されるべきである。したがって、励起波長(例えば、532nm)でのサブビーム50の格子により提供される複数の一意の標的において光照射される試験体1に関して、実質的にこの特定の染料から生じる放出光は、例えば、
図1Bの画像により示されるように、結果として、600nmから750nmの間の誘導蛍光を生じた。その後、誘導された放出光は、顕微鏡対物レンズ14の共焦点幾何学構造により再収集され、次いで、放出光線は、望ましくない信号を軽減するため、特定の発光バンドをさらに減衰させるダイクロイックミラー8およびフィルタ17(例えば、エッジフィルタ、ノッチフィルタなど)を通過するように、リレーレンズ12により方向付けし直された。フィルタ17を通過する許容された発光バンド(例えば、600nm-750nm)は、次いで、望ましくは、CCD上に画像形成され(
図1Bにグリッドスポットとして示されている)、多くの場合、通常は、標準的な共焦点顕微鏡タイプの幾何学的構造においてハードピンホール開口を収容する平面に位置される。
【0045】
ダイクロイックミラー8に関して、光学構成要素は、固定動作態にある(すなわち、特定の反射および透過光学周波数帯のために設計される)一方で、単一パラメータ蛍光および洗練されたマルチチャンネル画像形成が、本明細書における実施の形態のいずれかにより好ましい動作のモードである場合、ダイクロイックミラー8を変更することなく、より良い簡便性を提供するために、ダイクロイックミラー8およびさらにフィルタ17は、オペレータ/消費者が所望する場合、音響光学ビームスプリッタ(Acousto-Optical Beam Splitter:AOBS)および関連するドライブエレクトロニクス(図示されず)で置き換えることができる。そのような実例の構成/動作において、ユーザは、コントローラ/プロセッサ102を使用して、特定の光源2から、励起のために1セットの色を選択する。その後、コントローラ/プロセッサ102は、自動的にプログラミングに基づいて、ラインを試験体1上へと方向付けさせ、並びに、この非限定的な実施の形態の場合、所望の蛍光発光を伝達するように、AOBSを操作することができる。さらに、そのようなAOBS構成要素は、反射アレンジメントのためにも利用することができる。したがって、この実施例において、例えば、異なる照明波長を使用する(例えば、チューナブルレーザまたは高強度白色光源を使用する)、様々な発光蛍光体は、有害な遅延がなく、迅速に画像形成することができる。
【0046】
別の実例となるアレンジメントとして、画像形成されたスポット52のそのような配列も、その後、ガウス関数に正確に近似することができる。従来のCLSMの動作をエミュレートする別の選択肢は、各配列ポイントにおいて仮想ピンホールを定義することである。例えば、光照射の格子パターンに一致する設計になる格納式ハードピンホールアレンジメント(図示されず)を利用することができるが、各配列ポイントでの仮想ピンホールは、実質的に全ての光子のコレクションを保存し、それは、特に、全ての光子が求められる蛍光アレンジメントにおいて有益である。
【0047】
特に、CCDは、複数の仮想合成ピンホールとして動作するように構成することができ、それにより、迅速なCCDの時間取得アーキテクチャの使用によりハイスループットの方式において信号雑音比(SNR)を向上させるために、最大数の放出光子を収集することができる。S/N比が依然として不十分な場合、光源2の照明電力を増加させることもでき、および/または、より良好な光感応性カメラ、例えば、EMCCDおよびsCMOS技術など、を用いることもできる。例えば、sCMOS技術は、多くの場合、読み取りノイズ、ダイナミックレンジ、またはフレームレートを悪化させることなく、(より)大きな視野を可能にするだけでなく、さらにより高い解像度を有する、5.5メガ画素センサを含む。その上、そのようなセンサは、1.3電子rmsまで読み取りノイズを下げて、100完全フレーム/秒を達成することができ、その全ては、本明細書において開示される任意の実施の形態と共に有益に用いられる。
【0048】
ここで再び
図3Aを参照すると、示された実施の形態は、概して数字300により参照されるような、デジタル画像処理能力を有するモジュール式走査共焦点光学顕微鏡(COP)の構成要素のさらなる詳細を伴う別の実例の構成である。
図3Aの説明は、下記において説明される実施例において、構成における構成要素、および、さらなる詳細を概説するであろう。
【0049】
したがって、
図3Aに示されるように、デジタル共焦点光学顕微鏡300は、多くの場合、(CCD312として構成される光検出器を含むために)、照明源302と、1または複数の光検知器306および308とを含む。他の構成要素は、(所望の場合、上記において説明されるようなAOBSを含むために)、対物レンズ314と、ダイクロイックビームスプリッタ318と、を含む。ある特定の実施の形態において、デジタル共焦点光学プロファイル顕微鏡300は、
図1Aに対して上記において同様に説明されるように、必要に応じて、x軸、y軸、またはz軸のうちの少なくとも1に沿って、対物レンズ314に対して試験体1を運搬および移動するように構成された平行移動ステージを含むことができる。
【0050】
デジタル共焦点光学顕微鏡300は、全ての制御可能な構成要素、例えば、照明源302、光検知器306および308、並びに/あるいは、構成された可動式ステージ構成要素(例えば、PZTステージ311および平行移動ステージ316)など、に作動的に連結される、上記において同様に説明されるような、コントローラ/プロセッサ102も含むことができる。他の実施の形態において、デジタル共焦点光学プロファイル顕微鏡300は、さらに、スキャニングミラー、および/または、光照射の焦点を特定の位置(x、y)の試験体1上に合わせるように構成された他の好適な光学構成要素も含むことができる。さらなる実施の形態において、デジタル共焦点光学プロファイル顕微鏡300は、さらに、フレーム、接眼レンズ、ダイアフラム、および/または、以下の実施例においていくらか詳述されるような、他の好適な機械的/光学的構成要素も含むことができる。
【0051】
照明源302(
図1の実施の形態に対して上記において同様に説明されるように)は、電磁波源、例えば、これらに限定されるわけではないが、レーザ、発光ダイオード、レーザダイオード、ハロゲンランプ、水銀ランプ、および/または、所望の光学特性を有する照明ビーム(図示されず)を生成するように構成された他の好適なタイプの光源など、を含むことができる。照明用のビームは、当業者により理解されるように、多くの場合は球状だが、平坦、および/または、他の好適なプロファイルも含むことができる、ビーム形状パラメータを有するように、操作され得る。
【0052】
ビームスプリッタ318(例えば、AOBSを含むための)は、照明源302から照明用のビームを受け取るように位置決めされる。好ましい動作のモードであるように、ビームスプリッタ318は、
図1Aに対して上記において同様に説明されるように、照明源302により提供される照明ビーム(図示されず)を、対物レンズ318の使用により試験体1へと方向付けするように構成される。ビームスプリッタ318は、
図1Aに対して上記において説明されるように、対物レンズ318、および/または、任意の他の仲介する光学構成要素、例えば、チューブ(リレー)レンズ(図示されず)など、により方向付けされるように、試験体1からの反射されたビーム、および/または、蛍光を発するビーム(図示されず)を受け取るようにも位置決めされる。次いで、ビームスプリッタ54は、下記の実施例の説明において詳細に説明されるように、受け取ったビーム(反射されたビーム、および/または、蛍光を発するビーム)を、光検出器CCDアレイ312、および/または、任意の他の光学検出素子(例えば、光検出器306、308)に向けて方向付けするように構成される。
【0053】
ビームスプリッタ318は、コーティングされていない光学構成要素と、コーティングされたスプリッタ(例えば、多重波長選択性(ダイクロイック)を提供するための電子ビーム蒸着された層状コーティングスプリッタ、または任意の層状コーティングオプティック)、立方体スプリッタ、ハーフミラー、プリズム、および/または、他の好適な構成要素を含むことができる。上記において説明されるように、所望であれば、ビームスプリッタ318は、構成された音響光学ビームスプリッタ(AOBS)であり得る。
【0054】
デジタル共焦点光学プロファイル顕微鏡100は、信号ビームの光学情報を直接検出する標準的な共焦点アレンジメントにおいて、ピンホールが典型的に構成されるであろう場所に、新規の様式におけるCCDが存在するため、物理的なピンホールを必ずしも含むわけではないことは理解されるべきである。CCD1312アレイは、例えば、下記において説明されるように、多くの場合、上記において説明されるように、相補型金属酸化膜半導体(「CMOS」)検出器、EMCCDおよびsCMOS技術などを含むために、任意の所望の2次元電荷結合アレイを含む。
【0055】
図3Aにおける電荷結合検出器(CCD)312は、
図1Aの実施の形態に対して上記において同様に述べたように、受け取ったビーム信号の断面積と等しくまたはより大きくなるように設計された検出エリアにより構成することができる。多くの場合、検出器に対するエリア自体は、受け取ったビーム信号のエリアよりも少なくとも5倍大きい。電荷結合検出器(CCD)312は、x軸、y軸、またはz軸のうちの少なくとも1に沿って移動するように、動力化された制御(例えば、ステッパ制御(図示されず))により構成してもよく、それにより、電荷結合検出器(CCD)312は、共焦点方法において試験体1の画像形成を最大化することができる。しかしながら、それは、他の所望の技術に対してシステム300により提供される設計された焦点結像面から離れて配置することもできる。結果として、信号ビームにより満たされた光検出器90および70の検出エリアの割合は、目標値(例えば、約0.01、約0.02、約0.03、約0.04、約0.05、約0.06、約0.07、約0.08、約0.09、または約1.0)まで増加させてもよい。
【0056】
さらなる実施の形態において、デジタル共焦点光学プロファイル顕微鏡300は、共焦点モード、および/または、共焦点プロファイルモード下において動作するように構成してもよい。そのような実践形態において、2つのモードは、独立してまたは同時に(例えば、並行して)動作され得る。例えば、デジタル共焦点光学プロファイル顕微鏡300は、格納式ピンホール(図示されず)を含んでもよい。共焦点モード下において、格納式ピンホールは、フィルタにかけるため、または少なくとも焦点外の信号を減らすために、電荷結合検出器(CCD)312の間に位置決めされ得る。あるいは、共焦点プロファイルモード下において、格納式ピンホールは、信号ビームのプロファイルを検出するために、電荷結合検出器(CCD)312の間の光学経路から除かれ得る。
【0057】
本明細書において開示される任意のモジュール式共焦点顕微鏡に組み入れることができる別の非常に有益なアレンジメントが、
図3Bおよび
図3Cに示される。概して、理論に束縛されることなく、並びに同技術の例示目的のために共焦点顕微鏡300を使用することにより、光照射/画像形成のために使用される入力光源(例えば、レーザ光源302)は、光学的に調査/調整されることが望まれる試験体/試料の画像形成を開始するために、対物レンズ314、および、適切であれば、例えば手動のステアリング326、327、を使用する任意の他の収集/合焦したオプティクスの光軸(破線として表される)に対してわずかに非同一線上において(例えば、最大で約1度まで)方向付けすることができる。
【0058】
図3Bに関連してそのような構成であるため、元々は画像形成されるが、その後は距離Zにおいて平行移動され(Tとして示される平面を参照されたい)、および/または、傾斜された試料面(I)は、結果として、強度損失を示す(例えば、デフォーカスにより)画像を生じるであろうし、並びに、構成されたCCD312アレイ(
図3Cを参照されたい)におけるシフト画素数(
図3Cを参照されたい)において証明されるように、(x、y)における平行移動も示す。そのような新規の技術は、焦点を維持し、データ収集の不完全性を緩和するために、本明細書の顕微鏡構成により有益に使用される。特に、有益なことに、何らかの理由で、試料における最初に画像形成される部位が平行移動する場合(例えば、共焦点顕微鏡合焦対象物に関してZ方向において移動する平面において)、またはスキャンの際に、スキャンされるエリアの表面が平滑でない場合、そのような事象は、適切な焦点を維持するように、自動補正され得る。したがって、そのような事象は、多くの場合、顕微鏡が作動している間のデフォーカスに起因して、画素オフセットおよび信号強度低下をモニタすることによりリアルタイムで画像形成することができる。
【0059】
本開示を全般的に提供したが、同じことが、特に明記されない限り説明のために提示され、本開示を限定することを意図しない、以下の実施例を参照することにより、より容易に理解されるであろう。
【0060】
●実施例
光源モジュールは、532nm波長において4.5mWのコリメートレーザダイオード302であった。Glan-Taylor偏光子P1 323および半波長板324で作製されたビーム減衰ユニットは、入射レーザ出力を調節するために使用される。ケプラータイプのビーム拡大器325は、顕微鏡の対物レンズ314(Zeiss LD Plan-Neo fluor 20×/0.4Corr)の背面開口をわずかに上回って満たすように、レーザビームを拡大する。直径50μmの共焦点ピンホール(詳述されず)は、空間フィルタとして機能する内部焦点において挿入される。次いで、拡大されたビームは、第1ビームステアリングミラー326および第2ビームステアリングミラー327により、多くの場合、第1濃度フィルタ329およびビームスプリッタ318キューブ(または、ダイクロイックミラー、例えば、AOBSなど)を通って、主要な顕微鏡光学縦列へと誘導される。次いで、反射された(または放出された)光は、様々なビームスプリッタキューブ334、335により、カメラ検出モジュール400、500および光ファイバ検出モジュール600へと方向付けされる。
【0061】
カメラモジュール400は、反射光、および/または、放出光(例えば、蛍光)パターンを収集するために、垂直アームにおける整列された検出器CCD1 312(The Imaging Source, DMK 23U618の白黒カメラ)を含み、同パターンは、多くの場合、後の画像処理のために640×480解像度ビットマップとして保存される。532nmのラインフィルタ337(またはノッチフィルタ)は、反射されたレーザ光のみを通過させるために、前面に位置される。カメラモジュール500は、広視野検査および初期位置決めのために使用される水平アームにおける配列された検出器CCD2 312’(The Imaging Source、DFK 23U274カラーカメラ)を含み、並びにレーザ光がカメラに入るのを防ぐために、532nmのノッチフィルタ339(またはラインフィルタ)を使用する。200mmの焦点長チューブレンズ342、343を両方のアームにおいて使用する。
【0062】
ファイバ検出モジュール600は、光を直径25μmのマルチモードファイバ350に接続させるために、4倍オリンパス顕微鏡対物レンズ348を使用し、それは、光検出器351により収集される透過光に対して共焦点ピンホールとしての機能を果たす。モーションモジュールは、垂直方向スキャンのために圧電対物スキャナ(Physik Instrumente、PIFOC1 P725.4CD)を、並びに、水平方向スキャンのために圧電ナノポジショニングステージ(Physik Instrumente、P-611.2S)を使用する(両方とも352として示される)。大きなエリアの平行移動のために、動力化されたスキャンテーブル(Physik Instrumente、KT-120)、および3軸手動ステージ(概して両方とも316で表される)を使用する。加えて、光検出器360によるビームコリメーションおよび強度モニタリングのために、シアリング干渉計356を使用する。適切であれば、追加の光学減光フィルタ(例えば、365、366)が位置決めされる。
【0063】
多くの場合、ただし、必ずではないが、設計が光学的にシンプルで光学的な収差の影響を受けにくいため、レーザスキャニングの代わりに試料スキャニングが使用される。さらに、試料をスキャンする顕微鏡の視野(FOV)は、顕微鏡の光学設計を変更せずに、独立して選択することができる。記録された画像上の目的の領域(Region of Interest:ROI)を選択することにより、仮想ピンホール(CCD1 312および/またはCCD2 312’を使用する)を生成することができる。ROIは、共焦点原理に従う試料面上の回折限界スポットに対応する画素のみが含まれる。多くの場合、以下において説明されるように、下記においても説明されるN値の選択を伴う仮想ピンホール(合成開口)として、N×N画素の正方形ピンホールが利用される。仮想ピンホールを越えて、追加のコントラストを引き出すために画像が解析される。スキャンが完了した後、記録された画像を、それらの空間座標と同じ順序で保存する。次いで、記録された画像からの情報をデコンボリューションするためにコンピュータプログラムを使用する。
【0064】
●2次元スキャン
前述のとおり実施の形態を使用する作業モードを例示するために、XおよびYの両方に沿って0.5μm工程サイズでの200×200の総スキャンポイントによる、3mm×3mmのチップキャリア試験体1上の100μm×100μmのエリアの2次元スキャンを開始した。CCD1 212で記録された画像上のN×N画素のROIを網羅する最終的な画像を得た。Nyquist-Shannonサンプリング定理は、解像可能な素子1つあたり少なくとも2画素を必要とする。最初に、2×2画素の正方形ピンホールを選択した。画像形成のために最適なピンホールサイズを特定するために、追加のクロッピングサイズ(N=6、11、21、31、41、51、101)を使用した。比較として、標準的な共焦点信号検出を表すために、光ファイバモジュールを利用した。同じ視野からの反射光を収集するために、直径25μmのマルチモードファイバ350を使用した。
【0065】
顕微鏡300を利用する実施例の方法として、多くの場合、試験体1がスキャンされる前に、較正プロセスが実施される。この工程は、ファイバファセットおよびCCDが対物レンズの焦平面に対応する共役面に存することを確実にするために実施される。
【0066】
図4は、光ファイバ応答曲線(ファイバ(Fiber)として表される)の実施例の測定軸応答曲線を示しており、並びにCCDベースの検出画素クロッピングサイズ(実際の画素合成開口サイズN=(6、11、21、31、41、51、101)で示される)のデータも示される。これらの比較的対称なプロットは、軸ゼロ/焦点が同じ共役面に対して光学的に整列されるというユーザ確信を可能にするために、共通の軸ゼロ/焦点(Z-0において)を共有する。光ファイバ応答曲線(ファイバ)は、31×31までのCCDプロットにおける応答曲線よりも比較的広いことは留意されたい。CCDのプロットにおいて、光ファイバ応答曲線の幅は、クロップサイズに従って増加した。半値全幅(FWHM)は、N=2の場合は7μmであり、N=21の場合は25.72μmである。N=31×31を超えると、明確なピークは見出されない。
【0067】
光ファイバ共焦点スキャンからの試験体1の幾何学的プロファイルを明らかにする強度マップが、下記において説明されるために示された、極性マーカ(O)、上部電極(TE)に対する幅マーカAB、および、上部電極(BE)に対する幅CDとして、
図5に示されている。特に、
図1の実施の形態は、同様に、同じ結果のそのような試験体1を画像形成できるが、
図5は、
図3の実施の形態を使用するチップキャリア試験体1の画像を示す。
【0068】
CCDベースの検出結果が、
図6A-6Iに示される。特に、
図6Aは、ファイバの画像形成を示し、
図6Bは、2×2N画素のクロップサイズ(合成開口)を示し、
図6Cは、N=6×6画素のクロップサイズ(合成開口)を示し、
図6Dは、N=11×11画素のクロップサイズ(合成開口)を示し、
図6Eは、21×21N画素のクロップサイズ(合成開口)を示し、
図6Fは、31×31N画素のクロップサイズ(合成開口)を示し、
図6Gは、41×41N画素のクロップサイズ(合成開口)を示し、
図6Hは、51×51N画素のクロップサイズ(合成開口)を示し、並びに
図6Iは、101×11N画素のクロップサイズ(合成開口)を示す。同画像が、2×2画素アレイサイズから、21×21画素アレイ合成開口までの、最良または許容可能な解像度による明瞭さを有し、それは、
図4の応答曲線の結果にも一致することに留意することは重要である。しかしながら、2×2画素アレイサイズから21×21画素サイズアレイ(すなわち、合成開口)までは有益であるが、6×6(例えば、
図6Cを参照されたい)の事例は、2×2の事例(例えば、
図6Bを参照されたい)に最も近い一致を与え、依然として、かなりの量の画素を維持することに留意することは重要である。
【0069】
したがって、下記において反復されるように、画素の6×6アレイ(例えば、
図6Cを参照されたい)は、より複雑な解析および最良性能を必要とする3次元スキャンにとって好ましい最適のピンホールサイズであるが、21×21(例えば、
図6Eを参照されたい)は、ファイバとCCD実験との間の意味のある比較と、少ない計算負荷とを必要とする2次元スキャンのためのピンホールアレイサイズである。また、PI-611の手動制御によるものも注目すべきである。レーザスポットが、点検カメラCCD
2の側端において消失する場合、右上(TE)および左下(BE)電極の幅にわたって平行移動するための2S圧電ステージにおいて、
図5に示されるように、電極幅ABおよびCDの視覚的な評価を得た。すなわち、ABは28-29μmであり、CDは27-30μmである。
【0070】
代替の実施の形態である客観的アプローチとして、精選された線対の離合集散の代わりに、右上電極および左下電極、AB(TE)およびCD(BE)の平均幅を計算するために、コンピュータプログラムを使用した。そのようなプログラムは、最初に、金メッキ電極およびマーカを基板から完全に分離するための閾値を計算し、次いで、各X位置またはY位置でのこれらの閾値を超える電極の幅を計算する。
【0071】
再び、
図7A、
図7B、および
図7Cを参照すると、
図7Aは、特定のY位置での、極性マーカO(
図5を参照されたい)の水平幅を示すための極性マーカと、様々なピンホールサイズの電極(AB)とを貫く水平線の強度プロファイルを示し、
図7Bは、特定のX位置での、極性マーカO(
図5を参照されたい)の垂直幅を示すための同極性マーカと、様々なピンホールサイズの電極(AB)とを貫く垂直線の強度プロファイルを示し、その一方で、
図7Cは、光ファイバの事例および21×21画素のピンホールサイズを有するCCDの事例において測定されたXおよびY範囲全体の電極の全幅プロファイルを示す。結果として、一連の幅値が得られる。
【0072】
図7Cの上半分は、各Y位置での電極の最大水平幅を表す。
図7Cの下半分は、各X位置での電極の最大垂直幅を表す。
図7Aおよび
図7Bにおいて極性マーカ(O)の中央を貫く水平線および垂直線の強度プロファイルは、ピンホールサイズの増加に伴うコントラストの減少およびノイズの増加を示している。対物レンズ(例えば、Zeiss LD Plan Neofluor 20×/0.4 Corr)の焦平面における回折限界スポット径は、532nmにおいて1.62μmである。回折限界スポットは、デジタル共焦点光学顕微鏡300オプティクスにより、7×7画素により囲まれた、CCD上の直径39.56μmのエリアの上に投影される。光ファイバ検出アーム600におけるファイバファセット350上の投影エリアは、8.9μmの直径である。したがって、直径25μmのマルチモードファイバ350コアは、CCDの20×20画素の相当面績に対応する、2.81×Airyユニット(AU)を囲む。
【0073】
CCDによるポイント検出の限界サイズであるN=2×2の事例(例えば、
図6Bを参照されたい)は、幅測定における偏差の最小幅を示す。より大きなピンホールサイズ、6×6(例えば、
図6Cを参照されたい)および11×11(例えば、
図6Dを参照されたい)、は、わずかにより大きい幅値を示すが、2×2の事例に匹敵する標準偏差値を維持する。N=21×21の事例(例えば、
図6Eを参照されたい)は、わずかなノイズの増加を示す。N=31×31(例えば、
図6Fを参照されたい)を超えると、ノイズレベルは大幅に増加し、右下位置のマーカの端部プロファイルがより一層丸くなるという事実から分かるように、解像度は低下する。広視野画像形成に対応する、N=101×101の事例は、最も大きな標準偏差、および、最も高いノイズレベルを示す。
【0074】
より大きなピンホールの事例でのノイズの増加は、より多くの光子を受け取らない画素の包含の結果と考えられ、これらの画素は、読み込まれたノイズと、回折限界スポットの外側における暗電流ノイズにさらされ、これにより再構築された画像のノイズレベル全体を増加させるものである。光ファイバの事例は、その適度なコア直径サイズに起因して、より大きな数値を示す。理論上、微小ピンホールは、最良の空間解像度を与えることができるが、そのような小さなピンホールも、実際には、ノイズに対抗するために使用することができた光子を拒絶するということは理解されるべきである。
【0075】
しかしながら、上記において述べられるように、6×6の事例(例えば、
図6Cを参照されたい)は、2×2の事例(例えば、
図6Bを参照されたい)に最も近い一致を与え、並びに、依然として、かなりの量の画素を維持する。したがって、6×6(例えば、
図6Cを参照されたい)は、より複雑な解析および最良性能を必要とする3次元スキャンにとって好ましい最適のピンホールサイズであるが、21×21(例えば、
図6Eを参照されたい)は、ファイバとCCD実験との間の意味のある比較と、少ない計算負荷を必要とする2次元スキャンのための好ましいピンホールサイズである。
【0076】
●永続光伝導
ここで、永続光伝導を示す材料を処理/調整するプロセスを対象とする。アニール処理されたチタン酸ストロンチウム(SrTiO
3またはSTO)の単結晶は、室温において永続光伝導(PPC)を示す。例えば、
図3Aに示されるモジュール式共焦点実施形態を使用するサブギャップ光による光照射は、抵抗を3桁低下させ、それは、最長で1年以上持続する。IR分光分析および2点抵抗測定の結果は、1200℃の水蒸気が、結果として大きなPPCを生じる水素および酸素空孔群をもたらすことを示す。重水素置換実験は、光への曝露後に2水素中心が形成されることを証明した。したがって、本明細書において開示される共焦点アレンジメントを使用して管理されるサブ/バンドギャップ光(少なくとも2.9eV(例えば、450nm))により、置換水素は酸素部位を離れ、準安定O-H結合を形成する。
【0077】
特に、特定のアニール処理は、永続光伝導(PPC)を誘導し、その場合、2.9eV以上のエネルギーの光で処理された試料(試験体1)は、絶縁性から導電性へと移行した。導電性の変化は、3桁分であり、室温において生じ、一年以上にわたって安定である。導電性における驚くべき予想されない増加は、電気測定(
図8を参照されたい)並びに、スペクトルの赤外線(IR)域におけるフリーキャリア吸収の増加により確認した。
【0078】
新規で有益な実施の形態として、例えば、本明細書において開示されるモジュール式共焦点アレンジメントを使用する、対物レンズの回折限界スポットサイズまでの正確な伝導経路は、抵抗試料上に光により描くことができる。試験体1は、所望の調整されたエリアに関して精度を確保するために、上記において開示される自動合焦手段を使用してモニタ(画像形成)することができる。したがって、本明細書の実施の形態を使用するプロセスは、PPC、すなわち、導電性を誘導する。導電性が上昇した場合、いくらかの他の半導体材料(例えば、窒化ガリウム)を含むように、材料の表面における電荷は、増加する。そのようなプロセスは、調整された部位でのカチオン伝導性材料(例えば、Ag+1)の堆積を含むように、PPC技術を光リソグラフィ用途および他の半導体用途などを結びつけることができる。追加の用途としては、半導体基板のPPC調整の際のバイオエレクトロニクス用途が挙げられ、特定の電荷を有する所望の細胞が、調整されたPPC材料の表面上に付着するであろう。
【0079】
図8は、露光前に約1MΩの抵抗であったSTO試料の2点抵抗測定を示している。405nm光による光照射の後、抵抗は、約1kΩまで下がった。抵抗を、少なくとも1年、暗所において測定した。データは、実験に基づいて、17日および800年の時間定数を用いて2つの指数関数の和に近似した。長期間の挙動は、驚くべきことに、そして予想外に、抵抗変化が室温において本質的に永久的であることを示している。
【0080】
大きなPPCを達成するために、SrO粉末を、STO試料と共に密封されたアンプルに入れ、真空下において1200℃でアニール処理する。「SrO」アニール処理の前の真空下でのアニール処理は、多くの場合、結晶を調整するために有益な工程である。真空アニール処理は、PPCを誘導するために酸素空孔を導入する。1200℃でのアニール処理の際の水素および酸素の存在は、PPCにとって有益である。
繰り返すが、以下の実施例は、例示のために提供されるのであって、特に明記されない限り、本開示の限定であることを意図しない。
【0081】
●実施例
●実験方法
STOにおいてPPCを誘導するアニール処理手法は、STOのバルク単結晶を低真空下において0.5gの酸化ストロンチウム(SrO)粉末と共に溶融シリカアンプル内に封入する工程を伴う。アンプル内の試料空間は、約7.6cmの長さ、および1.6cmの直径を有する。アンプルを、1200℃において1時間、水平管状炉においてアニール処理した。試料は即座に取り出され、暗所において周囲空気下で約10分かけて冷された。IRスペクトルは、Bomem DA8真空フーリエ変換赤外(FTIR)分光計を使用して得られた。水銀カドミウムテルル(MCT)検出器を使用して、室温において粉末スペクトルを得た。アンチモン化インジウム(InSb)検出器を用い、1cm-1の解像度においてジャニスクローズドサイクルヘリウムクライオスタットを使用して、低温スペクトルを得た。
【0082】
試料を移動させることなく、または真空を破ることなく露光が行えるように、405nm発光ダイオード(LED)をクライオスタットの中に位置させた。無水Sr(OH)2およびSrO粉末は、Sigma-Aldrichから購入した。SrO粉末および重水(D2O)を密封された容器(湿度室)に2日間入れることにより、重水素化された水酸化ストロンチウムSr(OD)2を調製した。D2Oは、同湿度室において重水蒸気を形成し、それは、酸化ストロンチウムにより容易に吸収され、Sr(OD)2を形成した。湿度室に入れる前(1.0g)、および、後(1.8g)の同粉末の質量を測定した。質量における対応する増加は、同粉末が、SrOあたり約4つのD2O分子を吸収したことを示した。
【0083】
●結果
●SrO粉末
1200℃でのアニール処理の際のSrO粉末の存在は、大きなPPCにとって重要であることが見出された。他の周囲条件、例えば、いかなる粉末も用いないAr中でのアニール処理などは、結果として、高度にn型の材料をもたらした。1200℃でのアニール処理は、新たに入手したSrO粉末を使用して実施された。試料は、アニール後、かつ、露光前に高抵抗状態にあるのではなく、むしろ導電性を示した(2点加圧インジウム接点により約300倍)。このことは、最適なPPCを得るために、SrO粉末を周囲の大気中においてエージングしなければならないことを示している。
【0084】
十分に透明にするために、SrO粉末をKBrと混合し、加圧してペレットにした。新たに開封した瓶からの材料を、大気に6日間曝露させた材料と比較した。いくつかの追加のIRピークが、空気に曝露させた試料に現れ(
図9を参照されたい)、IRピークは、水酸化ストロンチウムSr(OH)
2、または、Sr(OH)
2nH
2O、並びに、炭酸ストロンチウムSrCO
3に帰属する。CO
3
2-アニオンは、約1445cm
-1を中心とする広い吸収バンドを有し、それは、非対称伸縮振動の結果と考えられ、その一方で、866cm
-1および599cm
-1の線は、曲げ振動である。3590cm
-1のピークは、Sr(OH)
2におけるOH
-1の伸縮モードに帰属し、その一方で、約2835cm
-1を中心とする広い吸収は、Sr(OH)
2nH
2OにおけるH
2Oの伸縮モードに帰属すると考えられる。このことは、SrOが、水および二酸化炭素を吸収し、それらが、高温アニール処理の際に放出され得ることを示している。
【0085】
●水酸化ストロンチウム
●PPCに対する証拠
水酸化ストロンチウムは、SrO粉末における汚染物質種である。PPCに対する水酸化ストロンチウムの効果を試験するために、少量(0.1g)の無水Sr(OH)2を、SrOを全く伴わずに、アンプルに入れた。水素-酸素トーチによる密封プロセスの際の水酸化ストロンチウム粉末の早期の分解を防ぐために、粉末を、アンプルにおけるヒートシンク付き端部に位置させた。次いで、同試料をアニール処理した。1200℃において、Sr(OH)2は、SrOおよびH2Oへと分解する。
【0086】
この試料は、2つの方法により測定した場合、PPCを示す。第1に、露光は、試料を通過する透過光強度の劇的な減少を引き起こし、それは、自由キャリア吸収の大きな増加に対応する(
図10)。第2に、加圧したインジウム接点を使用する、室温での試料の2点抵抗は、表Iに示されるように、400倍減少した。
【0087】
この結果は、高温の水蒸気がPPCを引き起こすことができることを実証する。水およびその成分の役割をさらに調査するために、排気したアンプルを、0.1gのSr(OH)
2粉末と共に、約0.5気圧の水素または酸素のどちらかで再び満たした。水素リッチな大気においてアニール処理した試料は、PPCを示した(
図10を参照されたい)。PPCは、排気したアンプルでのアニール処理よりも劇的ではなく、2桁の抵抗変化であった(表I)。水素は、還元雰囲気であり、より多くの酸素空孔を導入することができ、その結果、より多くの自由キャリアを導入することにより、照明前の状態の抵抗を低下させる。対照的に、酸素リッチな雰囲気は、PPCを示さなかった(
図10)。これは、酸素空孔がPPCにとって重要であるという結果に一致する。アニール処理の際の追加の酸素は、酸素空孔の形成を抑制し、結果として、感光性ではない抵抗材料をもたらす。
【0088】
●水
SR(OH)
2アニール処理による結果は、水蒸気もPPCにとって重要であることを示唆する。このことをさらに試験するため、STOを、いかなる粉末も用いずに、水蒸気下においてアニール処理した。真空下での水の蒸発を最小限に抑えるために、0.04gの水を凍結させ、試料と共にヒートシンク付きアンプル内に氷を入れた。約半分の水が、密封後に残り、それは、アニール処理の際の水蒸気の約10-15気圧の圧力に対応する。このアンプルを、標準状態下においてアニール処理した。試料は、PPCを示し、それは、水蒸気のみがPPCの原因であることを示している(
図11)。3531cm
-1の弱い線が観察されず、追加の3542cm
-1の随伴線が観察されることを除いて、水素の線は、Sr(OH)
2アニール処理において観察されるものと同様である。
【0089】
上記に示される表Iは、露光前後でのアニール処理条件および2点抵抗測定のまとめを一覧にした。重水素置換試料は、光への曝露前に、より高い抵抗状態において始まる。アニール処理の際の水蒸気圧は、露光前に観察された抵抗値に相関する。これは、水が非常にわずかな酸化効果を有するためであり、それは、存在する酸素空孔の数を減少させるであろう。これらの測定に基づいて、PPCのためのモデルは、以下のとおりである。1200℃での「水素リッチな」アニール処理の場合、試料は、(VSr-H)およびHO不純物を含有する。
【0090】
光への曝露の際、水素は、酸素部位から移動し、(VSr-2H)を形成して、以下のように2つの電子を放出する。
【0091】
これは、結果として、(VSr-H)
-IR吸収ピーク(H
I)の減少およびサイドバンド(VSr-2H)
0の増加を生じる。水素不足CO
2アニール処理の場合、ほとんどのSr空孔が不動態化する。PPC反応は、以下により与えられる。
【0092】
これは、(VSr-H)-ピークの増加と、(VSr-2H)0サイドバンドの消失をもたらす。提案されるモデルは、実験的観察に対する1の非限定的な説明である。IRにおいて観察されたO-H結合のいくらかは、空孔-水素複合体に起因しない。それらは、例えば、アクセプタ-水素対であり得る。その場合、電子も放出されるであろう。要点は、Hが、その置換部位を去る場合、酸素空孔は、浅い二重ドナーとして機能することができる。形成されたO-H結合は、室温において水素原子がその置換部位に戻るのを防ぐのに十分なくらい強い。
【国際調査報告】