(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-10
(54)【発明の名称】マイクロフルイディック押出
(51)【国際特許分類】
A61L 27/24 20060101AFI20220427BHJP
A61L 17/08 20060101ALI20220427BHJP
A61L 27/58 20060101ALI20220427BHJP
D01F 4/00 20060101ALI20220427BHJP
【FI】
A61L27/24
A61L17/08
A61L27/58
D01F4/00 A
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021544740
(86)(22)【出願日】2020-01-31
(85)【翻訳文提出日】2021-09-29
(86)【国際出願番号】 US2020016244
(87)【国際公開番号】W WO2020160491
(87)【国際公開日】2020-08-06
(32)【優先日】2019-02-01
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521338503
【氏名又は名称】エンボディ,インコーポレイテッド
(74)【代理人】
【識別番号】110002310
【氏名又は名称】特許業務法人あい特許事務所
(72)【発明者】
【氏名】フランシス,マイケル,ピー.
(72)【発明者】
【氏名】セイヤー,ニコラス
(72)【発明者】
【氏名】ペトロワ,ステラ
【テーマコード(参考)】
4C081
4L035
【Fターム(参考)】
4C081AA14
4C081AB11
4C081AC02
4C081BA12
4C081BA13
4C081BA16
4C081BB07
4C081BB08
4C081CD121
4C081CD131
4C081CD141
4C081DA04
4C081DB01
4C081EA01
4L035AA04
4L035BB03
4L035EE05
(57)【要約】
コラーゲンを含む生体高分子繊維。この生体高分子繊維は、人の天然の腱および靭帯に匹敵する優れた極限引張強さ、弾性率および破断伸びを有する。この繊維は、実質的に円形、卵形、正方形、長方形、リボン状、三角形または不規則な形状であってもよい。この繊維は規則正しい縦配向構造を示し、この繊維は、細胞増殖の浸潤を可能にする。この繊維を含む移植可能な生体高分子足場および縫合糸だけでなく、この生体高分子繊維を製造するためのマイクロフルイディックおよび押出方法も提供される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
コラーゲンを含む生体高分子繊維であって、以下の特徴
約1MPa~約1,700MPaの極限引張強さ、
約10MPa~約20,000MPaの弾性率、
伸び率約2パーセント~約45パーセントの破断伸び、
約10μm~約90μmの平均繊維径
の1つ以上を有し、
室温で少なくとも約1時間DPBSに浸漬後、その強度を維持し、
規則正しい縦配向構造を示す、繊維。
【請求項2】
前記極限引張強さが約1MPa~約800MPaであり、
前記弾性率が約10MPa~約7,500MPaであり、
前記平均繊維径が約10μm~約30μmである、
請求項1に記載の生体高分子繊維。
【請求項3】
前記極限引張強さが約25MPa~約1,700MPaであり、
前記弾性率が約15,000MPa~約29,000MPaであり、
伸び率約7パーセント~約20パーセントの破断伸びである、
請求項1に記載の生体高分子繊維。
【請求項4】
前記コラーゲンが、臨床用コラーゲン、アテロコラーゲン、テロコラーゲン、組換えコラーゲンまたはそれらのブレンドを含む、請求項1に記載の生体高分子繊維。
【請求項5】
前記コラーゲンが、1以上の生体許容性ポリマーをさらに含む、請求項1に記載の生体高分子繊維。
【請求項6】
室温、DBPS中での6ヶ月後に、または対象者への移植後に約60MPa超の強度をさらに保持する、請求項1に記載の生体高分子繊維。
【請求項7】
グリオキサール、DL‐グリセルアルデヒドまたはそれらの組み合わせを含む架橋剤によって架橋される、請求項1に記載の生体高分子繊維。
【請求項8】
付着した腱細胞をさらに含み、前記腱細胞が、従来の哺乳動物細胞培養条件の温度、pHおよび湿度での約7日間のインキュベーション後に少なくとも約75%の細胞生存能力と少なくとも約95%の細胞生存とを維持する、請求項1に記載の生体高分子繊維。
【請求項9】
実質的に円形、卵形、正方形、長方形、リボン状、三角形または不規則な形状の断面を有する、請求項1に記載の生体高分子繊維。
【請求項10】
2本~約10,000本の繊維からなる、請求項1に記載の生体高分子繊維の束。
【請求項11】
請求項1~9のいずれか1項に記載の生体高分子繊維または請求項10に記載の生体高分子繊維の束を含む、軟部組織損傷の修復を支援するための移植可能な生体高分子足場。
【請求項12】
請求項1~9のいずれか1項に記載の生体高分子繊維を含む、織シート状支持体、パッチまたは装具。
【請求項13】
コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度で前記コラーゲン溶液を送ると同時に、前記第1針を同軸に取り囲み、前記第1直径を超える第2直径を有し前記コラーゲン溶液の周囲のシースを形成する第2針を通して第2速度で形成緩衝液を送って同軸流を形成するステップであって、
前記第2針を通した前記基礎緩衝液の前記第2流量は、前記第1針を通した前記コラーゲン溶液の前記第1流量の少なくとも2倍である、ステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して前記同軸に流れるコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度を超える第3速度で前記繊維をスプールに取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
【請求項14】
コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度で前記コラーゲン溶液を形成緩衝液に送るステップと、
繊維を形成するのに十分な時間と速度で、繊維形成浴を含む反応領域を通して前記コラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度の約2倍から前記押出速度の約10倍の速度で前記繊維をスプールに取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
【請求項15】
前記コラーゲン溶液を前記形成緩衝液に送る前に前記コラーゲン溶液を脱気することをさらに含む、請求項13または請求項14に記載の方法。
【請求項16】
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1針を通して第1体積流量で前記コラーゲン溶液を送って第1速度を生じさせると同時に、前記第1針を同軸に取り囲んで前記コラーゲン溶液の周囲のシースを形成する管内に第2速度で形成緩衝液を送って同軸流を形成するステップであって、
前記基礎緩衝液の速度は、前記第1針を通した前記コラーゲン溶液の前記第1速度の約2倍から約20倍である、ステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して同軸に流れるコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度を超える第3速度で前記繊維を取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
【請求項17】
前記繊維をバーコレクターまたは平らなシリンダーに回収することをさらに含む、請求項16に記載の方法。
【請求項18】
前記繊維を溝付きスプールに回収することをさらに含む、請求項16に記載の方法。
【請求項19】
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
ノズルを通して、前記溶液を、前記押出溶液を形成緩衝液の流動浴に送って繊維を形成するガイドに押し出すステップと、
前記形成緩衝液浴に形成された前記繊維を脱水するステップと、
前記繊維を回収するステップと、
を含む、生体高分子繊維を製造するための方法。
【請求項20】
前記繊維を回収する前に、前記繊維を乾燥するのに十分な時間、前記繊維に空気を送ることによって、前記脱水した繊維を乾燥することをさらに含む、請求項19に記載の方法。
【請求項21】
グリオキサール、DL‐グリセルアルデヒドまたはそれらの組み合わせを含む架橋剤で前記繊維を架橋させ、前記架橋した繊維を乾燥することをさらに含む、請求項19に記載の方法。
【請求項22】
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度で前記コラーゲン溶液を形成緩衝液に送るステップと、
繊維を形成するのに十分な時間と速度で、繊維形成浴を含む反応領域を通して前記コラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
1以上の段階で、分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度の約2倍から前記押出速度の約12倍の速度で、前記繊維をスプールに取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
【請求項23】
グリオキサール、DL‐グリセルアルデヒドまたはそれらの組み合わせを含む架橋剤で前記繊維を架橋させ、前記架橋した繊維を乾燥することをさらに含む、請求項22に記載の方法。
【請求項24】
請求項13~請求項23のいずれか1項に記載の方法によって製造される、生体高分子繊維。
【請求項25】
請求項24に記載の生体高分子繊維を含む、軟部組織損傷の修復を支援するための移植可能な生体高分子足場。
【請求項26】
請求項25に記載の生体高分子足場の前記移植を含む、軟部組織損傷の前記修復を支援するための方法。
【請求項27】
前記軟部組織が、靭帯、腱、腱・靭帯付着部、骨、筋肉、筋腱移行部、皮膚を含む結合組織、筋膜、内蔵、および眼を含む群から選択される、請求項26に記載の方法。
【請求項28】
請求項24に記載の生体高分子繊維を含む、縫合糸。
【請求項29】
吸収性である、請求項28に記載の縫合糸。
【請求項30】
対象者に移植されると、前十字靱帯、アキレス腱および腱板などの関節における靭帯または腱の機械的負荷を支える、補強する、増大させる、または共同して負う、請求項24に記載の生体高分子繊維を含む内部装具。
【請求項31】
対象者に移植されると、負傷した関節を、1つの骨を他の骨に接続することによって支え、任意選択で、健康な天然関節のものに実質的に匹敵するレベルに生体力学および等尺性を復元する、請求項24に記載の生体高分子繊維を含む内部装具。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2019年2月1日に出願された出願番号62/800,317の同時係属出願の利益を主張するものであり、その開示は、参照によってその全体が本願に組み込まれる。
【0002】
政府の支援に関する陳述
本願で提示されるデータは、少なくとも一部分においてDARPA契約書番号HR0011‐15‐9‐0006の下での支援を受けた。米国政府は、本発明に一定の権利を有する。
【背景技術】
【0003】
発明の背景
1.本開示の分野
本開示は、コラーゲン繊維の製造方法と、足場へのそれらの組み込み方法とに関し、また、このような繊維で製造される移植可能な生体適合性デバイスに関する。特に、本開示は、優れた機械強度、生体適合性および免疫特性を有するコラーゲン繊維の押出方法に関する。
2.先行技術の記載
コラーゲンは、微細な細網フィブリルの束からなる繊維状不溶性タンパク質である。コラーゲンタンパク質分子は、結合して、腱、靭帯および筋膜の、白色の輝く非弾性繊維を形成する。コラーゲンは、皮膚、骨、靭帯および軟骨を含む結合組織に見られる。
【0004】
特に、コラーゲンフィブリルは、結合して、靭帯および腱などの丈夫な結合組織を形成する。損傷を受けたコラーゲン身体部位(特に靭帯および腱を含む)を置換するための、体内で使用するコラーゲン含有組織を製造する多くの努力がなされている。損傷を受けた部位をこのような移植可能なデバイスで直接置換してもよく、また、損傷を受けた腱および靭帯などの軟部組織に足場を提供し、最終的にそれを置換するのに役立たせてもよい。
【0005】
このような製品は、複数の機能パラメータに対処することが必要な様々な難しい生体力学的環境で機能する必要がある。これらのパラメータは、たとえば、生体組織および体液との適合性、強度、柔軟性、ならびに生分解性を含む。
【0006】
上記の従来技術の欠点に対処するシステムおよび方法が、当技術分野で必要とされている。
【発明の概要】
【0007】
一側面において、本開示は、コラーゲンを含む生体高分子繊維に関し、この繊維は、以下の特徴
約1MPa~約1,700MPaの極限引張強さ、
約10MPa~約20,000MPaの弾性率、
伸び率約2パーセント~約45パーセントの破断伸び、
約10μm~約90μmの平均繊維径
の1つ以上を有し、
室温で少なくとも約1時間DPBSに浸漬後、その強度を維持し、
そのフィラメントは規則正しい縦配向構造を示す。
【0008】
別の側面において、本開示は、2~約10,000の繊維を含む生体高分子繊維の束に関する。
【0009】
さらに別の側面において、本開示は、生体高分子繊維またはその束を含む、軟部組織損傷の修復を支援するための移植可能な生体高分子足場に関する。
【0010】
本開示は、生体高分子繊維を含む織シート状支持体、パッチまたは装具にも関する。
【0011】
さらに別の側面において、本開示は、生体高分子繊維を製造するための方法に関する。この方法は、
コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度でコラーゲン溶液を送ると同時に、第1針を同軸に取り囲み、第1直径を超える第2直径を有し、コラーゲン溶液の周囲のシースを形成する第2針を通して第2速度で形成緩衝液を送って同軸流を形成するステップであって、
第2針を通した基礎緩衝液の第2流量は、第1針を通したコラーゲン溶液の第1流量の少なくとも2倍である、ステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して同軸に流れるコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度でコラーゲン繊維を脱水するステップと、
分子の配向を高め、繊維の直径を減少させるのに十分な、前記押出速度を超える第3速度で繊維をスプールに取り出すステップと、を含む。
【0012】
別の側面において、本開示は、生体高分子繊維を製造するための方法に関する。この方法は、
コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度でコラーゲン溶液を形成緩衝液に送るステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通してコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度でコラーゲン繊維を脱水するステップと、
分子の配向を高め、繊維の直径を減少させるのに十分な、前記押出速度の約2倍から前記押出速度の約10倍の速度で繊維をスプールに取り出すステップと、を含む。
【0013】
さらに別の側面において、本開示は、生体高分子繊維を製造するための方法であって、
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1針を通して第1体積流量でコラーゲン溶液を送って第1速度を出すと同時に、第1針を同軸に取り囲んでコラーゲン溶液の周囲のシースを形成する管内に第2速度で形成緩衝液を送って同軸流を形成するステップであって、
基礎緩衝液の速度は、第1針を通したコラーゲン溶液の第1速度の約2倍から約20倍である、ステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して同軸に流れるコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度でコラーゲン繊維を脱水するステップと、
分子の配向を高め、繊維の直径を減少させるのに十分な、前記押出速度を超える第3速度で繊維を取り出すステップと、を含む方法に関する。
【0014】
追加的な側面において、本開示は、生体高分子繊維を製造するための方法であって、
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
ノズルを通して、溶液を、押出溶液を形成緩衝液の浴に送るガイドに押し出すステップと、
形成緩衝液浴に形成された繊維を脱水するステップと、
繊維を回収するステップと、を含む方法に関する。
【0015】
さらに追加的な側面において、本開示は、生体高分子繊維を製造するための方法であって、
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度でコラーゲン溶液を形成緩衝液に送るステップと、
繊維を形成するのに十分な時間と速度で、繊維形成浴を含む反応領域を通してコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度でコラーゲン繊維を脱水するステップと、
1以上の段階で、分子の配向を高め、繊維の直径を減少させるのに十分な、前記押出速度の約2倍から前記押出速度の約12倍の速度で繊維をスプールに取り出すステップと、を含む方法に関する。
【0016】
本開示は、生体高分子繊維を含む軟部組織損傷の修復を支援するための移植可能な生体高分子足場と、生体高分子足場の移植を含む軟部組織損傷の修復を支援するための方法とを提供する側面も含む。
【0017】
以下の図面および詳細な説明を精査すれば、本発明の他のシステム、方法、特徴および利点は、当業者に明らかであるかまたは明らかとなるであろう。そのような追加のシステム、方法、特徴および利点のすべては、本明細書と本概要とに含まれ、本発明の範囲内にあり、以下の特許請求の範囲によって保護されることが意図されている。
【0018】
本発明は、以下の図面と記述を参照することにより、より的確に理解することができる。図面における構成要素は、必ずしも縮尺どおりではなく、代わりに、本発明の原理を例示することに強調が置かれている。さらに、図面において、同様な参照番号は、異なる図面を通じて対応する部分を示す。
【図面の簡単な説明】
【0019】
【
図1】
図1は、本明細書に開示の方法の実施形態の模式図である。
【
図2】
図2は、本開示の一実施形態における、コラーゲン溶液の形成の第1ステップを示す模式図である。
【
図3】
図3は、本明細書に開示の方法の一実施形態における、コラーゲン製造における脱気装置の使用の模式図である。
【
図4】
図4は、本明細書に開示の方法の実施形態に使用するのに適した遠心分離機の模式図である。
【
図5】
図5は、本開示の一実施形態における遠心分離機の使用の模式図である。
【
図6】
図6は、一実施形態における、コラーゲン繊維を形成するために使用する同軸針の実施形態の模式図である。
【
図7】
図7は、本開示の一実施形態における、フィブリル形成浴を含むコラーゲン繊維反応領域の模式図である。
【
図8】
図8は、本開示の一実施形態における、脱水浴の模式的実施形態である。
【
図9】
図9は、脱水浴からコラーゲン繊維を分離するためのデバイスの実施形態の模式図である。
【
図10】
図10は、本開示の一実施形態における繊維回収システムの模式図である。
【
図11】
図11は、本開示の一実施形態における繊維回収スプールの模式図である。
【
図12】
図12は、本開示の実施形態に従った終了処理の模式図である。
【
図13】
図13は、本開示の一実施形態の方法の模式図である。
【
図14】
図14は、本開示の一実施形態の方法の模式図である。
【
図15】
図15は、本開示の製品を製造するための使用に適した機器の一実施形態の模式図である。
【
図17】
図17は、本開示に使用する組成物を要約した表である。
【
図19】
図19は、本開示に関連する機械的特性を要約したグラフである。
【
図20】
図20は、本開示に関連する別の機械的特性を要約したグラフである。
【
図21】
図21は、本開示に関連するさらに別の機械的特性を要約したグラフである。
【
図22】
図22は、本開示に従って製造される組成物の拡大画像である。
【
図23】
図23は、本開示の実施形態の幅を要約したグラフである。
【
図24】
図24は、本開示の実施形態の厚さを要約したグラフである。
【
図25】
図25は、本開示の実施形態の機械的特性を要約したグラフである。
【
図26】
図26は、本開示の実施形態の別の機械的特性を要約したグラフである。
【
図27】
図27は、本開示の実施形態の機械的特性の関係を要約したグラフである。
【
図28】
図28は、本開示の実施形態の別の機械的特性の関係を要約したグラフである。
【
図29】
図29は、本開示の実施形態の特性を要約したグラフである。
【
図31】
図31は、本開示の実施形態の特性を要約したグラフである。
【
図32】
図32は、本開示の実施形態の別の特性を要約したグラフである。
【
図33】
図33は、本開示の実施形態のさらに別の特性を要約したグラフである。
【
図34】
図34は、本開示の一実施形態の拡大カラー画像である。
【
図35】
図35は、マイクロファイバー製品の拡大カラー画像である。
【
図36】
図36は、対照マイクロファイバー製品の拡大カラー画像である。
【
図39】
図39は、本開示の実施形態の特徴を要約したグラフである。
【
図40】
図40は、本開示の一実施形態のサイズがどのように時間とともに変化するかを要約したグラフである。
【
図41】
図41は、本開示の一実施形態の機械的特性がどのように時間とともに変化するかを要約したグラフである。
【
図42】
図42は、本開示の一実施形態の別の機械的特性がどのように時間とともに変化するかを要約したグラフである。
【
図43】
図43は、本開示の一実施形態のさらに別の特性がどのように時間とともに変化するかを要約したグラフである。
【
図44】
図44は、本開示の一実施形態のさらにまた別の特性がどのように時間とともに変化するかを要約したグラフである。
【
図47】
図47は、本開示の一実施形態の性質と特性を要約した図である。
【
図48】
図48は、本開示の一実施形態の性質と特性を要約した図である。
【
図49】
図49は、本開示の一実施形態の性質と特性を要約した図である。
【
図50】
図50は、本開示の一実施形態の性質と特性を要約した図である。
【
図51】
図51は、本開示の一実施形態の性質と特性を要約した図である。
【
図52】
図52は、本開示の一実施形態の性質と特性を要約した図である。
【
図53】
図53は、本開示の一実施形態の性質と特性を要約した図である。
【
図54】
図54は、本開示の一実施形態の性質と特性を要約した図である。
【
図55】
図55は、本開示の一実施形態の性質と特性を要約した図である。
【
図56】
図56は、本開示の一実施形態の性質と特性を要約した図である。
【発明を実施するための形態】
【0020】
一側面において、本開示は、コラーゲンを含む生体高分子繊維に関し、この繊維は、以下の特徴
約1MPa~約1,700MPaの極限引張強さ、
約10MPa~約20,000MPaの弾性率、
伸び率約2パーセント~約45パーセントの破断伸び、
約10μm~約90μmの平均繊維径
の1つ以上を有し、
室温で少なくとも約1時間DPBSに浸漬後、その強度を維持し、
そのフィラメントは規則正しい縦配向構造を示す。
【0021】
別の側面において、本開示は、生体高分子繊維を含む少なくとも1つの生体高分子シートを含む、軟部組織損傷の修復を支援するための移植可能な生体高分子足場に関し、この生体高分子は、コラーゲンを含み、以下の特徴
約1MPa~約1,700MPaの極限引張強さ、
約10MPa~約20,000MPaの弾性率、
伸び率約2パーセント~約45パーセントの破断伸び、
約10μm~約90μmの平均繊維径
の1つ以上を有し、
室温で少なくとも約1時間DPBSに浸漬後、その強度を維持し、
そのフィラメントは規則正しい縦配向構造を示す。
【0022】
この繊維は、規則正しい縦配向構造を示し、対象者にこの繊維と本発明のこの繊維で製造されるデバイスとを移植した後の細胞浸潤を可能にする。
【0023】
別の側面において、本開示は、人の身体部位の修復または置換のための移植可能な生体高分子足場を含む。
【0024】
生体高分子繊維は、通常はコラーゲンで形成される。特に、テロコラーゲンは、通常は、任意の源(ヒト、ウシ、組換え体、クラゲなど)から得られる。絹フィブロイン、他の種類のコラーゲン(II型コラーゲンなど)、フィブリン/フィブリノーゲン、基底膜タンパク質、ヒアルロン酸、ポリエチレンオキシド、ポリエチレングリコール、ポリカプロラクトン、ポリエチルネン、ポリヒドロキシ酪酸、PDLA、PDLLAおよび高分子量PDLLA、PLGA、ならびにそれらのブレンドなどの生体許容性(bio‐acceptable)ポリマーをコラーゲンとブレンドして生体高分子繊維を形成してもよい。
【0025】
さらに別の側面において、本開示は、コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップを含む、生体高分子繊維を製造するための方法に関する。この方法の一実施形態において、次いで、第1直径を有する第1針を通して第1速度でコラーゲンを送って第1速度を出すと同時に、第1針を同軸に取り囲み、第1直径を超える第2直径を有し、コラーゲン溶液の周囲のシースを形成する第2針を通して第2体積流量で形成緩衝液を送って同軸流を形成する。第2針を通した形成バッファーの第2体積流量は、第1針を通したコラーゲン溶液の第1体積流量の少なくとも約2倍である。
【0026】
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して同軸に流れるコラーゲンおよび形成バッファーを送り、分子の配向を高め、繊維の直径を減少させるのに十分な、第1速度を超える第3速度で、通常は脱水浴を通して繊維が押し出される速度の2倍で、繊維をスプールに取り出す。次いで、繊維を架橋し、乾燥してもよい。
【0027】
さらに別の側面において、本開示は、生体高分子繊維を製造するための代替方法に関する。この実施形態において、コラーゲン溶液を調製して、形成バッファー浴などの繊維形成浴を含む反応領域に、繊維を形成するのに十分な時間と速度で注入する。繊維は、分子の配向を高め、繊維の直径を減少させる注入速度の約2倍から約10倍の速度でスプールに取り出す。次いで、繊維を架橋し、乾燥してもよい。
【0028】
本開示の様々な実施形態において、コラーゲンまたはコラーゲンおよび他の適切な生体高分子は、生体高分子またはコラーゲン繊維に加工される。理解しやすいように、本開示の特徴はコラーゲンに関して述べる。しかしながら、本明細書に開示するタイプの繊維を得るために、コラーゲンは、様々な組み合わせと割合で適切な生体高分子とブレンドまたは混合してもよい。
【0029】
本明細書の全体を通して、洗浄と乾燥、または浸漬と乾燥などの、通常は典型的な製造工程時に一緒に行われると考えられるステップは、望ましい結果を実現するために必要に応じて行ってもよいし、または繰り返してもよい。たとえば、一実施形態において、組成物は、次のステップに進める前に、洗浄および乾燥してもよい。いくつかの実施形態において、材料は、次の処理工程に進める前に二度洗浄し、二度乾燥してもよく、また二度洗浄してから進めてもよい。
【0030】
他の実施形態において、第1洗浄または乾燥ステップは任意選択で行ってもよい。したがって、通常は洗浄してから乾燥する材料は、乾燥ステップに直接進み、それから次の処理工程に移行してもよい。当業者は、それらのステップを繰り返してもよく、または削除してもよい状況を認識することができる。
【0031】
これらの繊維で製造される足場などの構築物は、細胞内殖を可能にする。すなわち、繊維(および繊維で製造されるデバイス)が埋め込まれる様々なタイプの動物の細胞は、好ましくは足場の繊維と整列して、足場の孔内で増殖する。構築物および足場は、断裂したアキレス腱の対向部などの身体部位を再び付着させるために用いられる縫合糸などの、公知の修復機能のための代替物として使用してもよい単層品と多層品とを含む。裂けたまたは損傷を受けた腱の修復に使用するための支持構造体を提供するのに加えて、本開示の実施形態は、靭帯の修復にも適している。このように、足場または本発明を使用して支持体を提供してもよい他の例示的な靭帯は、ACL、MCL、PCL、UCLならびに他のヒトおよび動物の靭帯を含む。本開示の製品が有用な他の手術は、特にそれ以外では部分断裂または完全断裂の再建が不可能または困難な、上方回旋筋腱板断裂の治療選択肢としての上方関節包再建術を含む。また、修復部位を覆って当該部位を強化するために多層シートを使用してもよい。
【0032】
特に、本開示の実施形態は、すべてのタイプの動物の靭帯、腱および他の軟部組織の修復に適している可能性がある。本開示のコラーゲン繊維は、たとえば、部分断裂のみを含む場合であっても、裂けた靭帯および腱を再接合するために使用してもよい。たとえば外科手術時に、単一の繊維での操作よりも操作が容易なように形状因子を改善するために、複数の繊維を、撚り合わせても、束ねても、編んでも、織り合わせても、または別様に配置してもよい。形状因子を改善することによって、繊維またはプラットフォームを正確に配置するのを容易にしてもよい。裂けた天然の身体部位の補強材または内部装具として役立つ他の形状因子を構築してもよい。装具は、1つの骨を他の骨に接続して関節を支える。通常、装具は、復元された天然関節の生体力学と等尺性とを有する等尺関節を形成する。
【0033】
本開示の実施形態を踏まえて製造されるコラーゲン繊維の効果は、たとえばウサギに行われた修復を研究することによって示してもよい。特に、ウサギ膝の補強材、内部装具およびかがり縫い構造は、本開示のコラーゲン繊維およびこの繊維で製造される構造の性質と特性とを評価するのに適している。
【0034】
図1は、コラーゲン繊維を製造するためのシステムおよび方法の一実施形態を示す。このシステムおよび方法は、4つのセクションまたは製造領域を含むとして説明してもよい。コラーゲン溶液は第1セクションで調製し、コラーゲン繊維は第2セクションで形成する。次いで、第3セクションでコラーゲン繊維を回収し、次いで、第4セクション、後処理または最終処理で後処理して湿潤コラーゲン繊維または乾燥コラーゲン繊維を得てもよい。
【0035】
図1に示すシステムおよび方法のステップは、次の4つのカテゴリーに分類してもよい。
カテゴリー 名称 含まれるステップ
1 コラーゲン溶液の調製 105~120
2 コラーゲン繊維の形成 125~130
3 コラーゲン繊維の回収 135~150
4 後処理または最終処理 155~180
図1のステップ105で見られるように、コラーゲンを酸性溶液と混合し、ステップ110で十分に撹拌する。いくつかの実施形態において、酸は約0.01M~約0.50Mの酢酸である。他の実施形態において、酸は約0.01M~約0.50Mの塩酸である。溶液はステップ115で脱気し、次いでステップ120で遠心分離して残留気泡を除去してもよい。得られたコラーゲン溶液を針から押し出し、また、その針と同軸の、ステップ125で形成緩衝液を供給する第2針が存在してもよい。結果として生じる繊維の形成は、ステップ130の形成管によって継続してもよい。得られた製品は、形成されたコラーゲン繊維である。
【0036】
繊維は、次いで、回収システムに進む。このシステムにおいて、繊維をステップ135で形成緩衝液から分離し、ステップ140で脱水する。コラーゲン繊維を、ステップ145で回収し、ステップ150で風乾する。次いで、ステップ155、ステップ160、ステップ165およびステップ170で、図に示すように後処理を行ってもよい。スプール上で風乾したコラーゲン繊維を、ステップ155で架橋溶液に浸漬し、任意選択でステップ160で洗浄し、ステップ165で風乾し、ステップ170で乾燥して、乾燥した繊維を形成する。
図1に一点鎖線で示すように、材料は、任意選択でステップ160で洗浄し、ステップ165で乾燥し、洗浄ステップ160に戻ってもよい。
【0037】
あるいは、コラーゲンを形成溶液浴に注入して繊維を形成する。このシステムにおいて、形成緩衝液の同軸注入のための第2針は必要ない。こうして注入されたコラーゲンを、ステップ140での脱水を経て回収システムに導入する。次いで、繊維を、処理工程の残りの部分に従って加工処理する。
【0038】
図1は、本開示の実施形態を実施するためのシステムおよび方法の一般図を示す。追加の詳細および開示は、本明細書の以下の特定の側面および実施形態に含まれている。
【0039】
一実施形態において、本開示は、コラーゲンを酸性溶液に溶解してコラーゲン溶液を作成するステップを含む、生体高分子繊維を製造するための方法に関する。次いで、第1直径を有する第1針を通して第1体積流量でコラーゲンを送って第1速度を出すと同時に、第1針を同軸に取り囲み、第1直径を超える第2直径を有し、コラーゲン溶液の周囲のシースを形成する第2針を通して第2体積流量で形成緩衝液を送って同軸流を形成する。第2針を通した形成バッファーの第2体積流量は、第1針を通したコラーゲン溶液の第1体積流量の少なくとも2倍である。
【0040】
繊維を形成するのに十分な時間と体積流量で、フィブリル形成浴を含む反応領域を通して同軸に流れるコラーゲンおよび形成バッファーを送り、第1速度を超える第3速度でスプールに繊維を取り出す。第3速度は、通常は脱水浴を通して繊維が押し出される速度の約2倍であり、分子の配向を高め、繊維の直径を減少させるのに十分である。次いで、繊維を架橋し、乾燥する。
【0041】
別の実施形態において、本開示は、生体高分子繊維を製造するための代替方法に関する。コラーゲン溶液を調製して、形成バッファー浴などのフィブリル形成浴を含む反応領域に、繊維を形成するのに十分な時間と速度で注入する。形成緩衝液の同軸流を形成する第2針は必要ない。代わりに、コラーゲン繊維をフィブリル形成浴に直接注入し、次いで脱水浴を通して運ぶ。繊維は、分子の配向を高め、繊維の直径を減少させる注入速度の約2倍から約4倍の速度でスプールに取り出すことによって運ぶ。次いで、繊維を架橋し、乾燥してもよい。
【0042】
方法1300の実施形態を
図13に要約している。コラーゲン溶液は図に示すように調製する。ステップ1305でコラーゲン溶液を作成する。生体高分子をこのコラーゲンと混合してもよい。コラーゲンを酸性溶液に溶解して粘性溶液を作成する。ステップ1310でこの溶液を撹拌して、確実に十分な混合を行う。この混合溶液は、閉じ込められたガスを含んでいる可能性があり、したがってステップ1315で、脱気装置で1回以上脱気してもよい。次いで、ステップ1320で、図に示すようにコラーゲン溶液を遠心分離してもよい。任意選択で、溶液に閉じ込められたガスの容量を減らすために、
図1の一点鎖線および
図13のフィーチャ1316で示しているように、脱気/遠心分離ステップを繰り返してもよい。
【0043】
こうして調製されたコラーゲン溶液は、ステップ1325に示されているように、繊維コアのシースとして機能する形成緩衝液との同軸押出によってコラーゲン繊維に形成される。形成緩衝液の体積流量は、通常は、コラーゲン形成の体積流量の少なくとも2倍である。この構成は、個々のフィブリルの形成を抑制し、繊維を伸ばして方向づけ、流れ誘導結晶化を繊維に付与することによって繊維の表面を滑らかにする可能性がある。
【0044】
次いで、コラーゲン繊維を回収する。ステップ1330でコラーゲン繊維の形成は完了しているため、次いで、コラーゲンを、ステップ1335で形成緩衝液から分離し、ステップ1340で脱水溶液で脱水する。次いで、ステップ1345で、脱水したコラーゲンを回転スプールに回収し、脱水溶液ステップ1340から繊維が供給される速度を超える速度で、通常は約2倍の速度で回転させることによって繊維をさらに伸ばす。次いで、こうして回収した繊維を、ステップ1350でスプール上で風乾する。
【0045】
代替実施形態において、コラーゲン溶液は、形成緩衝液への直接注入によってコラーゲン繊維に形成する。これにより、ステップ1325は省略される。繊維を、回収し、形成緩衝液から分離し、ステップ1340で脱水溶液中で脱水する。繊維は、ステップ1345で回転スプールに回収し、回転スプールは、形成速度の約2倍から形成速度の約4倍の速度で繊維を回収する。
【0046】
次いで、スプール上で風乾した繊維を後処理してもよい。ステップ1355で繊維を架橋溶液中で架橋してもよく、次いで、ステップ1360ですすいでもよい。次いで、繊維をステップ1365で風乾し、ステップ1370で乾燥して、乾燥した架橋コラーゲン繊維を得る。
【0047】
コラーゲン繊維の製造に使用する装置は、本開示の実施形態に従ったコラーゲン繊維の製造に使用する原料のいずれかによる攻撃に耐えるのに適した従来の構成材料によって作られている。金属、プラスチックおよび他の材料は、コラーゲン繊維の製造時に原料、中間体、溶媒および製品による攻撃に耐えるのに適した性質と特性とを有する。
【0048】
本開示の別の側面は、コラーゲン繊維に関し、この繊維は、以下の特徴
約1MPa~約1,700MPaの極限引張強さ、
約10MPa~約20,000MPaの弾性率、
伸び率約4パーセント~約12パーセントの破断伸び、
約16μm~約70μmの平均繊維径
の1つ以上を有し、
約1時間生体液に浸漬後、少なくともその強度を維持する。
【0049】
この繊維は規則正しい縦配向構造を示し、この繊維は細胞増殖の浸潤を可能にする。
【0050】
この実施形態の繊維は、本開示の実施形態の方法に従って製造する。コラーゲンは、多くの源から得てもよく、また様々な形態で得てもよい。コラーゲン繊維の質は、使用する原料の質に関連する可能性がある。いくつかの実施形態において、通常はウシコラーゲンを使用する。ウシコラーゲンは天然型であってもよく、または、凍結乾燥粉末であってもよい。
【0051】
ウシコラーゲン202は、酸性溶液への溶解によって粘性溶液203に加工してもよい。コラーゲン溶液を調製するために、塩酸などの鉱酸および酢酸などの有機酸のいずれを使用してもよい。たとえば、一実施形態において、無傷の末端テロペプチドを有するウシI型コラーゲンを、容器210中で約0.01M酢酸~約0.5M酢酸201に溶解して、溶液中、約16mg/mLのコラーゲンを含む粘性溶液203を作成してもよい。溶液濃度は、溶液中、約10mg/mLのコラーゲン~溶液中、約19mg/mLのコラーゲンの範囲であってもよい。別の実施形態において、凍結乾燥された、末端テロペプチドが結合したウシI型真皮を、約0.01M~約0.5Mの濃度を有するHClなどの鉱酸と混合して、溶液中、約10mg/mLのコラーゲン~約溶液中、19mg/mLのコラーゲンの濃度、通常は、溶液中、約16mg/mLのコラーゲンの濃度を有する溶液を作成する。
【0052】
実施形態において、コラーゲンは、少なくとも約14時間、通常は少なくとも約15時間、より一般的には少なくとも約16時間溶解させる。いくつかの実施形態において、コラーゲン溶液301は、脱気装置300内で脱気してコラーゲン溶液301から気泡を除去する。スクリーン304は、脱気装置のガス流出口303を通して脱気装置からコラーゲンが引き出されないことを確実にする。脱気装置303は、通常は約0psia~約3psiaの圧力で操作される。コラーゲン溶液は、最大約2脱気サイクル、通常は約1~約2サイクルにさらしてもよい。脱気は、繊維状コラーゲンの押し出しに干渉しそれを妨げる可能性のあるガス気泡を除去する。
【0053】
次いで、脱気したコラーゲンを、遠心分離機でさらに脱気してもよい。
図4で、遠心分離機400は、ボウル403が見えるように頂部408を開けて示してある。遠心分離する材料の管と、遠心分離機のバランスを図るために使用する管とを、回転ボウル409内のウェルに配置する。使用中に内部部品のいずれかが故障した場合でもあらゆる破片を封じ込めるように、ケース405は十分に頑丈である。
【0054】
図5は、格納ボウル501および蓋508を有する遠心分離機500を示す。動きの矢印505で示すように、遠心分離機は反時計回りに高速で回転する。管502は、遠心分離前のコラーゲン溶液503を含む管を示す。図に示すように、コラーゲン溶液は均質であり、それを除けば均質なコラーゲン溶液512内に閉じ込められた気泡を有する。
【0055】
約400rcf~約4,000rcf、通常は約600rcf~約1,000rcf、より一般的には約700rcf~約800rcfの相対遠心力またはg値での遠心分離は、約3分~約15分以内に、通常は約4分~約10分で、より一般的には約5分~約7分で、閉じ込めた気泡体積を本質的にゼロに減少させるのに適している。
【0056】
いくつかの実施形態において、ステップを交互に行うことによって一対の関連ステップを繰り返してもよい。たとえば、コラーゲンは、脱気装置303で1サイクル行い、次いで遠心分離機500で5分間加工処理し、次いで脱気装置303に戻って1サイクル行い、次いで5分間遠心分離してもよい。この別法での操作は効率改善をもたらす可能性がある。この効率改善は、所与の量の気泡を達成するために、または線形処理よりも優れた結果を達成するために、より短い処理時間を利用して達成してもよい。
【0057】
次いで、コラーゲンを溶液と共押出してコラーゲン繊維を形成する。同軸流体のコアでのコラーゲン溶液の押出は、いくつかの実施形態において、コラーゲン繊維の形成を助けてもよい。
【0058】
本開示のいくつかの実施形態において、次いで、コラーゲンを同軸流針の中心に導入するとともに、形成緩衝液を外針に導入する。このようにして、形成緩衝液はコラーゲンの周囲のシースを形成する。
図6に示すように、コラーゲン溶液650はポンプ655を通してポンプで送られ、コラーゲン流601として内針603に導入される。同時に、形成緩衝液660は、形成緩衝液流606として外針604に導入される。形成緩衝液がコラーゲンの中心コアの周囲のシースを形成するように、外針604は内針603と同軸である。材料が針を出て、フィブリル形成浴701(
図7に示す)を含む反応領域に流入するとき、形成緩衝液607は、コラーゲン繊維602の周囲のシースを形成しており、このコラーゲン繊維602は固体繊維の形成を開始する。
【0059】
得られたコラーゲン繊維製品の直径は、下流処理によって中心針の内径よりも小さく製造される。中心針の直径は、完成繊維の標的直径よりも大きくてもよい。いくつかの実施形態において、中心針の内径は約0.05mm~約100mmであり、いくつかの実施形態において、中心針の内径は約0.1mm~約50mmであり、さらに他の実施形態において、中心針の内径は約0.2mm~約20mmであり、さらに他の実施形態において、中心針の内径は約0.3mm~約10mmであり、より一般的には約0.35mm~約5mmである。いくつかの実施形態において、中心針のより狭い内径の範囲は、たとえば約0.03mm~約10mm、通常は約0.10mm~約3mm、より一般的には約0.30mm~約1mm、よりさらに一般的には約0.35mm~約0.50mmである。
【0060】
いくつかの実施形態において、中心針の内径は、約0.38mm~約0.44mm、通常は約0.39mm~約0.43mm、より一般的には約0.40mm~約0.42mmである。
【0061】
いくつかの実施形態において、形成緩衝液を供給するための周囲の同軸外針の内径は、一般的には中心針の内径の約1.95倍から中心針の内径の約2.15倍であり、一般的には中心針の内径の約2.00倍から中心針の内径の約2.10倍であり、より一般的には中心針の内径の約2.05倍である。
【0062】
実施形態において、形成緩衝液は、コラーゲン繊維の形成を助けるための任意の溶液であってもよい。形成緩衝液は、通常は、塩および緩衝剤を加えたTES(2‐[(2‐ヒドロキシ‐1,1‐ビス(ヒドロキシメチル)エチル)アミノ]エタンスルホン酸またはN‐[トリス(ヒドロキシメチル)メチル]‐2‐アミノエタンスルホン酸としても知られている)を含む溶液である。
【0063】
本開示のいくつかの実施形態において、形成緩衝液は、WSB(30mMのTES、4.14mg/mLのリン酸一ナトリウム二水和物、12.1mg/mLのリン酸二ナトリウム七水和物、135mMのNaClおよび10w/vパーセントのPEG(ポリエチレングリコール)を含む溶液)である。類似した溶液も適切な可能性がある。
【0064】
コラーゲン溶液の流量および形成緩衝液の流量は、押出針内および、フィブリル形成浴を含む反応領域内で形成緩衝液シースがそのまま維持されるように調整する。形成緩衝液の速度も、コラーゲン繊維に伸びを与えて繊維の質を改善するように、コラーゲン溶液の速度を超えるように設定する。実際、これによって、コラーゲンは、キンクおよび他の物理的形状異常を伴わない比較的まっすぐで連続的な繊維を形成するように促される。いくつかの実施形態において、繊維は実質的に円形、卵形、正方形、長方形、リボン状、三角形、または不規則な形状であってもよい。
【0065】
本開示の実施形態において、繊維形成浴を含む針反応領域内の形成緩衝液の速度は、コラーゲン溶液の速度より大きい。形成緩衝液は、コラーゲン溶液を中和してフィブリル形成を助けるために使用される。さらに、コラーゲン流を引っ張るかまたは伸ばすために、より高速の形成緩衝液を使用するが、これによって、流れ誘導結晶化と呼ばれるプロセスでコラーゲンモノマーの整列を助ける伸長場が作られる。この整列が、コラーゲンを重合させ、得られた製品の強度増加を助ける。
【0066】
いくつかの実施形態において、針内の形成緩衝液の体積流量は、針内のコラーゲン溶液の体積流量の約5倍から針内のコラーゲン溶液の体積流量の約10倍であり、通常は針内のコラーゲン溶液の体積流量の約7倍から針内のコラーゲン溶液の体積流量の約9倍であり、より一般的には針内のコラーゲン溶液の体積流量の約7.5倍から針内のコラーゲン溶液の体積流量の約8.5倍である。特に、針内のコラーゲン溶液の体積流量の8倍が効果的である。
【0067】
実施形態において、
図7に示すように、コラーゲン流702および形成緩衝液シース707は反応システム700のフィブリル形成浴701を含む反応領域に入る。反応領域は、形成管などの、反応領域701を形成する構造物を有していてもよい。しかしながら、通常は、構造物は存在する必要はない。フィブリル形成浴701を含む反応領域を通してこの流れが流れるとき、コラーゲン繊維は重合を継続して、コラーゲン繊維製品を形成する。コラーゲン繊維752および形成緩衝液702は、フィブリル形成浴701を含む反応領域から流れ出る。
【0068】
実施形態において、コラーゲンの速度は、コラーゲンに、約15秒~約60秒、通常は約20秒~約50秒、より一般的には約25秒~約40秒の反応時間または重合時間を与えるように調整される。
【0069】
図8に示すように、実施形態において、重合期の終了時に、フィブリル形成浴701を含む反応領域から流れが出て行くときに、形成緩衝液808からコラーゲン繊維852が形成され、分離される。過剰な形成緩衝液は深皿801に流入する。脱水システム800は、形成緩衝液808を深皿801に受け止め、コラーゲン繊維852を脱水浴802に導入するように設計されている。
【0070】
脱水溶液は、コラーゲン繊維から水を除去する機会を与え、繊維径を減少させ、フィブリル形成を助ける。実施形態において、脱水溶液は、約10パーセントエタノール~約35パーセントエタノールのミリQ水溶液を含み、通常は約15パーセントエタノール~約30パーセントエタノールのミリQ水溶液を含み、より一般的には約15パーセントエタノール~約25パーセントエタノールのミリQ水溶液を含む。当業者は、ミリQ水(Milli‐Q水とも書く)が、Millipore Sigma社(米国マサチューセッツ州バーリントン)から入手できる装置で製造される、高度に精製された水であることを認識している。
【0071】
コラーゲン繊維852は、脱水浴802を約10秒~約50秒、通常は約15秒~約45秒、より一般的には約20秒~約40秒通過する。その期間を通じて、コラーゲン繊維852は脱水浴802に浸漬されたままである。脱水浴802の容量は、ポンプで送られる形成緩衝液の1分あたりの容量の約400倍からポンプで送られる形成緩衝液の1分あたりの容量の約800倍であり、通常は、ポンプで送られる形成緩衝液の1分あたりの容量の約450倍からポンプで送られる形成緩衝液の1分あたりの容量の約750倍であり、より一般的には、ポンプで送られる形成緩衝液の1分あたりの容量の約500倍からポンプで送られる形成緩衝液の1分601あたりの容量の約700倍である。
【0072】
図9は、脱水されたコラーゲン繊維がそこから取り除かれる、脱水浴の端部を示す。
図9に示す実施形態に見られるように、脱水されたコラーゲン繊維930は、リング920に繋がれたフック910の位置で脱水浴802から取り除かれる。図に示すように、フック910は、リング920によって脱水浴802中に保持される。フック910は、脱水されたコラーゲン繊維から脱水浴を取り除くのを助けるのに役立つ。脱水されたコラーゲン繊維930は、
図10に示されているように、スプール1001の回転によって矢印940の方向に上方に引っ張られる。スプール1001(
図10)の回収速度はコラーゲン繊維930の押出流量を超えるため、フック920または同様なデバイスが、コラーゲン繊維を脱水浴802中に浸漬したままにするのを確実にするのに適している。脱水されたコラーゲン繊維930は、脱水浴の高さより上に持ち上げられるため、脱水されたコラーゲン繊維930から流体の液滴905が落下するのを見ることができる。
【0073】
図10は、脱水した繊維の、スプール1001への回収を示す。実施形態において、スプール1001は、矢印1016で示すように、モータ1011によって時計回り方向に回転される。スプール1001は、約1.5~約3、通常は約1.75~約2.5、より一般的には約1.90~2.20の延伸比を与える速度で回転される。同様に、スプール1002は同じ速度で回転される。延伸比は、スプール速度と押出速度との間の比である。このように、フック910の位置で上方に繊維を引っ張る、第1コラーゲン繊維1050への張力が存在する。次いで、繊維は、脱水浴802の壁の上に引っ張られ、それからスプール1001に引っ張り出される。
【0074】
あるいは、本開示のいくつかの実施形態において、コラーゲンは、
図7に示すように、同軸流を形成するための
図6の同軸針を使用せずに、フィブリル形成浴に直接導入する。逆に、コラーゲン溶液852が針から繊維形成浴870に直接注入されるときにコラーゲン繊維が形成され、その後、本開示の代替実施形態である同軸形成方法と同様にして加工処理が進む。コラーゲン注入のための針のサイズは、同軸注入方法のための針のサイズと同様に選択され、他の実施形態と同様に、繊維はフィブリル形成浴を通して引っ張られ、次いで脱水浴に引き込まれる。しかしながら、
図10のスプール1001は、繊維形成速度の約2倍から繊維形成速度の約4倍、通常は繊維形成速度の約2.5倍から繊維形成速度の約3.5倍、より一般的には繊維形成速度の約2.75~3.25の引き込み速度を与える速度で回転される。次いで、他の実施形態と同様に後処理が実施される。
【0075】
矢印1020は、スプール上に繊維の単一層を形成するように、脱水浴802の端部に対してスプール1001が平行移動している間の、いくつかの実施形態における時間の経過を示す。これにより、スプールの回転は同じ速度で継続し、スプール1002が本質的に一杯になるまで、スプールの平行移動に伴って繊維1052に張力がかけられる。時間の矢印1030は、繊維の供給が尽きるまでの時間の経過を示す。次いで、スプール1055を回収してもよい。平行移動速度は、スプール上の繊維間の間隔を調整するために調整してもよい。
【0076】
スプールを回転させるときに繊維への張力が維持されるのを確実にするために、
図11に示すように、通常は、繊維はいくつかの実施形態で使用するスプール1110などのスプールの表面の全体に接触している。しかしながら、スプールは、スプール1110と同様な連続面を有する必要はない。他の実施形態では、多数のロッドがスプールの長さに沿って延びていることができるだろう。複数のロッドで形成されるこのようなスプールの1つは、
図11のスプール1120であり、このスプール1120は、第1ロッド1125、第2ロッド1126および第3ロッド1127を含む。これらのロッドは、その上にコラーゲンを巻くための十分な表面を提供する。
【0077】
本開示の繊維を、化学的に後処理してもよい。
図12は、可能な後処理工程を示す。実施形態において、コラーゲン繊維を含むスプール1210は、1220において、少なくとも約15分間、通常は少なくとも約20分間、より一般的には少なくとも約30分間、風乾される。繊維を含む風乾された管1210を、次いで、架橋のための容器に入れる。通常は、本開示の実施形態における容器は、必要な架橋剤の量を減らすために架橋容器の容量を最小限にする。したがって、
図12に示すように、シリンダー1230は、1231に示されているように、円筒スプール1210を覆うのに必要な架橋流体の量を含む。実施形態において、繊維1メートルあたりの架橋溶液の容量は少なくとも約3μL、通常は少なくとも約4.5μL、より一般的には少なくとも約6μLである。
【0078】
本開示の繊維は、アミノ基を備えるように官能基化してもよく、またコラーゲンのように、アルデヒドと架橋できるアミノ基を含んでいてもよい。通常は、短鎖アルデヒドを使用し、より一般的にはグリオキサール(GLY)または他の従来の架橋試薬。たとえば、1‐エチル‐3‐(3‐ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)、N‐ヒドロキシスクシンイミド(NHS)、ゲニピン、グリセルアルデヒド、グルタルアルデヒド、o‐デキストラン、ならびに低分子量プロシアニジンおよび高分子量プロシアニジンなどの架橋剤を使用してもよい。あるいは、繊維がカルボキシルで官能基化されている場合、架橋のためにEDCおよび他のカルボジイミドを使用してもよい。イソシアネートは、OH基とアミンの両方に反応する。そのため、イソシアネート系架橋剤は、媒体の安定性と強度を改善するために、たとえば官能基化されたPDLLA(OH基と他のOH基とを連結する)内でOH基を互いに架橋するために使用してもよい。イソシアネートも、コラーゲンのNH2基(すなわちアミン基)を介して、官能基化されたPDLLA内のOH基とコラーゲンとを結合するために使用してもよい。さらに、光架橋剤を使用することもできる。
【0079】
以下の反応順序は、本開示の実施形態に使用可能な例示的な架橋反応である。これらの例示的な反応のそれぞれにおいて、P=ポリマーである(これらの反応における繊維である)。
【0080】
【0081】
特に、グリオキサールは、本開示の実施形態における適切な架橋を提供する。本開示の実施形態において、70パーセントエタノールと30パーセントミリQ水との溶液中に10mMグリオキサールを含む溶液を架橋に使用する。所望の架橋度と機能性とを提供するために、これらの成分の濃度または割合は変えてもよい。
【0082】
本開示の実施形態において、架橋溶液として、シースに0.25mM EDC溶液を使用してもよい。
【0083】
いくつかの実施形態において、
図12に示すように、管およびスプール1231は、矢印1235によって模式的に示されるように回転される。たとえば、ローラーを使用して管およびスプールを約1RPMで回転させてもよい。回転は、所望の架橋度を得るのに十分な時間継続させる。いくつかの実施形態において、所望の架橋度を得るためには少なくとも約24時間で十分である。架橋時間の増加は、繊維内の結合強度を増し、得られる製品の安定性を改善する。したがって、いくつかの実施形態において、材料は、少なくとも約48時間、通常は少なくとも約72時間架橋させてもよい。およそ約1ヶ月の架橋時間が架橋強度をさらに増すことが見出された。容器は、コイル全体が架橋流体に浸ることを確実にする任意の方法で動かしてもよい。
【0084】
いくつかの実施形態において、次いで、架橋コラーゲン繊維1211を含むスプールを管から取り出し、すすぎタンク1240および矢印1221で示されているように、任意選択で、約10分間ミリQ水すすぎ液に入れる。次いで、すすいだスプールおよび繊維1212を、過剰なグリオキサールを不活化するのに十分な時間、100mMグリシンを含む浴1250に入れる。通常は、10分で十分である。グリオキサールの除去は、繊維の細胞毒性を低下させるのに役立つ。必要に応じてまたは適切であれば、他の架橋剤を同様に除去してもよい。
【0085】
すすぎステップが省略される実施形態において、スプールおよび繊維1213は、グリシン浴1250でグリシンに入れる。繊維を乾燥するための加工処理は、すすぎステップの実施形態と同様に行う。
【0086】
グリシン浴からのコラーゲン繊維1214を含むスプールは、次いで、タンク1260で再度、ミリQ水ですすぐ。実施形態において、グリシンを除去するのには10分で十分である。次いで、1270でスプールおよび繊維1215を約1時間風乾してから、乾燥室1280に約24時間入れる。次いで、
図12の乾燥した柔軟な繊維1217を回収する。
【0087】
本開示の実施形態は、生体高分子繊維を製造するための、
図13の方法1300に関する。実施形態において、コラーゲンを酸溶液に溶解して(1305)、コラーゲン溶液を作成する(1310)。いくつかの実施形態において、コラーゲンに適合性生体高分子が含まれる。次いで、コラーゲン溶液を脱気し(1315)、次いで遠心分離して(1320)コラーゲン溶液を得てもよい。
【0088】
次いで、コラーゲン溶液は、形成緩衝液をシースとして共押出する(1325)。第1直径を有する第1針を通して第1速度でコラーゲン溶液を送ると同時に、第1針を同軸に取り囲み、第1直径を超える第2直径を有し、コラーゲン溶液の周囲のシースを形成する第2針を通して第2速度で形成緩衝液を送って同軸流を形成する。第2針を通した基礎緩衝液の第2速度は、第1針を通したコラーゲン溶液の第1速度の少なくとも2倍である。
【0089】
いくつかの実施形態において、中心針の内径は約0.05mm~約100mmであり、いくつかの実施形態において、中心針の内径は約0.1mm~約50mmであり、さらに他の実施形態において、中心針の内径は約0.2mm~約20mmであり、さらに他の実施形態において、中心針の内径は約0.3mm~約10mmであり、より一般的には約0.35mm~約5mmである。いくつかの実施形態において、中心針のより狭い内径の範囲は、たとえば約0.03mm~約10mm、通常は約0.10mm~約3mm、より一般的には約0.30mm~約1mm、よりさらに一般的には約0.35mm~約0.50mmである。
【0090】
いくつかの実施形態において、中心針の内径は、約0.38mm~約0.44mm、通常は約0.39mm~約0.43mm、より一般的には約0.40mm~約0.42mmである。
【0091】
いくつかの実施形態において、形成緩衝液を供給するための周囲の同軸外針の内径は、一般的には中心針の内径の約1.95倍から中心針の内径の約2.15倍であり、一般的には中心針の内径の約2.00倍から中心針の内径の約2.10倍であり、より一般的には中心針の内径の約2.05倍である。
【0092】
実施形態において、形成緩衝液は、コラーゲン繊維の形成を助けるための任意の溶液であってもよい。形成緩衝液は、通常は、塩および緩衝剤を加えたTES(2‐[(2‐ヒドロキシ‐1,1‐ビス(ヒドロキシメチル)エチル)アミノ]エタンスルホン酸またはN‐[トリス(ヒドロキシメチル)メチル]‐2‐アミノエタンスルホン酸としても知られている)を含む溶液である。
【0093】
本開示のいくつかの実施形態において、形成緩衝液は、WSB(30mMのTES、4.14mg/mLのリン酸一ナトリウム二水和物、12.1mg/mLのリン酸二ナトリウム七水和物、135mMのNaClおよび10w/vパーセントのPEG(ポリエチレングリコール)を含む溶液)である。類似した溶液も適切な可能性がある。
【0094】
いくつかの実施形態において、針内の形成緩衝液の体積流量は、針内のコラーゲン溶液の体積流量の約5倍から針内のコラーゲン溶液の体積流量の約10倍であり、通常は針内のコラーゲン溶液の体積流量の約7倍から針内のコラーゲン溶液の体積流量の約9倍であり、より一般的には針内のコラーゲン溶液の体積流量の約7.5倍から針内のコラーゲン溶液の体積流量の約8.5倍である。特に、針内のコラーゲン溶液の体積流量の8倍が効果的である。
【0095】
実施形態において、同軸に流れるコラーゲンおよび形成緩衝液は、繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して流れる(1330)。次いで、形成されたコラーゲン繊維を形成緩衝液から分離し(1335)、脱水溶液に入れる(1340)。脱水溶液は、コラーゲン繊維から水を除去する機会を与え、繊維径を減少させ、フィブリル形成を助ける。実施形態において、脱水溶液は、約10パーセントエタノール~約35パーセントエタノールのミリQ水溶液を含み、通常は約15パーセントエタノール~約30パーセントエタノールのミリQ水溶液を含み、より一般的には約15パーセントエタノール~約25パーセントエタノールのミリQ水溶液を含む。
【0096】
いくつかの実施形態において、分子の配向を高め、繊維の直径を減少させるのに十分な、第1速度を超える第3速度でスプールに繊維を取り出す(1345)。この速度は、通常は脱水浴を通して繊維が流れる速度の少なくとも約2倍である。
【0097】
他の実施形態において、ステップ1325は省略し、同軸シース形成は使用しない。代わりに、コラーゲン溶液を形成緩衝液に注入し、回収スプールを回転させ、注入速度の約2倍から注入速度の約4倍の速度で繊維を引っ張る速度を提供することによって、形成緩衝液および脱水液を通して刺激する。次いで、可能な後処理を含むステップの残りの部分を実施する。
【0098】
実施形態において、ステップ1350での短い風乾時間の後に、ステップ1355で繊維を架橋する。通常は、架橋は、グリオキサール溶液中、架橋を達成するのに十分な時間撹拌して実施する。実施形態において、繊維はスプールに残す。必要な架橋剤の量を減らすために、一般的には架橋容器の容量を最小限にする。
【0099】
架橋材料は任意の適切な架橋剤であってもよい。特に、グリオキサールは、本開示の実施形態における適切な架橋を提供する。本開示の実施形態において、70パーセントエタノールと30パーセントミリQ水との溶液中に10mMグリオキサールを含む溶液を架橋に使用する。所望の架橋度と機能性とを提供するために、これらの成分の濃度または割合は変えてもよい。実施形態において、繊維1メートルあたりの架橋溶液の容量は、少なくとも約3μL、通常は少なくとも約4.5μL、より一般的には少なくとも約6μLである。多くの場合、架橋量を達成するのに、24時間の架橋時間が適している。しかしながら、通常は、少なくとも約48時間の架橋時間が架橋の増加をもたらし、少なくとも約72時間の時間がよりさらなる架橋を提供する。
【0100】
次いで、架橋コラーゲン繊維を含むスプールを架橋容器から取り出し、本開示のいくつかの実施形態において、ミリQ水すすぎ液に約10分間入れる。他の実施形態において、スプールはすすぐ必要はない。次いで、ステップ1360で、スプールおよび繊維は、過剰なグリオキサールを不活化するのに十分な時間、100mMグリシン浴を含む浴に入れる。通常は10分で十分である。グリオキサールの除去は、繊維の細胞毒性を低下させるのに役立つ可能性がある。
【0101】
グリオキサールを架橋剤として使用しない場合、他の処理工程を採用してもよい。当業者は、これらの他の架橋システムに適した適切な後処理工程を認識するであろう。
【0102】
次いで、実施形態において、グリシン浴からのコラーゲン繊維を含むスプールを、ステップ1365でミリQ水で再度すすぐ。実施形態において、グリシンを除去するのには10分で十分である。次いで、ステップ1270でスプールおよび繊維1214を約1時間風乾してから、約24時間乾燥室に入れる(1370)。乾燥した柔軟な繊維を回収する。
【0103】
本開示の実施形態において、製造される繊維は、コラーゲンを含む生体高分子繊維である。この生体高分子繊維は、以下の特徴
約20MPa~約170MPaの極限引張強さ、
約200MPa~約3,500MPaの弾性率、
伸び率約4パーセント~約12パーセントの破断伸び、
約16μm~約70μmの乾燥後の平均繊維径
の1つ以上を有し、
生体液に約1時間浸漬後、少なくともその強度を維持する。
【0104】
この繊維は規則正しい縦配向構造を示し、この繊維は細胞増殖の浸潤を可能にする。
【0105】
別の側面において、本開示は、軟部組織損傷の修復を支援するための、または人の身体部位の修復または置換のための、移植可能な生体高分子足場に関する。この足場は、生体高分子繊維を含む少なくとも1つの生体高分子シートを含み、この生体高分子は、以下の特徴
約20MPa~約170MPaの極限引張強さ、
約200MPa~約3,500MPaの弾性率、
伸び率約4パーセント~約12パーセントの破断伸び、
約16μm~約70μmの、リン酸緩衝生理食塩水溶液への約1時間の浸漬後の平均繊維径
の1つ以上を有するコラーゲンおよび生体高分子繊維を含み、
生体液に約24時間浸漬後、少なくともその強度を維持する。
【0106】
この繊維は規則正しい縦配向構造を示し、この繊維は細胞増殖の浸潤を可能にする。このシートは、使用時の取り扱いの便宜のために、典型的方法で配置された繊維を含む。たとえば、単一の繊維は、その小さな直径のために使用が極めて困難であろう。したがって、身体部位の修復または置換に適した繊維含有製品を提供するために、単一の繊維より大きい足場または構造体を形成するのが必要または適切である。したがって、たとえば、コラーゲン繊維を含む撚り糸を形成するために、いくつかの繊維を編み合わせることができる。このような撚り糸は、たとえば、靱帯または腱の断裂をかがり縫いするのに役立つ可能性がある。これらおよび他の使用は、使用者に明らかになるであろう。
【0107】
本開示の全体を通して、ランダムに集めた繊維10本について、性質と特性とに関する試験を実施する。強度試験は、繊維10本と、約0.3N~約2Nの負荷とを用いて実施する。
【0108】
本明細書で指摘したように、コラーゲン繊維の安定性は、生体溶液中に少なくとも1時間置いた後でさえ維持される。さらに、少なくとも約48時間、さらには72時間にわたって架橋時間を継続することによって実現されるさらなる架橋は、繊維の膨潤を著しく減少させ、負荷容量を維持または増加させる。
【0109】
以下の実施例は、本開示の実施形態の例であって、何ら限定を意味するものではない。
【0110】
実施例1
末端テロペプチドが無傷のI型ウシコラーゲンをパッケージから取り出し、0.05M酢酸と混合して、16mg/mLのコラーゲン濃度を有する粘性溶液を作成した。この溶液にコラーゲンを16時間溶解させ、続いて数サイクルの脱気を行った。脱気の前後に、5分間、約750rcfで遠心分離して過剰な気泡を除去した。コラーゲンを5mLのシリンジに吸引し、次いで、同軸針(コラーゲン入口の内径0.41mm、形成緩衝液入口の内径0.84mm)の中心のルアーフィッティングに取り付けた。次いでコラーゲンシリンジと同軸針をシリンジポンプ上に配置し、60μL/分でポンプで送った。
【0111】
形成緩衝液のpHを8.0±0.1に調整し、覆われたビーカーに入れた。形成緩衝液は、30mM TES、4.14mg/mLリン酸一ナトリウム二水和物、12.1mg/mLリン酸二ナトリウム七水和物、135mM NaClおよび10パーセントw/v PEG(ポリエチレングリコール)を含む溶液であり、湿式紡糸緩衝液としても知られているWSBであった。
【0112】
チューブをビーカーの下部と蠕動ポンプを通して配置し、次いで、ルアーフィッティングを通じて同軸外針に取り付け、これによってコラーゲンの外側シース流を形成した。形成緩衝液を使用してコラーゲン溶液を中和し、フィブリル形成を助けた。形成緩衝液は500μL/分で流した。コラーゲン流を引っ張るかまたは伸ばすために、より高速の形成緩衝液も使用し、流れ誘導結晶化と呼ばれるプロセスでコラーゲンモノマーの整列を助ける伸長場を作成した。この整列が、コラーゲンをのより容易な重合を助け、最終製品の強度を増加させた。
【0113】
コラーゲン流と形成緩衝液流を、フィブリル形成浴を含む反応領域に入れ、そこで、重合して長鎖を形成する時間を繊維に与えた。フィブリル形成浴を含む反応領域は、使用した形成緩衝液をリザーバに受け止め、20%エタノールおよび80%ミリQ水を通して繊維をおおよそ45cm移動させる脱水浴の入口で終わる。この浴は、コラーゲン繊維から水を除去するのを助け、その直径を減少させ、フィブリル形成を助けた。この浴は、幅2.5cmであり、おおよそ300mLの溶液を保持した。
【0114】
浴を通して繊維が移動した後、次いで繊維を、長さが300mmであり、おおよそ5RPMで回転し、それによっておおよそ2の延伸比(スプール速度と押出速度との間の比)を与える50mm径のスプールに巻き付けた。この延伸比は、分子の配向をさらに高めるのを助け、繊維径を減少させて最終的に強度を増加させた。繊維間の間隔を変えるためにスプールの平行移動速度を調整した。
【0115】
スプールを少なくとも15分間風乾させてから、架橋のための円筒管に入れた。この管の内径は、完全な浸漬に必要な架橋剤を減らすために、スプールの外径に近かった。70パーセントエタノールおよび30パーセントミリQ水の10mMグリオキサール溶液を120mL調製し、この管に注いだ。次いで、スプールをこの管に入れた。次いで、この管とスプールを、おおよそ1RPMで24時間ローラー上に配置した。
【0116】
24時間後、スプールを管から取り出し、ミリQ浴に10分間入れた。次いで、スプールを100mMグリシン浴に10分間入れて過剰なグリオキサールを不活化して細胞毒性の低下を助け、続いて最後のミリQ水浴に10分間入れて残りのグリシンを除去した。次いで、スプールと繊維をおおよそ1時間風乾してから、乾燥室に24時間入れた。
【0117】
乾燥後、繊維は乾燥し柔軟であった。これによって、足場を構築するための有用な形状への処理が容易になる。得られた繊維の平均直径は25μmであり、PBSへの半時間の浸漬後の引張強さはおおよそ100MPaであった。リン酸緩衝生理食塩水としても知られているPBSは、生物学研究に広く使用されている緩衝液である。PBSは、リン酸水素二ナトリウム、塩化ナトリウムを含む水性塩溶液であり、製剤によっては、塩化カリウムおよびリン酸二水素カリウムを含む。この緩衝液は、一定のpHを維持するのに役立つ。この溶液の浸透圧濃度およびイオン濃度は、人体の浸透圧濃度およびイオン濃度と適合する(すなわち等張である)。
【0118】
アミノ酸類、塩化カルシウム、塩化カリウム、硫酸マグネシウム、塩化ナトリウムおよびリン酸一ナトリウム、グルコース、ならびにビタミン類である葉酸、ニコチンアミド、リボフラビンおよびB12を含む細胞培養用合成培地であるDMEM中37℃での7日間の安定性試験は、元の強度のおおよそ25%の低下を示す。DMEMは、pH指示用に鉄およびフェノールレッドも含む。
【0119】
本実施例は、本特許請求の範囲の範囲内の方法に従った、本特許請求の範囲の範囲内の繊維の製造を例示する。この繊維によって、人の身体部位の修復または置換のための、本特許請求の範囲に従った足場が製造される。
【0120】
実施例2
末端テロペプチドが無傷のI型ウシコラーゲンをパッケージから取り出し、10mM塩酸と混合して、16mg/mLのコラーゲン濃度を有する粘性溶液を作成した。この溶液にコラーゲンを16時間溶解させ、続いて733rcfで5分間遠心分離した。2分間脱気して過剰な気泡を除去し、次いで733rcfで10分間再度遠心分離する。コラーゲンを20mLのシリンジに吸引し、次いで同軸針(コラーゲン入口の内径0.41mm)の中心のルアーフィッティングに取り付けた。次いでコラーゲン針をシリンジポンプ上に配置し、50μL/分でポンプで送った。
【0121】
形成緩衝液のpHを8.0±0.1に調整し、長い浴に入れた。形成緩衝液は、30mM TES、4.14mg/mLリン酸一ナトリウム二水和物、12.1mg/mLリン酸二ナトリウム七水和物、135mM NaClおよび10パーセントw/v PEG(ポリエチレングリコール)を含む溶液であり、湿式紡糸緩衝液としても知られているWSBであった。
【0122】
形成緩衝液を使用してコラーゲン溶液を中和し、フィブリル形成を助けた。コラーゲンは、形成緩衝液にポンプで送られ、浴を通して導かれる。コラーゲン形成緩衝液は、重合して長鎖を形成する時間を繊維に与える反応領域を含む。フィブリル形成浴を含む反応領域は、それを通して繊維が導かれる、20%エタノールおよび80%ミリQ水の脱水浴の入口で終わる。この浴は、コラーゲン繊維から水を除去するのを助け、その直径を減少させ、フィブリル形成を助けた。浴はいずれも幅2.5cmであり、おおよそ300mLの溶液を保持した。
【0123】
浴を通して繊維が移動した後、次いで繊維を、長さが300mmであり、おおよそ10RPMで回転し、それによって少なくともおおよそ2の延伸比(スプール速度と押出速度との間の比)を与える50mm径のスプールに巻き付けた。この延伸比は、分子の配向をさらに高めるのを助け、繊維径を減少させて最終的に強度を増加させた。繊維間の間隔を変えるためにスプールの平行移動速度を調整した。
【0124】
スプールを少なくとも15分間、1時間以下風乾させてから、架橋のための円筒管に入れた。この管の内径は、完全な浸漬に必要な架橋剤を減らすために、スプールの外径に近かった。70パーセントエタノールおよび30パーセントミリQ水の10mMグリオキサール溶液を120mL調製し、この管に注いだ。次いで、スプールをこの管に入れた。次いで、この管とスプールを、おおよそ1RPMで少なくとも24時間から最大72時間、ローラー上に配置した。
【0125】
24時間後または最大72時間後、スプールを管から取り出し、おおよそ1時間風乾してから、乾燥室に24時間入れた。
【0126】
乾燥後、繊維は乾燥し柔軟であった。これによって、足場を構築するための有用な形状への処理が容易になる。得られた繊維の平均湿潤直径は30μmであり、PBSへの半時間の浸漬後の引張強さはおおよそ120MPaであった。リン酸緩衝生理食塩水としても知られているPBSは、生物学研究に広く使用されている緩衝液である。PBSは、リン酸水素二ナトリウム、塩化ナトリウムを含む水性塩溶液であり、製剤によっては、塩化カリウムおよびリン酸二水素カリウムを含む。この緩衝液は、一定のpHを維持するのに役立つ。この溶液の浸透圧濃度およびイオン濃度は、人体の浸透圧濃度およびイオン濃度と適合する(すなわち等張である)。
【0127】
アミノ酸類、塩化カルシウム、塩化カリウム、硫酸マグネシウム、塩化ナトリウムおよびリン酸一ナトリウム、グルコース、ならびにビタミン類である葉酸、ニコチンアミド、リボフラビンおよびB12を含む細胞培養用合成培地であるDMEM中37℃での7日間の安定性試験は、元の強度のおおよそ25%の低下を示す。DMEMは、pH指示用に鉄およびフェノールレッドも含む。
【0128】
本実施例は、本特許請求の範囲の範囲内の方法に従った、本特許請求の範囲の範囲内の繊維の製造を例示する。この繊維によって、人の身体部位の修復または置換のための、本特許請求の範囲に従った足場が製造される。
【0129】
追加開示および比較情報
本開示の実施形態において、マイクロフルイディクス押出コラーゲンマイクロファイバー(これは次にグリオキサールまたはDL‐グリセルアルデヒド(DLG)などの無害な生体架橋剤で架橋することができる)を形成するために、臨床用アテロコラーゲンおよびテロコラーゲンを使用してもよい。これらの架橋繊維は、試験した他の50の架橋戦略よりも著しく強く、天然のヒトアキレス腱および前十字靱帯の強度を超える、300MPa近い水和極限引張強さと3GPa超のモジュラスを示した。グリオキサールで架橋した繊維は、培養下での3~6ヶ月間を通して、なお初期耐荷力の50%を保持した。ラットに移植されたコラーゲン繊維は、生体適合性を示し、その繊維に沿って成長する整列した新たな宿主生成コラーゲンの産生を促進し、グリオキサール架橋の場合は、再生促進性M2マクロファージ応答の上昇を促進した。本開示の実施形態は、従来の合成材料を含む他の架橋繊維と比較して治癒における著しい改善を示し、本開示の実施形態を、強固なコラーゲン縫合糸を生成するための、または靱帯、腱または他の軟組織修復のデバイスに使用するための、優れた繊維にした。
【0130】
腱および靱帯の修復に適した材料を作る試みは、未だに適切な製品を製造するに至っていない。これまで、たとえば軟部組織の閉鎖または結合のための縫合糸、装具またはグラフトとしての自家移植片、同種移植片および合成材料は、重大な臨床上の限界を有していることが見いだされている。死んだ、脱細胞化した、および化学的に処理したインプラントなどの同種移植片は、組み込むのに時間がかかる場合があり、炎症性であり、場合により治癒を遅らせる可能性がある(Seon,SongおよびPark,2006年)。合成グラフトは、酸性副生成物に分解されて周辺組織を損傷する場合がある(Taylorら,1994年;van Sliedregtら,1994年;Matsusueら,1995年)。合成グラフトは、腱または靭帯の機械的特性または材料特性にしばしば適合せず(Hoganら,2015年)、関節裂隙に用いる場合、ストレスライザーの生成と消耗性の非等尺性を与える可能性がある。自家移植術は、手術時間と、自己組織を復元するためのもう一つの手術の必要性に起因する関連外傷(たとえば出血、感染リスク)とを増やし、そのプロセスにおけるさらなる外傷の原因となる(Chenら,2009年;Perroneら,2017年)。自家移植術または同種移植術を用いる関節再建は、早発性変形性関節症のより高い発症頻度と重症度をさらにもたらし、それによって生活の質に影響を与える(Leiterら,2014年;Smithら,2014年;Perroneら,2017年)。外傷後変形関節症の増加速度は、退役軍人らにとって重要な問題となっている(Showeryら,2016年)。
【0131】
腱および靱帯の修復縫合糸と吸収性縫合糸のための理想的で強固な生体材料の製造において、まだ対処されていない必要性が残っている。生体適合性を改善し、炎症を減少させ、特に成形外科適応症のための強固な合成材料から摩耗性を減少させるための試みにおいて、コラーゲンコーティングを有する合成非吸収性縫合糸(たとえばコラーゲンコートFiberWire(登録商標))が使用可能になっている。
【0132】
I型コラーゲンからの架橋繊維押出は、強固な製品を生む可能性がある。しかしながら、これらの製品は不十分であり、生物学的な欠点、強度の欠点および他の欠点を示す。たとえば、ほとんどの架橋剤には細胞毒性があり、身体に対して異物である強い化学薬剤を使用し、米国食品医薬品局(FDA)が認可または承認した、現在注目されている製品にも使用されておらず、臨床応用のためのそれらの使用をより難しくしている。ACLまたはATの修復の増強におけるそれらの可能な使用に加えて、編んだコラーゲン繊維は、高く均一な張力特性、一貫した均一な直径、生体適合性、および再生能を有する調節可能な吸収を有することが示された場合、一般手術、眼手術および形成外科・美容外科のための縫合糸として使用される可能性を有する。
【0133】
本開示の実施形態は、フィラメントでの、および薄いリボン状構造での臨床I型コラーゲンのマイクロファイバーを製造するための新規マイクロフルイディック押出システムに関する。本開示の実施形態は、厳しい機械的生化学的細胞適合性と生体適合性基準を満たし、本開示の繊維の実施形態に特に生物医学用途のための特性を持たせている。本開示の実施形態は、有用な製品を製造するために必要な中規模から大規模までの分子規模の秩序を示すため、本明細書に記載のこれらのコラーゲン繊維は、高度なコラーゲン縫合糸ベースの生体材料が医学における手術の分野全体で有益な可能性を有する、腱および靱帯の修復、創傷閉鎖ならびに他の適応症に潜在的用途を有する。
【0134】
図14は、本開示の実施形態に記載のコラーゲンマイクロファイバーの製造と適切な製品の可能な生物医学用途とを模式的に示す。ステップ1401で凍結乾燥コラーゲンを酸に溶解して、コラーゲン分子1402を得る。押出マイクロファイバー1403をスピナレット1404で撚り合わせて、撚り合わせたマイクロファイバー1405を形成する。このマイクロファイバーは、集合させた分子コラーゲン1406を含む。このコラーゲンは、ステップ1407でスプールしてもよい。
【0135】
コラーゲンは、より適切には、個々の繊維を撚り合わせるかまたは編むことによって形成される3次元構造で使用してもよい。次に、編んだ繊維1411または撚り合わせた繊維1405は、患者の膝1412の前十字靱帯(ACL)での裂傷1415を縫合するために使用してもよい。コラーゲンACL縫合糸1414は、裂傷を修復するために使用し、またコラーゲン皮膚縫合糸1415は、創傷を閉鎖するために使用してもよい。
【0136】
撚り合わせるか否かに関わらず、任意の本数の繊維を合わせて束を形成してもよく、また束は、より大きな束に集合させてもよい。たとえば、束は、2本の繊維~約10,000本の繊維、または約4本の繊維~約6,000本の繊維、通常は約8本の繊維~約4,000本の繊維、より一般的には約12本の繊維~約2,000本の繊維を含んでもよい。次いで、束を、撚り合わせるかまたは別様にして組み合わせて、より大きな束を形成してもよい。組み合わせる束は、等しい本数の繊維を有する必要はない。
【0137】
束は、束内の繊維の本数によって表してもよい。たとえば、5本の繊維束はペンタ繊維と呼んでもよい、8本の繊維はオクタ繊維を生むだろう、など。このような束を製造するために、他の数のノズルまたは押出機を備えるシステムおよび装置を使用してもよい。
【0138】
図15および
図16は、コラーゲン繊維を得るための方法と、その反応を実施することができるシステムとを示す。本開示の実施形態において、最大2%(w/v)の臨床用凍結乾燥テロコラーゲン(Telo)またはアテロコラーゲン(Atelo)(Collagen Solutions社、カリフォルニア州)またはメタクリル化コラーゲン(Advanced BioMatrix社、カリフォルニア州)を、撹拌して、0.05Mまでの酸(最も一般的には、酢酸または塩酸)に終夜溶解した。システム1500に示すように、酸性化したコラーゲン1501を、次にノズルシステムの中心を通してポンプで送った。このシステムは、同軸上に配置された導管または針1503を含んでもよい。塩を含む中和アルカリ性形成リン酸緩衝液(塩化ナトリウム、リン酸二ナトリウム、リン酸一ナトリウムおよびN‐トリス(ヒドロキシメチル)メチル‐2‐アミノエタンスルホン酸)およびPEG(ポリエチレングリコール)を、同軸導管1503の外側部分のシステムを通してポンプで送った1501。形成緩衝液は、コラーゲンが導入される速度の約5倍から約20倍、通常は約8倍~15倍、最も一般的には約10倍の体積流量で流れ、それによってタンパク質を伸ばして部分的に整列させ、得られた繊維1504に機械強度を付与した。繊維は、20%水性エタノールの浴1505に入る前、形成管を通過するときに、より固くなった。繊維の脱水に加えて、この浴は残留形成緩衝液を除去するのに役立ち、それによって、得られたコラーゲンマイクロファイバーの強度と安定性の改善に寄与した。脱水1506の後、マイクロファイバー1507は、2バーデバイス1508に回収してもよい。他の適切な回収デバイスも使用できる。
【0139】
いくつかの実施形態において、酸性化したコラーゲン繊維を、形成浴に入れる前に、押出によって形成してもよい。たとえば、酸性化したコラーゲン繊維は、スピナレット1404の使用によって形成してもよい。いくつかの実施形態において、酸性化したコラーゲンの複数のシリンジを、同時に形成してもよい。
【0140】
図46は、酸性化したコラーゲン繊維を形成するためにシリンジのアレイを使用するシステム4600を示す。システム4600が高スループットシステムであることを考慮にいれてもよい。本開示のいくつかの実施形態において、臨床用コラーゲンは、酸とコラーゲンとに対して不活性な材料で作られている密閉容器中で酸(酢酸または、HClなどの鉱酸)に溶解する。ポリプロピレンは、このような材料の1つである。コラーゲンおよび酸の容量は、十分な混合を促進するために、通常は密閉容器の容量の約50%未満である。溶液は、終夜、または約16時間~30時間、通常は約15時間~約20時間撹拌する。次いで、溶液を遠心分離して脱気する。
【0141】
次いで、脱気した溶液をシリンジに入れる。使用するシリンジの数は、同時に形成する繊維の本数に等しい。
図46のシステム4600は、回転可能プレート4601に取り付けた8つのシリンジからの出口の使用を示す。各シリンジのプランジャーは、繊維が本質的に等しい量押し出されることを確実にするために、プレート(図示せず)によってシリンジのバレルに押し込まれている。酸性化したコラーゲンは、第1ノズル4602を通して押されて第1繊維4612を形成し、第2ノズル4603を通して押されて第2繊維4613を形成し、第3ノズル4604を通して押されて第3繊維4614を形成し、第4ノズル4605を通して押されて第4繊維4615を形成し、第5ノズル4606を通して押されて第5繊維4616を形成し、そして残りのノズルを通して押される。いくつかの実施形態では、必ずしもすべてのノズルを使用しない。本開示の実施形態において、回転可能プレート4601に取り付けるノズルは、より多くても、より少なくてもよい。
【0142】
繊維は、ガイド4630で収集し、形成緩衝液浴4640に投入する。繊維は、押出後に捕らえておく。いくつかの実施形態において、回転可能プレート4601は、撚り合わせた繊維を製造するために、いずれかの方向に回転してもよい。システム4600において、回転可能プレート4601は、ロゼットノッチ4621と噛み合わせたドライブプレート4620の回転によって回転させてもよい。任意の適切な駆動システムを使用してもよい。いくつかの実施形態において、回転可能プレート4601は回転させず、したがって、得られる繊維の束は撚り合わされない。しかしながら、繊維を脱水するとき、そして繊維をコレクターに巻くまで、束は、テンショナーによる張力を受けて繊維束を維持する。通常は、特に湿潤繊維に関して、溝付きシリンダーが適切なコレクターである。
【0143】
図16は、ノズルシステム1600の詳細を示す。ポンプ1502は、二軸針1503の中心針に、酸性化した液体のコラーゲン1620をポンプで送る。緩衝液は、シース溶液とも呼ばれ、1610から、流れ矢印1611に向けて二軸針1503の外針に導入し、それによって、重合プロセスが進行するに従って、コラーゲンマイクロファイバー1504を形成する。コラーゲン流体は、伸張流のシース流体1611によって収束される。針の詳細図は、酸性化した液体コラーゲン1620がどのようにして低速矢印の方向に移動し、次いで高速矢印1630およびより高速の矢印1640で示すように速度が増加するかを示す。同様に、シース流体は速度矢印1611、矢印1635、および矢印1645の方向に移動した。反応剤の流れは矢印1650の方向に進み、ここでシェーディングは、燐酸塩を含む緩衝液(シース)流体1670が、どのようにコラーゲン溶液と相互作用し、コラーゲン流から水1680を除去するかを示す。
【0144】
マイクロファイバー1507をデバイス1508上に回収した後、それらを半時間風乾し、続いて様々な実験条件で架橋した。押出および架橋時に使用される化学薬剤は、
図17の表1に含まれる。
【0145】
図18の表2に示すグループのin situ架橋(化学架橋または酵素架橋)は、
図18に示す各架橋剤の量を、
図18に示された時間、酸性化したコラーゲン混合物に溶解することによって行った。一部の材料の架橋に関する濃度と時間は、
図18に示す特定の参考文献から入手した。
図18は、強度の比較を要約している。イタリック体の条件は、回収方法の最適化後の特性評価のために選択した。次いで、in situ架橋コラーゲンからのマイクロファイバーを2バーデバイスに押し出し、
図15に示すように、ピンと張ったまま保管した。
図18は、架橋剤が、約5mM~約500mM、通常は約10mM~約500mM、より一般的には約25mM~約250mMの量で使用できることも示している。
【0146】
しかしながら、より一般的には、未架橋マイクロファイバーは、短い間隔の溝を有する固体スプール1110(
図11参照)に回収してもよい。マイクロファイバーを、ピンと張ったまま、これらの溝に直接回収した。スプールへの回収は、通常は、2バーデバイスよりも効率的である。未架橋マイクロファイバーのスプールは、2バーデバイスに使用したように、70%水性エタノール中で化学的に架橋させた。架橋剤溶液に入れたマイクロファイバースプールを含む管は、
図12に示すように、ローラー上に配置し、1rpmで回転させてマイクロファイバーの均一な架橋を確実にした。
【0147】
押出後の化学架橋のために、2バーデバイス1508または溝付きローラー1110に押し出した未架橋またはin situ架橋のピンと張ったコラーゲンマイクロファイバーを半時間風乾し、次いで架橋剤溶液の70%エタノール溶液に浸漬し、低速度のロッカー上に配置した。水性エタノール媒体は、架橋時間を通してマイクロファイバーが脱水状態を保つことを確実にする。架橋後、さらなる試験を行うまで、マイクロファイバーをデシケーター中に保存した。
【0148】
いくつかの実施形態において、コラーゲン繊維は、回収時に湿潤しているかまたは湿っている。このような場合には、繊維は、特に回収時にそれらが接触することができる場合に、互いにはり付く傾向にある可能性がある。したがって、いくつかの実施形態において、2バーまたはマルチバーコレクターデバイスは、繊維が他の繊維に接触する前に繊維を乾燥することが可能であるため、用いることが有利な可能性がある。いくつかの実施形態において、溝付きローラーは、1つの溝に1本の繊維のみが回収され、繊維同士の接触が起きないようにされるため、湿潤繊維の回収に特に有用である。
【0149】
いくつかの実施形態において、繊維は、繊維が脱水浴を離れた後、回収される前に、繊維の上にガス(通常は空気)を吹き付けることによって乾燥してもよい。繊維は脱水浴とコレクターとの間で懸下され、コレクターは、平らなシリンダー、ボビン、または任意の他の適切なコレクターであってもよい。繊維は、乾燥しているため、互いに離しておく必要はない。
【0150】
いくつかの実施形態において、繊維は、室温でかつスピードバッグで0.25m/秒~約10m/秒、通常は約1m/秒~約4m/秒、より一般的には約2m/秒で、繊維の上に室温で空気を通過させることによって乾燥してもよい。乾燥空気の速度は、繊維を割いたり、分離させたり、または切断したりほど高くするべきではない。空気は、繊維を乾燥させるのにかかるおよその時間、通常は繊維を約1メートル移動させるのにかかる時間に等しい時間、通過させる。乾燥空気は、開放系または循環システムで、送風機によって動かしてもよい。いくつかの実施形態において、回収デバイス、たとえばボビンまたは平らなシリンダー。シリンダーは、形成速度の約1倍~約9倍の引き込み速度で回転させる。この環境で、本質的に無限に長い繊維が製造される可能性がある。
【0151】
架橋マイクロファイバーの脱水加熱処理(DHT)は、前述のようなグリオキサールでのさらなる架橋の有無にかかわらず、110℃の真空下で1、3および5日間、弛緩した押出マイクロファイバーを脱水することを含む。
【0152】
紫外線照射(UVR)媒介架橋のために、メタクリル化コラーゲンを押出に使用した。次いで、押出マイクロファイバーを、365nm照射UV光源に20分間さらした。次いで、これらのマイクロファイバーをデシケーターに入れるか、または10mMグリオキサールを含む70%水性エタノールでさらに架橋した。
【0153】
単一のマイクロファイバーは、一貫して取り扱うには繊細過ぎるので、単一のマイクロファイバーの機械的特性は、カートリッジ上の個々のマイクロファイバーの断面積とマイクロファイバーの既知量とを平均して極限引張強さ(UTS)、モジュラスおよび破断時の歪み(%)を測定する、「個別繊維」試験方法を使用して得た。2バー回収装置1508は円筒形のマイクロファイバーをもたらしたが、固体溝付きスプール上に回収したマイクロファイバーは、薄いリボン状であった。リボン状コラーゲン繊維の幅は、約10μm~約70μm、通常は約15μm~約60μm、より一般的には約20μm~約50μmである。リボン状コラーゲン繊維の厚さは、約4μm~20μm、通常は約5μm~約18μm、最も一般的には約6μm~約17μmである。
【0154】
幅は、Axio Vert.A1モデル(Zeiss社、ドイツ)などの倒立光学顕微鏡およびImageJソフトウェア(NIHシェアウェア、メリーランド州ベセスダ)を使用して、個別の長さ1.5インチの3つのマイクロファイバー上の10の異なる箇所で得た画像を解析することによって測定した。走査型電子顕微鏡(SEM)を使用したマイクロファイバー束の断面像を使用し、Image Jソフトウェアを使用して、マイクロファイバーの厚さを測定した。本開示のコラーゲンマイクロファイバーの実施形態のin vivoでの性能に関連すると考えられる厳しい機械試験の要求を満たすために、Gentlemanら,2003年に開示されているような、我々のマイクロファイバー試料に湿潤張力試験を行うための高スループット法を使用してもよい。
【0155】
浴および試料保持システムを使用して、カートリッジ内の束の湿潤引張強さ機械試験を行った。このシステムは、本開示の押出マイクロファイバーの実施形態の浸漬時に、5分ごとに試料を処理しながら30分間の浸漬を行うことが可能であった。浸漬流体は、Thermo Fisher Scientific社から入手できるGibco社のダルベッコリン酸緩衝生理食塩水(DPBS)であってもよい。通常は、MTS基準モデル42(ミネソタ州エデン・プレイリー)での一軸引張試験により、最低限4つのカートリッジを1mm/sの引張速度で、室温で機械的に湿潤試験して応力‐歪み曲線を得た。処理パラメータを最適化しつつ個別繊維試験を行って迅速に結果を出した。
【0156】
浴および試料保持システムは、流体中で試験する材料を覆うために十分に充填された浴を含む。流体は、Gibco社のダルベッコリン酸緩衝生理食塩水(DPBS)であってもよい。試験時に、試料ホルダーは、張力試験機の対向端のあご部によって流体中に保持した。試験は、あご部を互いから離して動かすことによって行った。
【0157】
本開示の湿潤実施形態のUTSは、通常は約1MPa~約800MPa、通常は約75MPa~約400MPa、より一般的には約90MPa~約350MPa、よりさらに一般的には約100MPa~約325MPaである。本開示の湿潤実施形態のモジュラスは、約10MPa~約7,500MPa、通常は約100MPa~約6,000MPa、より一般的には約1,000~4,000MPaである。
【0158】
本開示の乾燥実施形態のUTSは、通常は約25MPa~約1,900MPa、通常は約100MPa~約1,800MPa、より一般的には約5000MPa~約1,700MPa、よりさらに一般的には約1,200MPa~約1,700MPaである。本開示の乾燥実施形態のモジュラスは、約14,000MPa~約20,000MPa、通常は約15,000MPa~約19,000MPa、より一般的には約15,500~18,500MPaである。
【0159】
湿潤および乾燥繊維の特定の実施形態の比較試験は、湿潤繊維の約1~約755MPaの極限引張強さに対する乾燥繊維の約25~約1650MPaの極限引張強さ、湿潤繊維の約10~7,200MPaの弾性率に対する乾燥繊維の約15,950~約18,600MPaの弾性率、乾燥繊維の約2~約41%の破断伸びに対する乾燥繊維の約9~約14%の破断伸び、湿潤繊維の約14~約82μmの平均繊維径に対する乾燥繊維の約10~約70μmの平均繊維径という相対的範囲を示した。
【0160】
SEMイメージングを用いて、未架橋および架橋押出マイクロファイバーの断面と縦の微細構造特性とを求めた。Zeiss Evo 10顕微鏡(Zeiss社)を使用して、ビーム強度10kVでSEMイメージングを行った。断面については、マイクロファイバー束をDPBSに30分間浸漬し、SEMスタブ上で1時間乾燥し、スパッタコーティングして、イメージングを行った。
【0161】
TEMについては、Telo GLYグループ(グリオキサールで架橋したテロコラーゲン)からの乾燥マイクロファイバーを、蒸留水を使用して再水和した。次いで、これらを2%グルタルアルデヒド(Electron Microscopy Sciences社、ペンシルベニア州)および4%パラホルムアルデヒド(Alfa Aesar社、マサチューセッツ州)中、室温で30分間固定した。続いて、カコジル酸緩衝液(Electron Microscopy Sciences社)を使用して洗浄を2回(各洗浄10分)行った。これに続いて、1%四酸化オスミウム(Electron Microscopy Sciences社)中で30分間インキュベーションを行い、カコジル酸緩衝液で1回洗浄し、蒸留水で2回(それぞれ10分)洗浄した。一連の昇順濃度のエタノール(それぞれ、30%、50%、70%および95%で10分間1回、100%で10分間2回洗浄)での脱水を行った。次いで、マイクロファイバーをエタノールとプロピレンオキシド(Electron Microscopy Sciences社)の混合物の1:1混合物に10分間2回浸し、続いて100%プロピレンオキシド処理を10分間行った。これらの試料を1:1 EPON 812:プロピレンオキシド(Electron Microscopy Sciences社)中に終夜放置した。EPON 812はグリセロール系脂肪族エポキシ樹脂である。翌日、4:1 EPON 812:プロピレンオキシドに試料を4時間浸し、100%EPON 812に移して終夜インキュベートした。翌日、試料を新たなEPON 812樹脂に移し、弾丸カプセル(Electron Microscopy Sciences社)に組み込み、60℃で12時間重合させた。モールドを薄い切片にし、TEM(型番Jeol 1230、Jeol USA社、マサチューセッツ州)を使用してイメージングを行った。これらの値を測定するための代替法を使用してもよい。
【0162】
架橋マイクロファイバーの遊離アミノ基の量を評価するためにニンヒドリン試験を使用してもよい。このために、未架橋および架橋マイクロファイバーをそれぞれ14~16cmの長さに切った。同時に、製造業者のプロトコルに従って、様々な既知濃度の標準アミノ酸(グリシン(Sigma‐Aldrich社))の0.05%酢酸溶液を調製した。マイクロファイバー試料とグリシン溶液を、ニンヒドリン溶液(Sigma‐Aldrich社)中で20分間加熱し、続いて室温まで少なくとも1.5時間冷却した。次いで、試料およびグリシン標準品のそれぞれに95%エタノールを加えた。これらの試料の吸光度を、紫外・可視分光光度計(SpectraMax i3、Molecular Devices社、バージニア州ノーフォーク市オールドドミニオン大学)によって570nmで記録した。他の方法の試験を使用してもよい。
【0163】
様々な既知のグリシン濃度の吸光度を使用して検量線を作成した。未架橋試料(Mux)と架橋(Mc)マイクロファイバーにおける遊離アミノ基の量は、溶液の吸光度に比例し、かかる量は、作成したグリシンの検量線から求めた。架橋の程度を算出するために、以下の式1を使用した。
【0164】
【数1】
示差走査熱量測定(DSC)およびフーリエ変換赤外(FTIR)分光法を用いて、I型コラーゲンに特徴的なアミド結合が存在するかどうかを測定した。マイクロファイバーの試験は、示差走査熱量計(DSC2500、TA Instruments社、デラウェア州)を使用して行い、FTIR分光法は、Platinum ATR(Brucker社、マサチューセッツ州ビレリカ)で行った。FTIRスペクトルを使用して、波長1235cm
-1、1560cm
-1および1650cmにおける、I型コラーゲンに特徴的なアミド結合の3つの主要なピークの存在を確認した。未架橋および架橋マイクロファイバーは、Essential FTIRバイオインフォマティクスソフトウェア(Operant社、ウィスコンシン州マディソン)を使用してピークのシフトを評価することによって、出発材料と比較した。
【0165】
単一繊維での押出マイクロフルイディック繊維、150本のマイクロファイバーの束(コーテッドバイクリル4‐0(Ethicon社、ニュージャージー州)縫合糸によってつなぎ止め、10mmの最終サイズに切ったもの)または前述の機械試験に用いたカートリッジを、STERRAD化学的インジケータ(4MD Medical Solutions社、ニュージャージー州レイクウッド)を含むタイベックポーチ内にシールして、20KGy+1~2KGyの標的線量を使用する電子ビーム滅菌(Steri‐Tek社、カリフォルニア州フリーモント)に送付した。
【0166】
滅菌したグリオキサールおよびDL‐グリセルアルデヒド架橋マイクロファイバーを腱細胞増殖培地中で30分間水和し、ポリ(2‐メタクリル酸ヒドロキシエチル)(pHEMA)(Sigma‐Aldrich社)でプレコートした24ウェルプレートに入れた。2万5千個のヒト腱細胞(ZenBio社、ノースカロライナ州)(100μlの腱細胞増殖培地中)を、3連で、滅菌したマイクロファイバーに播種した。播種後、細胞を1時間付着させ、続いて500μlの腱細胞増殖培地をさらに加えた。12日後、マイクロファイバーに付着した腱細胞を、製造業者のプロトコルに従って、生細胞染色剤のCellTracker(商標)Green CMFDA(5‐クロロメチルフルオレセインジアセテート)(Thermo Fisher Scientific社)で染色した。次いで、試料を4%パラホルムアルデヒドを使用して固定し、続いて核染色剤のDAPI(Thermo Fisher Scientific社)で染色して、共焦点顕微鏡(Zeiss Axio Observer Z1、Zeiss社)を使用して、マイクロファイバー上に付着した腱細胞を視覚化した。
【0167】
ヒト腱細胞に対する押出マイクロファイバーの実施形態の細胞毒性(または細胞生存能力)を、CyQuant乳酸脱水素酵素(LDH)細胞毒性アッセイキット(Invitrogen社)およびMTTアッセイキット(Sigma‐Aldrich社)を使用し、製造業者のプロトコルに従って評価した。簡潔に言えば、アッセイ用の最適な播種密度を測定した後、48ウェルプレートの各ウェルに7×l03個の腱細胞をプレーティングし、37℃、5%CO2に維持した加湿インキュベーター内の腱細胞増殖培地中で24時間増殖させた。滅菌したマイクロファイバー束を細胞培養培地中で10分間すすぎ、各ウェルの腱細胞上に配置した。プラスチック上で増殖させた腱細胞(細胞のみ)を(細胞生存または生存能力の)陽性対照として使用した。ジブチルジチオカルバミン酸亜鉛(ZDBC)フィルムおよび10mMグリオキサール薬液を(細胞生存または生存能力の)陰性対照として用いた。エチコンバイクリル縫合糸は、押出マイクロファイバー束をつなぎ止めるために使用しているため、エチコンバイクリル縫合糸の影響もこの実験で評価した。製造業者のプロトコルに記載されているように、最大および自発的LDH放出を評価するために、試料を含まずに腱細胞を播種したウェルを準備した。試料を7日間インキュベートしてから、培地へのLDHの放出を評価した。製造業者のプロトコルに従って、LDHアッセイを使用して%細胞毒性を算出した。次いで、%細胞生存を、100-%細胞毒性として算出した。本開示の実施形態において、%細胞生存性は、少なくとも約94%、通常は少なくとも約95%、より一般的には少なくとも約96%、最も一般的には少なくとも約97%である。98%または99%細胞生存性を達成することも可能である。製造業者のプロトコルに従って、MTTアッセイを使用して%細胞生存能力を算出した。本開示の実施形態において、%細胞生存能力は、少なくとも約70%、通常は少なくとも約80%、より一般的には少なくとも約85%、最も一般的には少なくとも約90%である。他の適切な試験方法が使用可能である。
【0168】
本開示の押出マイクロファイバーの実施形態とともに増殖した生腱細胞の健康状態および生存能力も、製造業者のプロトコルに従って、AlamarBlue(商標)アッセイ(Bio‐Rad社、カリフォルニア州ハーキュリーズ)を使用して評価した。
【0169】
架橋マイクロファイバー束実施形態をラットに皮下移植した。すべての外科手術は、ISO 10993‐6に従い、オールドドミニオン大学(バージニア州ノーフォーク)の施設内動物管理使用委員会(IACUC:Institutional Animal Care and Use Committee)に承認されたプロトコルに従って行い、n=3で、架橋コラーゲンマイクロファイバー束(前述のように調製し滅菌した)またはコラーゲンコートFiberWire(登録商標)(縫合糸対照)を雌スプラーグ・ドーリー・ラットの皮下に埋め込んだ。ラットはイソフルラン吸入で麻酔した。脇腹の毛をそり、Nair除毛クリームを塗布して、手術部位から毛を除去した。脇腹部位に背側切開を行い、止血鉗子を使用してインプラント用のポケットを作成した。足場をポケットに設置した後、縫合糸を使用して切開を閉じた。4週間後、組織採取のために、ラットを人道的に安楽死させた。
【0170】
4週目で摘出したマイクロファイバー外植片を4%パラホルムアルデヒド(アルファ・エイサー社)で24時間固定し、次いでDPBS(Thermo Fisher Scientific社)に移した。試料を厚さ5μmに切片化し、連続切片をヘマトキシリン&エオジン(HE)およびIDEXX社(ウェストサクラメント)製マッソン・トリクロームで染色した。偏光顕微鏡法を使用して、インプラント周辺の組織のコラーゲン構成をイメージングした。
【0171】
抗体の製造業者によって提供された標準プロトコルを用いて、我々のインプラントの周辺の天然組織におけるCCR7(M1)の存在およびCD163(M2)マクロファージの表現型を検出するために、連続切片に免疫標識も行った。簡潔に言えば、脱パラフィン後、抗原採取(pH6の10mMクエン酸緩衝液で20分間煮沸)、透過処理および、2.5%ウマ血清でのブロッキング後に、スライドをCD163(M2マクロファージ表現型)、またはCCR7(M1マクロファージ表現型)のいずれかについて染色した。M2マクロファージ標識であるマウス抗ラットCD163(#MCA342GA、BioRad社、カリフォルニア州)を1:30に希釈して、加湿室で終夜インキュベートした。インキュベーション後、スライドをPBSで洗浄し、1:50希釈のヤギ抗マウス二次抗体(#A‐11005、Thermo Fisher Scientific社)とともに、室温暗所で1時間インキュベートした。M1マクロファージ標識であるCCR7をPBSで1:50に希釈し、終夜インキュベートした(#MA5‐31992、Thermo Fisher Scientific社)。翌日、PBS洗浄ステップ(3回)後、ヤギ抗ウサギ蛍光抗体(#A32740、Thermo Fisher Scientific社)を1:200の濃度でスライドに塗布し、室温暗所で1時間放置した。一次対照のために、血清でブロックしたスライドをIgGマウス(1:30)(Thermo Fisher Scientific社)およびヤギ抗マウス二次抗体(1:50)またはIgGウサギ(1:200)(Thermo Fisher Scientific社)およびヤギ抗ウサギ二次抗体(1:200)のいずれかで染色した。二次対照のために、血清でブロックしたスライドを二次蛍光抗体のみで染色した。すべての抗体はブロッキング血清で希釈した。すべてのスライドは、核をDAPIで5分間染色し、PBSで洗浄し、VectaMount(Vector Labs社、カリフォルニア州)を使用して乗せ、視覚化および分析を行った。
【0172】
免疫標識したスライドを倒立顕微鏡(Axio Vert.A1モデル、Zeiss社)を使用して検査し、イメージングした。同じ暴露条件で試験スライドおよび対照スライド(データは示さず)の蛍光画像を取得した。試験試料の画像を評価した。定量分析を行って、M1のみ、M2のみ、M1およびM2、ならびに/またはM1/M2表現型なしを発現している細胞数を求めた。ここで、インプラントおよび天然組織(2~3細胞層)の境界面におけるおおよそ20~30μmの画像(試験試料1つについて3画像を分析した)1つについて4~5領域を高出力顕微鏡視野(40×拡大)を使用して分析した。DAPI染色した核を数えることによって細胞の総数を測定した。各マーカーについて陽性標識された細胞数も数えた。特異的マーカーで標識された細胞の割合を、その領域の細胞の総数の割合として測定した。
【0173】
本開示の実施形態について、長期安定性試験も行った。Telo GLYマイクロファイバーは、カートリッジに張力をかけて脱スプールした。前述のように滅菌した6つのカートリッジを水和して機械的試験を行って、マイクロファイバーの機械的特性を得た後、37℃および5%CO2を維持したインキュベーター内の細菌および真菌汚染を抑制するために、1% Gibco(登録商標)抗生物質‐抗真菌薬(ABAM)(Thermo Fisher Scientific社)を添加したイーグルの最小必須培地(EMEM)(ATCC社、バージニア州)を含むペトリ皿で、滅菌したカートリッジの残りの部分をインキュベートした。実験の期間を通じて、カートリッジが無菌で汚染のない培地に常に浸漬され、それによって水和が維持されていることを確認した。1週目、1ヶ月目、3ヶ月目および6ヶ月目に、浸漬した6つのカートリッジを取り出してMTS試験を行った。同時に、経時的なマイクロファイバーの膨潤の程度を測定するために、マイクロファイバーの直径を測定した(前述のように)。
【0174】
対応のない両側t検定を使用して、任意の2グループ間の特性または特徴における有意差を評価した。二元配置分散分析と、それに続くテューキーの事後多重比較検定も使用して、
図17の表1の様々な架橋剤グループについてUTSの差異を評価した。下記の追加詳細に記載されているように、普通の一元配置分散分析に続くダネットの多重比較検定も、健康と生存能力の差異を評価するために行った。アプリオリに、p値<0.05を有意と定義した。すべての検定はGraphPad Prism 7を使用して行った。すべてのパラメータは平均値±標準誤差(S.E.M.)で示している。
【0175】
追加実施例
本開示の製品および方法の実施形態を行うことによって実施例を得た。以降の試験のためのコラーゲンマイクロファイバーを一定に生成するために、
図15および
図16のロバストなマイクロフルイディック押出装置を設計し、使用した。このアプローチは、架橋異常のない連続的なマイクロファイバーの生成をもたらした。
【0176】
コラーゲンマイクロファイバーを強化し、安定化させるための、広範囲の、従来の、新規の、および組み合わせの架橋条件をスクリーニングした。
図18の表2は、架橋剤の一覧と、前述の試験方法を使用して未架橋マイクロファイバーと比較した、架橋マイクロファイバーの50タイプの平均UTSを示す。このデータは、様々な架橋剤/架橋プロトコル(in situまたは押出後の架橋、架橋剤濃度の範囲および架橋時間)が、程度の差はあれ、マイクロファイバーのUTSに影響を与えることを示した。それらの架橋剤で試験したすべての条件の中で著しく高い平均UTSを示した架橋条件には、
図18の表2において星印を付けた(p<0.01)。
【0177】
図18に示すように、グリオキサール(押出後10mMで72時間、121.2±7MPa)およびDL‐グリセルアルデヒド(押出後25mMで72時間、128±12MPa)などの押出後の化学薬剤による架橋手順は、未架橋マイクロファイバー(6.1±1MPa)よりも20倍近く大きいUTSを示すマイクロファイバーを生成した。特に、本押出装置を使用したマイクロフルイディックマイクロファイバーにEDCおよびEDC/NHSを使用した架橋は、UTS値(それぞれ16.6±2MPaおよび30.2±1MPa)をもたらしたが、これは前述のグリオキサールおよびDL‐グリセルアルデヒドグループよりも著しく低かった。重酒石酸コリン(1mMまたは100mM)、EGCG(200mMおよび1mM)およびD‐ソルビトール(200mM)などの化学架橋剤を使用したin situ架橋は、未架橋マイクロファイバーと比較してUTSの有意な減少(p<0.01)をもたらした。押出後のDHT(3日、16.2±1MPa)などの物理的架橋技術も、未架橋マイクロファイバーよりも強いマイクロファイバーをもたらしたが、前述のグリオキサールおよびDL‐グリセルアルデヒドを使用する化学架橋グループよりも弱かった。押出後のメタクリル化コラーゲンマイクロファイバーのUVR処理(1.9±0.2MPa)も、未架橋コラーゲンマイクロファイバーよりも著しく弱い繊維をもたらした(p<0.01)。
【0178】
グリオキサールを使用する押出マイクロファイバーが、UTSが最も高かったので、様々な時点で10mMグリオキサールを使用して、いくつかのin situ(L‐リジンまたはD‐ソルビトール)または別様の架橋繊維(DHTおよびUVR)の追加の架橋を行った。グリオキサールを使用する追加の架橋は、すべてのこれらのグループのUTSを増加させたが、最も有意な増加(p<0.01)は、L‐リジン(10mM、2時間)/グリオキサール(10mM、24時間)(96.9±5MPa)およびUVR(0.3時間)/グリオキサール(10mM、24時間)(86.6±10MPa)グループで認められた。
【0179】
次に、
図19、
図20および
図21を参照して、
図18の表2において試験した架橋剤グループからの典型的なマイクロファイバーの機械的特性を、ヒトACL(NoyesおよびGrood,1976年;Petersら,2018年)、アキレス腱(Wrenら,2001年)および真皮(Gallagherら,2012年)について報告されている値と比較した。
図19は、グラフ1900で、UTS(MPA)を示す。
図20のグラフ2000は、モジュラスI MPaを要約し、
図21のグラフ2100は、破断時の歪み%に関する。ACL値は、線1930、線2030および線2130で示す。AT値は、線1910、線2010および線2110で示し、真皮値は、線1920、2020および2120で示す。各結果は単一のマイクロファイバーに関する。
図19に示す結果は、架橋グループのいくつか、特に、in situで10mM L‐リジンの有り無しでの10mMグリオキサールと、25mM DL‐グリセルアルデヒドとのコラーゲンマイクロファイバーの平均UTSが、ヒトACL、ATおよび真皮に関して報告されたUTS以上であることを明らかにした。
【0180】
これらのチャートは、前述のように押し出されたマイクロファイバーの機械的特性が、架橋シナリオを変えることによって、ヒト前十字靱帯(ACL)、ヒトアキレス腱(AT)およびヒト真皮の機械的特性に適合するか、かつ/またはそれを超えるように調整することができることを明らかにしている。データは、少なくとも4回の同一反復試験で採取し、エラーバーは標準誤差を示す。
【0181】
実施例3~実施例6まで
比較例1、2および3
図18の表2、
図19、
図20および
図21に示す一次スクリーニングからの、イタリック体で示す4つの架橋条件は、さらなる評価のために、機械的性能、処理時間、および/またはコストなどの顕著な要件を要因として考慮している。本明細書において、以下の繊維が例示されている。
【0182】
実施例3は、10mMグリオキサールで72時間架橋したテロコラーゲン(Telo GLY)である。実施例4は、25mM DL‐グリセルアルデヒドで24時間架橋したテロコラーゲン(Telo DLG)である。実施例5は、10mMグリオキサールで24時間架橋したアテロコラーゲン(Atelo GLY)である。実施例6は、25mM DL‐グリセルアルデヒドで72時間架橋したアテロコラーゲン(Atelo DLG)である。比較例1は、0.25mM EDCで24時間架橋したテロコラーゲン(Telo EDC)である。これらのグループを、未架橋マイクロファイバー(比較例2)および乾燥Telo GLY繊維(比較例3)と比較した。Telo EDCグループ(比較例l)は、この分野で広く使用されている無害な架橋剤であるため(Cornwellら,2007年;Eneaら,2011年;Ahmadら,2015年)、比較のために使用した。さらに、材料特性をさらに最適化するために、2バーデバイス1508と比較して、溝付き固体スプール1110への高い引き込み回収(原料供給と比較して高い回収速度)を使用して、
図22に示す薄いリボン状マイクロファイバーを生成した。
【0183】
図22は、微細構造的特徴を描写した実施例3のTelo GLYマイクロファイバーの画像を示す。フレームAは、単一の乾燥押出架橋マイクロファイバーの光学顕微鏡画像である。フレームBおよびフレームCは、様々な倍率での単一の乾燥マイクロファイバーのSEM画像である。フレームDは、PBSに30分間浸漬した束ねたマイクロファイバーの断面を示す。フレームDは、本明細書に記載の、
図15および
図16に示す新規マイクロフルイディック装置の実施形態を使用した押出と、それに続く架橋戦略が、矢印2206で示すように、一貫性のある均一な薄いリボン状マイクロファイバーを製造したことの構造詳細と証拠を明らかにしている。フレームBの矢印2201および矢印2202は、乾燥マイクロファイバーの縦の軸に沿った隙間と隆起を示している。フレームCの矢印2204および矢印2205は、湿潤マイクロファイバーの繊維状サブ繊維構造を示している。フレームE、フレームFおよびフレームGは、押出マイクロファイバーの縦のTEM画像である。
【0184】
架橋化学の最適化および回収方法の変更が、
図23、
図24、
図25、
図26、
図27および
図28に要約しているように、機械的特性における有意差につながった。前述の浴および試料保持システムにおいて張力試験を行った。
図22のフレームA、フレームBおよびフレームCにおいて、実施例3に示されるような典型的な画像から測定される、
図23および
図24のDPBSに浸漬されたリボン状コラーゲンマイクロファイバーの幅および厚さを使用して、
図25のグラフ2500の改善されたUTSおよび、
図26のグラフ2600のモジュラスを算出した。実施例3、実施例4、実施例5および実施例6を、比較例1、比較例2および比較例3と同様に試験した。
【0185】
表示2402で示すように、湿潤未架橋(34.1±2μm)リボン状コラーゲンマイクロファイバーと比較して、湿潤Atelo GLY(39.2±1μm)およびTelo EDC(46.4±2μm)リボン状コラーゲンマイクロファイバーは、著しく広い幅を示した(p<0.05)。同様に、
図23の表示2301および
図23の表示2303で示すように、湿潤Atelo GLYリボン状コラーゲンマイクロファイバーは、未架橋リボン状コラーゲンマイクロファイバー(9.2±0.5μm)よりも著しく厚かった(11.9±0.5μm)(p<0.01)。DPBSへの浸漬によるリボン状コラーゲンマイクロファイバーの、Telo GLY(11.1±0.5μm)、Telo DLG(8.6±0.2μm)およびAtelo DLG(10.9±0.4μm)の厚さとTelo GLY(36.1±0.7μm)、Telo DLG(35.4±0.8μm)およびAtelo DLG(31.1±1μm)の幅は、未架橋リボン状コラーゲン繊維のものと類似していた。
図25のグラフ2500で示されたUTSの最も大きな変化は、未架橋リボン状コラーゲン繊維に認められ、表示2504で確認される平均UTSおよび、
図26のグラフ2600において表示2604で確認されるモジュラスは、6.1±1MPaおよび119.8±23MPaから、35.8±3MPaおよび701±53MPaに増加した。Telo GLY(それぞれ、121±7MPa UTSおよび1103±63MPaモジュラス~299±15MPaおよび3431±86MPaへ)およびAtelo DLG(それぞれ、128MPa UTSおよび1734±79MPaモジュラス~231±18MPaおよび3408±185MPaへ)などのグループからのリボン状コラーゲンマイクロファイバーは、
図27のグラフ2700に示す平均UTSおよび、
図28のグラフ2800に示すモジュラスにおいて少なくとも2倍増を示した。試験したすべてのグループについて、破断時の歪み(%)の変化はなかった。
【0186】
溝付き固体スプールからのすべての押出リボン状コラーゲンマイクロファイバーの張力特性において有意な増加が認められた。未架橋リボン状コラーゲンマイクロファイバーグループは、他の架橋剤グループと比較して、平均UTSおよびモジュラスにおいて最も高い倍率変化を示した。実施例3~実施例6および比較例1~比較例3までのそれぞれについて、
図27のグラフ2700は、
図19、
図20および
図21に示すデータと比較してUTSの有意な倍率変化を示し、
図28のグラフ2800は、
図19、
図20および
図21の図に示すデータと比較してモジュラスの有意な倍率変化を示す。
【0187】
対応のない両側t検定を使用して、
図23、
図24、
図25、
図26、
図27、
図28、
図29、
図30、
図31、
図32、
図33、
図37、
図38および
図39における任意の2つのグループ間の有意差を評価した。二元配置分散分析と、それに続くテューキーの事後多重比較検定と対応のない両側t検定を使用して、
図17の表1の様々な架橋剤グループについてのUTSの差異の評価を行った。以下の追加詳細で述べられているように、通常の一元配置分散分析と、それに続くダネットの多重比較検定を行って、
図31、
図32および
図33の差異を評価した。アプリオリに、p値<0.05を有意と定義した。すべての検定はGraphPad Prism 7を使用して行った。すべてのパラメータは平均値±標準誤差(S.E.M.)で示している。
【0188】
結果は平均±標準誤差で示すが、これは、2以上の個別の実験からの3回の反復試験を表す。表示2301は、p<0.05を示す。表示2402および表示2502は、p<0.01を示す。表示2303は、p<0.005を示す。表示2504および表示2604は、p<0.0001を示す。
【0189】
本開示の実施形態について、光学顕微鏡、SEMおよびTEMイメージングを用いて、マイクロファイバーの微細構造を測定した。他の種類のイメージングを使用してもよい。実施例3において、グリオキサール架橋テロコラーゲンマイクロファイバーを特徴付けた。
図22のフレームAで示す光学顕微鏡法イメージングおよび、
図22のフレームBのSEMイメージングは、縦の軸に沿った乾燥マイクロファイバーの均質な幅を裏付けた。縦の断片の
図22のフレームBおよび高倍率SEM(
図22のフレームC)イメージングは、
図22のフレームDで示すように、乾燥マイクロファイバー内の隆起および隙間の平行配向を明らかにした。
図22のフレームDは、DPBSで浸漬した押出架橋マイクロファイバー束の、SEMを使用した断面の特徴を強調している。これらの画像は、矢印2206で示されているように、明白な繊維状サブ繊維構造を有する外部の滑らかな表面の微細構造的特徴を明らかにしている。これは、押出架橋マイクロファイバーが、一貫性のある薄いリボン状であることを示す。天然結合組織における分子からナノスケールまでのコラーゲン配向が我々の架橋マイクロファイバーにおいて再現されているというさらなる証拠が、
図22の、フレームE、フレームFおよびフレームGのTEMイメージングから明らかにされている。
【0190】
架橋の程度を生化学的に評価するために、架橋マイクロファイバーの実施形態の生化学的、生物物理学的特徴付けであるニンヒドリン試験を使用した。結果を
図29のグラフ2901に示す。実施例3のTelo GLY(86±1%)と実施例6のAtelo DLG(82±3%)マイクロファイバーは、実施例5のAtelo GLY(68±4%)と実施例4のTelo DLG(59±6%)と比較して著しく高い架橋の程度を示しており、これは、長時間の架橋が架橋効率を改善したことを強調している。
【0191】
押出コラーゲンマイクロファイバーのタンパク質一次構造および二次構造も評価した。酸性化した出発材料のSDS‐PAGE分析は、コラーゲンα、βおよびγ一次鎖の存在を裏付けた。しかしながら、マイクロファイバーを酸に溶解することができなかったため、マイクロファイバーの酸抽出物中のコラーゲンを検出することができなかった。
【0192】
示差走査熱量測定(DSC)の測定を用いた押出マイクロファイバーの生物物理学的特徴付けは、グラフ2901で試験した試料と同じ試料についての
図29のグラフ2902に示されるように、未架橋のマイクロファイバーグループと架橋のマイクロファイバーグループとの間での、融解温度の有意でない増加を明らかにした。しかしながら、押出マイクロファイバーの平均融解温度(74±3℃)(グラフ2902の線2930)は、ヒトATのもの(グラフ2902の線2920)(60℃)よりも著しく高く(Wiegnad,PatczaiおよびLorinczy,2017年)、これは、より大きな全体的な構造安定性を示す(Sanchez‐Ruiz,1995年)。
図29のグラフ2903のFTIRスペクトルは、アミドI(~1650cm
-1)領域、アミドII(~1560cm
-1)領域、アミドIII(~1235cm
-1)領域、アミドA(~3285cm
-1)領域およびアミドB(~2917cm
-1)領域において有意なピークシフトを示さず、これは押出後および、本開示に用いた架橋プロセス後にマイクロファイバーの二次構造に変化はないことを示す。グラフ2901のデータは平均値±標準誤差で示され、2つの個別の実験からの3回の反復試験を表す。グラフ2901において、表示2910はp<0.05であることを示している。
【0193】
図30の図解3000のイラスト3001および3002と、
図31、
図32および
図33に示すように、本開示の実施形態の押出マイクロファイバーの細胞付着、代謝活性および細胞毒性も測定した。これらの図は、実施例3~実施例6、比較例2および他の試料を含む。ヒト腱細胞を用いて、前述のように、コラーゲン繊維の細胞適合性を評価した。細長い形状のTelo GLYマイクロファイバーへの腱細胞の付着(実施例5)を
図30のイラスト3001に示す。Telo GLYマイクロファイバーに播種した腱細胞の約70%が、12日後に付着したままであった。実施例3~実施例6、比較例1および他の試料について
図31に要約しているように、陽性対照(細胞のみのグループ)と比較して、AlamarBlue蛍光によって、7日以上、腱細胞の代謝活性に有意な変化は認められなかった。しかしながら、選択した繊維グループからのマイクロファイバーとともに増殖している細胞の代謝活性は、陰性対照(10mMグリオキサール化学薬剤およびZDBCフィルム)の代謝活性よりも著しく高かった(p<0.05)。
図32に示すように、MTT試薬を用いてアッセイしたとき、マイクロファイバーとともにインキュベートした腱細胞の生存能力は、プラスチック上で増殖した腱細胞(100%)と比較して75%~85%であった。陰性対照(10mM GLY化学薬剤およびZDBCフィルム)は、「細胞のみ」、Telo DLG(実施例4)、Atelo GLY(実施例5)およびTelo GLY(実施例3)のグループよりも、著しく低い(p<0.005)腱細胞の生存率を示した。LDHアッセイ(
図33)を用いた場合、Atelo DLGおよびTelo DLGを除くすべての押出マイクロファイバーグループが、「細胞のみ」のグループと類似した腱細胞生存能力を誘発したことを除けば、同様な結果が認められた。
図33の表示3303で示すように、7日間の終了時に、10mM GLY化学薬剤グループには、培地へのLDH放出を試験するに足りる腱細胞(ND)がなかった。創傷閉鎖に通常推奨される市販のコーティングされたエチコン製バイクリル縫合糸と比較した。本開示のマイクロファイバーの実施形態は、LDHおよびMTTアッセイの両方(
図32および
図32)を用いた場合、この縫合糸よりも著しく低い細胞毒性(p<0.005)を示すという結果が示された。全体として、複数のアッセイを用いて押出マイクロファイバーの細胞適合性を立証した。
【0194】
特に、画像3001および画像3002は、それぞれDAPI(矢印3005)および生細胞染色剤(CMFDA、矢印3003で示されている)を用いた、細胞質伸長および伸長した核を示す、Telo GLYマイクロファイバー(実施例3)に付着したヒト腱細胞の典型的な共焦点像を示す。
図31は、細胞のみのグループと比較して、AlamarBlueを用いてアッセイし、7日間インキュベートした後に、架橋マイクロファイバーとともにインキュベートしたヒト腱細胞の代謝活性に有意な変化がないことを示す。代謝活性は、マイクロファイバーグループと比較して、陰性対照(ZDBCフィルムおよび10mM GLY化学薬剤)およびバイクリル縫合糸とともにインキュベートした腱細胞において著しく低かった。
図32に要約しているMTTアッセイ結果は、細胞のみのグループと比較して、マイクロファイバーグループとともにインキュベートした腱細胞の生存能力は低下するが、陰性対照と比較すれば有意な増加を示すことを明らかにした。一方で、
図33に示すLDHアッセイ結果は、陰性対照だけでなく、Atelo DLG(実施例6)およびTelo DLG(実施例4)マイクロファイバーグループの細胞生存の有意な減少を示している。MTTおよびLDHアッセイは、両方とも、腱細胞でのインキュベーションの7日後に行った。
図32および
図33のすべてのデータは、細胞のみのグループに対して正規化している。表示3303における(ND)は、10mMグリオキサール化学薬剤処理グループが、アッセイの終了時点で、LDHを検出するためには細胞数が不十分な著しい増殖抑制があったことを示す。これらの図において、表示3101および表示3301は、p<0.05であることを示し、表示3202は、p<0.01であることを示し、表示3103および表示3203は、p<0.005であることを明らかにし、表示3204および表示3304は、p<0.0001であることを明らかにしている)。
【0195】
本開示の押出マイクロファイバーの実施形態の生体適合性を評価するために、実施例3~実施例6(Atelo DLG、Telo DLG、Telo GLYおよびAtelo GLY)の選択した4つの架橋剤グループの滅菌したマイクロファイバー束を、ISO 10993‐6に従ってラットに皮下移植した。
図23、
図24、
図25、
図26、
図27および
図28における4つの架橋剤グループのそれぞれから移植したマイクロファイバー束と、縫合糸対照(コラーゲンコートFiberWire(登録商標))グループは、
図34、
図35および
図36に示す、様々な程度の細胞浸潤、新生血管、コラーゲン沈着および組織リモデリングを特徴とする別個の宿主組織の反応を誘発した。中でも、グリオキサール架橋マイクロファイバーグループ(Telo(GLY)(実施例3)またはAtelo(GLY)(実施例5))は、DL‐グリセルアルデヒド(Telo DLG(実施例4)またはAtelo DLG(実施例6))架橋グループと比較して弱い炎症誘発性反応を示した。
図34の横断画像3401および縦画像3402に示すTelo GLY(実施例3)グループの典型的なHE染色画像は、横断画像3601および縦画像3602を含む、
図36に示す縫合糸対照と比較して著しく高い細胞浸潤を示した。
図36の縫合糸対照は、マイクロファイバーインプラントと比較して、4週目に強い炎症反応を誘発した。
【0196】
図35の画像3501において、Telo(GLY)(実施例3)マイクロファイバーインプラントの周りの天然組織において新しく形成されたコラーゲンの沈着をマッソン・トリクローム染色によって視覚化した。マッソン・トリクローム染色した縦の断片は、
図35の画像3502に示し、また
図36の画像3602の偏光イメージングは、マイクロファイバーの周りに組織的に新しく形成されたコラーゲンの沈着を示す。
【0197】
HE染色切片(
図34の画像3401の黄色矢印)の高倍率断面像で見られるように、マイクロファイバーインプラント内および周辺組織において血管および毛細血管が同定された。
【0198】
図34、
図35および
図36は、4週目における、Telo GLY(実施例3)グループのラット皮下インプラントの典型的な画像である。画像3401および画像3501は、
図34のHEおよび
図35のマッソン・トリクロームの横断断片を示す染色スライド上で、矢印3410によって識別されるマイクロファイバーmを示す。挿入画像3490は、HEインプラントの断片全体を示し、挿入画像3495は、画像3401で示された部分を示す。同様に、挿入画像3590は、マッソン・トリクロームインプラントの断片全体を示し、挿入画像3595は、画像3501で示された部分を示す。画像3401および画像3501は、いずれも、著しい細胞浸潤を示す。
図34の矢印3420は、インプラント内の血管を指し示す。画像3601は、HE染色を用いて、対照試料であるコラーゲンコートFiberWire(登録商標)における無視できる細胞浸潤を示す。画像3402はHEを示し、画像35032は、マイクロファイバーインプラントの縦断片のマッソン・トリクローム染色を示す。
図36の偏光画像3602は、配向したマイクロファイバーおよび、インプラントの周囲に新しく形成されたコラーゲンを示す。画像3402、画像3502および画像3602は、インプラントの周囲の天然組織における新しい配向したコラーゲンの形成を示す。画像3601の凡例「縫合糸対照」は、コラーゲンコートFiberWire(登録商標)を示す。
【0199】
免疫染色を用いて、4つの架橋剤グループからのマイクロファイバーインプラントの周囲の天然組織におけるマクロファージ分極の程度を測定した。
図37および
図38は、4週目における、Telo GLY(実施例3)マイクロファイバーインプラントの周囲のラットの天然組織におけるCCR7(M1)(
図37の画像3700)およびCD163(M2)(
図38の画像3800)マクロファージ表現型の発現パターンを示す典型的な免疫蛍光画像である。
図38は、M1およびM2の両方、M1のみ、M2のみ、またはM1/M2表現型なしを発現したマクロファージの割合の定量化を示す。
図39のグラフ3900に示すように、グリオキサール架橋グループ(Telo(GLY)(実施例3)およびAtelo(GLY)(実施例5))は、DL‐グリセルアルデヒド架橋グループ(Telo DLG(実施例4)およびAtelo DLG(実施例6))と比較して、M1およびM2表現型を発現するマクロファージの著しく高い割合(約40%)を示した。さらに、Telo(GLY)(実施例3)グループとAtelo(GLY)(実施例5)グループとの間で、Telo GLYインプラントは、M2のみの表現型(6%)を発現する細胞の小さなサブセットを誘発したのに対し、グループの残りは、無視できるM2のみの表現型(Atelo GLY(0.2%)、Telo DLG(0%)およびAtelo DLG(0%)(
図39))を示した。グリオキサール架橋グループ(Telo GLY(24%)およびAtelo GLY(19%))と比較して、DL‐グリセルアルデヒド架橋グループ(Telo DLG(64%)およびAtelo DLG(58%))において、M1表現型を有する細胞の割合が著しく高かった。前述のように、適切な対照の染色は、無視できる非特異的バックグラウンド染色を示した(図示せず)。縫合糸対照試料の切片化アーチファクトおよび、著しいバックグラウンド染色は、これらの試料に対してこの分析を行うことを困難にした。
【0200】
典型的な免疫蛍光画像3700および免疫蛍光画像3800は、矢印3840で示されるマイクロファイバーであるTelo(GLY)(実施例3)に対する4週目における宿主マクロファージ応答の例を示す。黄色矢印3710および黄色矢印3810は、M1およびM2の両方を発現している細胞の例を示す。オレンジ色矢印3720およびオレンジ色矢印3820は、M1のみを発現している細胞の例を示す。白色矢印3730および白色矢印3830は、M2のみの表現型を発現している細胞を示す。矢印3840は、mによって示されるマイクロファイバー束を指し示す。
図39のグラフ3900は、架橋マイクロファイバーの4グループについて、M1およびM2、M1のみ、M2のみ、またはM1/M2表現型なしを発現している細胞の%を示す。この分析からの結果は、試験したすべてのマイクロファイバーグループにおける再生促進性M2マクロファージ表現型の開始を示す。グリオキサールで架橋した繊維グループは、DL‐グリセルアルデヒド架橋繊維グループと比較して、M1およびM2表現型を有する細胞の高い割合を示した。さらに、Telo GLYグループは、わずかだが有意なM2のみのマクロファージのサブセットを有していた。グラフ3900において、表示3901は、p<0.05であることを明らかにし、表示3902は、p<0.01であることを示し、表示3903は、p<0.005であることを示す)。
【0201】
本開示のマイクロファイバーの実施形態の培地中での長期水和反応の、機械的特性と膨潤の程度とに対する影響を測定した。Telo(GLY)(実施例3)マイクロファイバーが、最適な機械的特性、細胞適合性および生体適合性を示したため、in vitroでの生理的条件を模倣して、長期安定性についてこのグループをさらに試験した。EMEM(イーグルの最小必須培地)でのインキュベーションは、
図40のグラフ4000で示すように、6ヶ月目で53%(36.4±1.1μm(0日目)~56.0±1.6μm(6ヶ月目)まで)のマイクロファイバー幅の増加をもたらした。このグラフは、経時的な湿潤マイクロファイバーの膨潤の程度を示す。この膨潤は、機械的特性の著しい低下を伴う。
図41のグラフ4100は、破断時の平均力が6ヶ月目でその初期値から54%減少したことを示す。平均UTS(
図42のグラフ4200)およびモジュラス(
図43のグラフ4300)も、6ヶ月目で開始時点から82%減少した。インキュベーションの0日目から6ヶ月目の間で破断伸び(%)に有意な変化はなかった(
図44のグラフ4400)。
【0202】
このように、
図40、
図41、
図42、
図43および
図44は、Telo GLYマイクロファイバーが安定であり、in vitroでの生物学的環境を模倣した条件下(37℃、5%CO
2に維持した加湿インキュベーター中、無菌細胞培養培地)でインキュベートしたとき、6ヶ月目まで溶解しなかったことを示す。
【0203】
これらの図からわかるように、加湿インキュベーター中、37℃、5%CO
2で1週目、1ヶ月目、3ヶ月目および6ヶ月目に評価した、無菌EMEM中、張力下でインキュベートしたTelo GLYマイクロファイバーの機械的安定性は、0日目と比較して、6ヶ月目の終了時に、Telo GLYマイクロファイバーは50%膨潤し(
図40)、破断強度は60%低下し(
図41)、UTSは80%低下し(
図42)、モジュラスは80%低下した(
図43)。しかしながら、6ヶ月目の終了時に、%破断時の歪みに有意な変化はなかった(
図44)。これらの図に示すすべての値は、0日目の1の値に対して正規化している。これらの図の連続線は、読者へのガイドとしてのみ役立たせるために目視により描いたものである。データは平均値±標準誤差で示し、これは少なくとも5回の反復試験を表す。
【0204】
SDS‐PAGEを用いて、コラーゲン出発材料(凍結乾燥したテロコラーゲンまたはアテロコラーゲン)と、未架橋および架橋マイクロファイバーを比較した。コラーゲン出発材料は、終夜撹拌後に、50mM HClに容易に溶解した。しかしながら、押出マイクロファイバーは0.5mg/mlの濃度で溶液にならず、したがってバンドを示さなかった。マイクロファイバーの酸抽出物中のコラーゲンの有無を確認するために、これらの抽出物を出発材料および前染色分子量マーカー(HiMark、Invitrogen社、カリフォルニア州)の溶液とともに勾配ゲル(3%~8%)(Invitrogen社)で電気泳動した。SimplyBlue(商標)(Invitrogen社、カリフォルニア州)を用いてゲルを染色し、次いで脱イオン水ですすいでそれらを脱染した。次いで、ゲルを白色光で投影し、すべての目に見えるタンパク質バンドを調べた。このように、SDS‐PAGEは、最大UTSと未架橋繊維とを有するグループからの押出繊維が、約115kDa領域のモノマー領域、約230kDa領域のダイマー領域および約460kDa領域のトリマー領域に特徴的なバンドを有するI型コラーゲンフィンガープリントを示す酸性化した出発材料と比較して、酸加水分解に耐性を示したことを明らかにしている。
【0205】
図45は、本開示の実施形態と比較した、文献に掲載された最も性能の高い(水和)架橋コラーゲン繊維のいくつかの機械的張力特性を要約している。
【0206】
要約すると、本開示は、天然の縫合糸から操作された結合組織に至るまでの、適応症に使用する生体適合性繊維として精度、一貫性およびスケーラビリティを有するI型コラーゲンマイクロファイバーを製造するための新規マイクロフルイディック押出プロセスに関する。本開示は、本開示のバイオ製造したグリオキサール架橋テロコラーゲンマイクロファイバーの実施形態が、従来の架橋コラーゲン押出マイクロファイバーよりも優れた乾燥および湿潤張力特性を示すことを明らかにする(PaulおよびBailey,2003年;CarusoおよびDunn,2004年;Zeugolis,PaulおよびAttenburrow,2009年;Eneaら,2011年)。
【0207】
従来の研究の多くは、水和繊維について張力試験を行ったかどうかを報告してないか、または乾燥繊維についての疑わしく紛らわしい結果を示しているか、または十分に水和されている場合はその繊維がどのようにして湿潤されたかを開示してないか、であるが、本明細書における本開示の実施形態の結果は、比較のために、またこの分野における成長のために重要な詳細な試験方法とともに、最適化された架橋繊維の乾燥および水和特性を提供する。
【0208】
溝付きドラムへの繊維の回収は、すべての架橋マイクロファイバーの構造的および機械的水和特性に著しい変化をもたらした(
図22、
図23、
図24、
図25、
図26、
図27、および
図28参照)。機械的に、改善されたこの強度は、ACL、アキレス腱、真皮または任意の他の柔らかい結合組織よりも強い繊維張力特性をもたらす、かって繊維であったリボンへのテンパリング、菲薄化および改善された分子の配向に関連する可能性がある。
【0209】
本開示の実施形態において、架橋機構の効率の程度の測定が重視される。不十分な架橋は、より低い引張強さをもたらす場合があるが、化学薬剤の架橋剤の過剰使用は、細胞毒性を引き起こす、マイクロファイバーの表面への架橋剤の残留物をもたらす場合がある。ニンヒドリン試験(
図36)は、最大架橋度を有するグループが72時間架橋グループ(Telo GLYおよびAtelo DLG)であり、これは引張強さの有意な増加にも関連していたことを明らかにした。アルデヒドを用いる架橋の化学的構造は、強固な分子結合をもたらす、コラーゲン内の機能性アミノ基とのシッフ塩基型化合物の形成を含む(Fathimaら,2004年)。
【0210】
押出マイクロファイバーの実施形態の化学分析は、これらが酸加水分解にさらに耐性を示すことを明らかにした。本明細書で開示されるマイクロフルイディクス機器または装置は、凍結乾燥された出発材料よりも高い化学的安定性を有するマイクロファイバーを生成したが、これは、安定な高次構造をもたらす、マイクロファイバー内のコラーゲン分子の密充填を示唆し、また、低い内部水分含量を示唆する。このような高次構造は、天然結合組織において報告されている(Benjamin,KaiserおよびMilz,2008年;Wang,GuoおよびLi,2012年)。押出マイクロファイバーにおける二次構造の完全性は、
図29に示すFTIR分析から確認したが、これはまた、押出プロセスまたは架橋技術のどちらもコラーゲンを変性させなかったことも示唆する。
【0211】
バイオミメティクスにおけるコラーゲンの架橋は、張力特性を改善するのに役立つ可能性があるが、架橋に用いる化学薬剤(たとえばグルタルアルデヒド)の分解が中毒性を示すことがある(Gough,ScotchfordおよびDownes,2002年;Umashankar,KumariおよびMohanan,2012年)。やや低い細胞毒性を示す他の化学薬剤の中で、コラーゲンマイクロファイバーにとって、架橋剤としてのEDCまたはEDC/NHSが、一般的な基礎研究選択肢である(Eneaら,2011年;Ahmadら,2015年;Shepherdら,2015年)。しかしながら、引張強さにおける改善はほとんど見られず、これらの古典的架橋剤による広く知られている中毒作用が存在するため、結合組織修復に使用するためには、それらはほとんど適していなかった。我々は、本研究において、USFDA認可に一般的に必要な標準的なISO 10993試験に従って、高度に細胞適合性であり(
図30、
図31、
図32および
図33参照)、
図34、
図35および
図36に示すように)in vivoで生体適合性である、グリオキサールまたはグリセルアルデヒドのいずれかで化学的に架橋した、機械的に優れた押出コラーゲンマイクロファイバーの開発を明らかにする。さらに、グリオキサールで架橋したコラーゲンマイクロファイバーは、酸加水分解に耐性を示し、ほぼ分子レベルに至るまで微細構造的特徴が明らかとなり、細胞培養培地中で少なくとも6ヶ月間安定を維持し、単一のマイクロファイバーの能力は、最初の耐荷力のおよそ約30%~約50%、通常は約40%を維持し、天然ACLよりも大きいUTSを維持する(
図40、
図41、
図42、
図43および
図44参照)。
【0212】
本明細書に記載の創傷治癒におけるコラーゲンベースのマイクロファイバーまたはコラーゲンベースの編んだ縫合糸を使用するACLまたはアキレス腱の縫合修復の強化には、組織を機械的に維持するだけでなく、合理的な速度で組織のリモデリングも促進するコラーゲンベースの材料を必要とする(Dunn,AvasaralaおよびZawadsky,1993年)。これらの化学的に架橋したマイクロファイバーの細胞毒性、炎症反応および再生応答に対する影響を立証するin vitroおよび/またはin vivo生体適合性試験が重要である。本開示の押出マイクロファイバー束の実施形態は細胞適合性であり、ヒト腱細胞に対して最小限の毒性を示した。本開示のマイクロフルイディック押出マイクロファイバーは、ヒト腱細胞の付着をさらに支持し、結合組織で認められるような、伸長した形状が想定される(Benjamin,2010年)。生体適合性は、「非繊維性創傷治癒、再建および組織一体化を局所的に引き起こしガイドする」インプラントの能力と定義された(Ratner,2011年)。架橋マイクロファイバー束インプラントは、ラットに皮下移植後4週目に、低度(グリオキサールグループ)から中等度(グリセルアルデヒドグループ)の炎症反応を示し、グリオキサール‐テロコラーゲングループでは、再生促進性応答の開始を示した。さらに、長期安定性データおよびラット組織像は、in vitroで少なくとも6ヶ月目まで、in vivoで少なくとも4週目までマイクロファイバーの安定性を示した。このように、本開示の実施形態は、in vivoで少なくとも約1ヶ月間、in vitroで少なくとも約3ヶ月間、最長約6ヶ月間、強度を維持することができる。
【0213】
マクロファージは、たとえば材料の移植時に組織損傷に対する応答として宿主において活性化される単核細胞の異種混合体である(Mosser,2003年;GordonおよびTaylor,2005年)。インプラントと宿主組織との境界面におけるマクロファージ表現型分極(Kasnerら,2009年;Brownら,2012年)は、炎症誘発性シグナルおよび、外科用インプラントに応じた組織修復およびリモデリングに向けての移行を克服する宿主の潜在能力を判定するのに重要である。マクロファージ表現型は、炎症誘発性シグナルを有するM1(または「古典的」活性化)および、免疫調節特性または組織リモデリング特性を有するM2(または「選択的」活性化)として広く特徴付けられている(Millsら,2000年)。しかしながら、活性化マクロファージは、M1からM2へ、そしてM2からM1へ、表現型を容易に切り替えることができる可塑性を有していることに注意することが重要である。この可塑性は、局所的な微小環境の変化によって引き起こされる(Porcherayら,2005年;Stoutら,2005年)。これによって、マクロファージは、M1およびM2表現型の両方の移行特性を採用することも可能である(BrownおよびBadylak,2013年)。本開示の実施形態において、M1、M1およびM2、またはM2表現型を示す細胞の割合を測定した。これらの測定は、以下を示唆した。(1)移植4週目で、グリオキサール架橋グループは、M1およびM2またはM2のみの表現型をより多く有する細胞を有し、これは組織リモデリング応答が4週目に宿主によって開始されていることを示唆している。これは、グリオキサールグループからのマイクロファイバーが大部分生体適合性であることを示唆している。我々の知る限り、免疫応答のこのような詳細な分析は、架橋コラーゲンマイクロファイバーを用いてはなされていない。
【0214】
創傷治癒のための縫合糸へのコラーゲンの組み込みは課題となっていた。しかしながら、本開示は、効果的な製品の製造のための方法および装置を提供する。本明細における研究のための対照として、コラーゲンコートFiberWire(登録商標)非吸収性縫合糸(市場で入手可能な唯一のコラーゲンベースの合成縫合糸)を用いた。このFiberWire(登録商標)は、インプラントの周囲で天然組織の内殖または再生をほとんど示さない限定的な細胞浸潤を示した。対照的に、縫合糸様束の形態の、本開示のグリオキサール架橋コラーゲンマイクロファイバーの実施形態は、周辺組織に新しく形成されたコラーゲンを伴う著しい細胞浸潤を示したが、これは再生治癒を示唆する。
【0215】
本開示の実施形態は、グリオキサールで架橋した臨床品質のI型コラーゲン繊維のマイクロフルイディック押出が、従来報告されている他のバイオ製造プロセスによって製造される純粋コラーゲンを超える模範的な引張強さ、構造安定性、細胞適合性および生体適合性を示すことを明らかにする。コラーゲン繊維を安定化させるためのグリオキサールの使用は、付加的なコラーゲンマイクロファイバーのバイオ製造のための、臨床的に意義がある安全で有効な方法を提供する。これらの最適化されたコラーゲンマイクロファイバーは、人の健康を著しく改善するために設計された、外科用縫合糸、靭帯への内部装具、組織工学で作られた靭帯、腱および他の強固な繊維組織にわたる、多様な生体医学的応用に容易に加工することができる。
【0216】
実施例7
コラーゲン溶液および形成緩衝液を調製した。1.6%(w/v)の濃度の溶液を作成するのに十分な量の臨床用凍結乾燥アテロコラーゲン(Symatese社、フランス)をポリプロピレン密閉容器中で0.05M酢酸に溶解した。この溶液を、室温で終夜、180rpmで撹拌した。均一な混合を確実にするために、溶液の全量は、容器の容量の半分未満にした。翌日に、酸性化したコラーゲン混合物を、730gで5分間、遠心分離機でスピンダウンした。溶液を2分間脱気し、730gで10分間スピンダウンして気泡を除去した。得られた酸性化したアテロコラーゲンを、8つの20mLシリンジ(Hsw(登録商標)Norm‐Ject(登録商標)無菌ルアーロックシリンジ、VWR社)に吸い上げ、
図46に示す高出力コラーゲンマイクロファイバー押出装置で直接使用した。
【0217】
形成緩衝液を調製するために、100mlのミリQ水に、10gmのPEG(ポリエチレングリコール)(35KDa、ChemCruz社)、0.686gmのTES(N‐トリス(ヒドロキシメチル)メチル‐2‐アミノエタンスルホン酸)(Sigma‐Aldrich社)、0.790gmの塩化ナトリウム(Sigma‐Aldrich社)、0.414gmのリン酸一ナトリウム(Baker Analyzed)および1.21gmのリン酸二ナトリウム(Sigma‐Aldrich社)を加えた。この混合物を、撹拌プレート上のガラスビーカーに入れ、室温で終夜、400rpmで撹拌した。翌日に、10M水酸化ナトリウム(Sigma‐Aldrich社)を添加することによってこの溶液のpHを8に調整し、次いで溶液を、0.45μmフィルターを使用して濾過した。
【0218】
押出の日に、ミリQ水800mlにエタノール(Fisher Scientific社)200mlを混合して、脱水浴用の20%エタノール溶液を得た。
【0219】
図46は、酸性化したアテロコラーゲンが加工処理されるシステム4600の一部を示す。シリンジアレイポンプを、回転可能プレート4601および全8つのシリンジと協働するように取り付けた。撚り合わせの有り無しで繊維束試料を製造した。繊維束は、形成浴を通して移動し、緩衝溶液が酸を中和してフィブリルを形成するときに強固になった。次いで、撚り合わせた束と撚り合わせていない束とを、20%水性エタノール脱水浴に入れ、そこで水を除去し、繊維をさらに強化した。浴の末端で溝付きスプール(図示せず)に束が付着するまで、テンショニングリグで繊維束に一定の張力をかける。繊維における張力は、強度と安定性のために、コラーゲンを引っ張り、構築するのに役立った。次いで、スプールしたコラーゲンを乾燥し、グリオキサールで架橋し、3Dグラフトの作成に用いた。
【0220】
押出後の化学架橋のために、未架橋のピンと張ったコラーゲン繊維束を大きな溝付きスプールに回収し、半時間風乾し、次いで大きなアクリル管中で架橋剤溶液の70%エタノール溶液に浸漬し、次いで1rpmのロッカーに配置した。水性エタノール媒体は、架橋時間を通してマイクロファイバーが脱水されたままであることを確実にする。架橋後、さらなる試験を行うまで、マイクロファイバーをデシケーター中に保存した。
【0221】
使用した化学架橋剤は、10mMの濃度の、ジアルデヒドであるグリオキサールであった。アルデヒドを用いる架橋の化学的構造は、コラーゲン内の機能性アミノ基とのシッフ塩基型化合物の形成を含み、これは強固な分子結合をもたらす。
【0222】
このように製造される単一の繊維束の機械的特性は、カートリッジ上の個々の繊維束の断面積および繊維束の既知量を平均し、極限引張強さ(UTS)、モジュラスおよび破断時の歪み(%)を測定する「個別繊維」試験方法を使用して得た。繊維の直径は、倒立顕微鏡(Axio Vert.A1モデル、Zeiss社、ドイツ)およびImageJソフトウェア(NIHシェアウェア、メリーランド州ベセスダ)を使用して、個別の長さ1.5インチの3つの繊維束上の10の異なる箇所で得た画像を解析することによって測定した。
【0223】
図47~
図51は、様々な試験条件下での、すなわち撚り合わせない繊維および撚り合わせた繊維に関しての、繊維束の機械試験の結果を示す。繊維タイプ間で有意差はなかった。
図52~
図56は、様々な時点での、グリオキサールで架橋後の撚り合わせない繊維束の機械試験の結果を示す。ピーク負荷(
図53)およびUTS(
図55)において有意差水準はp<0.01(
**)であり、モジュラス(
図54)およびUTS(
図55)において有意差水準はp<0.001(
****)であった。
【0224】
図57は、走査型電子顕微鏡(SEM)を用いて得たマイクロファイバー束の断面像である。
図57は、2つのマルチ繊維束の構造を示す。第1束5701および第2繊維束5702は8本の繊維を含む。第1束5701は、第1繊維5710、第2繊維5720および第3繊維5730を明らかに示す。
図57はまた、第2繊維5720の第2末端5721、第3繊維5730の第3末端5721および、これ以外でははっきりと識別できない繊維の第4末端5739をはっきりと示す。面5705は、第1繊維束のすべての繊維の末端である。
【0225】
第2繊維束5702は、第5繊維5740と第5末端5741、第6繊維5750と第6末端5751、第7繊維5760と第7末端5761および、これ以外でははっきりと識別できない繊維の第8末端5749を示す。表面5706は、第2繊維束5702のすべての繊維の末端である。
【0226】
【0227】
本発明の様々な実施形態について述べてきたが、説明は例示を目的としたものであり、限定するものではなく、本発明の範囲内にあるさらに多くの他の実施形態および実施態様が可能であることは、当業者には明らかであろう。したがって、本発明は、添付の特許請求の範囲およびその均等物によってのみ限定されるものである。また、添付の特許請求の範囲の範囲内で様々な修正および変更を加えることもできる。
【0228】
参考文献
以下の記事および特許権を含む、本明細書で示されたすべての文献は、参照によってその全体が本願に組み込まれる。
PCT Application No. 1PCT/US2018/000119, attached hereto as Appendix A; and
PCT Application No. PCT/US2018/57412, attached hereto as Appendix B;
Ahmad, Z. et al. (2015) ‘Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair’, Regenerative Biomaterials, 2(2), pp. 77-85. doi: 10.1093/rb/rbv005.
Benjamin, M. (2010) The structure of tendons and ligaments, Regenerative Medicine and Biomaterials for the Repair of Connective Tissues. Woodhead Publishing. doi: 10.1533/9781845697792.2.351.
Benjamin, M., Kaiser, E. and Milz, S. (2008) ‘Structure-function relationships in tendons: A review’, Journal of Anatomy, 212, pp. 211-228. doi: 10.1111/j.1469- 7580.2008.00864.x.
Bokor, D. J. et al. (2015) ‘Preliminary investigation of a biological augmentation of rotator cuff repairs using a collagen implant: A 2-year MRI follow-up’, Muscles, Ligaments and Tendons Journal, 5(3), pp. 144-150. doi: 10.11138/mltj/2015.5.3.144.
Brown, B. N. et al. (2012) ‘Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials’, Acta Biomaterialia, 8(3), pp. 978-987. doi: 10.1016/j.actbio.2011.11.031.
Brown, B. N. and Badylak, S. F. (2013) ‘Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions’, Acta Biomaterialia. Acta Materialia Inc., 9(2), pp. 4948-4955. doi: 10.1016/j.actbio.2012.10.025.
Caruso, A. B. and Dunn, M. G. (2004) ‘Functional evaluation of collagen fiber scaffolds for ACL reconstruction: Cyclic loading in proteolytic enzyme solutions’, Journal of Biomedical Materials Research - Part A, 69(1), pp. 164-171. doi: 10.1002/jbm.a.20136.
Chattopadhyay, S. and Raines, R. T. (2014) ‘Review collagen-based biomaterials for wound healing’, Biopolymers. doi: 10.1002/bip.22486.
Chen, J. et al. (2009) ‘Scaffolds for tendon and ligament repair: Review of the efficacy of commercial products’, Expert Review of Medical Devices, 6(1), pp. 61-73. doi: 10.1586/17434440.6.1.61.
Chu, C. C. (2013) ‘Materials for absorbable and nonabsorbable surgical sutures’, in Biotextiles As Medical Implants, pp. 275-334. doi: 10.1533/9780857095602.2.275.
Cornwell, K. G. et al. (2007) ‘Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions’, Journal of Biomedical Materials Research Part A, 80, pp. 362-371.
Cornwell, K. G., Downing, B. R. and Pins, G. D. (2004) ‘Characterizing fibroblast migration on discrete collagen threads for applications in tissue regeneration’, Journal of Biomedical Materials Research - Part A, 71, pp. 55-62. doi: 10.1002/jbm.a.30132.
Dai, J. et al. (2014) ‘Acceleration of wound healing in acute full-thickness skin wounds using a collagen-binding peptide with an affinity for MSCs’, Burns & Trauma, 2(4), p. 181. doi: 10.4103/2321-3868.143623.
Delgado, L. M. et al. (2015) ‘To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices’, Tissue Engineering Part B: Reviews, 21(3), pp. 298-313. doi: 10.1089/ten.teb.2014.0290.
Dunn, M. G., Avasarala, P. N. and Zawadsky, J. P. (1993) ‘Optimization of extruded collagen fibers for ACL reconstruction’, Journal of Biomedical Materials Research, 27(12), pp. 1545-52. doi: 10.1002/jbm.820271211.
Elder, S. et al. (2017) ‘Suitability of EGCG as a Means of Stabilizing a Porcine Osteochondral Xenograft.’, Journal of functional biomaterials, 8(43). doi: 10.3390/jfb8040043.
Enea, D. et al. (2011) ‘Extruded collagen fibres for tissue engineering applications: Effect of crosslinking method on mechanical and biological properties’, Journal of Materials Science: Materials in Medicine, 22(6), pp. 1569-1578. doi: 10.1007/s10856-011-4336-1.
Enea, D. et al. (2013) ‘Collagen fibre implant for tendon and ligament biological augmentation. In vivo study in an ovine model’, Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), pp. 1783-1793. doi: 10.1007/s00167-012- 2102-7.
Fathima, N. N. et al. (2004) ‘Interaction of aldehydes with collagen: Effect on thermal, enzymatic and conformational stability’, International Journal of Biological Macromolecules, 34(4), pp. 241-247. doi: 10.1016/j.ijbiomac.2004.05.004.
Gallagher, A. J. et al. (2012) ‘Dynamic tensile properties of human skin’, in 2012 IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury, pp. 494-502.
Gentleman, E. et al. (2003) ‘Mechanical characterization of collagen fibers and scaffolds for tissue engineering’, Biomaterials, 24(21), pp. 3805-3813. doi: 10.1016/S0142-9612(03)00206-0.
Gigante, A. et al. (2009) ‘Collagen I membranes for tendon repair: Effect of collagen fiber orientation on cell behavior’, Journal of Orthopaedic Research, 27, pp. 826-832. doi: 10.1002/jor.20812.
Gordon, S. and Taylor, P. R. (2005) ‘Monocyte and macrophage heterogeneity’, Nature Reviews Immunology, 5(12), pp. 953-964. doi: 10.1038/nri1733.
Gough, J. E., Scotchford, C. A. and Downes, S. (2002) ‘Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis’, Journal of Biomedical Materials Research, 61(1), pp. 121-130. doi: 10.1002/jbm.10145.
Haugh, M. G., Jaasma, M. J. and O’Brien, F. J. (2009) ‘The effect of dehydrothermal treatment on the mechanical and structural properties of collagen- GAG scaffolds’, Journal of Biomedical Materials Research - Part A, 89(2), pp. 363-369. doi: 10.1002/jbm.a.31955.
Haynl, Christian, Hofmann, Eddie, Pawar, Kiran, Forster, Stephan, and Thomas Scheibel 'Microfluidics-produced collagen fibers show extraordinary mechanical properties,' NanoLetters
Hogan, M. V. et al. (2015) ‘Tissue engineering of ligaments for reconstructive surgery’, Arthroscopy - Journal of Arthroscopic and Related Surgery. Arthroscopy Association of North America, 31(5), pp. 971-979. doi: 10.1016/j.arthro.2014.11.026.
Van Kampen, C. et al. (2013) ‘Tissue-engineered augmentation of a rotator cuff tendon using a reconstituted collagen scaffold: A histological evaluation in sheep’, Muscles, Ligaments and Tendons Journal, 3(229-235). doi: 10.11138/mltj/2013.3.3.229.
Kasner, E. et al. (2009) ‘Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component’, Biomaterials, 30(8), pp. 1482-1491. doi: 10.1016/j.biomaterials.2008.11.040.Macrophage.
Kato, Y. P. et al. (1989) ‘Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres’, Biomaterials, 10, pp. 38-42. doi: 10.1016/0142-9612(89)90007-0.
Kiapour, A. M. et al. (2015) ‘Validation of Porcine Knee as a Sex-specific Model to Study Human Anterior Cruciate Ligament Disorders’, Clinical Orthopaedics and Related Research, 473(2), pp. 639-650. doi: 10.1007/s11999-014-3974-2.
Koob, T. J. et al. (2001) ‘Biocompatibility of NGDA-polymerized collagen fibers. II. Attachment, proliferation, and migration of tendon fibroblasts in vitro’, Journal of Biomedical Materials Research, 56, pp. 40-48. doi: 10.1002/1097- 4636(200107)56:1<40::AID-JBM1066>3.0.CO;2-I.
Kudur, M. H. et al. (2009) ‘Sutures and suturing techniques in skin closure’, Indian Journal of Dermatology, Venereology and Leprology, 75(4), pp. 425-434. doi: 10.4103/0378-6323.53155.
Lee, C. H., Singla, A. and Lee, Y. (2001) ‘Biomedical applications of collagen’, International Journal of Pharmaceutics, 221, pp. 1-21. doi: 10.1016/S0378- 5173(01)00691-3.
Leiter, J. R. S. et al. (2014) ‘Long-term follow-up of ACL reconstruction with hamstring autograft’, Knee Surgery, Sports Traumatology, Arthroscopy, 22(5), pp. 1061-1069. doi: 10.1007/s00167-013-2466-3.
Liu, S. H. et al. (1995) ‘Collagen in tendon, ligament, and bone healing: A current review’, Clinical Orthopaedics and Related Research, (318), pp. 265-278.
Maghdouri-White, Y. et al. (2019) ‘Biomanufacturing and Translational Research of an Aligned Collagen-Based Electrospun Tissue ENgineered Device (TEND) for Tendon Regeneration’, manuscript submitted.
Matsusue, Y. et al. (1995) ‘Tissue reaction of bioabsorbable ultra high strength poly (L-lactide) rod: A long-term study in rabbits’, Clinical Orthopaedics and Related Research, 317, pp. 246-253.
Meena, C., Mengi, S. A. and Deshpande, S. G. (1999) ‘Biomedical and industrial applications of collagen’, Proceedings of the Indian Academy of Sciences: Chemical Sciences, 111(2), pp. 319-329. doi: 10.1007/BF02871912.
Meyer, M. (2019) ‘Processing of collagen based biomaterials and the resulting materials properties’, BioMedical Engineering Online. BioMed Central, 18(1), pp. 1-74. doi: 10.1186/s12938-019-0647-0.
Mills, C. D. et al. (2000) ‘M-1/M-2 Macrophages and the Th1/Th2 Paradigm’, The Journal of Immunology, 164(12), pp. 6166-6173. doi: 10.4049/jimmunol.164.12.6166.
Ming-Che, W., Pins, G. D., Silver, F. H., 'Collagen fibres with improved strength for the repair of soft tissue injuries.' Biomaterials 15, 507-512 (1994).
Mosser, D. M. (2003) ‘The many faces of macrophage activation’, Journal of Leukocyte Biology, 73(2), pp. 209-212. doi: 10.1189/jlb.0602325.
Noyes, F. and Grood, E. (1976) ‘The strength of the anterior cruciate ligament in humans and Rhesus monkeys’, The Journal of Bone & Joint Surgery, 58(8), pp. 1074-1082. doi: 10.2106/00004623-197658080-00006.
Paul, R. G. and Bailey, A. J. (2003) ‘Chemical stabilisation of collagen as a biomimetic.’, TheScientificWorldJournal, 3, pp. 138-155. doi: 10.1100/tsw.2003.13.
Perrone, G. S. et al. (2017) ‘Bench-to-bedside: Bridge-enhanced anterior cruciate ligament repair’, Journal of Orthopaedic Research. doi: 10.1002/jor.23632.
Peters, A. E. et al. (2018) ‘Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review’, PeerJ, 6, p. e4298. doi: 10.7717/peerj.4298.
Porcheray, F. et al. (2005) ‘Macrophage activation switching: An asset for the resolution of inflammation’, Clinical and Experimental Immunology, 142, pp. 481-489. doi: 10.1111/j.1365-2249.2005.02934.x.
Rangaraj, A., Harding, K. and Leaper, D. (2011) ‘Role of collagen in wound management’, Wounds UK, 7(2), pp. 54-63.
Ratcliffe, A. et al. (2015) ‘Scaffolds for Tendon and Ligament Repair and Regeneration’, Annals of Biomedical Engineering, 43(3), pp. 819-831. doi: 10.1007/s10439-015-1263-1.
Ratner, B. D. (2011) ‘The biocompatibility manifesto: Biocompatibility for the twenty-first century’, Journal of Cardiovascular Translational Research, 4, pp. 523-527. doi: 10.1007/s12265-011-9287-x.
Reddy, N., Reddy, R. and Jiang, Q. (2015) ‘Crosslinking biopolymers for biomedical applications’, Trends in Biotechnology. Elsevier Ltd, 33(6), pp. 362- 369. doi: 10.1016/j.tibtech.2015.03.008.
Sanchez-Ruiz, J. M. (1995) ‘Differential scanning calorimetry of proteins.’, in Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, pp. 133-176. doi: 10.1007/978-1-4899-1727-0_6.
Schlegel, T. F. et al. (2018) ‘Radiologic and clinical evaluation of a bioabsorbable collagen implant to treat partial-thickness tears: a prospective multicenter study’, Journal of Shoulder and Elbow Surgery, 27(2), pp. 242-251. doi: 10.1016/j.jse.2017.08.023.
Seon, J. K., Song, E. K. and Park, S. J. (2006) ‘Osteoarthritis after anterior cruciate ligament reconstruction using a patellar tendon autograft’, International Orthopaedics, 30(2), pp. 94-98. doi: 10.1007/s00264-005-0036-0.
Shaerf, D. A. (2014) ‘Anterior cruciate ligament reconstruction best practice: A review of graft choice’, World Journal of Orthopedics, 5(1), p. 23. doi: 10.5312/wjo.v5.i1.23.
Shepherd, D. V. et al. (2015) ‘The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment’, APL Materials, 3(1), pp. 1-13. doi: 10.1063/1.4900887.
Sherman, O. H. and Banffy, M. B. (2004) ‘Anterior cruciate ligament reconstruction: Which graft is best?’, Arthroscopy - Journal of Arthroscopic and Related Surgery, 20(9), pp. 974-980. doi: 10.1016/S0749-8063(04)00842-4.
Showery, J. E. et al. (2016) ‘The Rising Incidence of Degenerative and Posttraumatic Osteoarthritis of the Knee in the United States Military’, Journal of Arthroplasty, 31(10), pp. 2108-2114. doi: 10.1016/j.arth.2016.03.026.
van Sliedregt, A. et al. (1994) ‘Evaluation of polylactide monomers in an in vitro biocompatibility assay’, Biomaterials, 15(4), pp. 251-256. doi: 10.1016/0142- 9612(94)90047-7.
Smith, T. O. et al. (2014) ‘Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment’, Knee, 21(2), pp. 462-470. doi: 10.1016/j.knee.2013.10.009.
Stout, R. D. et al. (2005) ‘Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences’, The Journal of Immunology, 175, pp. 342-349. doi: 10.4049/jimmunol.175.1.342.
Taylor, M. S. et al. (1994) ‘Six bioabsorbable polymers: In vitro acute toxicity of accumulated degradation products’, Journal of applied biomaterials, 5(2), pp. 151-157. doi: 10.1002/jab.770050208.
Tsugawa, A. J. and Verstraete, F. J. M. (2012) ‘Suture materials and biomaterials’, in Oral and Maxillofacial Surgery in Dogs and Cats, pp. 69-78. doi: 10.1016/B978-0-7020-4618-6.00007-5.
Umashankar, P., Kumari, T. and Mohanan, P. (2012) ‘Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium’, Toxicology International, 19, pp. 51-58. doi: 10.4103/0971-6580.94513.
Vavken, P. et al. (2012) ‘Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model’, Arthroscopy - Journal of Arthroscopic and Related Surgery, 28(5), pp. 672-680. doi: 10.1016/j.arthro.2011.10.008.
Vijayaraghavan, R. et al. (2010) ‘Biocompatibility of choline salts as crosslinking agents for collagen based biomaterials’, Chemical Communications, 46(2), pp. 294-296. doi: 10.1039/b910601d.
Vunjak-Novakovic, G. et al. (2004) ‘Tissue Engineering of Ligaments’, Annual Review of Biomedical Engineering. Annual Reviews, 6(1), pp. 131-156. doi: 10.1146/annurev.bioeng.6.040803.140037.
Wang, J. H.-C., Guo, Q. and Li, B. (2012) ‘Tendon Biomechanics and Mechanobiology - a mini-review of basic concepts’, Journal of Hand Therapy, 25(2), pp. 133-141. doi: 10.1016/j.jht.2011.07.004.Tendon.
Wang, L. and Stegemann, J. P. (2011) ‘Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration’, Acta Biomaterialia, 7(6), pp. 2410-2417. doi: 10.1016/j.actbio.2011.02.029.
Watts, G. (1975) ‘SUTURES FOR SKIN CLOSURE’, The Lancet, 305(7906), p. 581.
Wiegnad, N., Patczai, B. and Loerinczy, D. (2017) ‘The Role of Differential Scanning Calorimetry in the Diagnostics of Musculoskeletal Diseases’, EC Orthopaedics, 4, pp. 164-177.
Woo, S. L. Y. et al. (1999) ‘Tissue engineering of ligament and tendon healing’, in Clinical Orthopaedics and Related Research. doi: 10.1097/00003086- 199910001-00030.
Wren, T. A. L. et al. (2001) ‘Mechanical properties of the human achilles tendon’, Clinical Biomechanics, 16, pp. 245-251. doi: 10.1016/S0268-0033(00)00089-9.
Yaari, Amit, Schilt, Yaelle, Tamburu, Carmen, Raviv, Uri, and Shoseyov, Oded, 'Wet Spinning and Drawing of Human Recombinant Collagen', ACS Biomaterials Yang, G., Rothrauff, B. B. and Tuan, R. S. (2013) ‘Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm’, Birth Defects Research Part C - Embryo Today: Reviews, pp. 203-222. doi: 10.1002/bdrc.21041.
Yannas, I. V. and Tobolsky, A. V (1967) ‘Cross-linking of Gelatine by Dehydration’, Nature, 215(5100), pp. 509-510. doi: 10.1038/215509b0.
Zeugolis, D. I., Paul, G. R. and Attenburrow, G. (2009) ‘Cross-linking of extruded collagen fibers-A biomimetic three-dimensional scaffold for tissue engineering applications’, Journal of Biomedical Materials Research - Part A, 89(4), pp. 895- 908. doi: 10.1002/jbm.a.32031.
【手続補正書】
【提出日】2022-03-28
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
押し出されたコラーゲン繊維であって、
複数の押し出されたサブ繊維を含み、前記サブ繊維はグリオキサールで架橋されている、繊維。
【請求項2】
前記繊維は、規則正しい縦配向構造を示す、請求項1に記載の繊維。
【請求項3】
以下の特徴の1つまたは複数を有している、請求項2に記載の繊維。
(a)約1MPaから約1,700MPaの極限引張強さ、
(b)約10MPaから約20,000MPaの弾性率、
(c)約2パーセントから約45パーセントの破断伸び、
(d)約10μmから約90μmの平均繊維径、
(e)ダルベッコりん酸緩衝液(DPBS)に室温で少なくとも約1時間浸した後もその強度を維持する、
(f)3か月間の培養で、初期の耐荷重能力の50%を保持する、
(g)in vivoでの再生促進性M2マクロファージ応答の上昇を促進する。
【請求項4】
前記繊維は、少なくとも約85パーセントの架橋度を有するテロコラーゲン、または少なくとも約65パーセントの架橋度を有するアテロコラーゲンである、請求項3に記載の繊維。
【請求項5】
前記極限引張強さは約25MPaから約1,700MPaの範囲にあり、
前記弾性率は約15,000MPaから約29,000MPaの範囲にあり、または
前記破断伸びは約7%から約20%の範囲にある、請求項3に記載の繊維。
【請求項6】
前記コラーゲンは、臨床グレードのコラーゲン、アテロコラーゲン、テロコラーゲン、組換えコラーゲン、およびそれらの組み合わせからなる群の中から選択されたコラーゲンである、請求項2に記載の繊維。
【請求項7】
前記コラーゲンは、1つまたは複数の生体許容性ポリマーをさらに含む、請求項2に記載の繊維。
【請求項8】
前記繊維は、ダルベッコりん酸緩衝液(DPBS)に室温で少なくとも約6か月後浸した後も、約60MPaを超える強度を維持する、請求項2に記載の繊維。
【請求項9】
付着した腱細胞をさらに含み、前記腱細胞は、従来の哺乳動物細胞培養条件の温度、pHおよび湿度での約7日間のインキュベーションの後に少なくとも約75%の細胞生存能力および少なくとも約95%の細胞生存を維持する、請求項2に記載の繊維。
【請求項10】
前記繊維は、実質的に円形、卵形、正方形、長方形、リボン状、三角形、または不規則な形状の断面を有する、請求項2に記載の繊維。
【請求項11】
複数の繊維が、束ねられた、編まれた、または織り交ぜられた形状因子によって関連付けられている、請求項2に記載の複数の繊維。
【請求項12】
前記形状因子は束である、請求項11に記載の複数の繊維。
【請求項13】
前記束の中のコラーゲン繊維はねじれている、請求項12に記載の複数の繊維。
【請求項14】
前記束の中のコラーゲン繊維はねじれていない、請求項12に記載の複数の繊維。
【請求項15】
前記形状因子は編まれたものである、請求項11に記載の複数の繊維。
【請求項16】
前記形状因子は織られたものである、請求項11に記載の複数の繊維。
【請求項17】
前記コラーゲンは、臨床グレードのコラーゲン、アテロコラーゲン、テロコラーゲン、組換えコラーゲン、およびそれらの組み合わせからなる群の中から選択される、請求項11に記載の複数の繊維。
【請求項18】
付着した腱細胞をさらに含み、前記腱細胞は、従来の哺乳動物細胞培養条件の温度、pHおよび湿度での約7日間のインキュベーションの後に少なくとも約75%の細胞生存能力および少なくとも約95%の細胞生存を維持する、請求項11に記載の複数の繊維。
【請求項19】
前記繊維は、ダルベッコりん酸緩衝液(DPBS)に室温で少なくとも約6か月後浸した後も、約60MPaを超える強度を維持する、請求項11に記載の複数の繊維。
【請求項20】
前記繊維は、対象者に移植してから6か月後、約60MPaを超える強度を維持する、請求項11に記載の複数の繊維。
【請求項21】
前記コラーゲンが、1つまたは複数の生体許容性ポリマーをさらに含む、請求項11に記載の複数の繊維。
【請求項22】
複数の押し出されたコラーゲン繊維であって、当該繊維は、束の形状因子によって関連付けられており、
前記繊維のサブ繊維がグリオキサールで架橋されており、
前記繊維は、規則正しい縦配向構造を示し、
前記押し出されたコラーゲン繊維は、以下の特徴のうちの1つまたは複数を有する、複数の繊維。
(a)約1MPaから約800MPaの極限引張強さ、
(b)約10MPaから約7,500MPaの弾性率、
(c)約10μmから約30μmの平均繊維径。
【請求項23】
前記束の中の繊維はねじれている、請求項22に記載の複数の繊維。
【請求項24】
前記繊維はねじれていない、請求項22に記載の複数の繊維。
【請求項25】
前記コラーゲンは、臨床グレードのコラーゲン、アテロコラーゲン、テロコラーゲン、組換えコラーゲン、およびそれらの組み合わせからなる群の中から選択される、請求項22に記載の複数の繊維。
【請求項26】
付着した腱細胞をさらに含み、前記腱細胞は、従来の哺乳動物細胞培養条件の温度、pHおよび湿度での約7日間のインキュベーションの後に少なくとも約75%の細胞生存能力および少なくとも約95%の細胞生存を維持する、請求項22に記載の複数の繊維。
【請求項27】
2本~約10,000本の繊維を含む、請求項25に記載の複数の繊維。
【請求項28】
前記繊維は、ダルベッコりん酸緩衝液(DPBS)に室温で少なくとも約6か月後浸した後も、約60MPaを超える強度を維持する、請求項22に記載の複数の繊維。
【請求項29】
前記繊維は、対象者に移植してから6か月後、約60MPaを超える強度を維持する、請求項22に記載の複数の繊維。
【請求項30】
前記コラーゲンは、1つまたは複数の生体許容性ポリマーをさらに含む、請求項22に記載の複数の繊維。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0227
【補正方法】変更
【補正の内容】
【0227】
本発明の様々な実施形態について述べてきたが、説明は例示を目的としたものであり、限定するものではなく、本発明の範囲内にあるさらに多くの他の実施形態および実施態様が可能であることは、当業者には明らかであろう。したがって、本発明は、添付の特許請求の範囲およびその均等物によってのみ限定されるものである。また、添付の特許請求の範囲の範囲内で様々な修正および変更を加えることもできる。
本発明の精神および範囲は、添付する特許請求の範囲の中に存在するが、本願の出願時に特許請求の範囲として存在し、その一部は補正により削除された、以下の[予備的な特許請求の範囲]の中にも潜在する。この[予備的な特許請求の範囲]の記載事項は、本願明細書の開示に含まれるものとする。
[予備的な特許請求の範囲]
[予備請求項1]
コラーゲンを含む生体高分子繊維であって、以下の特徴
約1MPa~約1,700MPaの極限引張強さ、
約10MPa~約20,000MPaの弾性率、
伸び率約2パーセント~約45パーセントの破断伸び、
約10μm~約90μmの平均繊維径
の1つ以上を有し、
室温で少なくとも約1時間DPBSに浸漬後、その強度を維持し、規則正しい縦配向構造を示す、繊維。
[予備請求項2]
前記極限引張強さが約1MPa~約800MPaであり、
前記弾性率が約10MPa~約7,500MPaであり、
前記平均繊維径が約10μm~約30μmである、
予備請求項1に記載の生体高分子繊維。
[予備請求項3]
前記極限引張強さが約25MPa~約1,700MPaであり、
前記弾性率が約15,000MPa~約29,000MPaであり、
伸び率約7パーセント~約20パーセントの破断伸びである、
予備請求項1に記載の生体高分子繊維。
[予備請求項4]
前記コラーゲンが、臨床用コラーゲン、アテロコラーゲン、テロコラーゲン、組換えコラーゲンまたはそれらのブレンドを含む、予備請求項1に記載の生体高分子繊維。
[予備請求項5]
前記コラーゲンが、1以上の生体許容性ポリマーをさらに含む、予備請求項1に記載の生体高分子繊維。
[予備請求項6]
室温、DBPS中での6ヶ月後に、または対象者への移植後に約60MPa超の強度をさらに保持する、予備請求項1に記載の生体高分子繊維。
[予備請求項7]
グリオキサール、DL‐グリセルアルデヒドまたはそれらの組み合わせを含む架橋剤によって架橋される、予備請求項1に記載の生体高分子繊維。
[予備請求項8]
付着した腱細胞をさらに含み、前記腱細胞が、従来の哺乳動物細胞培養条件の温度、pHおよび湿度での約7日間のインキュベーション後に少なくとも約75%の細胞生存能力と少なくとも約95%の細胞生存とを維持する、予備請求項1に記載の生体高分子繊維。
[予備請求項9]
実質的に円形、卵形、正方形、長方形、リボン状、三角形または不規則な形状の断面を有する、予備請求項1に記載の生体高分子繊維。
[予備請求項10]
2本~約10,000本の繊維からなる、予備請求項1に記載の生体高分子繊維の束。
[予備請求項11]
予備請求項1~9のいずれか1項に記載の生体高分子繊維または予備請求項10に記載の生体高分子繊維の束を含む、軟部組織損傷の修復を支援するための移植可能な生体高分子足場。
[予備請求項12]
予備請求項1~9のいずれか1項に記載の生体高分子繊維を含む、織シート状支持体、パッチまたは装具。
[予備請求項13]
コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度で前記コラーゲン溶液を送ると同時に、前記第1針を同軸に取り囲み、前記第1直径を超える第2直径を有し前記コラーゲン溶液の周囲のシースを形成する第2針を通して第2速度で形成緩衝液を送って同軸流を形成するステップであって、前記第2針を通した前記基礎緩衝液の前記第2流量は、前記第1針を通した前記コラーゲン溶液の前記第1流量の少なくとも2倍である、前記ステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して前記同軸に流れるコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度を超える第3速度で前記繊維をスプールに取り出すステップと、を含む、生体高分子繊維を製造するための方法。
[予備請求項14]
コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度で前記コラーゲン溶液を形成緩衝液に送るステップと、
繊維を形成するのに十分な時間と速度で、繊維形成浴を含む反応領域を通して前記コラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度の約2倍から 前記押出速度の約10倍の速度で前記繊維をスプールに取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
[予備請求項15]
前記コラーゲン溶液を前記形成緩衝液に送る前に前記コラーゲン溶液を脱気することをさらに含む、予備請求項13または予備請求項14に記載の方法。
[予備請求項16]
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1針を通して第1体積流量で前記コラーゲン溶液を送って第1速度を生じさせると同時に、前記第1針を同軸に取り囲んで前記コラーゲン溶液の周囲のシースを形成する管内に第2速度で形成緩衝液を送って同軸流を形成するステップであって、前記基礎緩衝液の速度は、前記第1針を通した前記コラーゲン溶液の前記第1速度の約2倍から約20倍である、ステップと、
繊維を形成するのに十分な時間と速度で、フィブリル形成浴を含む反応領域を通して同軸に流れるコラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度を超える第3速度で前記繊維を取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
[予備請求項17]
前記繊維をバーコレクターまたは平らなシリンダーに回収することをさらに含む、予備請求項16に記載の方法。
[予備請求項18]
前記繊維を溝付きスプールに回収することをさらに含む、予備請求項16に記載の方法。
[予備請求項19]
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
ノズルを通して、前記溶液を、前記押出溶液を形成緩衝液の流動浴に送って繊維を形成するガイドに押し出すステップと、
前記形成緩衝液浴に形成された前記繊維を脱水するステップと、
前記繊維を回収するステップと、
を含む、生体高分子繊維を製造するための方法。
[予備請求項20]
前記繊維を回収する前に、前記繊維を乾燥するのに十分な時間、前記繊維に空気を送ることによって、前記脱水した繊維を乾燥することをさらに含む、予備請求項19に記載の方法。
[予備請求項21]
グリオキサール、DL‐グリセルアルデヒドまたはそれらの組み合わせを含む架橋剤で前記繊維を架橋させ、前記架橋した繊維を乾燥することをさらに含む、予備請求項19に記載の方法。
[予備請求項22]
臨床用コラーゲンを酸溶液に溶解してコラーゲン溶液を作成するステップと、
第1直径を有する第1針を通して第1速度で前記コラーゲン溶液を形成緩衝液に送るステップと、
繊維を形成するのに十分な時間と速度で、繊維形成浴を含む反応領域を通して前記コラーゲンおよび形成緩衝液を送るステップと、
ある押出速度で前記コラーゲン繊維を脱水するステップと、
1以上の段階で、分子の配向を高め、前記繊維の直径を減少させるのに十分な、前記押出速度の約2倍から前記押出速度の約12倍の速度で、前記繊維をスプールに取り出すステップと、
を含む、生体高分子繊維を製造するための方法。
[予備請求項23]
グリオキサール、DL‐グリセルアルデヒドまたはそれらの組み合わせを含む架橋剤で前記繊維を架橋させ、前記架橋した繊維を乾燥することをさらに含む、予備請求項22に記載の方法。
[予備請求項24]
予備請求項13~予備請求項23のいずれか1項に記載の方法によって製造される、生体高分子繊維。
[予備請求項25]
予備請求項24に記載の生体高分子繊維を含む、軟部組織損傷の修復を支援するための移植可能な生体高分子足場。
[予備請求項26]
予備請求項25に記載の生体高分子足場の前記移植を含む、軟部組織損傷の前記修復を支援するための方法。
[予備請求項27]
前記軟部組織が、靭帯、腱、腱・靭帯付着部、骨、筋肉、筋腱移行部、皮膚を含む結合組織、筋膜、内蔵、および眼を含む群から選択される、予備請求項26に記載の方法。
[予備請求項28]
予備請求項24に記載の生体高分子繊維を含む、縫合糸。
[予備請求項29]
吸収性である、予備請求項28に記載の縫合糸。
[予備請求項30]
対象者に移植されると、前十字靱帯、アキレス腱および腱板などの関節における靭帯または腱の機械的負荷を支える、補強する、増大させる、または共同して負う、予備請求項24に記載の生体高分子繊維を含む内部装具。
[予備請求項31]
対象者に移植されると、負傷した関節を、1つの骨を他の骨に接続することによって支え、任意選択で、健康な天然関節のものに実質的に匹敵するレベルに生体力学および等尺性を復元する、予備請求項24に記載の生体高分子繊維を含む内部装具。
【国際調査報告】