(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-20
(54)【発明の名称】光検出のための光センサ及び検出器
(51)【国際特許分類】
H01L 31/0264 20060101AFI20220513BHJP
【FI】
H01L31/08 N
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021555479
(86)(22)【出願日】2020-03-13
(85)【翻訳文提出日】2021-11-15
(86)【国際出願番号】 EP2020056760
(87)【国際公開番号】W WO2020187720
(87)【国際公開日】2020-09-24
(32)【優先日】2019-03-15
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】517267802
【氏名又は名称】トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング
(74)【代理人】
【識別番号】100100354
【氏名又は名称】江藤 聡明
(72)【発明者】
【氏名】ヘルメス,ヴィルフリート
(72)【発明者】
【氏名】ファローフ,ゼバスティアン
(72)【発明者】
【氏名】ミュラー,ゼバスティアン
(72)【発明者】
【氏名】ヘー,レギーナ
(72)【発明者】
【氏名】ベヒテル,ハイディ
(72)【発明者】
【氏名】アルテンベック,ティモ
(72)【発明者】
【氏名】ディットマン,ファビアン
(72)【発明者】
【氏名】フォイアーシュタイン,ベルトラム
(72)【発明者】
【氏名】フプファウアー,トマス
(72)【発明者】
【氏名】ハンドレック,アンケ
(72)【発明者】
【氏名】グスト,ロベルト
(72)【発明者】
【氏名】カレッタ,ペーター パウル
(72)【発明者】
【氏名】ゼント,ロベルト
(72)【発明者】
【氏名】ヴァインドック,フーベルト
(72)【発明者】
【氏名】ヘンニッヒ,インゴルフ
(72)【発明者】
【氏名】グリヤノファ,スフェトラナ
【テーマコード(参考)】
5F849
【Fターム(参考)】
5F849AB01
5F849BA21
5F849BB07
5F849FA05
5F849GA02
5F849JA05
5F849LA01
5F849XB13
(57)【要約】
本発明は、光センサ(110)、光センサ(110)を備える光学的検出のための検出器(150)、光センサ(110)の製造方法、及び光検出器(150)の様々な用途に関する。光センサ(110)は、スタック(125)を備えており、前記スタック(125)は、
基板(124)と、
前記基板(124)上に適用された少なくとも1つの光導電性材料(114)の層(112)と、
前記光導電性材料(114)の層(112)のアクセス可能な表面を覆うカバー(116)と、
前記スタック(125)から空間的に分離され、前記光導電性材料(114)の層(112)に接触する少なくとも2つの個別の電気接点(136、136’)と、を有し、
前記光センサ(110)は、前記スタック(125)の準静的なナノインデンター測定において、ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである、
ことを示す。
光センサ(110)は、高性能及び安定性を長期間にわたって示す。結果として、光センサ(110)は、ガスセンサ、火花センサ、又は炎センサなどの安全関連機器への適用のため、同様にセキュリティ技術分野への適用のために特に設計される。
【選択図】
図1A
【特許請求の範囲】
【請求項1】
スタック(125)を備えた光センサ(110)であって、前記スタック(125)は、
基板(124)と、
前記基板(124)上に適用された少なくとも1つの光導電性材料(114)の層(112)と、
前記光導電性材料(114)のアクセス可能な表面を覆うカバー(116)と、
前記スタック(125)から空間的に分離され、前記光導電性材料(114)の層(112)に接触する少なくとも2つの個別の電気接点(126,136’)と、を有し、
前記光センサ(110)は、前記スタック(125)の準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである、
ことを示す、光センサ(110)。
【請求項2】
前記光センサ(110)は、前記スタック(125)の準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで80GPa~102GPaであり、
侵入深さ300nmで60GPa~114GPaであり、
侵入深さ1000nmで61GPa~107GPaであり、
硬度が、
侵入深さ100nmで1.78GPa~4.12GPaであり、
侵入深さ300nmで2.10GPa~4.10GPaであり、
侵入深さ1000nmで2.67GPa~6.93GPaである、
ことを示す、請求項1に記載の光センサ(110)。
【請求項3】
前記光センサ(110)は、前記スタック(125)の75GHzのマイクロ波反射測定実験において、反射率係数S11が-6.70dB~-1.30dBであることを示す、請求項1又は2に記載の光センサ(110)。
【請求項4】
前記光センサ(110)は、前記スタック(125)の75GHzのマイクロ波反射率測定実験において、反射率係数S11が-5.80dB~-2.20dBであることを示す、請求項3に記載の光センサ(110)。
【請求項5】
前記カバー(116)は、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含む、請求項1~4のいずれか1項に記載の光センサ(110)。
【請求項6】
前記光導電性材料(114)は、鉛カルコゲニド、固溶体、及び/又はそのドープ変形から選択される、請求項1~5のいずれか1項に記載の光センサ(110)。
【請求項7】
前記光センサ(110)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線のピーク最大値で測定されたネットカウント/s・nAの比が0.113~0.279であることをさらに示す、請求項5又は6に記載の光センサ(110)。
【請求項8】
前記光センサ(110)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線のピーク最大値で測定されたネットカウント/s・nAの比が0.141~0.251であることをさらに示す、請求項7に記載の光センサ(110)。
【請求項9】
前記光導電性材料(114)は、硫化鉛(PbS)、固溶体、及び/又はそのドープ変形から選択される、請求項5~8のいずれか1項に記載の光センサ(110)。
【請求項10】
前記光センサ(110)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線とS K
α1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456であることをさらに示す、請求項1~9のいずれか1項に記載の光センサ(110)。
【請求項11】
前記光センサ(110)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線とS K
α1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0944~0.1354であることをさらに示す、請求項10に記載の光センサ(110)。
【請求項12】
光学的検出のための検出器(150)であって、
- 請求項1~11のいずれか1項に記載の少なくとも1つの光センサ(110)であって、少なくとも1つのセンサ領域(152)を含み、光ビーム(127)による前記センサ領域(152)の照射に依存する方式で、少なくとも1つのセンサ信号を生成するように設計されている、少なくとも1つの光センサ(110);及び
- 少なくとも1つの評価装置(156)であって、前記光センサ(110)の前記センサ信号を評価することにより、前記光ビーム(127)によって提供される光放射に関する少なくとも1つの情報項目を生成するように設計されている、少なくとも1つの評価装置(156)、
を含む、検出器(150)。
【請求項13】
光センサ(100)の製造方法であって、以下のステップ:
a)基板(124)、前記基板(124)に適用された少なくとも1つの光導電性材料(114)の層(112)、及び前記光導電性材料(114)の層(112)に接触する少なくとも2つの個別の電気接点(136,136’)を提供するステップと;
b)その後、前記光導電性材料(114)の層(112)のアクセス可能な表面にカバー(116)を堆積するステップであって、それにより、前記基板(124)、前記少なくとも1つの光導電性材料(114)の層(112)、及び前記カバー(116)を含むスタック(125)が得られるステップと;
c)準静的なナノインデンター測定において、前記スタック(125)のヤング率と硬度を測定するステップと、を含み、
前記光センサ(110)の製造方法は、前記光センサ(110)が、前記ステップc)による前記スタック(125)の準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである、
ことを示すように行われる、方法。
【請求項14】
前記方法が、以下のステップ:
d)前記スタック(125)に75GHzのマイクロ波反射測定実験を適用することによって、前記スタックの反射率係数S11を決定し、前記反射率係数S11が-6.70dB~-1.30dBで決定されるステップ、
をさらに含む、請求項13に記載の方法。
【請求項15】
前記光導電性材料(114)が、鉛カルコゲナイド、固溶体及び/又はそのドープ変形からなる群から選択され、前記カバー(116)が、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含み、前記方法は、以下のステップ:
e)電子線マイクロアナライザ(182)と20kVの加速電圧を用いて、前記スタック(125)の波長分散型X線分光法を実施するステップ、
をさらに含み、
Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線のピーク最大値で測定されたネットカウント/s・nAの比が0.113~0.279で決定される、請求項14に記載の方法。
【請求項16】
前記光導電性材料(114)が、硫化鉛(PbS)、固溶体及び/又はそのドープ変形からなる群から選択され、さらにステップe)により、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線及びS K
α1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456である、請求項15に記載の方法。
【請求項17】
全体的に長期的な品質を有する光センサ(110)を選択する方法であって、以下のステップ、
・スタック(125)を備えた光センサ(110)を提供するステップであって、前記スタック(125)は、
基板(124)と、
前記基板(124)に適用された少なくとも1つの光導電性材料(114)の層(112)と、
前記光導電性材料(114)のアクセス可能な表面を覆うカバー(116)と、
前記スタック(125)から空間的に分離され、前記光導電性材料(114)の層(112)に接触する少なくとも2つの個別の電気接点(136,136’)と、を有するステップと、
・準静的なナノインデンター測定において、前記スタック(125)のヤング率と硬度を測定するステップと、
・前記スタック(125)の準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaであり、
侵入深さは、前記スタック(125)の表面に関して決定される、
スタックが好ましい静的機械特性(145)を示す光センサ(110)を選択するか、
又は、スタック(125)のヤング率及び硬度が前記スタック(125)の好ましい静的機械特性から逸脱している場合は、光センサ(110)を拒否するかのステップと、を有する方法。
【請求項18】
前記スタック(125)の好ましい静的機械特性(145)は、前記スタック(125)の準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで80GPa~102GPaであり、
侵入深さ300nmで60GPa~114GPaであり、
侵入深さ1000nmで61GPa~107GPaであり、
硬度が、
侵入深さ100nmで1.78GPa~4.12GPaであり、
侵入深さ300nmで2.10GPa~4.10GPaであり、
侵入深さ1000nmで2.67GPaから6.93GPaである、
ことを含む、請求項17に記載の方法。
【請求項19】
前記スタック(125)の好ましい静的機械特性(145)は、前記スタック(125)の75GHzのマイクロ波反射測定実験において、反射率係数S11が-6.70dB~-1.30dBであることを含む、請求項17又は18に記載の方法。
【請求項20】
前記スタック(125)の好ましい静的機械特性(145)は、前記スタック(125)の75GHzのマイクロ波反射測定実験において、反射率係数S11が-5.80dB~-2.20dBであることを含む、請求項18に記載の方法。
【請求項21】
前記カバー(116)は、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含む、請求項17~20のいずれか1項に記載の方法。
【請求項22】
前記光導電性材料(114)は、鉛カルコゲニド、固溶体、及び/又はそのドープ変形から選択される、請求項17~21のいずれか1項に記載の方法。
【請求項23】
前記スタック(125)の好ましい静的機械特性(145)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.113~0.279であることを含む、請求項21又は22に記載の方法。
【請求項24】
前記スタック(125)の好ましい静的機械特性(145)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.141~0.251であることを含む、請求項23に記載の方法。
【請求項25】
前記光導電性材料(114)は、硫化鉛、固溶体、及び/又はそのドープ変形から選択される、請求項21~24のいずれか1項に記載の方法。
【請求項26】
前記スタック(125)の好ましい静的機械特性(145)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線及びS K
α1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456であることを含む、請求項17~25のいずれか1項に記載の方法。
【請求項27】
前記スタック(125)の好ましい静的機械特性(145)は、電子線マイクロアナライザ(182)と20kVの加速電圧を用いた前記スタック(125)の波長分散型X線分光法において、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線及びS K
α1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0944~0.1354であることを含む、請求項26に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光センサ、及び、そのような光センサを有する検出器であって、光検出、特に光放射、特に赤外スペクトル範囲内の光放射の検出、特に少なくとも1つの光ビームによって提供される透過、吸収、放出及び反射のうちの少なくとも1つを感知することに関する光検出のための、又は、少なくとも1つの物体の位置、特に少なくとも1つの物体の深さ又は深さと幅の両方に関する少なくとも1つの物体の位置を決定するための、光センサ及び検出器に関する。さらに、本発明は、光センサを製造するための方法、及び、光センサと検出器の様々な使用に関する。このような装置、方法、及び使用は、安全技術のさまざまな分野、具体的には、ガスセンサ、スパークセンサ、又は炎センサなどの安全関連装置の形式で採用されることができる。しかし、さらなる適用、特にセキュリティ技術の分野での適用も可能である。
【背景技術】
【0002】
少なくとも1つの物体を光学的に検出するための様々な検出器が、光センサに基づいて知られている。
【0003】
WO2012/110924A1は、少なくとも1つの光センサを含む検出器を開示しており、該光センサは少なくとも1つのセンサ領域を示す。ここで、光センサは、センサ領域の照射に依存する方式で少なくとも1つのセンサ信号を生成するように設計されている。そこに記載されているFIP効果によれば、センサ信号は、照射の総出力が同じであるとして、照射の幾何学的形状、特にセンサ領域上の照射のビーム断面に依存する。検出器は、さらに、センサ信号からの幾何学的情報の少なくとも1項目、特に照射及び/又は物体に関する幾何学的情報の少なくとも1項目を生成するように指定された少なくとも1つの評価装置を有している。
【0004】
WO2014/097181A1は、少なくとも1つの横方向光センサと、少なくとも1つの縦方向光センサとを用いて、少なくとも1つの物体の位置を決定する方法及び検出器を開示している。好ましくは、縦方向光センサのスタックが、特に物体の縦方向位置を高い精度でかつ曖昧さなく決定するために採用されている。さらに、WO2014/097181A1は、少なくとも1つの物体の位置を決定するための少なくとも1つのこのような検出器をそれぞれ備える、ヒューマンマシンインターフェース、娯楽装置、追跡システム、及びカメラを開示している。
【0005】
WO2016/120392A1は、縦方向光センサとして好適な材料のさらなる種類を開示している。ここで、縦方向光センサのセンサ領域は、光導電性材料を含み、該光導電性材料における電気伝導度は、照射の総電力が同じであるとして、センサ領域における光ビームのビーム断面に依存する。したがって、縦方向センサ信号は、該光導電性材料の電気伝導度に依存する。好ましくは、光導電性材料は、硫化鉛(PbS)、セレン化鉛(PbSe)、テルル化鉛(PbTe)、テルル化カドミウム(CdTe)、リン化インジウム(InP)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、アンチモン化インジウム(InSb)、テルル化水銀カドミウム(HgCdTe;MCT)、硫化銅インジウム(CIS)、セレン化銅インジウムガリウム(CIGS)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、又は硫化銅亜鉛スズ(CZTS)から選択される。さらに、固溶体及び/又はそのドープ変形も可能である。さらに、センサ領域を有する横方向光センサが開示されており、該センサ領域は、光導電性材料の1つの層、好ましくは2つの透明な導電性酸化物の層の間、及び少なくとも2つの電極の間に埋設された光導電性材料の1つの層を有する。好ましくは、電極の少なくとも1つは、少なくとも2つの部分電極を有する分割電極であり、該部分電極によって提供される横方向センサ信号は、センサ領域内の入射光ビームのx位置及び/又はy位置を示す。
【0006】
WO2018/019921A1は、少なくとも1つの光導電性材料の層と、光導電性材料の層に接触する少なくとも2つの個別の電気接点と、光導電性材料の層上に堆積されたカバー層とを含む光センサを開示しており、該カバー層は、少なくとも1つの金属含有化合物を含むアモルファス層である。該光センサは、かさばらないにもかかわらず、湿度及び/又は酸素による劣化の可能性に対して高度な保護を提供する、気密パッケージとして供給されることができる。さらに、カバー層は光導電性材料を活性化させることができ、その結果、光センサの性能を向上させる。さらに、光センサは、容易に製造され、回路キャリア装置に一体化されることができる。
【0007】
さらに、2019年1月18日に出願された欧州特許出願19152511.2は、基板と、該基板に直接又は間接的に適用された少なくとも1つの光導電性材料の層と、該光導電性材料の層に接触する少なくとも2つの個別の電気接点と、該光導電性材料と該基板のアクセス可能な表面とを覆うカバーとを備えた光センサを開示しており、該カバーは少なくとも1つの金属含有化合物を含むアモルファスカバーである。
【0008】
特に、少なくとも1つの光導電性材料を含む光センサは、通常、ガスセンサ、スパークセンサ、炎センサなどの安全関連機器に使用される。さらに、他の種類の適用、特にセキュリティ技術分野での適用も可能である。そのため、これらの適用分野に特有の要求に適合するために、長期間にわたる光センサの高性能と安定性を維持することが望まれる。上述の装置及び検出器によって示される利点にもかかわらず、特に、例えばWO2018/019921A1及び2019年1月18日出願の欧州特許出願19152511.2に表されているような反応性カプセル化によって達成される利点に関して、それらが光センサの性能及び長期安定性を大幅に改善したのにもかかわれず、単純で、コスト効率が良く、なおかつ信頼性の高い、光センサ及び空間検出器に関して、改善の必要性が依然としてある。
【0009】
N.Mukherjee,G.G.Khan,A.Sinha,及びA.Mondalによる「バンドギャップ設計アプリケーション及び材料科学PbxCd1-xSe薄膜の合成:それらの光学的,電気的,構造的及び局所的機械的性質に関する研究」、Phys.Status Solidi A 207,No.8,1880~1886(2010)は、PbxCd1-xSeのバンドギャップ設計されたIV-II-VI型三元固溶体系を調製するための新規の電気化学的技術を記載している。我々は、Pb(CH3COO)2、Cd(CH3COO)2、H2SeO3、及び作用電解質として適切な濃度で含むNa2EDTA溶液を含む、Pbアノードと透明導電性酸化物(TCO)でコーティングされたガラスカソードで構成された自給的改変電気化学セルを使用した。X線回折(XRD)パターン分析では高結晶性のPbxCd1-xSeの形成が確認されたが、走査型電子顕微鏡(SEM)では、コンパクトな表面形態を有する均一な堆積が確認された。TCO/PbxCd1-xSeのヘテロ接合の良好な整流挙動は、電流-電圧測定により確立され、これは堆積された三元化合物のp型伝導特性を示している。このような薄膜の機械的特性は、ナノインデンテーションによって測定された。
【0010】
M.S.Darrow,W.B.White,及びR.Royによる「PbS/PbTe,PbSe/PbTe,及びPbS/PbSe系における多結晶溶液の組成の関数としてのマイクロインデンテーション硬度の変化」、Journal of Materials Science 4(1969)313~319は、組成の関数としてのビッカース微小押込硬度が、鉛カルコゲニド系の多結晶溶液について測定されたことと、及び相図の準固化の特徴によって示される溶解傾向と比較された結果が記載されている。それぞれの系は、端成分化合物間の線形硬化関係からの正の偏差を示した。最も顕著な硬化は、PbS/PbTe溶液について観察された;最大硬度は、約30モル%のPbTeで生じ、約30モル%のPb Teと約805℃でソルバスの最大値(臨界点)との大きな溶解度ギャップと一致した。硬化の最小量は、300℃の低温では溶出を示さない、PbS/PbSe系で観察された。硬度対組成曲線は50モル%組成でほぼ対称であった。これらの2つの系の中間で、PbSe/PbTe結晶溶液は、約30モル%PbTeで最大硬度の非対称硬度/組成曲線を示した。部分相の研究は、図のPbSeリッチ側で500~600℃でソルバスの最大値がある可能性を示している。
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、本発明によって対処される問題は、この種の既知の装置及び方法の欠点を少なくとも実質的に回避する、光学的検出のための装置及び方法を特定することである。
【0012】
特に、少なくとも1つの光導電性材料を含む光センサと、そのような光センサを含む光検出のための検出器を提供することが望ましく、そこでは、ガスセンサ、火花センサ又は炎センサなどの安全関連機器などへの適用、及び同様に、セキュリティ技術分野への適用のための特定の要求に適合するために、光センサの高い性能と安定性が長期間にわたって維持されることができる。
【課題を解決するための手段】
【0013】
この問題は、独立特許請求項の特徴を備えた本発明によって解決される。個別に又は組み合わせて実現されることができる本発明の有利な展開は、従属請求項及び/又は以下の明細書及び詳細な実施形態に示されている。
【0014】
本明細書で使用される場合、「有する」、「備える」、及び「含む」という用語、ならびにそれらの文法上の変形は、非排他的な方法で使用される。したがって、「AはBを有する」という表現、ならびに「AはBを備える」、又は「AはBを含む」という表現は、B以外に、Aは1つ以上のさらなる成分及び/又は構成要素を含むという事実、及びB以外に、他の成分及び/又は構成要素がAに存在しない場合の両方を指し得る。
【0015】
本発明の第1の態様では、光センサが開示されている。本明細書において、本発明による光センサはスタックを有し、前記スタックは、
基板と、
前記基板に適用された少なくとも1つの光導電性材料の層と、
前記光導電性材料の層のアクセス可能な表面を覆うカバーと、
前記スタックから空間的に分離され、前記光導電性材料の層に接触する少なくとも2つの個別の電気接点と、を有し、
前記光センサは、前記スタックの準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである
ことを示す。
【0016】
本明細書で使用される場合、「光センサ」は、一般的に、光ビームによるセンサ領域の照射に依存した方法で、少なくとも1つのセンサ信号を生成するように設計された装置である。センサ信号は、一般的に、センサ領域を照射する入射光ビームの透過、吸収、放出及び反射のうちの少なくとも1つを示す任意の信号であってよく、該入射光ビームは物体によって提供されてよい。一例として、センサ信号は、デジタル信号及び/又はアナログ信号であってもよく、又はそれらを含んでいてもよい。一例として、センサ信号は、電圧信号及び/又は電流信号であってもよく、又はそれらを含んでいてもよい。追加的又は代替的に、センサ信号は、デジタルデータであってもよく、又はそれらを含んでいてもよい。センサ信号は、単一の信号値及び/又は一連の信号値を含んでよい。センサ信号は、さらに、例えば2つ以上の信号を平均すること、及び/又は2つ以上の信号の商を形成することによってなど、2つ以上の個別の信号を組み合わせることによって導出される任意の信号を含んでもよい。
【0017】
「物体」は、一般的に、生物及び非生物から選ばれる任意の物体であってよい。したがって、一例として、少なくとも1つの物体は、1つ以上の物品及び/又は物品の1つ以上の部分を含むことができる。追加的又は代替的に、物体は、1つ以上の生物及び/又はその1つ以上の部分、例えば、人間、例えばユーザー、及び/又は動物の1つ以上の体の部分であってもよいし、それらを含んでいてもよい。
【0018】
本明細書で使用される場合、「位置」は、一般的に、空間内の物体の位置及び/又は方向に関する任意の情報項目を指す。この目的のために、一例として、1つ以上の座標系が使用されてよい、そして、物体の位置は1つ、2つ、又は3つ以上の座標を使用して決定されてよい。本明細書において、第1座標は、光センサと物体との間の距離を指す物体の深度を指し、一方、第1座標に垂直であり得る他の2つの座標は、物体の幅を指すことができる。一例として、1つ以上のデカルト座標系及び/又は他の種類の座標系が使用されてよい。一例として、座標系は、検出器が所定の位置及び/又は方向を有する検出器の座標系であってよい。
【0019】
本発明によれば、光センサは、少なくとも1つの光導電性材料の層を含み、該光導電性材料の層は、センサ領域として機能することができる。本明細書で使用される場合、「センサ領域」は、光ビームによる光センサの照射を受けるように設計された光センサの区画と考えられ、該照射は、センサ領域によって受信されるという方式で、少なくとも1つのセンサ信号の生成を引き起こし、該センサ信号の生成は、センサ信号とセンサ領域の照射の態様との間の定義された関係によって支配され得る。本発明によれば、センサ領域は、光導電層又はその区画によって形成される。ここで、センサ領域は、単一のセンサ領域として形成されてよい。特定の実施形態では、光導電層は、少なくとも2つの個別のセンサ領域、好ましくは個別のセンサ領域のアレイを含むことができ、該センサ領域は、「共通基板」とも呼ばれる同一の基板に直接又は間接的に適用され、該同一の基板は、したがってかなり大きな面積を示すことができる。
【0020】
本明細書で使用される場合、「光導電性材料」という用語は、電流を維持することができ、したがって、特定の電気伝導度を示す材料を指し、電気伝導度は特に、材料の照射に依存する。電気抵抗率は、電気伝導度の逆数値として定義されるため、代替的に、「光抵抗性材料」という用語もまた同じ種類の材料を示すために使用され得る。この種の材料において、電流は、少なくとも1つの第1電気接点を介し、材料を通って、少なくとも1つの第2電気接点に導かれ、該第1電気接点は該第2電気接点から絶縁され、一方、該第1電気接点及び該第2電気接点の両方が材料と直接接続されている。この目的のために、該直接接続は、技術水準から知られる任意の既知の手段、例えば、メッキ、溶接、はんだ付け、ワイヤボンディング、超音波熱圧着、ステッチボンディング、ボールボンディング、ウェッジボンディング、コンプライアントボンディング、熱圧着、陽極接合、直接ボンディング、プラズマ活性化接合、共晶接合、ガラスフリットボンディング、接着結合、過渡液相拡散接合、表面活性化接合、テープ自動接合、又は、高導電性物質、特に金、ベリリウムドープ金、銅、アルミニウム、銀、白金、又はパラジウム、ならびに上述の金属のうちの少なくとも1つを含む合金のような金属を接触領域に堆積させることによって提供されることができる。
【0021】
本発明の目的のために、光センサのセンサ領域で使用される光導電性材料は、好ましくは、無機光導電性材料、及び/又はその固溶体、及び/又はそのドープ変形を含むことができる。本明細書で使用される場合、「固溶体」という用語は、少なくとも1種の溶質が溶媒中に含まれ、それによって均一相が形成され、そこでは溶媒の結晶構造が一般的に溶質の存在によって不変であり得る、光導電性材料の状態を指す。例として、2成分のセレン化鉛(PbSe)は硫化鉛(PbS)中で溶解され、PbS1-xSexに至ることができ、そこではxの値は0から1の範囲で変動し得る。本明細書でさらに使用される場合、「ドープ変形」という用語は、材料自体の成分から離れた単一の原子が、非ドープ状態では固有原子によって占有される結晶内の部位に導入される光導電性材料の状態を指し得る。
【0022】
これに関して、無機光導電性材料は、特に、セレン、テルル、セレン-テルル合金、金属酸化物、第4族元素又は化合物、すなわち第4族に属する元素又は少なくとも1つの第4族元素を有する化合物、第3族-第5族化合物、すなわち少なくとも1つの第3族元素と少なくとも1つの第5族元素を有する化合物、第2族-第6族化合物、すなわち、一方で、少なくとも1つの第2族元素又は少なくとも1つの第12族元素を有し、他方で、少なくとも1つの第6族元素を有する化合物、及び/又はカルコゲニドであって、好ましくは硫化カルコゲニド、セレン化カルコゲニド、三元カルコゲニド、四元カルコゲニド及びそれ以上のカルコゲニドからなる群から選択されるカルコゲニド、のうちの1つ以上であるか、それらを含んでいる。一般に使用されるように、「カルコゲニド」という用語は、酸化物、すなわち硫化物、セレン化物、及びテルル化物以外の周期表の第16族元素を含み得る化合物を指す。さらに、「カルコゲニド」という用語は、スルホセレニドなどの混合カルコゲニドを指すこともある。
【0023】
本発明の特に好ましい実施形態では、光センサに使用される光導電性材料は、鉛カルコゲニド、好ましくは硫化鉛(PbS)、その固溶体、及び/又はそのドープ変形から選択されてよい。特に好ましい光導電性材料は、一般に、赤外スペクトル範囲内に特徴的な吸収特性を示すことが知られているため、前述された好ましい光導電性材料を含む層を有する光センサは、好ましくは、赤外センサとして使用され得る。しかしながら、例えばWO2018/019921A1及び2019年1月18日出願の欧州特許出願19152511.2に開示されているような、他の実施形態及び/又は他の光導電性材料も実現可能である。
【0024】
光導電性材料に関して、15nmを超える大きさを示す少なくとも数個の結晶を含み得る材料の層が含まれ得る。ここで、光導電性材料の層は、真空蒸着、スパッタリング、原子層堆積、化学気相堆積、噴霧熱分解、電着、陽極酸化、電気変換、無電解浸漬成長、逐次イオン吸着及び反応、化学浴堆積、ならびに溶液-気体界面技術からなる群から選択される少なくとも1つの蒸着法を適用して製造されることができる。その結果、光導電性材料の層は、10nm~100μm、好ましくは100nm~10μm、より好ましくは300nm~5μmの厚さを示すことができる。しかし、上述の及び/又は後述の他の光導電性材料も、この目的のために可能であり、同じ又は類似の方法で処理されてよい。
【0025】
好ましくは、光導電性材料は、特に光導電性材料の層に機械的安定性を与えるために、絶縁性基板上、好ましくはより詳細に後述するような基板上にそれぞれの材料を堆積させることによって製造されることができる。このようにして、適切な基板上に選択された層を堆積し、少なくとも2つの個別の電気接点を設けることにより、本発明による光センサを得ることができる。ここで、入射光ビームによるセンサ領域内の光導電性材料の照射は、光導電性材料の照射された層における電気伝導度の変化をもたらす。
【0026】
上述したように、光導電性材料の層は、少なくとも1つの基板に適用されることができる。一般的に使用されるように、「基板」という用語は、材料の層、特に本明細書で使用されるような光導電性材料の層を担持し、特に光導電性材料の層に機械的安定性を与えるために適合された延ばされた本体を指す。これにより、光導電性材料の層は、間接的に、又は、好ましくは、直接的に基板に適用されることができる。ここで、「直接的に」という用語は、光導電性材料の層と基板の直接的な取付けを指し、「間接的に」という用語は、接着層などの少なくとも1つの中間層を介した光導電性材料の層と基板の取付けを指す。好ましくは、基板は、層の厚さの少なくとも5倍、好ましくは少なくとも25倍、より好ましくは少なくとも100倍を上回る横方向の延長を有している層として提供されてよい。特に、基板の厚さは、10μm~2000μm、好ましくは50μm~1000μm、より好ましくは100μm~500μmであってよい。
【0027】
好ましくは、基板及びカバーの少なくとも一方は、選択された波長範囲内、特に赤外スペクトル範囲内又は本明細書の他の箇所に示されているようにその帯域内で、光学的に透明であってよい。したがって、カバー層に使用される材料を、好ましくは、特に適切な吸収特性を示すことにより所望の波長範囲内で光学的に透明であるように選択することが、特に有利である。代替的に又は追加的に、基板に適用される材料は所望の波長範囲内で光学的に透明な特性を示してよい。特に、この特徴は、基板が十分な透明性を示すことができるため、所望の波長範囲内で光学的に透明でないかもしれないカバー材料のより広範囲の材料選択を可能にすることができる。この目的ために、基板は、特に、少なくとも部分的に透明な少なくとも1つの絶縁材料を含むことができ、該絶縁材料は、好ましくは、ガラス、石英、溶融シリカ、金属酸化物、又はセラミック材料好ましくはサファイア(Al2O3)のうちの少なくとも1つから選択されてよく、ガラス又は石英が特に好ましい。
【0028】
特に好ましい実施形態では、基板は、回路キャリア装置、例えばプリント回路ボード(PCB)などに直接又は間接的に適用されることができる。本明細書において、「プリント回路ボード」という用語は、通常「PCB」と略され、電気的に非導電性の平面ボードを指し、その上に少なくとも1層の導電性材料、特に銅層が適用され、具体的にはボート上に積層される。1つ以上の電子的、電気的、及び/又は光学的要素をさらに含むこのタイプの回路キャリアを指す他の用語は、プリント回路アセンブリ、略して「PCA」、プリント回路ボードアセンブリ、略して「PCBアセンブリ」又は「PCBA」、回路カードアセンブリ又は略して「CCA」又は単に「カード」と示されることもある。PCBでは、ボードは、ガラスエポキシを含むことができ、そこでは、フェノール樹脂を含浸させた綿紙(典型的には黄褐色又は茶色)もボード材料として使用されることができる。シートの数に応じて、プリント回路ボードは、片面PCB、2層もしくは両面PCB、又は多層PCBであり得、そこでは、異なるシートは、いわゆる「ビア(vias)」を使用することによって互いに接続される。本発明の目的のためには、片面PCBの適用で十分かもしれない;しかし、他の種類のプリント回路ボードも適用可能であり得る。両面PCBは両面に金属を有することができ、一方、多層PCBは、追加の金属層を絶縁材料のさらなる層の間に挟むことにより設計され得る。多層PCBにおいては、層は交互に積層され得、各金属層は個々にエッチングされ、内部ビアは複数層が一緒に積層される前にめっきされ得る。さらに、ビアは、絶縁ボードを通る導電性経路として好ましくは設計され得る銅めっき穴であってもよく、又はそれを含んでいてもよい。
【0029】
光導電性材料の層、対応の電気接点、及び該当する場合のさらなる層を担持する基板は、具体的には、接着、はんだ付け、溶接、又はその他の方法によりPCBなどの回路キャリア装置上に配置され、あるいは、回路キャリア装置の隣接表面に直接又は間接的に堆積されることができる。例えば、基板は、基板とPCBなどの回路キャリア装置の隣接表面の間に配置される接着剤の薄膜によって、PCBなどの回路キャリア装置に取り付けられてよい。プリント回路ボートのさらなる実施形態については、https://en.wikipedia.org/wiki/Printed_circuit_boardを参照されたい。しかし、代替的に、他の種類の回路キャリアも適用されることができる。
【0030】
さらに、本発明による光センサは、光導電性材料のアクセス可能な表面を、及び好ましくは基板のアクセス可能な表面をも覆うカバーを備える。一般的に使用されるように、「アクセス可能な表面」という語は、光センサを取り囲む大気によって到達可能な本体の一部、特に、光導電性材料の層の一部、又は、該当する場合は基板の層の一部を指す。好ましくは、カバーは、光導電性材料の層の上面及び側面、及び、基板の少なくとも側面に直接接触し得る方式で、適用されてよい。すでに上記で示したように、基板は光導電性材料の層を担持しており、したがって光導電性材料の層の上面は、基板に直接又は間接的に適用されていない光導電性材料の層の広い表面を指す。一般的に使用されるように、「層」という用語は、2つの広い表面を有し、それら広い表面の間に側面が配置されている延ばされた本体を指す。光導電性材料と基板の両方が層として提供されているため、それぞれが側面を含んでいる。
【0031】
好ましい実施形態では、カバーは、特に好ましい配置ではPCBのように基板が特に上述したような方式で回路キャリア装置に取り付けられてもよい、光導電性材料の層と基板側面の両方のアクセス可能な表面を完全に覆ってよい。この好ましい実施形態では、カバーは、光導電性材料の層と基板側面の両方を連続的に覆う連続コーティングであってよい。その結果、カバーは光導電性材料及び基板の両方のアクセス可能な表面をすべて覆うことができ、したがって、光導電層の材料又は基板と周囲雰囲気の直接接触を防止し、それによって、湿度及び/又は酸素などの外的影響による光導電性材料の劣化を回避することができる。しかし、WO2018/019921A1に開示されているように、光導電性材料の層にのみ堆積されたカバーが、すでに光センサの長期安定性を向上させている可能性がある。結果として、カバーは、光導電性材料の層に対する湿度及び/又は酸素の影響を最小化又は減少させることによって、外的影響の低減又は排除に寄与する。さらに、基板のアクセス可能な表面をも覆うカバーは、基板の表面を通して又は表面に沿って光導電性材料の層に湿度及び/又は酸素を伝達することができる経路を遮断及び/又は妨害することによって、このような影響を改善することができる。
【0032】
このように、カバーは、光導電性材料のための改良された封入を提供するために適合され得る。本明細書で使用される場合、「封入」という用語は、特に、例えば周囲雰囲気に含まれる湿度及び/又は酸素のような外的影響による、光センサ又はその区画、特に光センサのセンサ領域内の光導電性材料の区画の部分的又は完全な劣化を可能な限り回避するためのパッケージ、好ましくは気密パッケージを指し得る。ここで、パッケージは、好ましくは、光導電性材料のすべてのアクセス可能な表面を覆うように適合されることができ、ここで、該光導電性材料の層は、光導電性材料の表面の区画を保護するように既に適合された基板に堆積され得るということは考慮されてよい。言い換えれば、基板とカバー層は、光導電性材料の改良されたパッケージング、好ましくは改良された気密パッケージングを完成させるように協働するように適合するように適合され得る。
【0033】
好ましくは、カバーを堆積させるために、少なくとも1つの堆積方法が使用されることができる。この目的のために、該少なくとも1つの堆積方法は、特に、原子層堆積、化学気相堆積、スパッタリングプロセス、又はそれらの組合せから選択されてよい。結果として、カバーは、特に好ましい実施形態では、原子堆積コーティング、化学気相堆積コーティング、スパッタコーティング、又は上記の堆積方法の少なくとも2つを使用することにより生成されたコーティングであるか、又はそれらを含んでいてもよく、原子堆積コーティング又は原子堆積コーティングとスパッタリングの組合せを使用して生成されたコーティングが特に好ましい。言い換えれば、カバーは、この特に好ましい実施形態では、ALDプロセス、CVDプロセス、スパッタリングプロセス、又はそれらの組合せによって得られることができ、ALDプロセス又はALDとスパッタリングの組合せが特に好ましい。特に、カバーは、少なくとも1つの金属含有化合物を含むことができ、該少なくとも1つの金属は、Al、Ti、Ta、Mn、Mo、Zr、Hf、及びWからなる群から選択されてよい。さらに、少なくとも1つの金属含有化合物は、好ましくは、酸化物、水酸化物、又はそれらの組み合わせを含む群から選択されてよい。したがって、金属含有化合物は、好ましくは、少なくとも1つの酸化物、少なくとも1つの水酸化物、又はそれらの組合せ、好ましくはAl、Ti、Zr又はHfの少なくとも1つの酸化物、少なくとも1つの水酸化物、又はそれらの組合せを含んでよい。本発明の特に好ましい実施形態では、カバーによって含まれる金属含有化合物は、酸化アルミニウム及び/又は水酸化アルミニウムを含む組成物であってもよく、この組成物は、一般的に使用されるように、簡単のためにAl2O3とも呼ばれる。さらに、カバーは、10nm~600nm、好ましくは20nm~200nm、より好ましくは40nm~120nm、最も好ましくは50~95nmの厚さを示し得る。この厚さは、特に、光導電性材料の封入を提供する上述の機能を達成するのに有利であり得るカバー内の金属含有化合物の量を反映し得る。
【0034】
本発明のさらに特に好ましい実施形態では、カバーは、光導電性材料又は基板の隣接表面に関して共形(コンフォーマル)であり得る。上で定義したように、共形(コンフォーマル)カバーの厚さは、したがって、±50nm、好ましくは±20nm、最も好ましくは±10nmの偏差内で光導電性材料又は基板の対応する表面に追従してよく、該偏差は、カバーの表面の少なくとも90%、好ましくは少なくとも95%、最も好ましくは少なくとも99%で生じ、これによってカバー表面に存在し得る如何なる汚染又は不完全性を除外することができる。
【0035】
特に好ましい実施形態では、カバーは、外部回路への1つ以上のリード線などに接合可能なように特に構成され得る電気接点を、部分的に又は完全に覆ってもよい。ここで、電気接点は、金又はアルミニウムワイヤなどのワイヤを使用することによって結合可能であってよく、そこでは、電気接点は、好ましくは、カバーを通して結合可能であってよい。特定の実施形態では、接着層が電気接点に設けられてよく、その場合、接着層は特に結合に適合するようにされてよい。この目的のために、接着層は、Ni、Cr、Ti、又はPdのうちの少なくとも1つを含み得る。
【0036】
本発明によれば、基板、光導電性材料の層、及びカバーは、スタックの形で配置されており、そこでは、光導電性材料の層に接触する電気接点が、スタックから空間的に分離されている。一般に使用されるように、「スタック」という用語は、少なくとも2つの個別の層を含む構成を指し、そこでは、個別の層の1つが特定の方向に他の個別の層の上に配置される。本明細書に記載されているスタックに関しては、少なくとも1つの個別の層の表面のある広がりに対して垂直であり得る法線ベクトルが、スタックがそれに従って配置され特定の方向として使用されることができる。したがって、基板は、その上に光導電性材料の層が配置され、カバーがさらに光導電性材料の層の上に配置されるベース層と考えられてよい。このような考慮は、以下でより詳細に説明するスタックの製造方法、具体的には、基板をベース層として設けて、続いて、さらなる層を堆積し、すなわち、まず、光導電性材料の層を堆積させ、その後、カバーを堆積させることによって、さらに正当化され得る。製造後、スタックは、全体として任意の方向に回転させることができるが、回転はスタックの配置及び構成に影響を与えないようにしてよい。この点に関して、光導電性材料の層の側面、及び該当する場合は基板の側面の、本明細書の他の箇所でより詳細に説明されるようなカバーによる被覆は、考慮から除外することができる。
【0037】
さらに本発明によれば、上記のような光センサに含まれるスタックは、特に選択された静的機械特性を示す。本明細書で使用される場合、スタックなどの本体の「機械的特性」という用語は、本体に適用される入射力に対する本体の応答(「感受性」という用語でも示される)を指す。ここでは、本体に適用される入射の静的力に対する本体の応答性又は感受性を指す静的機械特性は、本体に準静的なナノインデンター測定を行うことによりアクセス可能である。一般的に使用されるように、「準静的なナノインデンター測定」は、「弾性率」又は「弾性係数」のいずれかの用語で示されるヤング率の測定、及び、本体の硬度の測定に関するものであり、それらは好ましくは、規格EN ISO 14577-1:2015及びEN ISO 14577-4:2016に準拠して行われる。さらに一般的に使用されるように、「ナノインデンター」という用語は、準静的なナノインデンター測定を行うために、スタックを含む試料の非常に小さい体積内に侵入するように設計されたチップ(先端)を有するプローブを指す。この目的のために、ナノインデンターのチップは、好ましくは、ピラミッド形状を備え、ここでEN ISO 14577-2:2015規格に準拠した「ベルコビッチチップ(Berkovich tip)」が特に好ましい。準静的なナノインデンター測定、関連するプローブ、及び得られる結果に関する詳細については、本明細書に記載されている規格を参照することができる。
【0038】
したがって、本体のヤング率とは、ある軸に沿って力が適用された場合に、その軸に沿って本体が変形する傾向に関する本体の引張弾性率のことを指す。具体的に、ヤング率は、引張ひずみに対する引張応力の比として定義され、該引張応力は、GPaで測定され、力が適用された面積に対する本体の変形を誘発する力の比に関連し、該引張ひずみは、本体の基準寸法に対する本体の変形の無次元の比である。ここで、本体の寸法の変更は、本体の並進及び/又は回転を含む本体の運動、及び/又は本体の形状の変更、従って本体のサイズ又は体積の変更を含むことができる。本発明によれば、ヤング率は、上述のナノインデンターを用いることによって測定される。さらに、本体の硬度とは、本体への一定の圧縮荷重によって誘発される本体の局所的な変形に対する本体の抵抗力を指し、従ってこれもナノインデンターを適用することによって測定されることができる。その結果、ヤング率と硬度は、光センサに含まれるスタックの静的機械特性を決定するための信頼性の高い指標と考えることができる。
【0039】
驚くべきことに、光センサは、スタックが以下の特性、すなわち、準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPa、好ましくは80GPa~102GPa、より好ましくは86GPa~96GPaであり、
侵入深さ300nmで47GPa~127GPa、好ましくは60GPa~114GPa、より好ましくは74GPa~100GPaであり、
侵入深さ1000nmで49GPa~119GPa、好ましくは61GPa~107GPa、より好ましくは72GPa~96GPaであり、
一方、硬度は、
侵入深さ100nmで1.20GPa~4.70GPa、好ましくは1.78GPa~4.12GPa、より好ましくは2.37GPa~3.53GPaであり、
侵入深さ300nmで1.60GPa~4.60GPa、好ましくは2.10GPa~4.10GPa、より好ましくは2.60GPa~3.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPa、好ましくは2.67GPa~6.93GPa、より好ましくは3.73GPa~5.87GPaである
場合に、以下により詳細に示すように、好ましい特性を示すことが見出された。
【0040】
理論に拘束されることを望まないが、上記の特性は、好ましくは、所望の高品質を有する長期的に安定なセンサを製造するときに、好ましくはバランスが保たれる選択されたパラメータの適切な記述を提供する。特に、光導電性センサの光導電性は、好ましくは結晶構造、結晶サイズ、バルク対表面比、及び結晶欠陥から選択されるバルク材料の結晶性に大きく依存する可能性がある。さらに、優れた検出性を生じる表面欠陥を提供する活性化層と、欠陥の所与の状態を形成及び/又は保存するための封止の一方又は双方として作用するカバー層は、そのアモルファス状態の性質、特に結晶化度が非常に低いアモルファス状態の性質に大きく依存している。光導電性結晶のサイズが小さく、又は、結晶間の凝集及び/又は結合が弱い場合、硬度及びヤング率の両方が小さくなる。カバー層の結晶性が高く、及び/又は、光導電性結晶子が大きい場合、硬度及びヤング率の両方が大きくなる。さらに、硬度とヤング率の両方が、カバー層及び光導電性結晶との間の接続性及び結合性を特徴付ける。したがって、異なる侵入深さで測定される硬度とヤング率の両方は、微視的な化学パラメータとそれらの光センサの検出性と長期安定性に対する関連の複雑な相互作用を特徴づけるための理想的な指標であると考えられる。
【0041】
特に、光センサの全体的な長期品質は、従って、製造後数千時間後にセンサパラメータを測定することによって決定されることができる。本発明による高品質で長期安定なセンサの選択基準を得るために、製造から4000±50時間後に光センサが測定され、製造直後の暗抵抗に対する相対暗抵抗変化、製造直後の検出率に対する相対検出率変化、及び-10Vから+10Vの間の線形抵抗率からの絶対的最大偏差が決定された。その結果、選択基準は、0.1%未満の相対暗抵抗変化、0.1%未満の相対検出率変化、0.1%未満の暗抵抗の-10Vから+10Vの間の線形抵抗率からの絶対的最大偏差の光センサとして定義された。示された選択基準を満たした各光センサについては、以下のパラメータ:侵入深さ100nm、300nm、1000nmでのヤング率、又は、侵入深さ100nm、300nm、1000nmでの硬度の1つのみがスタックの準静的なナノインデンター測定において決定された。各測定は、30個の個別の光センサで行われた。各パラメータの測定セットにより、平均値μと標準偏差σが得られた。その結果、平均値を中心とする1.5σ間隔(μ±1.5σ)内のパラメータを示す光センサが、本発明による光センサとみなされる。平均値を中心とするσ間隔(μ±σ)内のパラメータを示す光センサが好ましい光センサである。平均値を中心とする0.5σ間隔(μ±0.5σ)内のパラメータを示す光センサが特に好ましい。
【0042】
本発明の特に好ましい実施形態では、上記の光センサに含まれるスタックは、さらに、特に選択された誘電特性を示すことができる。したがって、本体に印加される入射電磁波に対する本体の誘電損失などの誘電パラメータを指す誘電特性は、75GHzのマイクロ波周波数で実施され得るマイクロ波反射測定実験によってアクセス可能であり、用語「S11」で示される「反射率係数」が測定される。一般的に使用されるように、「S11反射率係数」は、dBで10log(Prefl/Pin)として定義され、Pinは、スタックを含む試料に入射するマイクロ波の出力を示し、Preflは、試料によって反射される反射マイクロ波の出力を示す。その結果、S11反射率係数は、光センサに含まれるスタックの誘電特性を決定するための信頼性の高い指標と考えられることができる。
【0043】
驚くべきことに、光センサは、スタックが以下の特性、すなわち、スタックの75GHzのマイクロ波反射測定実験において、反射率係数S11が、-6.70dB~-1.30dB、好ましくは-5.80dB~-2.20dB、より好ましくは-4.90dB~-3.10dBである場合に、以下により詳細に示すように、好ましい特性を示し得ることがさらに見出された。
【0044】
理論に拘束されることを望まないが、上記の特性は、好ましくは、所望の高品質を有する長期的に安定なセンサを製造する際に好ましくはバランスが保たれる選択されたパラメータのさらなる適切な記述を提供する。特に、マイクロ波反射測定は、導電性材料の誘電体パラメータ及び欠陥ベースの電荷の有効な移動度に関する洞察を提供するために使用されることができる。さらに、マイクロ波反射測定は、封入における漏洩を検出するために使用されることができる。さらに、マイクロ波反射測定は、水分の測定にも使用されることができる。光導電性センサは、水分が、特に電荷移動度、抵抗率、及び検出率から選択される光導電性特性を変化させるため、水分に対して非常に敏感である。さらに、電荷移動度、抵抗率、検出率及び/又は誘電損失は、カバー層への化学結合を含む光導電性結晶体の表面欠陥に特に依存する。したがって、マイクロ波反射測定は、微視的な電荷移動度、抵抗率、検出率、欠陥構造、及び含水率の好ましい組み合わせの測定を構成することができ、そのことは複雑で測定が困難なパラメータのバランスを監視することを可能にすることができ、該パラメータのバランスはしかし高性能センサを得るために好ましいと考えられることができる。
【0045】
特に、光導電性センサの全体的な長期品質は、従って、製造後数千時間後にセンサパラメータを測定することによって決定されることができる。上記に定義されたように、示された選択基準を満たした各光センサについて、スタックの反射率係数S11が75GHzでマイクロ波反射測定実験で決定された。各測定は、30個の個別の光センサで行われた。各測定セットにより、反射率因子S11に対して平均値μと標準偏差σが得られた。上述したように、平均値を中心とする1.5σ間隔(μ±1.5σ)内のパラメータを示す光センサは、本発明による光センサとみなされる。平均値を中心とするσ間隔(μ±σ)内のパラメータを示す光センサが好ましい光センサである。平均値を中心とする0.5σ間隔(μ±0.5σ)内のパラメータを示す光センサが特に好ましい。
【0046】
特に好ましい実施形態では、上記の光センサに含まれるスタックは、さらに、特に選択された組成を示すことができる。本明細書で使用される場合、スタックの「組成」という用語は、スタック内の構成要素の分布を指す。この特に好ましい実施形態では、スタックの組成の特徴を決定するために、スタックの波長分散型X線分光法(WDXS)を採用してよい。一般に使用されるように、「波長分散型X線分光法」又は「WDXS」という用語は、高感度及び高分解能でマイクロスケール上の相の化学成分及び組成を決定するための特定の方法を指す。この目的のために、スタックを含む試料に電子線を照射し、試料により放出されるX線は続いて既知の単結晶に正確な角度で照射するために平行にされ、単結晶は検出器により収集されるために光子を回折させる。ここで、単結晶、試料、及び検出器は、ゴニオメーター上に正確に取り付けられ、試料と単結晶との間の距離は、単結晶と検出器との間の距離と等しくてよい。好ましい実施形態では、自動交換ユニットが、特に入射エネルギーに応じて単結晶を換え、それによって異なる成分の分析が可能になるように、採用されることができる。その結果、波長分散型X線分光法は、一度に単一の波長のX線のみをカウントする。
【0047】
特に、本発明による光センサで使用され得る光導電性材料は、具体的には、鉛カルコゲニド、固溶体、及び/又はそのドープ変形であってよく、同時に、カバーは、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含むアモルファスカバーであってよく、ここでは簡単のために「Al2O3」と示される。このように、波長分散型X線分光法を用いることは、ガラス基板上に堆積されるPbS層を覆うAl2O3のカバーを含むスタックの組成を決定することを可能にする。ここで、波長分散型X線分光測定は、検出器として電子ビームマイクロアナライザを用い、WDXS用の単結晶としてフタル酸タリウム(TAP)又はペンタエリスリトールH型(PET H)を用いて行われ、WDXS測定は、好ましくは、20kVの加速電圧を用いて行われてよい。その結果、WDXS測定のネットカウントは、それぞれAl Kα1線のピーク最大値、Pb Mα1線のピーク最大値、S Kα1線のピーク最大値で決定されることができる。
【0048】
驚くべきことに、光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAとPb Mα1線のピーク最大値で測定されたネットカウント/s・nAの比が0.113~0.279、好ましくは0.141~0.251、より好ましくは0.168~0.224である場合に、好ましい特性を示し得ることが見出された。
【0049】
光センサに使用される光導電性材料の鉛カルコゲニドに硫化鉛(PbS)が選択されるさらに特に好ましい実施形態では、光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456、好ましくは0.0944~0.1354、より好ましくは0.1046~0.1251である場合に、好ましい特性を示し得ることがさらに見出された。
【0050】
理論に拘束されることを望まないが、上記の誘電特性は、好ましくは、所望の高品質を有する長期的に安定なセンサを製造する際に好ましくはバランスが保たれる選択されたパラメータのさらなる適切な記述を提供する。特に、光導電性センサの特性は、光導電性結晶及びそれらとカバー層との相互作用に大きく依存する。カバー層は、共形層(コンフォーマル層)であってよく、したがって、光導電性結晶の表面形状に沿っていてよい。化学元素の分布は、従って、表面の法線に沿って変化し得る。ここで、基板の近くでは、元素分布は、光導電性材料の元素分布と本質的に同一となり、一方表面の近くでは、カバー層と本質的に同一の元素分布となり、その間では、元素分布は、光導電性結晶の形状、サイズ及び/又は凝集度、ならびに結晶間の体積に大きく依存し得る。この目的のために、WDX分光法が、表面上の元素分布だけでなく表面下の元素分布の知られている測定に使用されることができる。WDX分光法は、したがって、結晶とカバー層の組成の複雑なパラメータへの洞察を得るために使用されることができる。
【0051】
特に、光導電性センサの全体的な長期品質は、したがって、製造後数千時間後にセンサのパラメータを測定することによって決定されることができる。上記で定義した選択基準を満たす各光センサについて、以下のパラメータ:電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、カバー層にAl、光導電層にPbを含有するセンサの場合、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比、又は、カバー層にAl、光導電層にPbとSを含有するセンサの場合、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計との比のうち1つだけが決定された。各測定は、30個の個別の光センサで行われた。各測定セットにより、反射率因子S11に対して平均値μと標準偏差σが得られた。上述したように、平均値を中心とする1.5σ間隔(μ±1.5σ)内のパラメータを示す光センサは、本発明による光センサとみなされる。平均値を中心とするσ間隔(μ±σ)内のパラメータを示す光センサが好ましい光センサである。平均値を中心とする0.5σ間隔(μ±0.5σ)内のパラメータを示す光センサが特に好ましい。
【0052】
光センサ又はその任意の構成要素、具体的には基板、光導電性材料、カバー、又は電気接点に関するさらなる詳細については、WO2018/019921A1及び2019年1月18日に出願された欧州特許出願19152511.2を参照されたい。
【0053】
本発明のさらなる態様では、全体的に長期的な品質を有する光センサを選択する方法が開示されている。ここで、本方法は、以下のステップ、
・スタックを備えた光センサを提供するステップであって、前記スタックは、
基板と、
前記基板上に適用された少なくとも1つの光導電性材料の層と、
前記光導電性材料の層のアクセス可能な表面を覆うカバーと、
前記スタックから空間的に分離され、前記光導電性材料の層に接触する少なくとも2つの個別の電気接点と、を有するステップと、
・準静的なナノインデンター測定において、スタックのヤング率と硬度を測定するステップと、
・スタックの準静的なナノインデンター測定において、好ましい静的機械特性を示す光センサを選択するステップであって、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaであり、
侵入深さは、スタックの表面に関して決定される、光センサを選択するか、
又は、スタックのヤング率及び硬度がスタックの好ましい静的機械特性から逸脱している場合は、光センサを拒否するかのステップと、を有する。
【0054】
全体的に長期的な品質を有する光センサを選択する方法に関するさらなる詳細については、本明細書の光センサの説明を参照することができる。
【0055】
本発明のさらなる態様では、光検出のための検出器、特に赤外スペクトル範囲内の光放射の検出、特に、少なくとも1つの光ビームによって提供される透過、吸収、放出及び反射のうちの少なくとも1つを感知することに関する検出器、又は、少なくとも1つの物体の位置を決定するための、具体的には少なくとも1つの物体の深度又は深度と幅の両方に関して少なくとも1つの物体の位置を決定するための検出器が、開示される。本発明によれば、少なくとも1つの物体の光検出のための検出器は、
本明細書の他の部分に記載された少なくとも1つの光センサであって、前記光センサは、少なくとも1つのセンサ領域を含み、前記光センサは、光ビームによる前記センサ領域の照射に依存する方式で、少なくとも1つのセンサ信号を生成するように設計されている、光センサ;及び
少なくとも1つの評価装置であって、前記評価装置は、前記光センサの前記センサ信号を評価することにより、前記光ビームによって提供される光放射に関する少なくとも1つの情報項目を生成するように設計されている、評価装置、
を含む。
【0056】
本明細書において、挙げられた構成要素は、別個の構成要素であってよい。あるいは、2つ以上の構成要素が1つの構成要素に統合されていてもよい。さらに、少なくとも1つの評価装置は、好ましくは、光学レンズ、ミラー、ビームスプリッタ、光フィルタ、及び光センサのうちの少なくとも1つから選択されてよい転送装置から独立した別個の評価装置として形成されてよく、しかし、好ましくは、センサ信号を受信するために、光センサに接続されてよい。あるいは、少なくとも1つの評価装置は、完全に又は部分的に光センサに一体化されてもよい。
【0057】
本発明によれば、検出器は、本文書の他の部分に記載されているような光センサのうちの少なくとも1つを含んでいる。したがって、検出器は、好ましくは、赤外(IR)スペクトル範囲が特に好ましい場合があるかなり広いスペクトル範囲で、電磁放射を検出するように設計されてよい。ここで、光センサのセンサ領域内の光導電層のために、2.6μmまでの波長においては、ヒ化インジウムガリウム(InGaAs)、3.1μmまでの波長においてはヒ化インジウム(InAs)、3.5μmまでの波長においては硫化鉛(PbS)、5μmまでの波長においてはセレン化鉛(PbSe)、5.5μmまでの波長においてはアンチモン化インジウム(InSb)、16μmまでの波長においてはテルル化水銀カドミウム(MCT、HgCdTe)が特に選択されることができ、ここで、硫化鉛(PbS)、固溶体及び/又はそのドープ変形が特に好ましい場合がある。
【0058】
その結果、光ビームがセンサ領域に衝突すると、少なくとも2つの電気接点は、光導電性材料の電気伝導度に依存するセンサ信号を提供することができる。「光ビーム」という用語は一般的に、特定の方向へ放出される、光の量を指す。したがって、光ビームは、光ビームの伝播方向に対して垂直な方向に所定の広がりを有する光線の束であり得る。好ましくは、光ビームは1つ以上のガウス光ビームであるか、又はそれを含んでいてよく、該ガウス光ビームは、ビームウエスト、レイリー長、又は任意のその他ビームパラメータ、又はビーム径の広がり及び/又は空間でのビーム伝播を特徴付けるのに適したビームパラメータの組合せ、のうちの1つ以上などの1つ以上のガウスビームパラメータによって特徴付けられてよい。ここで、光ビームは物体自体によって発せられ得る、すなわち物体から発生し得る。追加的又は代替的に、光ビームの別の発生源も実現可能である。このように、以下でさらに詳しく概説されるように、1つ以上の照射源が提供されてよく、該照射源は、所定の特徴を有する1つ以上の一次光線もしくはビームなどの、1つ以上の一次光線もしくはビームを使用して物体を照射する。後者の場合、物体から検出器へと伝播する光ビームは、物体及び/又は物体に接続された反射装置により、反射される光ビームであってよい。
【0059】
本明細書で使用される場合「評価装置」という用語は、一般的に、情報項目、すなわち、透過、吸収、放出及び反射のうちの少なくとも1つに関する、又は少なくとも1つの物体の、又は少なくとも1つの物体の位置、特に該少なくとも1つの物体の深度又は深度と幅の両方に関する少なくとも1つの物体の位置を決定するための、少なくとも1つの情報項目を生成するように設計された任意の装置を指す。一例として、評価装置は、1つ以上の特定用途向け集積回路(ASIC)などの1つ以上の集積回路、及び/又は1つ以上のデジタル信号プロセッサ(DSP)、及び/又は1つ以上のフィールドプログラマブルゲートアレイ(FPGA)、及び/又は1つ以上のコンピュータ、好ましくは1つ以上のマイクロコンピュータ及び/又はマイクロコントローラなどの1つ以上のデータ処理装置であるか、又はこれらを備え得る。追加の構成要素は、例えば1つ以上のAD変換器及び/又は1つ以上のフィルタなどのセンサ信号を受信及び/又は前処理するための1つ以上の装置などの1つ以上の前処理装置、及び/又はデータ収得装置などによって構成され得る。本明細書で使用される場合、センサ信号は、一般的に、縦方向センサ信号のうちの1つ、及び、該当する場合は横方向センサ信号を指すことができる。さらに、評価装置は、1つ以上のデータ保存装置を含み得る。さらに、上記で概説したとおり、評価装置は、1つ以上の無線インターフェース及び/又は1つ以上の有線インターフェースなどの1つ以上のインターフェースを含み得る。
【0060】
光学的検出のための検出器又はその任意の構成要素、特に評価装置に関するさらなる情報については、WO2014/097181A1及びWO2018/019921A1を参照することができる。
【0061】
本発明のさらなる態様では、光センサを製造する方法が開示されている。該方法は、この文書の他の部分でさらに以下で詳細に開示されている1つ以上の実施形態による少なくとも1つの光センサなどの、本発明による少なくとも1つの光センサを、生産又は製造するために好ましく使用されてよい。したがって、本方法の任意の実施形態については、光センサの様々な実施形態の説明を参照することができる。
【0062】
この方法は、与えられた順序で又は異なった順序で実行されることができる以下のステップを含む。さらに、記載されていない追加の方法ステップが提供されてもよい。特に明記されない限り、方法ステップのうちの2つ以上、又はすべてさえも、少なくとも部分的に同時に実行されてよい。さらに、方法ステップの2つ以上又はすべてさえも、2回以上繰り返し実行されてよい。
【0063】
本発明による方法は、以下のステップ:
a)基板、前記基板に適用された少なくとも1つの光導電性材料の層、及び前記光導電性材料の層に接触する少なくとも2つの個別の電気接点を提供するステップと、
b)その後、前記光導電性材料の層のアクセス可能な表面にアモルファスカバーを堆積するステップであって、それにより、前記基板、前記少なくとも1つの光導電性材料の層、及び前記カバーを含むスタックが得られるステップと、
c)準静的なナノインデンター測定において、前記スタックのヤング率と硬度を測定するステップと、を含み、
前記光センサの製造方法は、前記光センサが、前記ステップc)によるスタックの準静的なナノインデンター測定において、
前記ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
前記硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである、
ことを示すように行われる。
【0064】
ステップa)によれば、基板、少なくとも1つの光導電性材料の層、及び個別の電気接点が提供される。特に、基板、光導電性材料の層、及び電気接点のためのそれぞれの材料は、上に提示された対応する材料のリストから選択されることができる。
【0065】
ステップb)によれば、カバーは上記の方法のうち少なくとも1つを用いて生成されることができる。ここで、ステップb)は、少なくとも1回、好ましくは少なくとも10回、より好ましくは少なくとも100回繰り返されてよい。好ましくは、少なくとも1つの金属含有化合物及び該当する場合の他の種類の化合物は、10nm~600nm、好ましくは20nm~200nm、より好ましくは40nm~100nm、最も好ましくは50~95nmの厚さを達成するまで堆積される。ここで、少なくとも1つの金属含有化合物及び該当する場合の他の種類の化合物は、カバーが、好ましくは光導電性材料の隣接表面に対して共形(コンフォーマル)であり得るように堆積される。したがって、共形(コンフォーマル)カバーの厚さは、共形(コンフォーマル)カバーの表面の少なくとも90%、好ましくは少なくとも95%、最も好ましくは少なくとも99%にわたって、±50nm、好ましくは±20nm、最も好ましくは±10nmの偏差の範囲内で、光導電性材料又は基板の対応する表面に追従してよい。
【0066】
本発明の特に好ましい実施形態では、少なくとも1つの堆積方法が、金属含有化合物を堆積させるために使用される。好ましくは、該堆積方法は、原子層堆積(ALD)プロセス、化学気相堆積(CVD)プロセス、スパッタリングプロセス、又はそれらの組合せのうちの少なくとも1つから選択されることができる。ALDプロセス又はCVDプロセスに関するさらなる詳細については、上記の説明を参照することができる。金属含有化合物を提供する目的で、2つの異なる種類の前駆体が好ましくは使用されることができ、ここで、第1前駆体は有機金属前駆体であるか又はそれを含み、第2前駆体は流体であるか又はそれを含み得る。一般的に使用されるように、「流体」という用語は、第2前駆体の非固体状態を指すことができる。例として、アルミニウム(Al)含有化合物を提供するために、第1前駆体はTMA、すなわちトリメチルアルミニウムAl(CH3)3であるか又はそれを含み、一方、第2前駆体はH2O、酸素、空気もしくはそれらの溶液又はオゾンであるか又はそれを含み得る。本明細書では、特に安定した流体流を提供するために、少なくとも1つの前駆体を不活性ガス、特に窒素(N2)又はアルゴン(Ar)と混合されることができる。
【0067】
上述のように、所望の光センサは、一般に、入射光ビームによる光センサに含まれるセンサ領域の照射に応じて、少なくとも1つのセンサ信号を生成するように設計されている。この目的のために、センサ領域内に含まれる光導電性材料に電気的に接触するように適合された少なくとも2つの電気接点が、さらに設けられる。一般に、電気接点は、方法ステップa)又はb)のいずれか1つの前又はその間に、設けられることができる。特に好ましい実施形態では、電気接点は、公知の蒸着技術などによって蒸着金属層を設けることなどにより、ステップb)の前に設けられることができ、ここで、金属層は特に銀、アルミニウム、白金、マグネシウム、クロム、チタン、金、又はグラフェンのうちの1つ以上を含むことができる。あるいは、電気接点は、無電解Ni、無電解Au、ガルバニックNi、又はガルバニックAuなどの、ガルバニック又は化学堆積プロセスによって設けられることができる。ここで、カバーは、電気接点も完全に又は部分的に覆う方式で堆積されてよい。この特定の実施形態では、電気接点は、カバーによって少なくとも部分的に好ましくは完全に覆われ、したがって、導電性リード線を使用することにより、好ましくはワイヤの形態で、特に金(Au)、アルミニウム(Al)又は銅(Cu)のワイヤを使用することにより、少なくとも1つの外部接続に接合されることができ、該導電性リード線は、特に、カバー層を通して電気接点に接合されることができる。例として、カバー層によって覆われた金(Au)接点は、続いて、ワイヤボンディングによって接続されることができる。
【0068】
ステップc)によれば、スタックのヤング率及び硬度は、上述及び以下により詳細に記載されるような準静的なナノインデンター測定で測定される。
【0069】
特に好ましい実施形態では、本方法は、上述及び以下により詳細に記載されるように、以下のステップ:
d)前記スタックに75GHzのマイクロ波反射測定実験を適用することによって、前記スタックの反射率係数S11を決定するステップ、
をさらに含んでよい。
【0070】
さらに特に好ましい実施形態であって、光導電性材料が、鉛カルコゲニド、固溶体及び/又はそのドープ変形からなる群から選択され、鉛カルコゲニドが、具体的には、硫化鉛(PbS)であり、カバーが、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含むアモルファスカバーであり得るさらに特に好ましい実施形態では、本方法は、上述及び以下により詳細に記載されるように、以下のステップ:
e)電子線マイクロアナライザと20kVの加速電圧を用いることにより、前記スタックの波長分散型X線分光法(WDXS)を実施するステップ、
をさらに含んでよい。
【0071】
以上のように、本発明の光センサの製造方法は、光センサによって含まれるスタックが所望の静的機械特性を示し、好ましくは所望の動的機械特性及び/又は所望の組成を示すように実施される。
【0072】
加えて、光センサの製造プロセスに関する詳細は、この文献の他の部分に記載されている。
【0073】
本発明による装置は、バンプチップキャリア、セラミックリードレスチップキャリア、リードレスチップキャリア、リードチップキャリア、リードセラミックチップキャリア、デュアルリードレスチップキャリア、プラスチックリードチップキャリア、パッケージオンパッケージチップキャリアなどの、表面実装テクノロジーパッケージと組み合わされて使用されることができる。さらに、本発明による装置は、標準スルーホール又はソースマウント技術の半導体パッケージ、例えばDO-204、DO-213、金属電極リーフレス面、DO-214、SMA、SMB、SMC、GF1、SOD、SOT、TSOT、TO-3、TO-5、TO-8、TO-18、TO-39、TO-46、TO-66、TO-92、TO-99、TO-100、TO-126、TO-220、TO-226、TO-247、TO252、TO-263、TO-263、THIN、SIP、SIPP、DFN、DIP、DIL、Flat Pack、SO、SOIC、SOP、SSOP、TSOP、TSSOP、ZIP、LCC、PLCC、QFN、QFP、QUIP、QUIL、BGA、eWLB、LGA、PGA、COB、COF、COG、CSP、Flip Chip、PoP、QP、UICC、WL-CSP、WLP、MDIP、PDIP、SDIP、CCGA、CGA、CERPACK、CQGP、LLP、LGA、LTCC、MCM、MICRO SMDXTなどと組み合せされて使用されることができる。さらに、本発明による装置は、OPGA、FCPGA、PAC、PGA、CPGAなどのピングリッドアレイ(PGA)と組み合わされて使用されることができる。さらに、本発明による装置は、CFP、CQFP、BQFP、DFN、ETQFP、PQFN、PQFP、LQFP、QFN、QFP、MQFP、HVQFP、SIDEBRAZE、TQFP、TQFN、VQFP、ODFNなどのフラットパッケージと組み合わされて使用されることができる。さらに、本発明による装置は、SOP、CSOP MSOP、PSOP、PSON、PSON、QSOP、SOIC、SSOP、TSOP、TSSOP、TVSOP、μMAX、WSONなどの小型アウトラインパッケージと組み合わされて使用されることができる。さらに、本発明による装置は、CSP、TCSP、TDSP、MICRO SMD、COB、COF、COGなどのチップスケールパッケージと組み合わされて使用されることができる。さらに、本発明による装置は、FBGA、LBGA、TEPBGA、CBGA、OBGA、TFBGA、PBGA、MAP-BGA、UCSP、μBGA、LFBGA、TBGA、SBGA、UFBGAなどのボールグリッドアレイと組み合わされて使用されることができる。さらに、本発明による装置は、SiP、PoP、3D-SiC、WSI、近接通信などの、チップインマルチチップパッケージなどのさらなる電子装置と組み合わされることができる。集積回路パッキングに関するさらなる情報については、以下の出典を参照することができる。
【0074】
- https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types 又は、
- https://en.wikipedia.org/wiki/List_of_integrated_circuit_package_dimensions
【0075】
本発明のさらなる態様では、本発明による検出器の使用が開示されている。その中で、検出器の使用の目的は、ガス検知用途、火災検出用途、火炎検出用途、熱検出用途、煙検出用途、燃焼監視用途、分光法用途、温度感知用途、動き感知用途、工業監視用途、化学感知用途、排気ガス監視用途、セキュリティ用途からなる群から選択される。特に、検出器は、赤外線検出用途、熱検出用途、温度計用途、熱追求用途、火炎検出用途、火災検出用途、煙検出用途、温度感知用途、分光法用途などに使用されることができる。さらに、検出器は、排気ガスの監視、燃焼プロセスの監視、工業プロセスの監視、化学プロセスの監視、食品処理プロセスの監視などに使用されることができる。さらに、検出器は、温度制御、動き制御、排気制御、ガス感知、ガス分析、動き感知、化学感知などに使用されてよい。本明細書に開示される光センサ及び検出器のさらなる用途については、WO2016/120392A1及びWO2018/019921A1を参照することができる。しかし、さらなる応用分野がなおも考えられ得る。
【0076】
上述の光センサ及び検出器、方法、ならびに提案された使用は、先行技術に比べてかなりの利点がある。したがって、本発明による光センサは、光センサの高性能及び安定性を長期間にわたって維持され得るため、特に有利であり得る。結果として、これらの有利な点は、ガスセンサ、火花センサ、又は炎センサなどの安全関連機器への適用のための特定の要求、同様にセキュリティ技術分野への適用のための特定の要求を満たすため、有利である。
【0077】
要約すると、本発明の文脈においては、以下の実施形態が好ましいと考えられる。
実施形態1:スタックを備えた光センサであって、前記スタックは、
基板と、
前記基板上に適用された少なくとも1つの光導電性材料の層と、
前記光導電性材料の層のアクセス可能な表面を覆うカバーと、
前記スタックから空間的に分離され、前記光導電性材料の層に接触する少なくとも2つの個別の電気接点と、を有し、
前記光センサは、前記スタックの準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度が、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである、
ことを示す、光センサ。
【0078】
実施形態2:前記光センサは、前記スタックの準静的なナノインデンター測定において、ヤング率が、
侵入深さ100nmで80GPa~102GPaであり、
侵入深さ300nmで60GPa~114GPaであり、
侵入深さ1000nmで61GPa~107GPaであり、
硬度が、
侵入深さ100nmで1.78GPa~4.12GPaであり、
侵入深さ300nmで2.10GPa~4.10GPaであり、
侵入深さ1000nmで2.67GPa~6.93GPaである、
ことを示す、先行する実施形態による光センサ。
【0079】
実施形態3:前記光センサは、前記スタックの準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで86GPa~96GPaであり、
侵入深さ300nmで74GPa~100GPaであり、
侵入深さ1000nmで72GPa~96GPaであり、
硬度が、
侵入深さ100nmで2.37GPa~3.53GPaであり、
侵入深さ300nmで2.60GPa~3.60GPaであり、
侵入深さ1000nmで3.73GPa~5.87GPaである、
ことを示す、先行する実施形態による光センサ。
【0080】
実施形態4:前記光センサは、前記スタックの75GHzのマイクロ波反射測定実験において、反射率係数S11が、-6.70dB~-1.30dBであることを示す、先行する実施形態のいずれか1つによる光センサ。
【0081】
実施形態5:前記光センサは、前記スタックの75GHzのマイクロ波反射率実験において、反射率係数S11が、-5.80dB~-2.20dBであることを示す、先行する実施形態による光センサ。
【0082】
実施形態6:前記光センサは、前記スタックの75GHzのマイクロ波反射率実験において、反射率係数S11が、-4.90dB~-3.10dBであるという特性を示す、先行する実施形態よる光センサ。
【0083】
実施形態7:前記光導電性材料は、無機光導電性材料を含む、先行する実施形態のいずれか1つによる光センサ。
【0084】
実施形態8:前記無機光導電性材料が、セレン、テルル、セレン-テルル合金、光導電性金属酸化物、第4族元素又は化合物、第3族-第5族化合物、第2族-第6族化合物、カルコゲニド、プニクトゲニド、ハロゲン化物、及びそれらの固溶体及び/又はドープ変形のうちの1つ以上を含む、先行する実施形態による光センサ。
【0085】
実施形態9:前記カルコゲニドは、硫化カルコゲニド、セレン化カルコゲニド、テルル化カルコゲニド、三元カルコゲニド、四元カルコゲニド及びそれ以上のカルコゲニドを含む群から選択される、先行する実施形態による光センサ。
【0086】
実施形態10:硫化カルコゲニドは、硫化鉛(PbS)、硫化カドミウム(CdS)、硫化亜鉛(ZnS)、硫化水銀(HgS)、硫化銀(Ag2S)、硫化マンガン(MnS)、三硫化ビスマス(Bi2S3)、三硫化アンチモン(Sb2S3)、三硫化ヒ素(As2S3)、硫化スズ(II)(SnS)、二硫化スズ(IV)(SnS2)、硫化インジウム(In2S3)、硫化銅(CuS)、硫化コバルト(CoS)、硫化ニッケル(NiS)、二硫化モリブデン(MoS2)、二硫化鉄(FeS2)、三硫化クロム(CrS3)、硫化銅インジウム(CIS)、セレン化銅インジウムガリウム(CIGS)、硫化銅亜鉛スズ(CZTS)、ならびに固溶体及び/又はそれらのドープ変形を含む群から選択される、先行する実施形態による光センサ。
【0087】
実施形態11:セレン化カルコゲニドは、セレン化鉛(PbSe)、セレン化カドミウム(CdSe)、セレン化亜鉛(ZnSe)、三セレン化ビスマス(Bi2Se3)、セレン化水銀(HgSe)、三セレン化アンチモン(Sb2Se3)、三セレン化ヒ素(As2Se3)、セレン化ニッケル(NiSe)、セレン化タリウム(TlSe)、セレン化銅(CuSe)、二セレン化モリブデン(MoSe2)、セレン化スズ(SnSe)、セレン化コバルト(CoSe)、セレン化インジウム(In2Se3)、セレン化銅亜鉛スズ(CZTSe)、ならびに固溶体及び/又はそれらのドープ変形を含む群から選択される、先行する2つの実施形態のいずれか1つによる光センサ。
【0088】
実施形態12:テルル化カルコゲニドは、テルル化鉛(PbTe)、テルル化カドミウム(CdTe)、テルル化亜鉛(ZnTe)、テルル化水銀(HgTe)、三テルル化ビスマス(Bi2Te3)、三テルル化ヒ素(As2Te3)、三テルル化アンチモン(Sb2Te3)、テルル化ニッケル(NiTe)、テルル化タリウム(TlTe)、テルル化銅(CuTe)、二テルル化モリブデン(MoTe2)、テルル化スズ(SnTe)、及びテルル化コバルト(CoTe)、テルル化銀(Ag2Te)、テルル化インジウム(In2Te3)、ならびに固溶体及び/又はそれらのドープ変形を含む群から選択される、先行する3つの実施形態のいずれか1つによる光センサ。
【0089】
実施形態13:三元カルコゲニドは、テルル化水銀カドミウム(HgCdTe)、テルル化水銀亜鉛(HgZnTe)、硫化水銀カドミウム(HgCdS)、硫化鉛カドミウム(PbCdS)、硫化鉛水銀(PbHgS)、二硫化銅インジウム(CuInS2)、硫セレン化カドミウム(CdSSe)、硫セレン化亜鉛(ZnSSe)、硫セレン化タリウム(TlSSe)、硫化カドミウム亜鉛(CdZnS)、硫化カドミウムクロム(CdCr2S4)、硫化水銀クロム(HgCr2S4)、硫化銅クロム(CuCr2S4)、セレン化カドミウム鉛(CdPbSe)、二セレン化銅インジウム(CuInSe2)、ヒ化インジウムガリウム(InGaAs)、硫化一酸化鉛(Pb2OS)、セレン化一酸化鉛(Pb2OSe)、スルホセレン化鉛(PbSSe)、セレン化テルル化ヒ素(As2Se2Te)、リン化インジウムガリウム(InGaP)、リン化ガリウムヒ素(GaAsP)、リン化アルミニウムガリウム(AlGaP)、亜セレンカドミウム(CdSeO3)、テルル化カドミウム亜鉛(CdZnTe)、セレン化カドミウム亜鉛(CdZnSe)、銅-亜鉛-硫化スズ-セレンカルコゲニド(CZTSSe)、ならびに固溶体及び/又はそれらのドープ変形を含む群から選択される、先行する4つの実施形態のいずれか1つによる光センサ。
【0090】
実施形態14:前記光導電性材料は、鉛カルコゲニド、固溶体、及び/又はそのドープ変形から選択される、先行する実施形態のいずれか1つによる光センサ。
【0091】
実施形態15:前記光導電性材料は、硫化鉛(PbS)、固溶体、及び/又はそのドープ変形から選択される、先行する実施形態による光センサ。
【0092】
実施形態16:前記カバーは、少なくとも1つの金属含有化合物を含むアモルファスカバーである、先行する実施形態のいずれか1つによる光センサ。
【0093】
実施形態17:前記少なくとも1つの金属含有物は金属又は半金属を含み、前記金属は、リチウム(Li)、ベリリウム(Be)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、カリウム(K)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ルビジウム(Rb)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、セシウム(Cs)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)及びビスマス(Bi)からなる群から選択され、前記半金属は、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)及びテルル(Te)からなる群から選択される、先行する実施形態による光センサ。
【0094】
実施形態18:前記金属含有化合物の金属は、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、マンガン(Mn)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、及びタングステン(W)からなる群から選択される金属を含む、先行する実施形態による光センサ。
【0095】
実施形態19:前記少なくとも1つの金属含有化合物は、酸化物、水酸化物、カルコゲニド、プニクタイド、カーバイド、又はそれらの組合せを含む群から選択される、先行する実施形態のいずれか1つによる光センサ。
【0096】
実施形態20:前記カバーは、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含む、先行する4つの実施形態のいずれか1つによる光センサ。
【0097】
実施形態21:前記光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.113~0.279であることをさらに示す、実施形態14及び20による光センサ。
【0098】
実施形態22:前記光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.141~0.251であることをさらに示す、先行する実施形態による光センサ。
【0099】
実施形態23:前記光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.168~0.224であることをさらに示す、先行する実施形態による光センサ。
【0100】
実施形態24:前記光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456であることをさらに示す、実施形態15及び20による光センサ。
【0101】
実施形態25:前記光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0944~0.1354であることをさらに示す、先行する実施形態による光センサ。
【0102】
実施形態26:前記光センサは、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.1046~0.1251であることをさらに示す、先行する実施形態による光センサ。
【0103】
実施形態27:前記カバーは、前記光導電性材料の層の上面及び側面を覆う、先行する実施形態のいずれか1つによる光センサ。
【0104】
実施形態28:前記カバーは、前記基板の少なくとも側面をさらに覆う、先行する実施形態による光センサ。
【0105】
実施形態29:前記カバーは、前記光導電性材料の層及び前記基板の側面の両方のアクセス可能な表面を完全に覆う、先行する実施形態のいずれか1つによる光センサ。
【0106】
実施形態30:前記カバーは連続コーティングである、先行する実施形態による光センサ。
【0107】
実施形態31:前記カバーは、10nm~600nm、好ましくは20nm~200nm、より好ましくは40nm~120nm、最も好ましくは50~95nmの厚さを有する、先行する実施形態のいずれか1つによる光センサ。
【0108】
実施形態32:前記カバーは、被覆された層の隣接表面に関して共形カバーである、先行する実施形態のいずれか1つによる光センサ。
【0109】
実施形態33:前記コンフォーマルカバーの厚さは、前記カバーの表面の少なくとも90%、好ましくは少なくとも95%、最も好ましくは少なくとも99%にわたって、±50nm、好ましくは±20nm、最も好ましくは±10nmの偏差で前記光導電性材料及び前記基板の対応する表面に追従する、先行する実施形態による光センサ。
【0110】
実施形態34:前記カバーは、原子堆積コーティング又は化学気相堆積コーティングであるか、又はそれを含む、先行する実施形態のいずれか1つによる光センサ。
【0111】
実施形態35:前記カバーは、前記電気接点を少なくとも部分的に覆っている、先行する実施形態のいずれか1つによる光センサ。
【0112】
実施形態36:前記電気接点は、好ましくはワイヤ、特に金(Au)、アルミニウム(Al)、又は銅(Cu)ワイヤを使用するによって接合可能である、先行する実施形態による光センサ。
【0113】
実施形態37:前記電気接点は、前記カバーを通して接合可能である、先行する実施形態のいずれか1つによる光センサ。
【0114】
実施形態38:少なくとも2つの前記電気接点が、前記光導電性材料の層の異なる位置に適用されている、先行する実施形態のいずれか1つによる光センサ。
【0115】
実施形態39:前記電気接点は、銀(Ag)、白金(Pt)、モリブデン(Mo)、アルミニウム(Al)、金(Au)、及びグラフェンからなる群から選択された少なくとも1つの電極材料を含む、先行する実施形態のいずれか1つによる光センサ。
【0116】
実施形態40:接着層が前記電気接点に設けられ、前記接着層は、接着に適している、先行する実施形態による光センサ。
【0117】
実施形態41:前記接着層は、ニッケル(Ni)、クロム(Cr)、チタン(Ti)、又はパラジウム(Pd)のうちの少なくとも1つを含む、先行する実施形態による光センサ。
【0118】
実施形態42:前記基板は、10μm~1000μm、好ましくは50μm~500μm、より好ましくは100μm~250μmの厚さを有する、先行する実施形態のいずれか1つによる光センサ。
【0119】
実施形態43:前記カバー及び前記基板の少なくとも1つは、波長範囲内で光学的に透明である、先行する実施形態のいずれか1つによる光センサ。
【0120】
実施形態44:前記基板は、電気絶縁基板である、先行する実施形態のいずれか1つによる光センサ。
【0121】
実施形態45:前記基板は、ガラス又は石英のうちの1つを含む、先行する実施形態のいずれか1つによる光センサ。
【0122】
実施形態46:前記基板は、回路キャリア装置に直接的又は間接的に適用されている、先行する実施形態のいずれか1つによる光センサ。
【0123】
実施形態47:前記回路キャリア装置は、プリント回路基板である、先行する3つの実施形態のいずれか1つによる光センサ。
【0124】
実施形態48:少なくとも1つの物体を光学的に検出するための検出器であって、
先行する実施形態のいずれか1つによる少なくとも1つの光センサであって、少なくとも1つのセンサ領域を含み、光ビームによる前記センサ領域の照射に依存する方式で、少なくとも1つのセンサ信号を生成するように設計されている、光センサ、及び
少なくとも1つの評価装置であって、前記光センサの前記センサ信号を評価することにより、前記光ビームによって提供される光放射に関する少なくとも1つの情報項目を生成するように設計されている、評価装置、
を含む、検出器。
【0125】
実施形態49:前記検出器は、前記センサ領域の少なくとも一部の電気抵抗又は導電率を測定することの1つ以上によって前記センサ信号を生成するように適合されている、先行する実施形態による検出器。
【0126】
実施形態50:前記検出器は、少なくとも1つの電流-電圧測定、及び/又は少なくとも1つの電圧-電流測定を実行することによって、前記センサ信号を生成するように適合されている、先行する実施形態による検出器。
【0127】
実施形態51:前記検出器は、少なくとも1つの転送装置をさらに備え、前記転送装置は、前記光ビームを前記光センサに導くように適合されている、検出器に関連する先行する実施形態のいずれか1つによる検出器。
【0128】
実施形態52:光センサの製造方法であって、以下のステップ:
a)基板、前記基板に適用された少なくとも1つの光導電性材料の層、及び前記光導電性材料の層に接触する少なくとも2つの個別の電気接点を提供するステップと、
b)その後、前記光導電性材料の層のアクセス可能な表面にアモルファスカバーを堆積するステップであって、それにより、前記基板、前記少なくとも1つの光導電性材料の層、及び前記カバーを含むスタックが得られるステップと、
c)準静的なナノインデンター測定において、前記スタックのヤング率と硬度を測定するステップと、を含み、
前記光センサの製造方法は、前記光センサが、前記ステップc)によるスタックの準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、
侵入深さ300nmで47GPa~127GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、
硬度は、
侵入深さ100nmで1.20GPa~4.70GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaである、
ことを示すように行われる、方法。
【0129】
実施形態53:ヤング率が、
侵入深さ100nmで80GPa~102GPaであり、
侵入深さ300nmで60GPa~114GPaであり、
侵入深さ1000nmで61GPa~107GPaであり、
硬度が、
侵入深さ100nmで1.78GPa~4.12GPaであり、
侵入深さ300nmで2.10GPa~4.10GPaであり、
侵入深さ1000nmで2.67GPaから6.93GPaである、
先行する実施形態による方法。
【0130】
実施形態54:ヤング率が、
侵入深さ100nmで86GPa~96GPaであり、
侵入深さ300nmで74GPa~100GPaであり、
侵入深さ1000nmで72GPa~96GPaであり、
硬度が、
侵入深さ100nmで2.37GPa~3.53GPaであり、
侵入深さ300nmで2.60GPa~3.60GPaであり、
侵入深さ1000nmで3.73GPa~5.87GPaである、
先行する実施形態による方法。
【0131】
実施形態55:前記方法が、以下のステップ:
d)前記スタックに75GHzのマイクロ波反射測定実験を適用することによって、前記スタックの反射率係数S11を決定し、前記反射率係数S11が-6.70dB~-1.30dBで決定されるステップ、
をさらに含む、方法を参照する先行する実施形態のいずれか1つによる方法。
【0132】
実施形態56:前記反射率係数S11が、-5.80dB~-2.20dBである、先行する実施形態による方法。
【0133】
実施形態57:前記反射率係数S11が、-4.90dB~-3.10dBである、先行する実施形態による方法。
【0134】
実施形態58:前記光導電性材料が、鉛カルコゲニド、固溶体及び/又はそのドープ変形からなる群から選択され、前記カバーが、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含むアモルファスカバーであり、前記方法は、 以下のステップ:
e)電子線マイクロアナライザと20kVの加速電圧を用いることにより、前記スタックの波長分散型X線分光法を実施するステップ、
をさらに含み、
前記光センサの製造方法は、前記光センサが、電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.113~0.279であることを示すように行われる、先行する実施形態による方法。
【0135】
実施形態59:前記Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、前記Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.141~0.251である、先行する実施形態による方法。
【0136】
実施形態60:前記Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、前記Pb Mα1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.168~0.224である、先行する実施形態による方法。
【0137】
実施形態61:前記光導電性材料が、硫化鉛(PbS)、固溶体及び/又はそのドープ変形からなる群から選択され、前記光センサの製造方法は、前記光センサが、さらにステップe)による電子線マイクロアナライザと20kVの加速電圧を用いたスタックの波長分散型X線分光法において、Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456であることを示すように行われる、先行する3つの実施形態のいずれか1つによる方法。
【0138】
実施形態62:前記Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が、0.0944~0.1354である、先行する実施形態による方法。
【0139】
実施形態63:前記Al Kα1線のピーク最大値で測定されたネットカウント/s・nAと、Pb Mα1線及びS Kα1線で測定されたネットカウント/s・nAの合計とのさらなる比が、0.1046~0.1251である、先行する実施形態による方法。
【0140】
実施形態64:ステップb)が少なくとも1回繰り返される、方法を参照する先行する実施形態のいずれか1つによる方法。
【0141】
実施形態65:前記カバーは、10nm~600nm、好ましくは20nm~200nm、より好ましくは40nm~120nm、最も好ましくは50~95nmの厚さを達成するまで堆積される、方法を参照する先行する実施形態のいずれか1つによる方法。
【0142】
実施形態66:前記カバーは、前記光導電性材料又は前記基板の隣接表面に対して共形(コンフォーマル)カバーであるように、前記光導電性材料の層の上面及び側面、及び前記基板の少なくとも側面に堆積される、方法を参照する先行する実施形態のいずれか1つによる方法。
【0143】
実施形態67:前記共形(コンフォーマル)カバーの厚さは、前記カバーの表面の少なくとも90%、好ましくは少なくとも95%、最も好ましくは少なくとも99%にわたって、±50nm、好ましくは±20nm、最も好ましくは±10nmの偏差内で、コーティングされた層の対応する表面を追従する、先行する実施形態による方法。
【0144】
実施形態68:少なくとも1つの堆積方法が、前記金属含有化合物を堆積するために使用され、前記少なくとも1つの堆積方法は、好ましくは、原子層堆積プロセス、化学気相堆積プロセス、スパッタリングプロセス、又はそれらの組合せから選択され、好ましくは、原子層堆積プロセス、及び原子層堆積プロセスとスパッタリングプロセスの組合せである、方法を参照する先行する実施形態のいずれか1つによる方法。
【0145】
実施形態69:前記ステップb)は、真空チャンバ内で実行される、方法を参照する先行する実施形態のいずれか1つによる方法。
【0146】
実施形態70:前記電気接点は、前記ステップb)の前に提供され、前記カバーは前記電気接点上にさらに部分的に堆積される、先行する実施形態による方法。
【0147】
実施形態71:前記電気接点は、導電性リード線、好ましくは、ワイヤの形で、特に金(Au)、アルミニウム(Al)又は銅(Cu)のワイヤを使用することによって、少なくとも1つの外部接続に接合される、先行する実施形態による方法。
【0148】
実施形態72:前記導電性リード線は、前記カバーを通して前記電気接点に接合される、先行する実施形態による方法。
【0149】
実施形態73:検出器を参照する先行する実施形態のいずれか1つによる検出器の使用であって、使用目的が:ガス感知、火災検出、火炎検出、熱検出、煙検出、燃焼監視、分光法、温度感知、動き感知、工業監視、化学感知、排気ガス監視、セキュリティ用途からなる群から選択される、検出器の使用。
【図面の簡単な説明】
【0150】
本発明のさらなる任意の詳細及び特徴は、従属請求項と関連して続く好ましい例示的な実施形態の説明から明らかである。この文脈では、特定の特徴は、単独で、又は他の特徴と組み合わせて実施されてよい。本発明は、例示的な実施形態に限定されない。例示的な実施形態は、図に模式的に示されている。個々の図における同一の符号は、同一の要素又は同一の機能を有する要素、又はその機能に関して互いに対応する要素を指している。
【0151】
具体的には、以下の図においては:
【
図1A】本発明による光センサの好ましい例示的な実施形態を示す図である。
【
図1B】本発明による光センサの好ましい例示的な実施形態を示す図である。
【
図2】本発明による光検出器の好ましい例示的な実施形態を示す図である。
【
図3A】本発明による光センサの製造方法の例示的な実施形態を示す図である。
【
図3B】本発明による光センサの製造方法の例示的な実施形態を示す図である。
【
図3C】本発明による光センサの製造方法の例示的な実施形態を示す図である。
【
図3D】本発明による光センサの製造方法の例示的な実施形態を示す図である。
【
図3E】本発明による光センサの製造方法の例示的な実施形態を示す図である。
【
図3F】本発明による光センサの製造方法の例示的な実施形態を示す図である。
【0152】
例示的な実施形態
図1A及び
図1Bはそれぞれ、本発明による光センサ110の例示的な実施形態を、側面図で高度に概略的に示す。したがって、光センサ110は、少なくとも1つの光導電性材料114の層112を含んでいる。特に、光導電性材料114の層112は、10nm~100μm、好ましくは100nm~10μm、より好ましくは300nm~5μmの厚さを示すことができる。好ましい実施形態では、光導電性材料114の層112は、本質的に平坦な表面を含んでいてよいが、しかしながら、勾配又はステップなど、層112の表面の変化を示し得る他の実施形態も可能である。ここで、光導電性材料114の層112は、好ましくは、
図3に関して以下に説明するように製造されることができる。しかし、他の製造方法も可能である。
【0153】
図1の例示的な実施形態では、光導電性材料114は、好ましくは、硫化カルコゲニド、セレン化カルコゲニド、テルル化カルコゲニド、及び三元カルコゲニドを含む群から選択されることができる少なくとも1つのカルコゲニドであってもよいし、又はそれらを含んでもよい。本明細書に記載の特に好ましい実施形態では、光導電性材料114は、硫化物、好ましくは硫化鉛(PbS)、その固溶体及び/又はそのドープされた変形であるか、又はそれらを含む。好ましい光導電性材料114は、一般的に、赤外スペクトル範囲内で特有の吸収特性を示すことが知られているため、光センサ110は、好ましくは、赤外センサとして使用されることができる。しかしながら、本目的のための他の実施形態及び/又は他の光導電性材料、特にこの目的のために本文書の他の部分に記載された光導電性材料も実現可能である。
【0154】
さらに、本発明による光センサ110は、カバー116を備えており、該カバー116は、好ましくは完全に、光導電性材料114のアクセス可能な表面118を覆っている。すでに上述したように、カバー116は、湿度及び/又は酸素などの外的影響による光センサ110又はその区画、特に光導電性材料114の劣化を回避するために、光導電性材料114に、特に気密パッケージとして、封入を提供するように適合されてよい。上述したように、カバー116は、少なくとも1つの金属含有化合物120を含むアモルファスカバーである。本明細書に記載の特に好ましい実施形態では、金属含有化合物120は、少なくとも1つのAlの酸化物又は少なくとも1つの水酸化物を含むことができ、それは式AlOx(OH)y、0≦x≦1.5及び0≦y≦1.5、x+y=1.5とも表すことができる。この特定の実施形態において、カバー116は、10nm~600nm、好ましくは20nm~200nm、より好ましくは40nm~120nm、最も好ましくは50~95nmの厚さを示すことができる。この厚さの範囲は、特に、カバー116内の金属含有化合物120の量を反映し、それは光導電性材料114の封入を提供するという上述の機能を達成するのに有利であることが可能である。
【0155】
さらにこの特定の実施形態では、カバー116は、光導電性材料114の隣接表面118に対して共形(コンフォーマル)カバーであることができる。したがって、上記で定義したように、共形(コンフォーマル)カバーの厚さは、±50nm、好ましくは±20nm、最も好ましくは±10nmの偏差内で光導電性材料114の対応する表面118に従うことができ、この偏差は、カバー116の表面122の少なくとも90%、好ましくは少なくとも95%、最も好ましくは少なくとも99%にわたって生じ、これによって、カバー116の表面122の上に存在し得る如何なる汚染又は不完全も除外することができる。
【0156】
図1A及び
図1Bのそれぞれにさらに示されているように、光導電性材料114の少なくとも1つの層は、好ましくは直接、少なくとも1つの基板124に適用され、該基板124は、好ましくは、絶縁基板であってもよく、又はそれを含んでいてもよい。ここで、基板124の厚さは、10μm~2000μm、好ましくは50μm~1000μm、より好ましくは100μm~500μmとすることができる。より詳細に後述するように、基板124は、好ましくは、光学的に透明な材料132、特にガラス又は石英を含むことができる。しかし、赤外スペクトル範囲内において、部分的又は完全に光学的に透明であり得る他の基板材料も実現可能である。
【0157】
本発明によれば、基板124、基板124上に堆積された光導電性材料114の層112、及び光導電性材料114の層112を少なくとも被覆するカバー116は、スタック125を形成する。
図1A及び1Bに概略的に示されているように、基板124の表面のある広がりに垂直であり得る法線ベクトル126は、スタック125がそれによって配置され得る特定の方向として使用されることができる。したがって、基板124は、光導電性材料114の層112がその上に配置され得るベース層と考えることができ、その上にカバー116が、さらに、スタック125内の光導電性材料114の層112の上に配置されることができる。
【0158】
光導電性材料114の層112内の導電性を光学的に改変するために入射光ビーム127を光導電性材料114に到達させるため、カバー116及び基板124の少なくとも1つは、赤外スペクトル範囲又はその区域などの所望の波長範囲において光学的に透明である。
図1Aに概略的に示されているように、入射光ビーム127のビーム経路128は、光導電性材料114の層112内に直径130を有する光スポットを生成するために、カバー116を通過するように構成され得る。結果として、特に、カバー116が、適切な吸収特性を示すことにより、好ましくは所望の波長範囲内で光学的に透明であるように、金属含有化合物120を選択することが特に有利であり得る。さらに、カバー116に使用される金属含有化合物120及び基板124に適用される材料の一方又は両方が、光センサ110の両方向からの光ビーム127の感知を可能にするなどのように、所望の波長範囲内で光学的に透明な特性を示し得ることが好ましい場合がある。
【0159】
カバー116は、WO2018/019921A1により、光導電性材料114のアクセス可能な表面118を覆ってよいが、2019年1月18日に出願された欧州特許出願19152511.2によれば、基板124のアクセス可能な表面134をさらに覆ってよい。好ましくは、カバー116は、光導電性材料114と基板124のすべてのアクセス可能な表面118、134にそれぞれ完全に接触する方式で、適用されることができる。特に、カバー116は、光導電性材料114の層112の上面及び側面、ならびに基板124の少なくとも側面に直接接触し得るように適用されてよい。しかし、光導電性材料114の封入を提供するための他の種類のもの、特に、気密パッケージとしての封入も可能である。その結果、カバー116は、このように光導電性材料114の層112又は基板124と周囲雰囲気との間の直接接触を防止し、これにより、湿度及び/又は酸素などの外的影響による光導電性材料114の劣化を回避することができる。
【0160】
図1A及び
図1Bにさらに示されているように、本発明による光センサ110は、少なくとも2つの個別の電気接点136、136’、すなわち、少なくとも1つの第1電気接点136及び少なくとも1つの第2電気接点136’を備えており、該電気接点136、136’は、光導電性材料114の層112に接触するように適合されている。この目的のために、電気接点136、136’は、第1電気接点136から光導電性材料114の層112を通して第2電気接点136’に、もしくはその逆に、電流を導くことができるように、又は、第1電気接点136及び第2電気接点136’を使用して光導電性材料114の層112に電圧を印加することができるように、構成及び配置されてよい。両方の目的のために、第1電気接点136は第2電気接点136’から電気的に絶縁され得る一方、第1電気接点136と第2電気接点136’の両方は光導電性材料114の層112と直接接続している。本明細書でさらに例示するように、カバー116は、電気接点136、136’が特に
図1Bに示されているように、外部回路につながる可能性のある1つ以上のリード線138、138’などに結合可能に構成されるように、電気接点136、136’を少なくとも部分的に被覆することができる。
【0161】
電気接点136、136’のいずれか1つと光導電性材料114の層112との間の直接接続は、メッキ、溶接、はんだ付け、ワイヤボンディング、超音波熱圧着、ステッチボンディング、ボールボンディング、ウェッジボンディング、コンプライアントボンディング、熱圧着、陽極接合、直接ボンディング、プラズマ活性化接合、共晶接合、ガラスフリットボンディング、接着結合、過渡液相拡散接合、表面活性化接合、テープ自動接合、あるいは高導電性物質を接触領域に堆積させることなどの、電気接点を提供することができる、任意の既知のプロセスによって提供されることができる。電気接点136、136’を介する十分な電気伝導度を可能にする一方、同時に、電気接点136、136’の十分な機械的安定性を提供するために、電気接点136、136’は、好ましくは、金属である、銀(Ag)、銅(Cu)、白金(Pt)、アルミニウム(Al)、モリブデン(Mo)又は金(Au)、前記金属のうちの少なくとも1つを含む合金、ならびにグラフェンからなる群から選択される少なくとも1つの電極材料を含むことができる。しかしながら、他の種類の電極材料も実現可能である。
【0162】
図1Bに概略的に示されるように、基板124は、好ましくは接着剤の薄膜140を介して、回路キャリア装置142、特にプリント回路基板(PCB)144に取り付けられてよい。この目的のために、金ワイヤ、ベリリウムドープワイヤ、アルミニウムワイヤ、白金ワイヤ、パラジウムワイヤ、銀ワイヤ、又は銅ワイヤなどのワイヤを、回路キャリア装置142上のコンタクトパッド(ここでは示されていない)などの電気接点136、136’を結合するためのリード線138、138’として使用してもよい。
図1Bに示されているような特に好ましい実施形態では、電気接点136、136’は、カバー116を通して結合可能であってよい。この特徴は、特に、カバー116の封入機能を向上させ、同時に、電気接点136、136’に安定性を与えることを可能にし得る。
【0163】
さらに本発明によれば、光センサ110によって含まれるスタック125は、特に選択された静的機械特性145を示し得る。ここで、スタック125に適用される入射静的力に対するスタック125の応答を指す静的機械特性145は、
図3Cに関してより詳細に後述するように、本体に準静的なナノインデンター測定を行うことによってアクセス可能である。そこに示されているように、特に選択された侵入深さ、具体的には100nm、300nm、及び1000nmにおけるスタック125のヤング率及び硬度は、光センサ110によって含まれるスタック125の静的機械特性145を決定するための信頼できる指標と考えることができる。上記で既に示したように、驚くべきことに、光センサ110は、スタック125が以下の特性を有する場合に光センサ110が好ましい静的機械特性145を示すことが見出され、すなわち、スタック125の準静的なナノインデンター測定において、
ヤング率が、
侵入深さ100nmで75GPa~107GPaであり、好ましくは80GPa~102GPaであり、より好ましくは86GPa~96GPaであり、
侵入深さ300nmで47GPa~127GPaであり、好ましくは60GPa~114GPaであり、より好ましくは74GPa~100GPaであり、
侵入深さ1000nmで49GPa~119GPaであり、好ましくは61GPa~107GPaであり、より好ましくは72GPa~96GPaであり、
一方、硬度は、
侵入深さ100nmで1.20GPa~4.70GPaであり、好ましくは1.78GPa~4.12GPaであり、より好ましくは2.37~3.53GPaであり、
侵入深さ300nmで1.60GPa~4.60GPaであり、好ましくは2.10GPa~4.10GPaであり、より好ましくは2.60GPa~3.60GPaであり、
侵入深さ1000nmで1.60GPa~8.00GPaであり、好ましくは2.67GPa~6.93GPaであり、より好ましくは3.73GPa~5.87GPaである場合に光センサ110が好ましい静的機械特性145を示すことが見出された。
【0164】
さらに光センサ110によって含まれるスタック125は、好ましくは、特に選択された誘電特性146を示すことができる。ここで、スタック125に適用される入射電磁波に対するスタック125の応答を指す誘電特性146は、
図3Dに関してもより詳細に後述するマイクロ波反射率実験によってアクセス可能である。その結果、S11反射率係数が、光センサ110によって含まれるスタック125の誘電特性146を決定するための信頼性の高い指標と考えられることができる。すでに述べたように、驚くべきことに、スタック125が以下の特性、すなわち、スタックの75GHzのマイクロ波反射率実験において、反射率係数S11が、-6.70dB~-1.30dBであり、好ましくは-5.80dB~-2.20dBであり、より好ましくは-4.90dB~-3.10dBである特性を有する場合において、光センサ110が好ましい誘電特性146を示すことが見出された。
【0165】
さらに、光センサ110によって含まれるスタック125は、好ましくは、特に選択された組成148を示すことができる。
図3に関してさらに詳細に後述するように、スタック125の波長分散型X線分光法(WDXS)が、好ましくは、スタック125の組成148の特徴を決定するために採用されてよい。ここで、光センサ110に使用される光導電性材料114は、好ましくは、鉛カルコゲニド、固溶体、及び/又はそのドープ変形であってもよく、鉛カルコゲニドは、具体的には、硫化鉛(PbS)であってよく、同時にカバー116は、「Al
2O
3」とも示される、酸化物、水酸化物、又はそれらの組み合わせから選択されるアルミニウム含有化合物を含むアモルファスカバーであってよい。これにより、スタック125のWDXS測定のネットカウントが、
図3Eに関して以下により詳細に説明するように、Al K
α1線のピーク最大値、Pb M
α1線のピーク最大値、及びS K
α1線のピーク最大値でそれぞれ決定されることができる。上で既に示したように、驚くべきことに、光センサ110は、スタックが電子線マイクロアナライザと20kVの加速電圧を用いたスタック125のWDXS測定によって確認された組成148を含む場合に、すなわち、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線のピーク最大値で測定されたネットカウント/s・nAとの比が0.113~0.279、好ましくは0.141~0.251、より好ましくは、0.168~0.224であり、一方、PbSが特定の鉛カルコゲニドとして使用される特定の場合は、Al K
α1線のピーク最大値で測定されたネットカウント/s・nAと、Pb M
α1線及びS K
α1線で測定されたネットカウント/s・nAの合計とのさらなる比が0.0841~0.1456、好ましくは0.0944~0.1354、より好ましくは0.1046~0.1251である場合に、好ましい特性を示すこと見出された。
【0166】
図2は、非常に概略的な方法で、好ましくは赤外線検出器としての使用に適合され得る本発明による光検出器150の例示的な実施形態を示している。しかし、他の実施形態も実現可能である。光検出器150は、より詳細に上述したような光センサ100の少なくとも1つを含んでおり、該光センサ100は、検出器150の光軸に沿って配置されてよい。具体的には、光軸は、光センサ100の構成の対称軸及び/又は回転軸であってよい。光センサ100は、検出器150のハウジング内に配置されてよい。さらに、少なくとも1つの転送装置が含まれていてもよく、好ましくは屈折レンズである。特に光軸に対して同心円状に配置されてよいハウジングの開口部は、好ましくは、検出器150の視野方向を規定し得る。
【0167】
さらに、光センサ100は、光ビーム127によるセンサ領域152の照射に依存した方法で、少なくとも1つのセンサ信号を生成するように設計されている。ここで、検出器150は、直線のビーム経路又は傾斜したビーム経路、角度のついたビーム経路、分岐したビーム経路、偏向又は分割されたビーム経路、又は他の種類のビーム経路を有していてよい。さらに、光ビーム127は、各ビーム経路又は部分的なビーム経路に沿って1回又は繰り返し、一方向又は双方向に伝播することができる。
【0168】
FiP効果によれば、光センサ100は、同じ照射総出力であるとすると、センサ領域内の光ビーム127のビーム断面積130に依存するセンサ信号を提供することができる。しかしながら、他の種類の信号も可能である。上で示したように、センサ領域152は、光導電性材料114の層112の少なくとも1つ、好ましくは、鉛カルコゲニド、固溶体、及び/又はそのドープ変形を含んでよく、鉛カルコゲニドは、具体的には、硫化鉛(PbS)であってよい。しかし、他の光導電性材料114、特に他のカルコゲニドを使用してもよい。センサ領域152における光導電性材料114の使用の結果、センサ領域152の電気伝導度は、同じ照射の総出力であるとすると、センサ領域152における光ビーム127のビーム断面に依存する。その結果、光ビーム127による衝突時に光センサ110によって提供される結果としてのセンサ信号は、センサ領域152における光導電性材料114の電気伝導度に依存してよく、したがって、センサ領域152における光ビーム127のビーム断面積130を決定することを可能にする。
【0169】
リード線138、138’が接合されているさらなる電気リード線154、154’を介して、センサ信号は評価装置156に伝送されてもよく、該評価装置156は、一般的に、光センサ110のセンサ信号を評価することによって、少なくとも1つの情報項目を生成するように設計されている。この目的のために、評価装置156は、センサ信号を評価するために、1つ以上の電子装置及び/又は1つ以上のソフトウェア構成要素を備えてよい。一般に、評価装置156は、データ処理装置158の一部であってよく、及び/又は、1つ以上のデータ処理装置158を含んでよい。評価装置156は、完全に又は部分的にハウジングに統合されてよく、及び/又は完全に又は部分的に、光センサ100に無線又は有線方式で電気的に接続された別個の装置として具体化されてよい。評価装置156は、1つ以上の測定ユニット及び/又は1つ以上の評価ユニット及び/又は1つ以上の制御ユニット(ここでは図示せず)などの1つ以上の電子ハードウェア構成要素及び/又は1つ以上のソフトウェア構成要素など、1つ以上のさらなる追加の構成要素をさらに含み得る。
【0170】
図3A~
図3Fは、非常に概略的な方法で、本発明による光センサ110の製造方法の例示的な実施形態を示している。
【0171】
図3Aに示されるように、基板124は、ベース層として提供され、その上に連続してさらなる層が堆積される。ここで、基板124の表面の広がりに垂直な法線ベクトル126は、スタック125が配置され得る特定の方向として使用することができる。好ましくは光学的に透明な材料132としてのガラスを含む光導電性材料114の層112を設ける前に、電気接点136、136’が、基板124上に、既知の蒸着技術によって提供され得る蒸着金属層の形で、生成されてよい。特に、蒸着金属層は、Ag、Al、Pt、Mg、Cr、Ti又はAuのうちの1つ以上を含んでよい。あるいは、電気接点136、136’は、グラフェンの層を含んでもよい。しかしながら、より詳細に上述したように、電気接点136、136’を生成する他の方法も実現可能である。
【0172】
図3Aにさらに示されているように、光導電性材料114の層112が続いて提供される。この目的のために、光導電性材料114は、以下の手順に従って合成されることができる。結果として、0.015mol/Lのチオ尿素又はその置換生成物、0.015mol/Lの酢酸鉛、硝酸鉛又はその置換生成物、及び0.15mol/Lの水酸化ナトリウム又はその置換生成物が反応容積中に溶解され、それによって室温で透明な溶液が得られる。従来技術から知られているように、上述の溶液を任意の順序で混合すると、硫化鉛(PbS)は、30℃を超える温度で、通常、均一で比較的滑らかな層が液体含有反応器の側壁及び底部に、あるいはその中に位置する任意の物体の壁に形成され得る方式で、溶液から析出する。
【0173】
しかし、混合沈殿溶液から硫化鉛(PbS)が実際に沈殿する直前に、比較的多量の発生期酸素を脱気することができる添加剤、好ましくは過硫酸カリウム、過酸化水素、又は過ホウ酸ナトリウムの水溶液がそれへ加えられ、硫化鉛(PbS)がそこから通常の方法で沈殿するが、セル内の直接の使用あるいはエージング又は低温ベーキングによってさらなる増感が可能な活性化された形で沈殿する。沈殿溶液と活性化剤は、好ましくは35℃を超える温度で混合され、1~3時間撹拌され、その間に堆積が生じる。ここで、PbSを沈殿させるために溶液に添加されるモルで表される過硫酸イオン、過ホウ酸イオン、又は過酸化水素からの発生期酸素の量は、モルで表される浴中のPbSの0.01~0.5理論量であるのが好ましく、ここで、PbSの理論量は、硫化鉛へ鉛と硫黄沈殿化合物の全転化があった場合に形成される量である。
【0174】
硫化鉛(PbS)層の形成後、エージングステップが、人工気候室中で、好ましくは約50℃の温度及び70%を超える湿度で任意で行われられることができ、これは光導電性能にとって有益であることが分かっている。堆積されエージングされた膜がさらにアニーリングによって、すなわち、真空又は空気中で約100℃~150℃の温度で1~100時間加熱されることによって、処理される場合、改善された光導電性が得られ得る。
【0175】
しかしながら、光導電性材料114の層112を提供する他の種類の方法も実現可能であり得る。
【0176】
図3Bは、特に封入層として機能するために、光導電性材料PbS114の層112及び基板124のアクセス可能な表面118、134に、アモルファスカバー116として、金属含有化合物120を堆積することを概略的に示している。この目的のために、金属含有化合物120と反応するように適合された少なくとも1つの前駆体が適合されることができる。この好ましい実施形態では、原子層堆積(ALD)プロセス、又はALDとスパッタリングの組合せが、堆積方法として使用されている。あるいは、化学蒸着(CVD)プロセスなどの他の蒸着プロセスも適用されることができる。
【0177】
本発明の好ましい実施形態では、カバー116は、ALDプロセス又はALDプロセスとスパッタリングプロセスの組合せによって生成されたAl2O3を含む。あるいは、Al2O3/TiO2/Al2O3/...又はAl2O3/ZrO2/Al2O3/...のような積層体も生成されることができる。この特定の実施形態では、ALDプロセスは以下のプロセスパラメータ、
第1の前駆体:H2O;
第2の前駆体:Al(CH3)3(トリメチルアルミニウム、TMA);
温度約60℃;
約700サイクル
を適用して実行された。
【0178】
図3Bにさらに示されるように、Al
2O
3含有カバー116が、光導電性PbS層112のアクセス可能な表面118と、光導電性PbS層112と接触し得る電気接点136、136’と、基板124のアクセス可能な表面134とを同時に被覆するような方式で、本発明に従って適用され得る。
【0179】
図3Bにさらに示されるように、スタック125は、今や、基板124を設け、光導電性材料114の層112を基板124上に堆積させ、続いてカバー116を少なくとも光導電性材料114の層112の上に堆積させることによって得られる。
図3Bに概略的に示されるように、基板124の表面の広がりに垂直である法線ベクトル126は、本明細書では、スタック125の配置の特定の方向として使用される。
【0180】
本発明によれば、スタック125は、スタック125に適用される入射静的力に対するスタック125の応答に関して、特に選択された静的機械特性145を示す。ここで、スタック125の特に選択された静的機械特性145は、準静的なナノインデンター測定においてスタック125のヤング率及び硬度を測定することによって決定される。
図3Cに概略的に示されるように、準静的なナノインデンター測定は、好ましくは、規格EN ISO 14577-1:2015及びEN ISO 14577-4:2016に従って実行される、本体のヤング率の測定及び硬度の測定を含む。この目的のために、ナノインデンター160が使用され、ナノインデンターは、準静的なナノインデンター測定を行うために、スタック125の非常に小さな体積166に侵入するように設計されたチップ164を有するプローブ162を含む。この目的のために、ナノインデンター160のチップ164は、好ましくは、ピラミッド形状を備え、特にEN ISO 14577-2:2015規格に従ったベルコビッチチップ168が好ましい。したがって、スタック125のヤング率及び硬度は、ナノインデンター160を使用することによって測定され、それによって、上記でより詳細に提示されたスタック125の好ましい静的及び動的機械的特性145、146が測定される。しかしながら、ナノインデンター160によって測定されるスタック125のヤング率及び硬度が、上記のようなスタック125の好ましい静的機械特性145から逸脱し得る場合は、光センサ110の該特定の試料は、光検出器150におけるさらなる使用から拒否され得る。
【0181】
各侵入深さ100nm、300nm、1000nmにおけるヤング率と硬度の準静的なナノインデンター測定は、より詳細に上に示した選択基準に従って選択された30個の個別の光センサでベルコビッチチップを用いて、それぞれ行われた。したがって、選択基準が、0.1%未満の相対的な暗抵抗変化を有し、0.1%未満の相対的な検出感度の変化を有し、0.1%未満の-10Vから+10Vの間の線形抵抗からの暗抵抗の絶対的な最大偏差を示す光センサ110として定義された。表1に示すように、サイズでソートされた以下の値がこれら準静的なナノインデンター測定から得られたものである:
【0182】
【0183】
これらの結果に基づいて、表2に示すような以下のパラメータが決定されることができ、ここで、符号「±」の後のそれぞれの値は、±1.5σを示し、σは対応する標準偏差を指す。
【0184】
【0185】
さらに本発明によれば、スタック125は、スタック125に適用された入射電磁波に対するスタック125の応答に関して、特に選択された誘電特性146を示してもよい。ここで、スタック125の特に選択された誘電特性146は、マイクロ波反射測定実験において決定されてよい。
図3Dに概略的に示されているように、スタック125の誘電特性146は、マイクロ波装置170を用いたマイクロ波反射測定実験において、S11反射率係数を測定することによって決定される。ここで、マイクロ波装置170は、75GHzの周波数で入射マイクロ波174を生成及び放出するマイクロ波エミッタ172を備えてよい。入射マイクロ波174は、スタック125に衝突することができ、スタック125は、その後、入射マイクロ波174の一部を反射マイクロ波176として反射し、反射マイクロ波176はマイクロ波受信機178によって検出されることができる。マイクロ波評価ユニット180は、dBで
10log(P
refl/P
in)と定義されるS11反射率係数を決定するために採用されてよく、ここでP
inは、スタック125に衝突するマイクロ波エミッタ172によって提供される入射マイクロ波174の出力であり、P
reflは、スタック125によって反射され、マイクロ波受信機178によって測定される反射マイクロ波176の出力である。結果として、S11反射率係数を測定することにより、スタック125の誘電体特性146が確実に決定されることができる。しかしながら、マイクロ波装置170によって測定されたスタック125のS11反射率係数が、上に示したようなスタック125の好ましい誘電特性146から可能性として逸脱する場合は、該光センサ110の特定の試料は、光検出器150でのさらなる使用から拒否され得る。表3に示されるようにサイズでソートされた以下の値は、上に示したような選択基準に従って選択された30個の個別の光センサでのマイクロ波反射測定実験から得られたものである:
【0186】
【0187】
これらの結果に基づいて、S11反射率係数の測定値は-4.00dB±2.70dBと決定されることができ、「±」の後のそれぞれの値は1.5σを示し、σは対応する標準偏差を指す。
【0188】
特に好ましい実施形態では、光導電性材料114は、具体的には、鉛カルコゲニド、特に、硫化鉛(PbS)、固溶体、及び/又はそのドープ変形を含んでよく、同時に、カバー116は、Al
2O
3を含むアモルファスカバーであってよい。ここで、波長分散型X線分光法(WDXS)は、ガラス基板124上に堆積されるPbS層112を覆うAl
2O
3のカバー116を含むスタック125の組成148の決定を可能にする。
図3Eに示すように、WDXS測定は、好ましくは、電子ビームマイクロアナライザ182を用いて行われることができる。電子ビームマイクロアナライザ182は、入射電子ビーム186を生成するための電子源184を含むことができ、入射電子ビーム186はスタック125に衝突する。その結果、スタック125はX線ビーム188を放出し、該X線ビーム188は、その後、正確な角度で既知の単結晶192を照射するために、コリメータ190でコリメートされてよく、該単結晶192は、X線ビーム188を回折して回折X線ビーム194にし、検出器196によって収集される。
【0189】
ここで、単結晶192、スタック125、及び検出器196は、ゴニオメーター(ここでは図示せず)に正確に取り付けられてよく、スタック125と単結晶192との間の距離は、単結晶192と検出器196との間の距離と等しくてよい。好ましくは、20kVの加速電圧が入射電子ビーム186に用いられてよい。さらに、特に入射電子ビーム186のエネルギーに応じて単結晶192を交換するための自動交換ユニット(ここでは図示せず)が使用されてよく、それによって、スタック125の組成148内の異なる成分の分析が可能になる。
【0190】
WDXS評価ユニット200を使用することにより、WDXS測定のネットカウントは、Al Kα1線のピーク最大値、Pb Mα1線のピーク最大値、及びS Kα1線のピーク最大値においてそれぞれ決定されることができ、これにより、スタック125の組成148を確認することができる。しかしながら、電子ビームマイクロアナライザ182によって測定される示された線のピーク最大値が、上記のように好ましい値から逸脱している場合においては、該光センサ110の特定の試料は、光検出器150におけるさらなる使用から拒否され得る。
【0191】
Al2O3/PbS層の組成148を特徴づけるために、WDXS測定が市販の電子ビームマイクロアナライザを用いて行われ、単結晶192の材料は、Al Kα1線の測定にはフタル酸タリウム(TAP)から、Pb Mα1線及びS Kα1線の測定にはH型ペンタエリスリトール(PET H)からそれぞれ選択された。WDXSの測定には、20kVの加速電圧、150nAのビーム電流、最大ピークでの100秒の測定時間、ピークの両側のバックグラウンドで20秒の測定時間、300μmの測定スポット径が用いられた。WDXS測定のすべてのネットカウントは、Al Kα1線、Pb Mα1線、及びS Kα1線のそれぞれのピーク最大値で決定された。WDXS測定に使用された特定の電子ビームマイクロアナライザ182では、Al測定の場合、Al Kα1線のネットカウントは90.918mmで測定され、Pb測定の場合、Pb Mα1線のネットカウントは169.291mmで測定され、S測定の場合、S Kα1線のネットカウントは172.124mmで測定された。表4に示すように、サイズでソートされた以下の値が上記の選択基準に従って選択された30個の個別の光センサに対するWDXS実験から得られたものである。
【0192】
【0193】
Al/Pbのグロスカウント比は0.196±0.83と決定され、一方Al/(Pb+S)のネットカウント比は0.1142±0.3075と決定され、いずれも「±」の後のそれぞれの値は1.5σを示し、σは対応する標準偏差を指す。
【0194】
図3Fに示されるように、光導電性材料114の層112に電気的に接触する2つの電気接点136、136’は、好ましくは、カバー116を介して提供されてよい金ワイヤなどの導電性リード線138、138’によって、最終的に少なくとも1つの外部接続部に接合されてよい。しかしながら、上述のように、光導電性PbS層112に電気接点136、136’を提供するための他の方法も実現可能であり、例えばアモルファスカバー116を堆積させる前に、すなわち、
図3A及び3Bに示されているように方法ステップ間の中間方法ステップで、リード線138、138’を既に提供することにより、実現可能である。製造後、スタック125は、全体として任意の方向に回転させることができるが、これはスタック125の配置及び組成148に影響を及ぼさないことができる。
【0195】
参照番号のリスト
110 センサ
112 光導電性材料の層
114 光導電性材料
116 カバー
118 光導電性材料の層のアクセス可能な表面
120 金属含有化合物
122 カバーの表面
124 基板
125 スタック
126 法線ベクトル
127 光ビーム
128 ビーム経路
130 光ビームの直径、ビーム断面積
132 光学的に透明な材料
134 基板のアクセス可能な表面
136、136’ 電気接点
138、138’ 電気接続リード
140 接着剤の薄膜
142 回路キャリア装置
144 プリント回路基板
145 静的機械特性
146 誘電特性
148 組成
150 光検出器
152 センサ領域
154、154’ さらなる電気リード線
156 評価装置
158 処理装置
160 ナノインデンター
162 プローブ
164 チップ
166 体積
168 ベルコビッチチップ
170 マイクロ波装置
172 マイクロ波エミッタ
174 入射マイクロ波
176 反射マイクロ波
178 マイクロ波受信機
180 マイクロ波評価ユニット
182 電子ビームマイクロアナライザ
184 電子源
186 入射電子ビーム
188 放出されたX線ビーム
190 コリメータ
192 単結晶
194 回折X線ビーム
196 X線検出器
198 スポット径
200 WDXS評価ユニット
【国際調査報告】