IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケアストリーム デンタル エルエルシーの特許一覧

特表2022-526086口腔内トモシンセシスのための可動及び固定コリメータとX線源配置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-23
(54)【発明の名称】口腔内トモシンセシスのための可動及び固定コリメータとX線源配置
(51)【国際特許分類】
   A61B 6/14 20060101AFI20220516BHJP
【FI】
A61B6/14 300
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021555215
(86)(22)【出願日】2020-03-11
(85)【翻訳文提出日】2021-11-15
(86)【国際出願番号】 US2020021974
(87)【国際公開番号】W WO2020185823
(87)【国際公開日】2020-09-17
(31)【優先権主張番号】62/817,048
(32)【優先日】2019-03-12
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521154774
【氏名又は名称】ケアストリーム デンタル エルエルシー
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】スブラマニアン クリシュナムルティ
(72)【発明者】
【氏名】ロストーナフ ビンセント
(72)【発明者】
【氏名】シルドクラウト ジェイ エス
(72)【発明者】
【氏名】イングレーゼ ジャン-マルク
【テーマコード(参考)】
4C093
【Fターム(参考)】
4C093AA11
4C093CA34
4C093DA05
4C093EA06
4C093EA12
4C093EA20
4C093EC02
4C093FA16
4C093GA01
(57)【要約】
フレームに結合された、又はフレームに取り付けられることなく放射線に面する表面に取り付けられた放射線不透過性マーカを有する、口腔内検出器を有し、ここでフレームは入射放射線ビームのための標的アパーチャを画定する、口腔内トモシンセシス撮像装置。エンクロージャは、標的アパーチャに着座し、放射線ビームをエンクロージャ内の複数の焦点のそれぞれから放出するように構成された少なくとも1つのX線源を収容する。コリメータは、コリメートされた放射線ビームを形成し、コリメートされたビームを標的アパーチャに通して検出器に向けるように配置される。複数の放射線不透過性マーカを有する幾何学的較正ファントムは、コリメートされたビームの経路に配置される。この配置は、検出器からの別の線源と同じ又は異なる距離にある高出力中央線源を収容し、視野からファントムを移動させることによって、通常の口腔内撮像デバイスとして動作するように変更される。
【特許請求の範囲】
【請求項1】
トモシンセシス撮像用の口腔内撮像装置であって、
(a)フレームに結合され、前記フレームが入射放射線ビームの標的アパーチャを画定する、口腔内検出器、及び、
(b)前記標的アパーチャに対して着座するように構成されるが、それに取り付けられず、又は接続されないエンクロージャであって、
(i)放射線ビームを前記エンクロージャ内の複数の焦点のそれぞれから放出するように構成された少なくとも1つのX線源と、
(ii)静止、可動、又はローリングシャッタアパーチャを有するコリメータであって、前記放出された放射線ビームからコリメートされたビームを形成し、かつ前記コリメートされた放射線ビームを前記標的アパーチャに通過させ、前記入射放射線ビームとして前記検出器に向けるように配置されたコリメータと、
(iii)複数の放射線不透過性マーカを有し、前記コリメートされたビームの経路に配置され、前記エンクロージャ内の前記コリメータアパーチャの近く又は内部に配置された幾何学的較正ファントムと、を収容する、エンクロージャ、を備える、
口腔内撮像装置。
【請求項2】
前記少なくとも1つのX線源が、個別にエネルギー印加されて前記複数の焦点のそれぞれから順番に前記放射線ビームを供給する、X線源のアレイ(線形又は放射状)又はパネル(直線パッチ又は凹球面パッチ)である、請求項1に記載の装置。
【請求項3】
更に、前記少なくとも1つのX線源の前記位置を前記エンクロージャ内の移送経路に沿って移動する線源移送アセンブリを備える、請求項1に記載の装置。
【請求項4】
前記エンクロージャは機械的又は磁気的に前記フレームに位置決めされる、請求項1に記載の装置。
【請求項5】
前記コリメータが、前記検出器表面を照射するが、検出器領域の周囲の組織への放射線を回避するのに十分な大きさの前記放射線ビームを収容する固定コリメータアパーチャを有する、請求項1に記載の装置。
【請求項6】
前記コリメータがコリメータアパーチャ及びコリメータ移動装置を有し、ここで前記コリメータ移動装置が、前記コリメータを前記複数の焦点のそれぞれからの放出と同期して移動し、前記コリメータアパーチャを前記標的アパーチャに対して配置する、請求項1に記載の装置。
【請求項7】
前記コリメータが、ローリングシャッタからなり、電気機械的手段によって動作されて、開口部を開口/ロールし、前記複数の焦点のそれぞれからの放出を可能にする、請求項1に記載の装置。
【請求項8】
前記コリメータ移動装置は前記線源移送アセンブリに機械的に結合される、請求項3に記載の装置。
【請求項9】
前記コリメータ移動装置を前記複数の焦点のそれぞれからの放出と同期して駆動するためのプログラムされた命令を実行するように構成された制御論理プロセッサを更に備える、請求項5に記載の装置。
【請求項10】
前記複数のマーカの前記マーカが、80を超えない原子番号を有する放射線不透過性材料から形成される、請求項1に記載の装置。
【請求項11】
前記複数のマーカの前記マーカが、クロム鋼、セラミック、炭化タングステン、及び金からなるグループから得られる、請求項10に記載の装置。
【請求項12】
前記複数のマーカの前記マーカがセラミックから形成される、請求項10に記載の装置。
【請求項13】
前記複数のマーカの前記マーカが、第1及び第2の平行層に配置される、請求項1に記載の装置。
【請求項14】
口腔内トモシンセシス撮像用の方法であって、
(a)X線ビームに面する前記表面に埋め込まれた放射線不透過性マーカを有する口腔内検出器であって、それに標的フレームが取り付けられていない状態で患者の口の中に配置される口腔内検出器、及び、
(b)前記患者の顔に触れることなく着座するように構成されるエンクロージャであって、
(i)放射線ビームを前記エンクロージャ内の複数の焦点のそれぞれから放出するように構成された少なくとも1つのX線源と、
(ii)静止アパーチャ、可動アパーチャ、又はローリングシャッタアパーチャであり得るコリメータであって、前記放出された放射線ビームからコリメートされたビームを形成し、かつ前記コリメートされた放射線ビームを前記標的アパーチャに通過させ、入射放射線ビームとして前記検出器に向けるように配置されたコリメータと、
(iii)複数の放射線不透過性マーカを有し、前記コリメートされたビームの経路に配置された幾何学的較正ファントムと、
(iv)X線ビームから検出器への前記経路でコリメータに埋め込まれた放射線不透過性マーカと、を収容する、エンクロージャを含む、
口腔内トモシンセシス撮像用の方法。
【請求項15】
前記コリメータが適切な位置にあるときに前記放射線ビームの放出をトリガすることを更に含む、請求項14に記載の方法。
【請求項16】
第1のコリメータ及びX線源に面する前記検出器の前記表面の放射線不透過性マーカのセットを更に含み、両方のマーカは前記放射線の視野内にあり、それらはX線画像に現れる、請求項14に記載の方法。
【請求項17】
第2の処理及びその後の機械的方法による操縦によって、前記線源から検出器までの最大範囲を更に含み、それを可能にする、請求項14に記載の方法。
【請求項18】
コリメータ表面及び検出器表面の放射線不透過性マーカと画像特徴を使用し、ファントムを使用しない、ジオメトリ回復方法を更に含む、請求項14に記載の方法。
【請求項19】
トモシンセシス撮像用の口腔内撮像装置であって、
(a)フレームに結合された口腔内検出器であって、前記フレームは、入射放射線ビームの標的アパーチャを画定し、又は、X線ビームに面する前記表面に埋め込まれた放射線不透過性マーカを有し、それに標的フレームが取り付けられていない状態で患者の口の中に配置される口腔内検出器、及び、
(b)前記患者の口の近位に位置決めするように構成されるエンクロージャであって、
(i)放射線ビームを複数の焦点のそれぞれから放出するように構成されたX線源のアレイ(線形、放射状、パネル、又は凹球面パッチ)と、
(ii)前記放出された放射線ビームからコリメートされたビームを形成し、前記コリメートされた放射線ビームを入射放射線ビームとして前記検出器に向けるように配置されたコリメータと、
(iii)ジオメトリの計算に使用されるファントムが口腔内キャプチャ中に機械的手段によって移動される間、定期的な前記キャプチャを可能にするために、異なる線源から検出器までの距離に配置された高出力中央X線源と、
(iv)複数の放射線不透過性マーカを有し、トモシンセシスキャプチャのために前記コリメートされたビームの経路に配置された幾何学的較正ファントムと、を収容するエンクロージャ、を含む、
口腔内撮像装置。
【請求項20】
前記X線源のアレイが、静止したカーボンナノチューブ放出構成要素のアレイを含む、請求項19に記載の装置。
【請求項21】
コリメータ移動装置を前記複数の焦点のそれぞれからの放出と同期して駆動するためのプログラムされた命令を実行するように構成された制御論理プロセッサを更に備える、請求項19に記載の装置。
【請求項22】
前記幾何学的ファントムを通常の(非トモシンセシスによる)口腔内キャプチャのための放射線視野から遠ざけるためのプログラムされた命令を実行するように構成された制御論理プロセッサを更に備える、請求項19に記載の装置。
【請求項23】
固定コリメータを更に備え、アーチ経路に配置されたすべての前記線源が前記ファントムに向けられ、中央高出力線源が前記線源の残りから異なる距離に配置され、通常の(非トモシンセシスによる)口腔内キャプチャを可能にする間、前記ファントムを機械的方法によって視野から移動させる、請求項19に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、口腔内撮像、特に、口腔内トモシンセシス撮像による放射線経路のコリメーションのための方法及び装置に関する。
【背景技術】
【0002】
3次元(3D)又はボリュームX線画像は、歯と支持構造の診断及び治療のために有意な価値のあるものになり得る。この目的のためのボリュームX線画像は、2つ以上の個別の2D投影画像からの画像データを組み合わせることによって形成され、2D投影画像は互いに短時間に、各投影画像と対象の歯との間、及び各投影画像と別の投影画像との間で明確に規定された角度及び位置ジオメトリを使用して取得される。コーンビームコンピュータ断層撮影(CBCT)は、複数の投影画像から歯科構造のボリューム画像を取得するための1つの確立された方法である。CBCT撮像では、画像検出器と放射線源が対象を周回し、小さな角度増分で一連のX線投影画像を取得する。次に、得られた情報を使用して、システムの利用可能な解像度内で撮像された対象を忠実に表すボリューム画像を合成し、その結果、形成されたボリューム画像は幾つもの角度から観察され得る。歯科用の市販のCBCT装置には、ジョージア州アトランタのCarestream Dental,LLCのCS8100 3Dシステムが含まれる。
【0003】
CBCT撮像は強力な診断ツールであるが、ボリューム撮像が有益であるとしても、CBCT撮像の本格的な機能が必要ではない場合もある。例えば、インプラント埋入のガイドに使用するような一部のタイプのボリューム撮像については、ある程度の深さ情報を提供する基本的なボリューム撮像機能が役立ち得る。ボリューム撮像は、隣接する歯科構造間の重ね合わせ異常を回避するのにも役立ち得る。このような用途では、CBCTシステムから提供されるような多数のX線投影画像は必要なくてもよい。代わりに、十分な深さ情報は、画像間の空間座標基準が維持されているという条件で、少数のX線画像を使用して取得され得る。
【0004】
一般原則として、ボリューム診断データを生成するために必要とされる最小量のX線被曝を使用することが有益である。180°の軌道上で取得された完全なCBCTの投影画像の系列は、より狭い範囲の角度で撮影された、又は増加した相対角度増分で撮影されたより少ない投影画像を使用する部分系列よりも高い累積放射線量を必要とする。したがって、特定の既知の方法の使用は、完全なCBCT撮像が不要な患者の被曝を減じるのに役立つ。
【0005】
トモシンセシスは、歯科医に、口腔内特徴の従来型2D放射線撮影及び3D断層撮影、例えばCBCT撮像に勝る多くの利点を提供するように思われる。トモシンセシスでは、別のボリューム撮像アプローチと同様に、限られた数の2D投影画像が順番に取得され、各画像フレームは以前に取得された画像フレームから相対角度でシフトされる。次に、再構築技術を使用して、多くの診断及び評価機能に十分な深さと解像度のボリューム画像を形成し得る。これにより、トモシンセシスに、限られた深さであるが、断層法が要するよりも低線量で、ボリュームデータを提供するためのフルスケール断層撮影のいくつかの利点を提供する。
【0006】
トモシンセシス撮像は、各画像で、検出器表面に対する相対的な放射線源角度の増分的な幾何学的変化を使用する。マンモグラフィに使用されるような従来型トモシンセシスシステムは、例えば、検出器に対する線源位置の固有の制御を有し、これによって幾何学的な位置合わせを自動的に実現し、ある撮像検査から次の画像検査に適用する。しかし、口腔内撮像では、このようなタイプの機械的に固定されたジオメトリは容易に得ることができない。口腔内検出器は大部分が視界から隠され、口内の様々な場所に柔軟に配置可能である必要があり、簡単な線源と検出器の位置合わせの試みを妨げる。システムが、検出器の輪郭の境界ジオメトリを確実に識別できる必要があるのみでなく、線源の部分軌道によってトレースされる経路が、検出器のピクセルの行/列のジオメトリに対して対称である必要がある。
【0007】
口腔内トモシンセシスに関連する困難には、放射線ビームの正確なコリメーションの必要性が含まれる。効果的なコリメーションは、検出器の境界を超えた領域への不必要な被曝を防ぐのに役立つ。口腔内トモシンセシスシステムの更に別の態様は、再構築されたトモシンセシス画像を、診断を支援する際に使い易いように適切なフォーマットで表現する必要性に関連する。したがって、多くの解決策が口腔内トモシンセシスを提供するために提案されてきたが、トモシンセシス技術を歯科医にとって適したものにするため、かなりの改善の余地が残っている。特に、口腔内トモシンセシス撮像のための放射線経路の適切なコリメーションを提供する装置及び方法には有用性があることが理解され得る。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】国際公開第2019/040056号
【特許文献2】国際公開第2017/196413号
【特許文献3】米国出願公開第2016/220212号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
概して言うと、本発明は、口腔内トモシンセシス撮像のための装置及び方法を含む。装置及び/又は方法の例示的な実施形態では、ボリューム画像は、口腔内撮像検出器によって取得された少数のX線画像から生成される。
【課題を解決するための手段】
【0010】
本開示の一態様によると、トモシンセシス撮像用の口腔内撮像装置が提供され、(a)入射放射線ビームの標的アパーチャを画定するフレームに結合された口腔内検出器、(b)標的アパーチャに対して着座するように構成されたエンクロージャを含んでいる。エンクロージャは、(i)放射線ビームをエンクロージャ内の複数の焦点のそれぞれから放出するように構成された少なくとも1つのX線源、(ii)放出された放射線ビームからコリメートされたビームを形成し、かつコリメートされた放射線ビームを標的アパーチャに通過させ、入射放射線ビームとして検出器に向けるように配置されたコリメータ、及び、(iii)複数の放射線不透過性マーカを有し、コリメートされたビームの経路に配置された幾何学的較正ファントムを収容する。
【0011】
本発明の別の態様によると、トモシンセシス撮像用の口腔内撮像装置が提供され、(a)自由でフレームに取り付けられず、表面に放射線不透過性マーカを含む口腔内検出器、(b)患者の解剖学的構造又は口腔内検出器の位置に取り付けられることなく自由に配置されるように構成されたエンクロージャを含んでいる。エンクロージャは、(i)放射線ビームをエンクロージャ内の複数の焦点のそれぞれから放出するように構成された少なくとも1つのX線源、(ii)放出された放射線ビームからコリメートされたビームを形成し、かつコリメートされた放射線を入射放射線ビームとして検出器に向けるように配置されたコリメータ、及び(iii)コリメータに取り付けられ、これにより検出器に照射されるビームの経路内にあって、X線の焦点を検出器に整合することができる、放射線不透過性マーカ、及び、(iv)複数の放射線不透過性マーカを有し、コリメートされたビームの経路に配置された幾何学的較正ファントムを収容する。
【0012】
本発明の前述及び別の態様、特徴、及び利点は、本発明の例示的な実施形態の以下のより具体的な説明と、縮尺通りではない添付の図面から明らかになるであろう。
【図面の簡単な説明】
【0013】
図1】例示的な実施形態による、チェアサイドトモシンセシス撮像装置の構成要素を示す概略図である。
図2A】光子計数装置を表示する概略図である。
図2B】2つの異なるエネルギーレベルで測定するための光子計数装置を表示する概略図である。
図3A】位置合わせ問題の異なる態様を表示する、簡略化された概略ブロック図である。
図3B】位置合わせ問題の異なる態様を表示する、簡略化された概略ブロック図である。
図4】口腔内撮像検出器の横方向位置及び角度方向を計算する撮像装置を表示する概略ブロック図である。
図5】口腔内撮像検出器の横方向位置及び角度方向を計算し、ディスプレイを患者の頬に投影する撮像装置を表示する概略ブロック図である。
図6A】本発明の一例の実施形態において、三角測量が位置検出にどのように使用されるかを示す概略図である。
図6B】本発明の別の例の実施形態における位置検出を表示する概略図である。
図6C】中央開口部の周りに放射線不透過性の位置合わせマーカの配置を有するホルダを表示する概略図である。
図6D】撮像された口腔内特徴の境界に沿って、取得された画像にマーカがどのように現れるかを表示する。
図6E】撮像された口腔内特徴の境界に沿って、取得された画像にマーカがどのように現れるかを表示する。
図7A】一例の実施形態による口腔内X線撮像装置を表示する斜視図であり、位置合わせは正しくない。
図7B】一例の実施形態による口腔内X線撮像装置を表示する斜視図であり、位置合わせは正しい。
図8】実質的に正方形配置でコリメーションを備えた放射線源アセンブリを示す。
図9】限られた数のX線から層/ボリューム画像を取得するために使用される撮像パターンを表示する概略ブロック図である。
図10A】感知された拡張及び回転データを報告するために、各調整可能なジョイントに複数の関節部分を有するフレームを表示する上面概略図である。
図10B】感知された拡張及び回転データを報告するために、各調整可能なジョイントに複数の関節部分を有するフレームを表示する上面概略図である。
図10C】フレームに結合されず、埋め込まれた放射線不透過性基準マーカを撮像領域の縁に備えた検出器を表示する上面概略図である。
図11】位置合わせ及びコリメーションサポートのための、患者の顔に対するフレームの位置を示す。
図12】口腔内検出器と結合された幾何学的較正ファントムの使用を表示する概略図である。
図13A】幾何学的較正ファントムの特徴を表示する。
図13B】幾何学的較正ファントムの特徴を表示する。
図14A】口腔内検出器の基準を固定し、供給するフレームの構成要素を表示する。
図14B】線源位置決め用の構成要素を表示し、放射線源アセンブリのコリメータ内及び検出器表面上の両方に埋め込まれた放射線不透過性マーカを介して口腔内検出器のための基準を提供する。
図15A】X線源エンクロージャと検出器に結合された標的フレームとを備えたトモシンセシス撮像用の口腔内装置を表示する概略図である。単一のX線源は、X線源エンクロージャ内で移動及び回転され、撮像中にコリメータ及び/又は検出器に焦点を合わせる。
図15B】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源は、X線源エンクロージャ内で移動及び回転され、撮像中にコリメータ及び/又は検出器に焦点を合わせる。
図15C】X線源エンクロージャと検出器に結合された標的フレームとを備えたトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、コリメーション用のローリングシャッタを含む。単一のX線源は、X線源エンクロージャ内を直線経路で移動される。
図15D】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、コリメーション用のローリングシャッタを含む。X線源は、X線源エンクロージャ内を直線経路で移動される。
図15E】X線源エンクロージャと検出器に結合された標的フレームとを備えたトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、コリメーション用のローリングシャッタと、固定線形アレイ構成の複数のX線源を含む。
図15F】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、コリメーション用のローリングシャッタと、固定アレイ構成の複数のX線源を含む。
図15G】X線源エンクロージャと検出器に結合された標的フレームとを備えたトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、コリメーション用のローリングシャッタと、固定2Dパネルの複数のX線源を含む。
図15H】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、コリメーション用のローリングシャッタと、固定2Dアレイの複数のX線源を含む。
図16A】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、固定コリメータ及び弧状経路で移動される単一のX線源を含む。
図16B】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、固定コリメータ及び弧状経路で移動される単一のX線源を含む。
図16C】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、固定コリメータ及び円弧で固定位置に配置されたX線源のアレイを含む。
図16D】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、固定コリメータ及び円弧で固定位置に配置されたX線源のアレイを含む。
図16E】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、固定コリメータ及び球形に配置されたX線源の2Dアレイを含む。
図16F】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、固定コリメータ及び球形に配置されたX線源の2Dアレイを含む。
図17A】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、単一のX線源と、撮像中の線源位置に対するコリメータウィンドウの連携された動きのためのリンケージ手段とを含む。
図17B】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、単一のX線源と、撮像中の線源位置に対するコリメータウィンドウの連携運動のためのリンケージ手段とを含む。
図17C】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、単一のX線源と、線源とコリメータウィンドウとの間で、プーリによってX線源の連携回転を提供する結合手段とを含む。
図17D】X線源エンクロージャと標的フレームなしの検出器とを備え、放射線不透過性基準マーカを使用してX線源を検出器に対して配置する、トモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、単一のX線源と、X線源とコリメータウィンドウとの間で、プーリによってX線源の連携回転を提供する結合手段とを含む。
図18A】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、高線量中央X線源を、線形構成の低線量X線源のアレイから異なる距離に含む。X線源は、ローリングシャッタコリメータを介して検出器表面全体を照射し、同時にファントムはX線ビームカバレッジの内外に移動して、単一の画像キャプチャを可能にし、標的フレームを用いて、又は標的フレームなしで、放射線不透過性基準を使用してトモシンセシス撮像を実行する。高線量中央線源は、視野内にファントムなしで個別に操作され、又はファントムがキャプチャ中に機械的に移動され、通常の口腔内2D撮像オプションが可能になる。異なる位置にある高線量線源と低線量線源のアレイを混合するこの配置により、通常の2D口腔内撮像と新しいトモシンセシスボリューム撮像の両方が可能になる。
図18B】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、高線量中央X線源を、円弧の固定位置に配置されたX線源のアレイから異なる距離に含む。X線源は、ローリングシャッタコリメータを介して検出器表面全体を照射し、同時にファントムはX線ビームカバレッジの内外に移動して、単一の画像キャプチャとトモシンセシス撮像を可能にする。高出力中央X線源は、円弧経路配置にある残りのX線源から異なる距離にあり、固定コリメータを介して検出器表面全体を照射し、同時に、ファントムはX線ビームカバレッジの内外に移動することで、視野にファントムがない通常の口腔内単一キャプチャ、及び視野内にファントムがある複数の投影が、標的フレームを用いて、又は標的フレームなしで、放射線不透過性基準を用いて、トモシンセシスを実行し、トモシンセシス撮像を形成するのに役立つ。
図18C】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、高線量中央X線源を、パネル構成の低線量2次元X線源のパネルから異なる距離に含み、X線源は、ローリングシャッタコリメータを介して検出器表面全体を照射し、同時にファントムはX線ビームカバレッジの内外に移動して、単一の画像キャプチャを可能にし、標的フレームを用いて、又は標的フレームなしで、放射線不透過性基準を使用してトモシンセシス撮像を実行する。高線量中央X線源は、視野内にファントムなしで個別に操作され、又はファントムがキャプチャ中に機械的に移動され、通常の口腔内2D撮像オプションが可能になる。異なる位置にある高線量線源と低線量線源のアレイを混合するこの配置により、通常の2D口腔内撮像と新しいトモシンセシスボリューム撮像の両方が可能になる。
図18D】X線源エンクロージャと検出器に結合された標的フレームとを含むトモシンセシス撮像用の口腔内装置を表示する概略図である。X線源エンクロージャは、高線量中央X線源を、球形パッチの固定位置に配置された2次元X線源の球形パネルから異なる距離に含む。X線源は、ローリングシャッタコリメータを介して検出器表面全体を照射し、同時にファントムはX線ビームカバレッジの内外に移動して、単一の画像キャプチャとトモシンセシス撮像を可能にする。高出力中央X線源は、円弧経路配置にある残りのX線源から異なる距離にあり、固定コリメータを介して検出器表面全体を照射し、同時に、ファントムはX線ビームカバレッジの内外に移動することで、視野にファントムがない通常の口腔内単一キャプチャ、及び視野内にファントムがある複数の投影が、標的フレームを用いて、又は標的フレームなしで、放射線不透過性基準を用いて、トモシンセシスを実行し、トモシンセシス撮像を形成するのに役立つ。
図19A】調整可能なウィンドウを備えたコリメータを表示する平面図である。
図19B】スライド式出口ウィンドウを備えるローリングシャッタコリメータを表示する平面図である。
図20A】放出のために変化する焦点と関連してコリメータウィンドウをシフトする基本的な幾何学的考察を表示する。
図20B】放出のために変化する焦点と関連してコリメータウィンドウをシフトする基本的な幾何学的考察を表示する。
図20C】ローリングシャッタコリメータウィンドウを、放出のために変化する焦点と関連してシフトする基本的な幾何学的考察を表示する。
図20D】ローリングシャッタコリメータウィンドウを、放出のために変化する焦点と関連してシフトする基本的な幾何学的考察を表示する。
【発明を実施するための形態】
【0014】
以下は、本発明の例示的な実施形態の詳細な説明であり、図面が参照され、図面において同じ参照番号は、いくつかの図のそれぞれにおける構造又は方法のステップの同じ要素を識別する。
【0015】
本開示の文脈で使用される場合、「第1」「第2」などの用語は、必ずしも何らかの順序、連続性、又は優先的な関係を示すものではなく、そうではないと明示されない限り、単純に1つのステップ、要素、又は要素のセットを他のものからより明確に区別するために使用される。
【0016】
ここで使用されるように、「エネルギー印加可能な(energizable)」という用語は、電源に接続して構成され、電力の受け取り時に、また必要に応じてイネーブル信号の受信時に、示された機能を実行するように作動可能な、1つのデバイス又は1セットの構成要素に関する。
【0017】
本開示の文脈において、「観察者」、「オペレータ」、及び「ユーザ」という用語は同等であると見なされ、観察医、技術者、又は歯科画像などの画像をディスプレイモニタ上で観察し操作する別の人物を指す。「オペレータ命令」又は「観察者命令」は、観察者によって、例えば、カメラのボタンをクリックするか、コンピュータマウスを使用するか、タッチスクリーン又はキーボード入力などによって入力された明示的なコマンドから取得される。
【0018】
本開示の文脈において、「信号通信状態」という句は、2つ以上のデバイス及び/又は構成要素が、あるタイプの信号経路上を移動する信号を介して互いに通信することができることを示す。信号通信は有線又は無線であり得る。信号は、通信、電力、データ、又はエネルギー信号であり得る。信号経路は、第1のデバイス及び/又は構成要素と第2のデバイス及び/又は構成要素との間の物理的、電気的、磁気的、電磁的、光学的、有線、及び/又は無線接続を含んでもよい。信号経路はまた、第1のデバイス及び/又は構成要素と第2のデバイス及び/又は構成要素との間に追加のデバイス及び/又は構成要素を含んでもよい。
【0019】
本開示において、「検出器」という用語は、患者の口に配置され、放射線を受け取り、画像コンテンツを供給する要素を指す。このような検出器は、デジタル検出器であり、X線画像データを撮像システムに直接供給される。
【0020】
本開示の文脈では、「ピクセル」又は「ボクセル」という用語は、相互交換可能に使用され得て、個々のデジタル画像データ要素、つまり測定された画像信号強度を表す単一の値を記述する。従来は、個々のデジタル画像データ要素は、3次元ボリューム画像に対してはボクセルと、そして2次元画像に対してはピクセルと呼ばれる。ボリューム画像、例えばCT又はCBCT装置からのものは、異なる相対的な角度を取るピクセル又は投射画像の複数の2D画像を取得し、次に画像データを組み合わせ、又は再構築して対応する3Dボクセルを形成することによって形成される。本明細書では記述の目的で、ボクセル及びピクセルという用語は一般的に同等とみなされ得て、ある範囲の数値的な値を有し得る画像要素データを記述する。ボクセル及びピクセルは、空間的な位置及び画像データコード値の両方の属性を有する。
【0021】
平面は、いずれかの方向に12°以内で平行である場合、「平行」であると見なし得る。
【0022】
図1は、本発明の特定の例示的な方法及び/又は装置の例示的な実施形態による、チェアサイドトモシンセシス撮像装置100の構成要素を示す概略図である。X線源10は、放射エネルギーを、対象の歯14又は別の特徴を通して、ある範囲の角度にわたって、口腔内検出器20に向ける。コリメータ16は、線源10の放射線の角度範囲を調整し、被曝は関心のある領域内に制限される。位置合わせ装置70は、線源10からコリメータ16を通る放射場の位置合わせを感知し、必要に応じて制御して、関心のある領域にわたって放射線を供給する。口腔内検出器20は、制御論理プロセッサ26と信号通信にあり、画像コンテンツを取得及び処理して、トモシンセシス画像をディスプレイ28上に提供する。トモシンセシス撮像は、本明細書で詳細に説明するように、検出器20に対して変化する線源10の相対角度を必要とする。制御論理プロセッサ26は、トモシンセシス画像取得に必要な制御を提供する。
【0023】
トモシンセシス撮像は、図1に示される構成要素が、関心のある領域の2つ以上の2D投影画像、例えば、1つ以上の隣接する歯の画像などを取得することを必要とする。生成された画像コンテンツには、ある程度の輪郭と深さ情報が含まれるが、CBCTシステムなどの断層撮影から得られたより幾何学的に完全な画像ボリュームデータは含まれない。
【0024】
トモシンセシスデータは、フルボリューム画像コンテンツなしで、ある程度の深さ情報を提供する。トモシンセシスは、スライス又はレイヤ画像を、撮像されたオブジェクトに生成することを可能にし、スライス/レイヤは異なる深さにある。
【0025】
図1に一般化された形態で示されるコリメータ16は、典型的には、2つのコリメータアセンブリを含み、コリメータアセンブリは放射経路に沿って互いに離隔され、協調してビームコリメータ機能を提供することに留意する必要がある。第1のコリメータは、通常、X線源10の一体型構成要素として含まれ、コリメータブレード又は別のビームガイダンス機能が、放出されるX線放射線の形状を、放射経路に沿って進むときに規定するように配置される。第2のコリメータは、検出器20の近くに設けられ得て、X線ビームが検出器20内に入射するように、ビーム輪郭を更に規定する。
【0026】
<反射率画像の取得>
オプションの反射率撮像装置96はまた、いくつかの例示的なチェアサイド口腔撮像方法及び/又は装置の実施形態の一部として提供され得て、例えば、患者の口内に配置された検出器20に対してより正確な位置決め情報を提供する。撮像装置96は、構造化された光パターンを関心のある口腔内特徴に投影することなどによって、輪郭撮像を提供し得る。次に輪郭情報が処理されて、表面の特徴を示す3Dメッシュが生成される。この目的のために、反射率撮像カメラは光スキャナとして機能する。代替的に、撮像装置96は、2Dカメラであり得て、関心のある領域から及びその周辺の1つ以上の単色又はカラー画像を取得する。
【0027】
反射率撮像を用いて、例えば、頭部サイズ及び/又は向きを決定し得る。取得された反射率画像はまた、トモシンセシス及び/又は別の放射線画像取得中の患者の動きを検出するための補助として役立ち得る。Carestream Dental LLCのCS3600口腔内スキャナによって提供されるような輪郭撮像カメラ画像は、2D反射率画像よりも多くの情報を提供でき、トモシンセシスで使用されるボリューム再構築処理をガイド及び/又は修正し、かつトモシンセシス試験中の動きを検出する。オプションの超音波撮像装置98は、同様に、チェアサイド口腔撮像装置100の支持システムとして提供され得る。
【0028】
出願による代替の例示的な実施形態によると、全口内スキャン装置は、放射線撮像システムと連携して機能する。これにより、放射線画像と反射率画像の両方を同時に取得でき、例えば、後続の再構築処理に有用となり得る。反射率及びトモシンセシス画像コンテンツを融合して、非常に正確な表面輪郭情報を参照して、ある程度の深さ情報を表示し得る。
【0029】
深さ分解画像コンテンツを取得するタイプの撮像装置、例えば光コヒーレンストモグラフィ(OCT)及び超音波撮像システムは、キャプチャされた反射率信号から、表面輪郭情報を取得するのみでなく、表面下のある深さまで、検出された組織及び特徴の特徴付けのためのある程度の追加情報を提供する可能性がある。このタイプの深さ分解画像コンテンツは、トモシンセシス取得の位置決めを支持し、かつ検証し、同様に撮像セッション中に検出された患者の動きを識別して報告し、又は補うのに大いに役立ち得る。これらは表面直下の特徴の深さ分解撮像装置によって取得される支持情報であり得て、例えば、表面輪郭撮像コンテンツのみを使用する場合に利用されるよりも、位置決めガイダンスと検証に役立つ可能性がある。
【0030】
<放射線源>
本発明の例示的な方法及び/又は装置の実施形態によると、X線源10は、スピント(Spindt)型フィールドエミッタ(カーボンナノチューブ又はCNTベースのフィールドエミッタを含む)であり、放射エネルギーを多数の分散型X線源から供給する。X線源は、例えば、スピント型フィールドエミッタの分散アレイ又はパネル(2dアレイ)であってもよく、中央熱電子源の周りに周状に配置され得る。X線源は、アレイ/パネル内で互いに対して静止しているか、又は比較的固定され、アレイ自体は単一ユニットとして移動する。このタイプのX線源は、マイクロ秒のオーダで迅速なオン/オフ切り替えが可能である。
【0031】
別の適切なX線源は、対のパルス化された従来のフッ素対応熱電子源をアレイで含み得て、線源が空間的に分離される。これらのオプションは、十分なX線フルエンスを短い被曝時間で提供し、同時に過熱することなく被曝シーケンスを可能にする。
【0032】
スピント型フィールドエミッタベースのX線源は、真空チャンバ内に1つ以上のカソードを有し、ここで、各カソードは、多数の個別のスピント型フィールドエミッタから形成され、励起電流が与えられると、チャンバ内の1つ以上のアノードに向かって加速される電子を供給する。
【0033】
代替的に、X線源は、より従来型の熱電子源であり得て、必要なエネルギーを供給する移送装置と結合され、X線源をセグメント化又は連続化され得る線形又は非線形(例えば、湾曲した)移動経路に沿って移動させ、放射線を対象に向ける。
【0034】
本発明の例示的な実施形態によると、同じX線源は、従来型放射線撮影又は3D撮像のためのモードのセットのいずれかで使用されてもよい。したがって、明細書でより詳細に説明するように、同じ放射線撮像装置を使用して、シングルショット放射線画像を取得するか、あるいはCBCTを含む断層撮影、トモシンセシス用の、又は蛍光透視若しくは放射線撮像用の投影画像を取得し処理してもよい。
【0035】
<発生器>
X線源の一部である放射線発生器は、パルス又は連続動作を供給し得る。発生器は、単一のパルス又は一連のパルスを供給してもよく、特定の特徴に適切な被曝条件を供給するために変化するパルス幅を有する。
【0036】
<撮像検出器>
例示的な実施形態の方法及び/又は装置の撮像検出器は、トモシンセシス撮像に十分な速度で画像データを取得する小型の口腔内デジタル放射線撮影(DR)検出器である。撮像検出器は、任意の適切な形状であってもよく、剛性又は可撓性であってもよい。
【0037】
撮像検出器との信号通信は、有線又は無線であり得る。画像検出器は、ケーブルから電力を受け取るか、又は充電式電池を搭載し得る。
【0038】
トモシンセシス撮像の要件を満たすために、口腔内検出器は、応答時間が早く、トモシンセシス取得に十分な画像取得速度を備え、少なくとも約2フレーム/秒(fps)、少なくとも5fps、又は少なくとも10fpsで取得する。
【0039】
撮像検出器は、相対的なエネルギー積分を使用して画像コンテンツを生成する従来型DR検出器であってもよく、又は光子計数検出器であってもよい。本発明の例示的な実施形態によると、同じ撮像装置は、複数のタイプの撮像検出器への接続を可能にし得る。これにより、1つの検出器を用いて単一フレームの放射線撮像(最大43×43cm)と、別の検出器を使用して複数の投影画像取得(3D又はボリューム撮像など)が、例えば本明細書に記載されるチェアサイドトモシンセシス撮像に加えてできる多用途の撮像装置が可能となる。
【0040】
エネルギー積分検出と比較した光子計数検出のいくつかの利点は、(i)電気ノイズの低減及び信号対ノイズ比の改善と、(ii)画像コントラストの改善、例えばエネルギービニングを用いて取得した画像の重み係数を調整することを含む。光子計数トモシンセシスは、診断精度を向上させ得る。
【0041】
従来型集積X線センサは、空間的にデジタル化され、アナログ出力を供給し、アナログ出力は被曝中に各ピクセルに関して受け取った累積電荷を表す。高いノイズレベルは、集積センサでは問題となる場合がある。光子計数では、各入射光子が電荷を生成し、各電荷イベントが記録される。光子の実計数、又は計数に基づいて対応して計算された値は、各ピクセルの画像データとして供給される。有利なことに、光子計数は、パルス強度がバックグラウンドノイズレベルを超える場合、高いノイズ耐性を有する。
【0042】
図2Aは、光子計数装置を概略的な形態で示す。入射光子は、パルス180を所与のエネルギーレベルで生成する。パルス180のエネルギーは、比較器182で閾値と比較され、パルス整形器184で整形されて、整形されたパルス188を形成する。次に、計数器186は、パルスイベントを記録し、デジタル出力、パルス計数値190を供給する。別個のパルス計数値190は、検出器20に使用される撮像センサ170の各ピクセル要素に関して得られる。閾値は、関心のある光子エネルギーに応じて、調整可能であり得て、又は値の範囲から選択可能であり得る。光子計数X線検出器は、低信号レベルで適切な性能を供給し、それによって患者に与えられるX線の線量を減らすことができる。
【0043】
複数の検出器技術が組み合わせられてもよいことを理解し、評価する必要がある。組み合わせの例は、限定するものではないが、(1)積分を用いる間接検出、(2)積分を用いる直接検出、(3)光子計数を用いる間接検出、及び(4)光子計数を用いる直接検出を含む。積分を用いる間接検出により、検出器コストが削減され、スケーラビリティを供給する。積分を用いる直接検出は、より大規模な検出器で線量を低減する。光子計数を用いる間接検出は、線量を低減する。光子計数を用いる直接検出は、本明細書でより詳細に説明されるように、低減された線量及び/又はカラーX線を供給し得る。
【0044】
パルス計数の更なる利点は、複数の閾値でパルス180を計数するその能力に関連する。図2Bの概略図を参照すると、2つの比較器182a及び182bはパルスエネルギーを測定するために示される。この特定の構成では、比較器182a、パルス整形器184a、及び計数器186aは、第1の閾値を超えるすべてのパルスに対して計数190aの値を供給し、同様に、比較器182b、パルス整形器184b、及び計数器186bは、より高い第2の閾値を超えるパルスのみを計数し、それに応じて計数190bを供給する。次に、単純な減算により、各パルスで達成された異なる電力レベルが識別される。2つ以上の閾値レベルは、比較器回路の対応する配置を使用して測定されてもよく、多数の閾値のいずれかでパルス計数を可能にすることを理解し、評価する必要がある。更に、閾値は選択可能であり得て、例えば、様々な光子エネルギーレベルに対する撮像センサ170の応答を調整するために調整可能である。したがって、例えば、オペレータは、一連の事前設定された閾値を用いて、最終的に生成される画像において、より軟組織をより密度の高い組織から区別し得る。
【0045】
フロア閾値の最小値を設定すること(例えば、ノイズ低減のための)に加えて、マルチスペクトルX線撮像のための本発明の実施形態はまた、光子エネルギーのための追加の上限又は最大閾値を使用するオプションを供給し得る。この上限閾値機能は、多くの機能に使用され得て、金属アーチファクトや直接検出材料を直接通過するX線などからの過剰なノイズ信号の生成を減らすことを含む。
【0046】
図2Bを参照して説明したように、異なるエネルギー閾値で光子を計数する機能は、口腔内検出器が、対象を照射することから得られるエネルギーレベルを区別することを可能にし、追加の次元を各被曝の結果として供給される画像データに供給する。マルチスペクトル又は「カラー」X線撮像と称されるこの機能により、対象のピクセルの材料組成に関する情報を取得可能にする。周知のように、2つの材料AとBは、放射線エネルギー被曝のレベルに応じて変化する異なる減衰係数μを有し得る。所与の被曝で、材料Aは、材料Aに対応するエネルギーで光子を減衰する。同様に、材料Bに衝突する放射線は、材料Bに対応するエネルギーで光子を減衰する。これらの異なるエネルギー値の光子が互いに区別され得る場合、一方又は両方の材料を、得られた画像の同じピクセル又はボクセル画像要素内で識別することが可能である。放射線に反応するこの同じ基本的な挙動は更に、組織のタイプを区別するある程度の能力を可能にする。異なる線形吸収特性により、様々なタイプの組織、例えば、限定しないが骨のタイプを区別できる。
【0047】
光子計数検出器を使用するカラーX線は、低コスト及び低線量のカラーX線撮像を供給する。マルチスペクトル又は「カラー」X線撮像の使用は、口腔内撮像に価値のある多くの潜在的な利益をもたらす場合がある。これらには、金属アーチファクトの最小化、軟組織と硬組織の個別の再構築、歯と骨の特徴のより効率的なセグメンテーションアルゴリズム、癌及びその他の疾患の改善された病理検出、及び微量物質又は造影剤の検出が含まれる。
【0048】
本発明の一例の実施形態によると、チェアサイド口腔内撮像装置100は、異なる撮像機能に適した2つ以上の交換可能な検出器20を有し得る。例えば、従来型積分画像検出器は、放射線撮像のためにプロセッサ26に接続され得て、光子計数検出器は、トモシンセシス又は放射線撮像のために必要とされる場合にのみ接続され得る。キー付きコネクタ又は別の機械的若しくは信号発生機構を使用して、接続された検出器のタイプを示し得る。
【0049】
調整可能な解像度を供給し、取得速度を増加させるために使用され得る技術の中には、本明細書でより詳細に説明される検出器ビニングがある。ビニングは、隣接するセンサ要素の均一なセットとグループ化し、単一の平均値を、ピクセルの各セットの個々の領域に供給する。
【0050】
<線源/検出器位置合わせ>
検出器位置合わせは、歯科用又は口腔内放射線撮影では困難な場合がある。検出器の位置は患者の口内であり、技術者には見えない。代わりに、技術者は通常、検出器をあるタイプのホルダの中に配置し、次にホルダを口内の所定の位置に挿入する。ホルダは、検出器を適切に配置するのに役立つバイトプレート又は別のタイプの支持部材を有し得る。周知のように、このタイプのホルダは、患者にとって煩わしく不快な場合がある。ホルダ及び別の位置決めデバイスはエラー防止機能がなく、これらのデバイスの位置決めエラーは、取得された画像が診断に適していないことを意味する場合がある。検出器の整合が合っていないと、例えば、コーンカット、頂点欠損、及び挺出などの問題と、例えば関連する角形成又は視差エラーが生じる場合がある。これらの位置合わせの問題により、許容可能な画像を取得するために、再撮影、追加の画像キャプチャが必要になる場合がある。再撮影は、患者への追加のX線放射線被曝と、口の中の検出器又はセンサに対する患者の不快感が長引くことのために望ましくない。
【0051】
従来型X線源は、技術者がX線源の位置及び角度を調整するのを補助する照準インジケータを含んでいる。多くの場合、これらの照準インジケータは、可視光を使用して、放射線ビームの中心を合わせるのに役立つ輪郭をトレースする。これらは、放射線検出器が見える場所ではうまく機能するが、口腔内撮像など、検出器が見えない場所では求められるものには及ばない。技術者は、口腔内センサの位置とセンサへのX線の入射角の両方を推測又は推定する必要がある。
【0052】
図3A及び図3Bの簡略化された概略図は、X線源10と検出器20との間の不整合がどのように発生する可能性があるかを示す。これらの例では、X線源10は、照準センタリングに使用される可視光照準指標12を備える。正しい照準位置合わせが達成されると(実施例(a)に示される)、検出器20は、照準指標12内に示されるように中心に置かれる。照準は、実施例(b)及び実施例(d)では正しくない。
【0053】
最良の撮像結果のために、角度に関して適切な位置合わせ、つまり角形成も必要とされる。X線源10からの入射放射線は、好ましくは、実施例(a)に示されるように検出器20に直交する。図3A及び図3Bの線Nは、検出器20の表面に対する垂直線又は直交線を示す。実施例(c)及び実施例(d)は、不正確な角度位置合わせを示す。実施例(c)では、照準又はセンタリングは正確であるが、角形成又はピッチは不正確である。実施例(d)では、照準(センタリング)と角形成(ピッチ)の両方が不正確である。実施例(e)では、検出器20は平面内で回転している(ロール)。
【0054】
図3A及び図3Bの概略例が、X線源10の検出器20への直交位置決めを想定していることに留意することは、有益である。いくつかの実施形態では、斜め配向を使用し得る。
【0055】
位置合わせと位置決めは、ボリューム撮像アプリケーションにとって特に重要であり、そこでは異なる角度で撮影された画像が、何らかの方法で組み合わせられてボリューム画像データを形成する。トモシンセシスでは、線源と検出器との間の相対的な動きにより、位置合わせの問題が更に複雑になる。一般に、再構築処理では、動きの線又は円弧は、線源の空間位置が検出器表面に対して同じ平面内にあるように、又は表面から等距離にあるように配置され、その結果、動きが、取得した各投影画像の検出器表面のピクセル位置と整合することが最も望ましい。
【0056】
本発明の装置の部品及び動作をよりよく理解するために、適切な位置合わせが撮像システムによってどのように検出され得るかを示すことが有用である。図4の概略ブロック図を参照すると、撮像検出器20とX線源10との位置合わせを検出する口腔内撮像装置22が示される。図4の配置では、検出器20は、患者の頬18の内側の歯14に隣接する検出器位置に配置される。検出器20の一部として組み込まれているのは、いくつかの検出可能な要素30であり、それらは電磁信号エミッタ、例えば無線周波数(RF)エミッタとして示される。検出可能な要素30は、通常、互いに離隔され、三角測量情報を供給する。センサ24は、それ自体が整合され、X線源10と位置的に結合されており、ある方法、例えば放出されたRF信号を感知することによって、検出可能な要素30の存在を感知する。例えば、RFエミッタ、例えばRFIDタグで使用される小さなエミッタにエネルギーを印加して感知するための方法は、信号検出技術分野の当業者に周知である。制御論理プロセッサ26は、1つ以上のセンサ24との信号通信状態において、検出可能な要素30からの受信信号又は検出可能な要素30の別の検出可能な特徴、及びX線源10に対するセンサ24の既知の位置に基づく従来型三角関数の計算を採用する。これは、X線源10に対する患者の口内の検出器20の対応する位置及び角度位置合わせを決定するために実行される。次に、コンピュータディスプレイモニタ上のオペレータコンソールディスプレイ28は、オペレータの位置合わせ情報を示し、必要な調整設定を推奨し得る。センサ24は、1つ以上の所定の周波数の電磁信号を受信するようにエネルギー印加可能である。
【0057】
本発明の特定の例示的な方法及び/又は装置の実施形態は、図4の基本システムにおいて、位置合わせ情報を技術者に供給することにより改善し、より簡単に使用できるようになり、特に、この情報は、ボリューム画像の形成に使用される個々の画像を取得するために必要とされる。本発明の例示的な位置合わせ装置は、X線管を検出器の位置及び角度に関して適切に位置合わせするためのガイドとして、歯科患者の頬又は別の部分に画像を投影し得る。図5の撮像装置36の一実施形態を参照すると、制御論理プロセッサ26は、図4に記載されたものと同様の方法で位置合わせ情報を取得する。更に、図5に示されるように、制御論理プロセッサ26はまた、患者の頬18、唇、又は顔に画像を投影するために、プロジェクタ40と画像データ信号通信状態であってもよい。
【0058】
図6の斜視図は、一実施形態において、三角測量を使用して、検出器20の位置及び角度を示し、位置合わせオフセットを決定し得る方法を概略的に示す。センサ24a及び24b、一実施形態ではRFトランシーバは、X線源10に対して既知の位置にあり、例えば、X線源の近くでX線管上に取り付けられる。信号エミッタ又は別のタイプの検出可能な要素30は、通常は対で配置され、検出器20の角部に配置される。各検出可能な要素30は、センサ24a及び24bによって感知され得る検出可能な特徴を有する。一実施形態では、各検出可能要素30は、RFデバイスであり、例えばその対応する信号受信機、センサ24a又は24bからの送信された信号に応答して電磁場を生成する。放出された電磁場の位相、強度、又は別の特性は、対応するセンサ24a及び24bで測定され、放出する構成要素と受け取る構成要素との間の相対距離を決定するために使用される。図6AのRF検出の実施形態については、例えば、検出可能な要素30として機能するエミッタの各対の信号が同相である場合、良好な位置合わせが達成されている。位相がずれた状態は、位置合わせが不十分であることを示し、調整に必要な方向を示し得る。センサ24a及び24bは、制御論理プロセッサ26と信号通信状態にある。
【0059】
同様の方法では、相対信号強度を代わりに使用して、X線源に対する検出器20の位置及び角度を、位置合わせオフセットを決定するために示し得る。RFの実施形態でこのアプローチを使用すると、検出可能な要素30として機能する最も近い信号エミッタは、対応して、センサ24a又は24bで最強の強度信号を有する。図6Aの配置が使用される場合、4つすべてのエミッタ又は別のタイプの検出可能な要素30から放出される等しい強度の信号は、良好な位置合わせを示す。信号強度が変化する場合、それらの変動のパターンを使用して、どの位置合わせが必要かを示し得る。一例として、位置検出システムは、三角測量及び複数の放出された信号の感知を使用して、位置合わせの位置決めを計算し得る。信号処理及び位置感知技術の当業者によく知られるように、いくつかの異なる構成のいずれかを使用して、1つ以上のセンサ24及び検出可能な要素30を用いた適切な位置合わせを決定し得ることを理解し評価する必要がある。
【0060】
図6Bに示される1つの代替の例示的な実施形態では、図6Aに示されたエミッタ検出器配置は、反対にされ、その結果、1つ以上の検出可能な要素30を供給する1つ以上のエミッタはX線源10に機械的に結合され、2つ以上のセンサ24は検出器20に取り付けられる。図6Bに示す実施形態では、例えば、検出可能な要素30(破線の輪郭で示される)は、センサ24によって感知される電磁場を生成するコイルである。センサ24は、制御論理プロセッサ26と、直接(例えば、有線)接続又は間接(例えば、無線)接続のいずれかを介して信号通信状態にある。
【0061】
<代替の位置合わせ機構>
本発明の一例の実施形態では、口腔内スキャナ又は別の反射率撮像センサは、線源と検出器の位置合わせの支援として使用され得る。輪郭画像又は従来型反射率画像から得られた光スキャンデータは、「スカウト」型スキャンとして分析されて、トモシンセシススキャンに望ましい軌道を決定し得る。
【0062】
本発明の別の例示的な実施形態では、超音波撮像もまた、線源位置決めのための位置合わせ支援として使用され得る。超音波は、解剖学的構造内の軟組織構造を撮像する機能を備えているため、特に有用であり得る。
【0063】
CNT(カーボンナノチューブ)源の位置合わせは、後続の各画像の放射線源の相対的な位置変化の軌道を制御するために調整可能であり得ることに留意する必要がある。
【0064】
本発明による1つの方法及び/又は装置の例示的な実施形態は、自動焦点及び位置合わせ機能を提供し、ホルダ内に埋め込まれたマーカの配置を使用して口腔内センサを位置決めする。図6Cは、中央開口部76の周りに放射線不透過性マーカ74の配置を有して、X線源10(図6Cには示されていない)を配向するフレーム78のホルダ72を示す。図6D及び図6Eは、取得された画像に、撮像された口腔内特徴の境界に沿ってマーカ74がどのように現れるかを示す。位置合わせマーカを使用することにより、画像処理は、連続して取得された画像の位置を互いに関連付け、その後の再構築のために投影画像を相互に正確に登録することを可能にする。
【0065】
図6A図6Cに示されるような解決策は、本明細書でより詳細に説明されるように、任意の数の線源と検出器配置での位置合わせに使用され得ることが分かる。
【0066】
<患者への輪郭の投影又は別の位置合わせフィードバック>
図7A及び図7Bの斜視図を参照すると、オプションの画像投影を提供する本発明の例示的な実施形態の追加の利点が示される。プロジェクタ40は、X線源10に位置的に結合され、例えばX線管の端部に向かって、又はX線システムの別の部分で所定の位置に取り付けられ、例えば、患者の頬に2次元画像を投影し、隠された検出器20(点線の輪郭で示されている)の位置42を示し、そしてX線源10によって既に提供されていない限り、更にX線源の照準指標12を示す。図7Aは、照準位置合わせが正しくない例を示し、それは位置42が照準指標12と位置合わせされていないためである。図7Bは、照準位置合わせが正しい例を示し、位置42は照準指標12の中心にある。
【0067】
プロジェクタ40は、X線源10に取り付けられ得るいくつかのタイプの撮像プロジェクタのいずれかであり得る。一例の実施形態では、プロジェクタ40は、ピコプロジェクタであり、限定するものではないが、例えばワシントン州レドモンドのMicrovision社のPico Projector Displayである。このようなデバイスは、小型、軽量、低電力要件など、多くの理由により有用である。これらのピコプロジェクタは、携帯電話及び別の携帯に適した電子機器で使用され、1つ以上の低出力レーザをディスプレイ表面にスキャンする。ピコプロジェクタは、ある範囲の距離にわたって投影するために最小限の光学部品を要する。レーザ自体は必要に応じて迅速にオン/オフされるため、電力は投影された画像ピクセルに対してのみ消費される。これにより、ピコプロジェクタを低電力レベルで動作させて、バッテリ電力をプロジェクタ40で使用できるようにする。代替の例示的な実施形態は、別のタイプの電子撮像プロジェクタを使用し、例えば、Texas Instruments社のDigital Light Processor(DLP)などのデジタルマイクロミラーアレイを採用しているもの、Silicon Light Machines社のGrating Light Valve(GLV)デバイスなどの微小電気機械式グレーティングライトバルブのアレイ、又はLiquid Crystal on Silicon(LCOS)デバイスを含む液晶デバイス(LCD)である。
【0068】
レーザがプロジェクタ40の照明源として使用される場合、追加の手段を取ってコヒーレントレーザ光の患者又は開業医の眼への入射を最小限にし得る。非常に低出力のレーザ、例えばソリッドステートレーザは、任意の点で非常に少量の光強度のみを伝送するスキャンレートで使用され得る。拡散要素は、例えば、レーザ光のいくらかの散乱を供給するために光路に設けられ得て、投影された画像の品質又は有用性にほとんど又は全く影響を与えずに強度を低減する。発光ダイオード(LED)又は別の低電力ソリッドステート照明源は、代わりに使用され得て、例えば有機LED(OLED)デバイスである。
【0069】
プロジェクタ40(図7A及び図7B)によって投影される画像は、いくつかの形状のいずれかである画像コンテンツを有し得て、またX線源のための照準指標12及び検出器20のための位置42インジケータの両方を含み得る。代替的に、照準指標12がX線システムによって既に供給されている場合、プロジェクタ40は、位置42を示す投影のみを供給し得る。プロジェクタ40は2次元撮像装置を採用しているため、表示される画像は複数の部分を有し得て、追加のテキストフィールド、方向マーカ、及び別の要素を含み得る。位置42は、図7A及び図7Bに示されるように、輪郭の形態で示されてもよく、又は別の方法で表されてもよい。一例の実施形態では、検出器20の角度オフセットの値は、表示された数値メッセージとして患者の頬に示される。代替的に、プロジェクタ40のアニメーション又は別の機能を使用して、画像コンテンツとして、追加の位置及び角度情報を供給し得る。
【0070】
色を使用して、様々な方法で位置合わせオフセットの相対量を示すのを助けてもよい。例えば、検出器20の輪郭が頬の表面に投影されても、技術者が角度位置合わせを調整する方法を知ることは難しい場合がある。指標12と位置42を異なる色で表示することは、例えば、照準指標12と位置42の両方が同じ色で表示されるまで、X線管の角度を調整する際に技術者をガイドするのに役立ち得る。ディスプレイ又は表示された要素の異なる部分の点滅もまた、位置合わせの調整を示し、ガイドするのに役立つ場合がある。可聴発信音は、許容できる又は許容できない位置合わせを示すために鳴ってもよい。固定インジケータ、例えば矢印又は標的シンボルは、画像コンテンツとして患者の頬に投影されてもよい。アニメーションは、調整をガイドするために提供され得る。
【0071】
本発明の一例の実施形態では、プロジェクタ40(図7B)からの投影画像は、X線源10を再照準する方法又は治療椅子の位置を調整する方法について技術者に指示し、シーケンス内の次の画像用に設定する。投影された色、パターン、英数字のテキスト、アニメーション、点滅若しくはフラッシュ、又は別の機構を使用して、画像キャプチャ間の位置決め調整をガイドしてもよい。
【0072】
患者の頭部支持装置は、トモシンセシス画像取得サイクル中に頭部の位置を安定させるために設けられる。いかなるタイプの頭部当て又は別の支持機構も、金属又は別の放射線不透過性が高い材料ではあり得ないことに留意する必要がある。患者の頭部支持装置は、例えば、ドーナツ型、拡張可能、又は膨張可能であり得る。
【0073】
<コリメーション>
選択方法及び/又は装置の例示的な実施形態では、放射線場を患者の口内の関心のある領域(ROI)に限定するためにコリメーションが必要である。コリメーションの有益な態様の1つは、コーンカッティングを排除又は削減することに関し、コーンカッティングでは投影されたX線からの過剰な放射線が関心のある領域の外側の領域に入射する。
【0074】
CNTアレイなどの分散型線源配置の難点は、放射線の適切なコリメーションの必要性に関連する。その機能の中で、コリメーションは、放射線エネルギーの広がりを制御し、その結果、放射線は関心のある解剖学的構造に適切に向けられ、放射線場は撮像受信機の外側エッジを超えない。更にコリメーションは、散乱を減じるのに役立つ。アレイ内にCNTと別のタイプの小さなX線源がある場合、コリメーションには特定の課題がある。問題の1つのセットは、寸法の制約に関連する。X線源間の間隔は通常小さいため、個々の線源から放射線エネルギーを効果的に隔離することは困難な場合があり、クロストークが発生し、放射線場のエッジを明確に画定することが困難になる。更に別の複雑さは、放射線場を各線源からの撮像のために識別することに関する。従来型放射線源では、問題は容易に解決され、放射線源に結合される線源を使用して、放射線場の輪郭を描くか、そうでなければコリメータのエッジ自体を用いて放射線場の範囲を輪郭付けることにより放射線場を強調し得る。しかし、CNT及び別のタイプの分散型アレイ線源用に供給されたコリメータ開口部を使用して、対応するデュアルユース配置を設けることは、非現実的又は不可能であり得る。
【0075】
図8の簡略化された概略図は、いくつかの幾何学的考察及び関係を示し、それは一般に単一のX線源210のX線コリメーションに関連し、X線源のアレイのコリメーションのその後の説明に役立ついくつかの定義を確立する。X線源210は、第1の近似への点源として理想化される。線源210からの放射エネルギーは、通常、線源210に非常に近い第1のアパーチャ122を通って延びる放射線経路に沿って向けられ、非常に小さいX線源のいくつかの条件下ではオプションであってもよい。次に、放射エネルギーは、放射線経路に沿って、検出器20上のX線場130を整形する第2のアパーチャ124を通って続く。X線場130のアスペクト比を決定する放射線経路の形状及び寸法は、次に、幾何学的制約によって決定され、例えばアパーチャ122、124のサイズ及び光源210に対する相互の位置と線源対画像距離(SID)である。X線場130の形状は、通常、検出器20の寸法によって制限されるが、撮像される解剖学的構造に応じて、より小さく、異なる形状であってもよい。
【0076】
<トモシンセシス撮像のためのスキャンシーケンス>
図6A又は図6Bの三角測量感知装置によって供給される位置合わせ装置は、同じ歯又は別の構造の一連の画像を迅速に連続して、またそれぞれわずかに異なる角度でキャプチャするのを支援するために使用されて、限定された角度のボリューム画像を形成し得る。上記の背景のセクションで述べたように、このタイプのボリューム撮像は、単一のX線画像よりも診断上の価値と有用性があるが、本格的なCBCT撮像の費用と線量の要件は必要ない。加えて、CBCT撮像とは異なり、限定された角度のボリューム画像は、患者が治療椅子に座った状態で取得され得る。
【0077】
図9を参照すると、上面図からの撮像パターンの概略ブロック図が示され、撮像パターンを使用して、患者32から限られた角度のボリューム画像を、単一の線源10からの限られた数のX線及びデジタル検出器を用いて取得する。X線源10を使用して、図9にキャプチャ角度又は被曝角度として示される、いくつかの角度方向から、非線形、湾曲、又は弧状経路Aに沿って、検出器20への被曝を向ける。2つ以上の被曝角度位置のそれぞれにおいて、2つは、例として、図9の角度Q1及びQ2として呼ばれており、放射線エネルギーは、検出器20に向けられ、デジタル検出器からの対応する画像データは、制御論理プロセッサ26によって取得され、構成要素又は投影画像44として記憶され、被曝角度の向きなど、画像の相対的な取得ジオメトリに従ってインデックスが付けられる。このようにして、1つの構成要素の画像44は被曝角度ごとに取得され、記憶される。次に、制御論理プロセッサ26は、個々の構成要素の投影画像44からの結合されたデータを使用して、ボリューム画像を合成画像として生成し得る。
【0078】
検出器に対するX線エミッタの相対位置の変化によってトレースされるパターンは、例えば図9の上面図に示されるように、線形又は曲線になり得ることに留意する必要がある。
【0079】
追加の感知構成要素とそれに関連する論理を使用して、取得される各画像に関する位置及び角度情報を提供する。一例の実施形態では、例えば、固定された位置座標及び角度座標は、X線源10の初期空間位置及び角度方向に割り当てられる。次に、システム論理は、取得された一連の画像の各撮像位置に対応する変更された位置と角度を記録する。次に、このデータは、一連の2D画像キャプチャから3Dボリューム画像を再構築するために必要な基準ジオメトリを提供する。空間位置データは、いくつかの方法で取得され得て、例えば、X線源10の移動に使用されるガントリ又は別の移送装置と結合された角度センサ48を使用する。
【0080】
このタイプの限定された角度のボリューム撮像が正しく機能するために、X線源10の検出器20に対する角度方向及び空間配置は、撮像サイクルを通して取得された各投影画像について既知である必要があり、その結果、取得された構成要素のデータは適切に整合され、投影画像間で相関され得る。図9に示される実施形態については、患者32の頭部及び検出器20の空間位置は堅固に所定の位置に固定され、その間、X線源10は1つの相対的な角度方向から次の方向に軌道上で移動される。撮像されている対象に対する検出器20の空間位置を機械的に固定することが必要な場合がある。図9に関して、例えば、1つ以上のバイトブロック又はクリップオンデバイスは、検出器20を患者32の口内の位置に堅固に固定するのに有用であり得る。
【0081】
実際には、従来型X線ヘッドを円弧上に平行移動させ、図9の上面図に概略的に示されるような投影画像を取得することは非現実的であり得る。本発明の例示的な実施形態は、エンクロージャを設けることによって、線源移動の困難に対処し、エンクロージャは空間内に構成要素を正確に固定し、トモシンセシスのための投影画像を取得する際の被曝に必要な位置ジオメトリを有する。
【0082】
図10Aの概略上面図は、口内の検出器20の位置を堅固に固定するための一例の実施形態のフレーム278を示す。フレーム278は、感知された拡張及び回転データを報告するために、各調整可能なジョイントにエンコーダ282を備える複数の関節部分280a、280b、280cを有する。この配置は、患者用のサイズ変更を可能にし、かつコリメータ56に対する検出器20の再配置を行う位置決め装置194を備え、基準位置及び相互に対する構成要素の位置を相関させるために利用可能な感知データを提供する。代替的に、加速度計又は電磁、磁気、若しくは無線周波数(RF)感知が、位置決め装置194として供給及び使用されてもよく、検出器20の位置を第2のコリメータ56に相関させ、これらの位置をトモシンセシスシーケンスにおける任意の取得角度でのX線源の位置に関連付ける。
【0083】
本発明の例示的な実施形態は、歯科用トモシンセシス撮像のための装置を提供し、それはエンクロージャがX線経路を生成及び整形する構成要素を供給するとともに、取得された各放射線画像で検出され得る幾何学的較正情報を提供する。エンクロージャは、X線源又はX線源のアレイを含み、これは、放出された放射線を初期整形するための第1のコリメータ、放射線ビームを更に規定するための第2のコリメータ、及び第2のコリメータに結合されて、取得した各2D投影画像の幾何学的較正情報を提供するファントムを含む。単一のX線源を使用する一例の実施形態によると、エンクロージャはまた、平行移動経路に沿ってX線源の位置を平行移動するアクチュエータを備えた平行移動装置を設け、トモシンセシス撮像に必要な角度の範囲にわたって放射線を供給する。線源、較正ファントム、及び第1と第2のコリメータの組み合わせは連携して、トモシンセシス撮像に必要な被曝及び画像取得中に放射線場を検出器の位置に制限する。
【0084】
本発明の一例の実施形態は、図10Aのフレーム278又は別の同様のサポートを使用して、検出器20をエンクロージャ及び第2のコリメータ56に対して配置し得る。図10Bは、フレーム278がコリメータを含まないが、代わりに、標的アパーチャ168を有して、以下に説明するようにエンクロージャと結合する、代替の例示的な実施形態を示す。フレーム278はまた、歯科用椅子又は別の付属品に結合されたマウント162を有し得る。
【0085】
本発明の一例の実施形態はまた、図10Aのフレーム278の使用を、検出器に埋め込まれた放射線不透過性マーカを使用することにより完全に回避し得る。X線源アセンブリのコリメータに取り付けられたマーカと併用して、検出器へのX線ビームの焦点を、画像の特徴を介して線源ジオメトリを回復することにより決定する方法を提供する。
【0086】
図11の拡大側面図は、概略的な形態で、標的アパーチャ168を有するフレーム78を示す。位置決め装置194は、標的アパーチャ168を所定の位置に維持し、その結果、患者の口内に保持される検出器20の周りに効果的に中心が置かれる。図11に示される例示的な実施形態によると、標的アパーチャ168はリングアパーチャである。
【0087】
<幾何学的較正用ファントム>
図12に示されるように、本発明の一例の実施形態によると、幾何学的較正ファントム160は、後でより詳細に説明されるように、放射線経路に、第2のコリメータ150に結合されて配置される。オプションのガイド144は、線源10の一部として示される。
【0088】
図12の概略図は、放射線経路に配置された例示的な較正ファントム160の使用を示す。較正ファントム160は、X線源10の位置合わせ及びコリメーションを支援し、口腔内X線検出器の空間位置をX線源10の位置に関連付けるいくつかの機能を供給する。オプションのカメラ140は、放射線透過性であるファントム160に関連付けられたマーカを感知するために使用され得る。
【0089】
ファントム160を使用する場合、その中の放射線不透過性マーカは、2D投影画像の画像コンテンツにおいて、好ましくはFOVのエッジの周りで、検出器に対する線源の位置に関する情報を提供する。追加の放射線透過性光マーカは更に、オプションのカメラ140を使用して、可視又は赤外線照明下で観察するために供給され得る。放射線透過性光マーカは、線源と検出器の位置合わせ、及びコリメータの位置決めを支援し得る。放射線透過性光マーカは、3D配向を有してもよく、それは検出器に対する線源の位置がカメラ、反射率、又は光画像コンテンツから決定され得るのを可能にし、これらは、X線画像コンテンツに対して順次又は同時に取得され得る。
【0090】
<ファントム構成要素>
図13A及び図13Bは、本発明の方法及び/又は装置の例示的な実施形態による幾何学的較正ファントム160のアセンブリ及び構成要素を示す。図13Aは、組み立てられていくつかの平面層を有する一例の較正ファントム160を示す。図13Bは、較正ファントム160を形成するための層状構成要素を示す。層1の166は、患者の顔と密接して配置され得る。層2の174及び層3の176は、オプションの光マーカ178と放射線不透過性マーカ178を備えて、位置合わせのためのスキャンジオメトリの抽出を支援し得る。層174、176の距離dによる分離は、位置合わせ測定を容易にするのに役立つ。マーカ178は、図13Bに示されるオーバーレイされた配置を有してもよく、オプションのカメラ140(図12)によって感知され得て、生じた画像は処理されて、位置合わせデータを得る。マーカ178は、異なる形状(例えば、非対称)、層、3D構成、又は色であり得て、カメラを使用するときの位置合わせ検出を支持する。マーカ178のうちの1つ以上は、放射線不透過性であり得て、投影画像からの位置合わせ検出を支持する。
【0091】
図14Aは、フレーム78及び関連する構成要素の側面図及び上面図を示す。バイトブロック154は、口内の検出器20の位置を安定化するのに役立つ。調整可能なロッド156は、患者の快適さに合うようにバイトブロック154及び検出器20の位置決めを可能にする。フレーム78は、被曝エネルギーを検出器20に向けるための標的アパーチャ168を画定する。
【0092】
図14Bは、フレーム78なしでX線ビームを検出器に集束させる代替の配置を示し、コリメータ及び検出器上の放射線不透過性マーカを使用し、患者の口への追加のポジショナはない。この配置は、画像ベースの方法を使用して、線源に対する検出器の位置を決定し、被曝エネルギーを検出器20に向ける。
【0093】
<撮像エンクロージャ実施形態>
本発明の一例の実施形態は、例えば、図15Aに示されるように、トモシンセシス撮像のための口腔内撮像装置300を提供し、フレームの標的アパーチャ168に対して着座するように構成されたX線源エンクロージャ310を有し、例えばX線源エンクロージャ310をアパーチャ168に固定する機械的又は磁気的結合を使用する。X線源エンクロージャ310の構成要素は、コリメートされたX線ビームを検出器20に標的アパーチャ168を介して向け、検出器20に対する標的アパーチャ168の相対位置の変化を補償するように配置される。
【0094】
図15Aの例示的な実施形態では、単一のX線源10は、エネルギー印加可能であり、放射線ビームを複数の焦点fのそれぞれから放出する。3つの焦点fのみが、分かり易くするために示される。実際には、いくつかの焦点fは、トモシンセシス撮像に使用され得て、例えば12又は20以上である。
【0095】
図15Aには示されていないが、通常、X線源10がアレイ又は単一の線源形態にかかわらず示すように設けられるとき、局所コリメータが焦点fの近くに離隔され、放出されたビームの第2のコリメータの手段を提供する。X線源エンクロージャ310は、出口端部Eに第1のコリメータ320を設け、放出された放射線ビームからコリメートされたビームを形成し、コリメートされた放射線ビームを標的アパーチャ168に通して入射放射線ビームとして検出器20に向けるように配置される。幾何学的較正ファントム160は、コリメータ320に隣接し、コリメートされたビームの経路に配置される。
【0096】
線源移送アセンブリ330は、X線源10の位置を各焦点fに移動する。線源移送アセンブリ330は、線源10を1つの焦点fの位置から次の位置に移動するようにエネルギー印加可能であるアクチュエータ332を有する。各線源位置で、線源はアクチュエータによってわずかに回転され、X線ビームを第1のコリメータ320に通して検出器20へ向ける。X線源エンクロージャ310は、患者の顔の上の標的168を使用して配置されて画像を得る。
【0097】
図15Bは、図15Aに示されるX線源エンクロージャ310を含む本発明の一例の実施形態であり、アクチュエータ332による線源配置の移動及び回転を含んでおり、また第1のコリメータ320と検出器20に埋め込まれた放射線不透過性参照マーカ360を使用する。キャプチャされた画像内の基準マーカの影の検出を使用して、X線源エンクロージャ310を所望の解剖学的構造上の正確な位置に自動的に操縦する。
【0098】
図15Cは、本発明の一例の実施形態であり、単一のX線源10が、アクチュエータ332によって直線経路で移動され、X線ビームを標的168に直接向ける。X線源エンクロージャ310及びローリングシャッタコリメータ325は、検出器20に向けられていないあらゆるX線ビームを遮断する。加えて、線源移送アセンブリ330は、放出された放射線ビームをコリメータ320に通して検出器20に向けるために回転の手段を供給する。制御論理プロセッサ340、例えば、制御コンピュータ又は専用マイクロプロセッサ又は同様の制御論理装置は、プログラムされた命令を実行して、コリメータ移動装置を複数の焦点のそれぞれからの放出と同期して駆動するように構成される。X線源エンクロージャ310は、患者の顔の上の標的168を使用して配置され、画像を取得する。
【0099】
図15Dは、単一のX線源10がアクチュエータ332によって直線経路で移動され、X線ビームを第1のコリメータ325に向ける、本発明の一例の実施形態である。X線源エンクロージャ310及びローリングシャッタコリメータ325は、検出器20に向けられていないあらゆるX線ビームを遮断する。加えて、線源移送アセンブリ330は、放出された放射線ビームをコリメータ320に通して検出器20に向けるために回転の手段を供給する。制御論理プロセッサ340、例えば、制御コンピュータ又は専用マイクロプロセッサ又は同様の制御論理装置は、プログラムされた命令を実行して、コリメータ移動装置を複数の焦点のそれぞれからの放出と同期して駆動するように構成される。第1のコリメータ320と検出器20に埋め込まれた放射線不透過性参照マーカ360を使用して、キャプチャされた画像内の基準マーカの影を検出することにより、X線源エンクロージャ310を所望の解剖学的構造上の正確な位置に自動的に操縦する。
【0100】
図15Eは、静止線源11のアレイが、図15Cに示されるアクチュエータによる単一の線源の動きに置換する、本発明の一例の実施形態である。X線源エンクロージャ310は、患者の顔の上の標的168を使用して配置され、画像を取得する。
【0101】
図15Fは、静止線源11のアレイが、図15Dに示されるアクチュエータによる単一の線源の動きに置換する、本発明の一例の実施形態である。第1のコリメータ320と検出器20に埋め込まれた放射線不透過性参照マーカ360を使用して、キャプチャされた画像内の基準マーカの影を検出することにより、X線源エンクロージャ310を所望の解剖学的構造上の正確な位置に自動的に操縦する。
【0102】
図15Gは、静止線源11aのパネル(2Dアレイ)が、図15Cに示されるアクチュエータによる単一の線源の動きに置換する、本発明の一例の実施形態である。X線源エンクロージャ310は、患者の顔の上の標的168を使用して配置され、画像を取得する。
【0103】
図15Hは、静止線源11aのパネル(2Dアレイ)が、図15Dに示されるアクチュエータによる単一の線源の動きに置換する、本発明の一例の実施形態である。第1のコリメータ320と検出器20に埋め込まれた放射線不透過性参照マーカ360を使用して、キャプチャされた画像内の基準マーカの影を検出することにより、X線源エンクロージャ310を所望の解剖学的構造上の正確な位置に自動的に操縦する。
【0104】
図16Aは、本発明による代替の例示的な実施形態を示し、線源10のために移送アセンブリ330によって供給される移送経路が湾曲し、図15Aの実施形態のように線源10を回転させる必要性を排除する。
【0105】
図16Bは、本発明による代替の例示的な実施形態を示し、線源10のために移送アセンブリ330によって供給される移送経路が湾曲し、図15Bの実施形態のように線源10を回転させる必要性を排除する。
【0106】
図16Cは、静止線源のアレイが湾曲した経路に配置され、各線源がコリメータ320に向かって放出し、線源又は第1のコリメータのいずれかで機械的アクチュエータを回避する、本発明による代替の例示的な実施形態を示す。X線源エンクロージャ310は、標的168を使用して、X線ビームを所望の患者の解剖学的構造/検出器の組み合わせに配置する。
【0107】
図16Dは、静止線源のアレイが湾曲した経路に配置され、各線源がコリメータ320に向かって放出し、線源又は第1のコリメータのいずれかで機械的アクチュエータを回避する、本発明による代替の例示的な実施形態を示す。第1のコリメータ320と検出器20に埋め込まれた放射線不透過性参照マーカ360を使用して、キャプチャされた画像内の基準マーカの影を検出することにより、X線源エンクロージャ310を所望の解剖学的構造上の正確な位置に自動的に操縦する。
【0108】
図16Eは、静止線源の2Dパネルが凹面(回転楕円体)の2D表面に配置され、各線源がコリメータ320に向かって放出し、線源又は第1のコリメータのいずれかで機械的アクチュエータを回避するように配置された、本発明による代替の例示的な実施形態を示す。X線源エンクロージャ310は、標的168を使用して、X線ビームを所望の患者の解剖学的構造/検出器の組み合わせに配置する。
【0109】
図16Fは、静止線源の2Dパネルが凹面(回転楕円体)の2D表面に配置され、各線源がコリメータ320に向かって放出し、線源又は第1のコリメータのいずれかで機械的アクチュエータを回避するように配置された、本発明による代替の例示的な実施形態を示す。第1のコリメータ320と検出器20に埋め込まれた放射線不透過性参照マーカ360を使用して、キャプチャされた画像内の基準マーカの影を検出することにより、X線源エンクロージャ310を所望の解剖学的構造上の正確な位置に自動的に操縦する。
【0110】
図17A(フレームが検出器に結合される)及び図17B(放射線不透過性マーカがコリメータ及び検出器に埋め込まれる)は、リンケージ350を設けてコリメータ320をX線源10の変化する位置と同期して調整する、本発明による代替の例示的な実施形態を示す。リンケージ350による動きの調整は、レバー、ギア、ベルト、又は別のデバイスの配置を使用し得て、その結果、リンケージ350は、以下でより詳細に説明するように、線源移送アセンブリ330の動きをコリメータ320調整機構に機械的又は別の方法で結合する。
【0111】
図17C(フレームが検出器に結合される)及び図17D(放射線不透過性マーカがコリメータ及び検出器に埋め込まれる)は、リンケージペア355を設けてコリメータ320をX線源10の変化する位置と同期して調整し、線源を回転してコリメータ/検出器に焦点を合わせ、コリメータのスライドの必要性を排除する、本発明による代替の例示的な実施形態を示す。リンケージ355による動きの調整は、レバー、ギア、ベルト、又は別のデバイスの配置を使用してもよく、その結果、リンケージ355は、以下でより詳細に説明するように、線源移送アセンブリ330の動きをコリメータ320調整機構に機械的又は別の方法で結合する。
【0112】
<スライド式コリメータ>
本発明の一例の実施形態は、コリメータ320をスライド式ウィンドウ又はシャッタとして提供して、各焦点fの位置で放出される放射線をコリメートするために所定の位置に移動させることにより、トモシンセシスジオメトリの問題に対処する。図18の平面図は、コリメーションを各線源角度に適合させる調整可能なコリメータ320を示す。ウィンドウ324は、軸Bに沿って適切な位置にスライドするように構成され、軸Bは、標的アパーチャ168の平面に平行であり、線源10の直線移動経路に平行である(図15、17の実施形態)。スライド機構326は、軸Bに沿って、変化する焦点fと同期してウィンドウ324を移動させるように作動可能である。幾何学的較正ファントム160は参照として示され、ファントム160は、ウィンドウ324が所定の位置にシフトされる間、静止したままである。図18Aの平面図は、ローリングシャッタコリメータ325の使用を示し、アパーチャがスライドする一方で、更にファントム160を保持することを可能とする。このタイプのシャッタコリメータは、図15C図15D図15E図15F図15G、及び図15Hの例示的な実施形態で使用される。
【0113】
図19A及び図19Bは、誇張された形態で、縮尺通りではなく、放出焦点fの相対位置に従ってウィンドウ324をシフトするための基本的な幾何学的考察を示す。ウィンドウ324の動きは、放出された放射線が標的アパーチャ168を通って検出器内に向けられた状態を維持するのに役立つ。線源移送アセンブリ330はオプションであることを強調する必要がある。線源のアレイを使用して、各焦点fからの連続放出を、放出された放射線のコリメートのためのウィンドウ324の対応する動きとともに供給し得る。
【0114】
ウィンドウ324は、図17を参照して説明したように、適切な機構、例えば機械的システムを使用することによってシフトされ得るか、又はアクチュエータ328によってシフトされ得る。ウィンドウ324は、代替的に放射線エネルギーを伝送又は遮断する電気光変調器によって設けられ得て、図19A及び図19Bを参照して説明したように、適切なコリメーションを供給する。
【0115】
図19C及び図19Dは、誇張された形態で、縮尺通りではなく、放出焦点fの相対位置に従ってローリングシャッタコリメーションウィンドウ325に関する基本的な幾何学的考察を示す。制御論理プロセッサ340は、放出焦点fの位置に従ってアクチュエータ328を制御するプログラムされた命令を実行する。いくつかのセンサ(図示せず)を使用して、X線源10及びウィンドウ324のそれぞれの位置を決定し得る。プログラムされた制御論理を使用して、放射線源の移動とエネルギー印加は、検出されたウィンドウ324の位置と同期させることができる。制御論理は、標的アパーチャ168のウィンドウ324と線源移送経路に沿った線源10の相対的な移動の進行及び位置に従って、被曝をトリガ又は遅延し得る。
【0116】
本発明は、現在理解されている例示的な実施形態を特に参照して詳細に説明されてきたが、変更及び修正は、本発明の趣旨及び範囲内で影響を受ける場合があることを理解及び評価する必要がある。例えば、制御論理プロセッサ340は、いくつかのタイプの論理処理デバイスのいずれかであり得て、コンピュータ若しくはコンピュータワークステーション、専用ホストプロセッサ、マイクロプロセッサ、論理アレイ、又は別のデバイス、或いは記憶されたプログラム論理命令を実行するデバイスの組み合わせを含む。したがって、現在開示されている例示的な実施形態は、すべての点で例示的であり、限定的ではないと見なされる。本発明の範囲は、添付の特許請求の範囲によって示され、その同等物の意味及び範囲内にあるすべての変更は、そこに含まれることが意図されている。
【0117】
少なくとも1つの例示的な実施形態と一致して、例示的な方法及び装置は、電子メモリからアクセスされる画像データ上で実行する命令が記憶されたコンピュータプログラムを使用し得る。画像処理技術分野の当業者によって理解され得るように、本明細書の例示的な実施形態のコンピュータプログラムは、適切な汎用コンピュータシステム、例えばパーソナルコンピュータ又はワークステーションによって利用され得る。しかしながら、多くの別のタイプのコンピュータシステムは、記載された例示的な実施形態のコンピュータプログラムを実行するために使用され得て、例えば、1つのプロセッサ又はネットワークプロセッサの配置が挙げられる。
【0118】
本明細書に記載の特定の例示的な実施形態の方法を実行するためのコンピュータプログラムは、コンピュータ可読記憶媒体に記憶され得る。この媒体は、例えば、ハードドライブ若しくは取り外し式デバイスのような磁気ディスク又は磁気テープのような磁気記憶媒体、光ディスク、光テープ、又は機械可読光学符号化装置のような光記憶媒体、ランダムアクセスメモリ(RAM)又はリードオンリメモリ(ROM)のようなソリッドステート電子記憶装置、あるいはコンピュータプログラムを記憶するために使用される任意の別の物理デバイス又は媒体を含んでもよい。記載された実施形態の例示的な方法を実行するためのコンピュータプログラムは更に、コンピュータ可読記憶媒体上に記憶され得て、それはインターネット又は別のネットワーク又は通信媒体を介して画像プロセッサに接続される。当業者は、そのようなコンピュータプログラム製品の等価物もハードウェア内で構築され得ることを更に容易に認識するであろう。
【0119】
「メモリ」という用語は、本出願の文脈において「コンピュータアクセス可能なメモリ」に相当し、画像データ上での記憶と操作に使用され、コンピュータシステムにアクセス可能な、任意のタイプの一時的又はより永続的なデータ記憶ワークスペースを指すことができ、例えば、データベースが挙げられることに留意する必要がある。メモリは、例えば、磁気記憶装置又は光学記憶装置のような長期記憶媒体を使用する、不揮発性メモリであり得る。代替的に、メモリは、電子回路を用いる、より揮発性の高い性質のものであり得て、例えばマイクロプロセッサ又は別の制御論理プロセッサデバイスによって一時バッファ又はワークスペースとして使用されるランダムアクセスメモリ(RAM)である。表示データは、例えば、典型的には、表示装置に直接関連付けられ得る一時記憶バッファに記憶され、表示されたデータを提供するために必要に応じて定期的にリフレッシュされる。この一時記憶バッファは、この用語が本出願内で使用される場合、メモリであるとも考えられ得る。メモリは更に、データワークスペースとして使用され、計算及び別の処理を実行し、その中間結果及び最終結果を記憶する。コンピュータアクセス可能メモリは、揮発性、不揮発性、又は揮発性タイプと不揮発性タイプとのハイブリッドの組み合わせであり得る。
【0120】
本明細書の例示的な実施形態のためのコンピュータプログラム製品は、周知の様々な画像操作アルゴリズム及び/又はプロセスを利用し得ることが理解されるであろう。更に、本明細書の例示的なコンピュータプログラム製品の実施形態は、本明細書に具体的には示されていない、又は記載されていないが実装に有用なアルゴリズム及び/又はプロセスを具現化し得ることが理解されるであろう。そのようなアルゴリズム及びプロセスは、画像処理技術分野の当業者の技能範囲内にある従来のユーティリティを含んでもよい。そのようなアルゴリズム及びシステムの更なる態様と、画像を生成し、別の方法で処理するため、又は本出願のコンピュータプログラム製品と協働するためのハードウェア及び/又はソフトウェアは、本明細書には具体的に示されず、又は記載されず、当技術分野で周知のそのようなアルゴリズム、システム、ハードウェア、構成要素及び要素から選択されてもよい。
【0121】
本開示による例示的な実施形態は、本明細書に記載された様々な特徴を(個々に、又は組み合わせて)含み得ることを更に理解し、評価する必要がある。
【0122】
本発明は、1つ以上の実装に関して説明されているが、変更及び/又は修正は、添付の特許請求の範囲の趣旨及び範囲から逸脱することなく、説明された実施例に対して行うことができる。更に、本発明の特定の特徴は、いくつかの実装又は例示された実施形態のうちの1つのみに関して開示されているが、そのような特徴は、任意の所与の又は特定の機能にとって望ましく、有利であり得るように、別の実装又は例示された実施形態の1つ以上の別の特徴と組み合わされ得る。用語「約」は、列挙されている値が、その変更により、説明された例示的な実施形態に対してプロセス又は構造の不一致をもたらさない限り、少し変更され得ることを示す。本発明の別の実施形態は、本明細書に開示された本発明の仕様及び実用の考慮から、当業者には明かであろう。仕様及び実施例は例示的なものとしてのみ解釈され、本発明の真の範囲及び趣旨は以下の請求項によって示されることが意図されている。
図1
図2A
図2B
図3A-3B】
図4
図5
図6A
図6B
図6C
図6D
図6E
図7A
図7B
図8
図9
図10A
図10B
図10C
図11
図12
図13A
図13B
図14A
図14B
図15A
図15B
図15C
図15D
図15E
図15F
図15G
図15H
図16A
図16B
図16C
図16D
図16E
図16F
図17A
図17B
図17C
図17D
図18A
図18B
図18C
図18D
図19A
図19B
図20A
図20B
図20C
図20D
【国際調査報告】