IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウェイモ エルエルシーの特許一覧

<>
  • 特表-自律型車両の例外処理 図1
  • 特表-自律型車両の例外処理 図2
  • 特表-自律型車両の例外処理 図3
  • 特表-自律型車両の例外処理 図4
  • 特表-自律型車両の例外処理 図5
  • 特表-自律型車両の例外処理 図6
  • 特表-自律型車両の例外処理 図7
  • 特表-自律型車両の例外処理 図8
  • 特表-自律型車両の例外処理 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-24
(54)【発明の名称】自律型車両の例外処理
(51)【国際特許分類】
   G08G 1/16 20060101AFI20220517BHJP
   B60W 30/08 20120101ALI20220517BHJP
   B60W 40/04 20060101ALI20220517BHJP
【FI】
G08G1/16 C
B60W30/08
B60W40/04
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021557966
(86)(22)【出願日】2020-04-10
(85)【翻訳文提出日】2021-11-25
(86)【国際出願番号】 US2020027662
(87)【国際公開番号】W WO2020210618
(87)【国際公開日】2020-10-15
(31)【優先権主張番号】16/383,096
(32)【優先日】2019-04-12
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.BLUETOOTH
(71)【出願人】
【識別番号】317015065
【氏名又は名称】ウェイモ エルエルシー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【弁理士】
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】リ,ドン
(72)【発明者】
【氏名】マクノートン,マシュー,ポール
(72)【発明者】
【氏名】イェホシュア,シル
(72)【発明者】
【氏名】コスロシャヒ,アイーダ
(72)【発明者】
【氏名】スーキャン,ヨアン-アレクサンドル
【テーマコード(参考)】
3D241
5H181
【Fターム(参考)】
3D241BA31
3D241CE01
3D241CE02
3D241CE04
3D241CE05
3D241DC01Z
5H181AA01
5H181BB04
5H181BB05
5H181BB13
5H181CC03
5H181CC04
5H181CC11
5H181CC12
5H181CC14
5H181FF04
5H181FF25
5H181FF27
5H181FF33
5H181FF35
5H181LL09
(57)【要約】
技術の態様は、車両100の例外処理に関する。例えば、1つまたは複数の物体に対応する車両およびセンサデータの現在の軌道500を受信することができる。受信したセンサデータに基づいて、1つまたは複数の物体の予測された軌道580、582、584が判定され得る。投影された軌道と現在の軌道に基づいて、1つまたは複数の物体との潜在的な衝突を判定することができる。時間的に最も早い潜在的な衝突の1つが特定される場合がある。潜在的な衝突の1つに基づいて、安全時間範囲(STH)を特定できる。ランタイム例外が発生した場合、衝突を回避するための予防的操作を実行する前に、ランタイム例外が解決するまでSTHほど長くない時間、待機することができる。
【選択図】図7
【特許請求の範囲】
【請求項1】
車両の例外処理の方法であって、
1つまたは複数のプロセッサによって、前記車両の現在の軌道を受信すること、
センサを有する前記車両の知覚システムによって生成されたセンサデータを、前記1つまたは複数のプロセッサによって受信することであって、前記センサデータは、車両を取り巻く領域の1つまたは複数の物体に対応する、受信すること、
前記受信したセンサデータに基づいて、前記1つまたは複数のプロセッサによって、前記1つまたは複数の物体の投影された軌道を判定すること、
前記投影された軌道および前記現在の軌道に基づいて、前記1つまたは複数のプロセッサによって、前記1つまたは複数の物体との潜在的な衝突を判定すること、
前記1つまたは複数のプロセッサによって、時間的に最も早い前記潜在的な衝突の1つを特定すること、
前記潜在的な衝突の前記1つに基づいて、前記1つまたは複数のプロセッサによって、安全時間範囲(STH)を判定すること、および
ランタイム例外が発生した場合、衝突を回避するための予防的操作を実行する前に、前記1つまたは複数のプロセッサが、前記ランタイム例外の解決を、前記STHほど長くない時間待機すること、を含む方法。
【請求項2】
前記STHを判定することは、前記潜在的な衝突のうちの前記1つの時間より前の所定の期間に基づく、請求項1に記載の方法。
【請求項3】
前記STHを判定することは、例外処理速度プロファイルに基づく、請求項1に記載の方法。
【請求項4】
前記例外処理速度プロファイルは、前記車両の一定量の減速である、請求項3に記載の方法。
【請求項5】
前記例外処理速度プロファイルは、前記車両の減速量に対する1つまたは複数の変更に対応する、請求項3に記載の方法。
【請求項6】
前記ランタイム例外が前記STH後に解決されなかった場合に、前記例外処理速度プロファイルを使用して前記車両を制御することによって、前記予防的操作を実行することをさらに含む、請求項3に記載の方法。
【請求項7】
前記STHを定期的に再判定することをさらに含む、請求項1に記載の方法。
【請求項8】
前記ランタイム例外は、前記センサからの通信遅延に対応する、請求項1に記載の方法。
【請求項9】
前記センサがレーダユニットである、請求項1に記載の方法。
【請求項10】
前記ランタイム例外は、前記知覚システムの前記センサからの所定の期間の通信の欠如に対応する、請求項1に記載の方法。
【請求項11】
車両の例外処理のためのシステムであって、1つまたは複数のプロセッサに、
前記車両の現在の軌道を受信すること、
センサを有する前記車両の知覚システムによって生成されたセンサデータを受信することであって、前記センサデータは、車両を取り巻く領域の1つまたは複数の物体に対応する、受信すること、
前記受信したセンサデータに基づいて、前記1つまたは複数の物体の投影された軌道を判定すること、
前記投影された軌道と前記現在の軌道に基づいて、前記1つまたは複数の物体との潜在的な衝突を判定すること、
時間的に最も早い前記潜在的な衝突の1つを特定すること、
前記潜在的な衝突の前記1つに基づいて、安全時間範囲(STH)を判定すること、
ランタイム例外が発生した場合、衝突を回避するための予防的操作を実行する前に、前記ランタイム例外の解決を、前記STHほど長くない時間待機すること、に対して構成される、システム。
【請求項12】
前記STHは、前記潜在的な衝突のうちの前記1つの時間より前の所定の期間に基づくことを判定するように前記1つまたは複数のプロセッサがさらに構成される、請求項11に記載のシステム。
【請求項13】
前記1つ以上のプロセッサは、前記STHが、例外処理速度プロファイルに基づいていることを判定するようにさらに構成されている、請求項11に記載のシステム。
【請求項14】
前記例外処理速度プロファイルは、前記車両の一定量の減速である、請求項13に記載のシステム。
【請求項15】
前記1つまたは複数のプロセッサは、前記ランタイム例外が前記STH後に解決されなかったときに、前記例外処理速度プロファイルを使用して前記車両を制御することによって前記予防的操作を実行することを判定するようにさらに構成される、請求項13に記載のシステム。
【請求項16】
前記1つ以上のプロセッサは、前記STHを定期的に再判定するようにさらに構成される、請求項11に記載のシステム。
【請求項17】
前記ランタイム例外は、前記センサからの通信遅延に対応する、請求項11に記載のシステム。
【請求項18】
前記センサをさらに含み、前記センサがレーダユニットである、請求項11に記載のシステム。
【請求項19】
前記ランタイム例外は、前記知覚システムのセンサからの所定の期間の通信の欠如に対応する、請求項11に記載のシステム。
【請求項20】
前記車両をさらに備える、請求項11に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、2019年4月12日に出願された米国出願第16/383,096号の利益を主張し、その開示全体が参照により本明細書に組み込まれる。
【背景技術】
【0002】
人間の運転者を必要としない車両などの自律型車両が、ある場所から別の場所への乗客または物品の輸送を支援するために使用される場合がある。そのような車両は、ユーザがピックアップ場所または目的地のようないくつかの初期入力を提供し得、かつ車両がその場所へ車両自体を操縦する、完全な自律モードで動作し得る。自律型車両は通常、タイムリーでまとまりのある方法で動作するソフトウェアおよびハードウェアシステムに依存して、ある地点から別の地点へ車両を首尾よくかつ安全に操縦することができる。車両のコンピューティングデバイスが、システムが期待どおりに動作するのを妨げるか、さもなければ遅延させるランタイム例外に遭遇した場合、車両の安全な動作が損なわれる可能性がある。
【発明の概要】
【0003】
本開示の一態様は、車両の例外処理の方法であって、1つまたは複数のプロセッサによって、車両の現在の軌道を受信すること;センサを有する車両の知覚システムによって生成されたセンサデータを、1つまたは複数のプロセッサによって受信することであって、センサデータは、車両を取り巻く領域の1つまたは複数の物体に対応する、受信すること;受信したセンサデータに基づいて、1つまたは複数のプロセッサによって、1つまたは複数の物体の投影された軌道を判定すること、;投影された軌道および現在の軌道に基づいて、1つまたは複数のプロセッサによって、1つまたは複数の物体との潜在的な衝突を判定すること;1つまたは複数のプロセッサによって、時間的に最も早い潜在的な衝突の1つを特定すること;潜在的な衝突の1つに基づいて、1つまたは複数のプロセッサによって、安全時間範囲(STH)を判定すること;およびランタイム例外が発生した場合、衝突を回避するための予防的操作を実行する前に、1つまたは複数のプロセッサが、ランタイム例外の解決を、STHほど長くない時間待機すること、を含む方法を提供する。
【0004】
一例では、STHを判定することは、潜在的な衝突のうちの1つの時間より前の所定の期間に基づく。別の例では、STHを判定することは、例外処理速度プロファイルに基づいている。この例では、例外処理速度プロファイルは、車両の一定量の減速である。あるいは、例外処理速度プロファイルは、車両の減速量に対する1つ以上の変更に対応する。さらに、またはその代わりに、この方法は、ランタイム例外がSTH後に解決されない場合、例外処理速度プロファイルを使用して車両を制御することによって、予防的操作を実行することも含む。別の例では、この方法は、STHを定期的に再判定することも含む。別の例では、ランタイム例外はセンサからの通信遅延に対応する。別の例では、センサはレーダユニットである。別の例では、ランタイム例外は、知覚システムのセンサからの所定の期間の通信の欠如に対応する。
【0005】
本開示の他の態様は、車両用の例外処理のシステムを提供する。システムは、1つまたは複数のプロセッサに、車両の現在の軌道を受信すること;センサを有する車両の知覚システムによって生成されたセンサデータを受信することであって、センサデータは、車両を取り巻く領域の1つまたは複数の物体に対応する、受信すること;受信したセンサデータに基づいて、1つまたは複数の物体の投影された軌道を判定すること;投影された軌道と現在の軌道に基づいて、1つまたは複数の物体との潜在的な衝突を判定すること;時間的に最も早い潜在的な衝突の1つを特定すること;潜在的な衝突の1つに基づいて、安全時間範囲(STH)を判定すること;ランタイム例外が発生した場合、衝突を回避するための予防的操作を実行する前に、ランタイム例外の解決を、STHほど長くない時間待機すること、に対して構成させることを含む。
【0006】
一例では、1つまたは複数のプロセッサは、潜在的な衝突のうちの1つの時間より前の所定の期間に基づいてSTHが判定されるようにさらに構成される。別の例では、1つまたは複数のプロセッサは、STHが例外処理速度プロファイルに基づいていることを判定するようにさらに構成される。この例では、例外処理速度プロファイルは、車両の一定量の減速である。さらに、または代わりに、1つまたは複数のプロセッサは、ランタイム例外がSTH後に解決されなかったときに、例外処理速度プロファイルを使用して車両を制御することによって予防的操作を実行することを判定するようにさらに構成される。別の例では、1つまたは複数のプロセッサは、STHを定期的に再判定するようにさらに構成される。別の例では、ランタイム例外はセンサからの通信遅延に対応する。別の例では、システムはセンサも含み、センサはレーダユニットである。別の例では、ランタイム例外は、知覚システムのセンサからの所定の期間の通信の欠如に対応する。他の例では、システムはまた、車両を含む。
【図面の簡単な説明】
【0007】
図1図1は、例示的な実施形態による例示的な車両の機能図である。
【0008】
図2図2は、本開示の態様による地図情報の例である。
【0009】
図3図3は、本開示の態様による車両の例示的な外観図である。
【0010】
図4図4は、本開示の態様による、道路の一部の例示的な図である。
【0011】
図5図5は、本開示の態様による付加的なデータを伴う、図4の例を続けている。
【0012】
図6図6は、本開示の態様による付加的なデータを伴う、図5の例を続けている。
【0013】
図7図7は、図6の例の態様の例示的な図解で、本開示の態様による付加的なデータを伴うものである。
【0014】
図8図8は、本開示の態様による付加的なデータを伴う、図7の例を続けている。
【0015】
図9図9は、本開示の態様による例示的なフロー図である。
【発明を実施するための形態】
【0016】
概要
このテクノロジーは、自動車両のランタイム例外の処理に関する。自律型車両は通常、タイムリーでまとまりのある方法で動作するソフトウェアおよびハードウェアシステムに依存して、ある地点から別の地点へ車両を首尾よくかつ安全に操縦することができる。いくつかの例では、車両のコンピューティングデバイスは、システムが期待どおりに動作するのを妨げるか、さもなければ遅延させるランタイム例外に遭遇する可能性がある。このような場合、車両は、迅速な停止やプルオーバーなどの予防的操作を実行することにより、ランタイム例外の根本的な原因によってもたらされるリスクを軽減することを余儀なくされる可能性がある。そのような予防的操作は、車両の乗客に不快な経験をもたらす可能性があり、車両の近くにいる他の車両の運転手などの周囲の道路利用者に対し、全リスクを軽減しない可能性がある。また、そのような操作は、ランタイム例外のかなりの部分が最終的には自動的に解決される可能性があるため、実際には不要な場合がある。これらの問題に対処するために、自律型車両は、予防的操作を実行する前に、ランタイム例外がそれ自体で解決するための期間または安全時間範囲(「STH」)を設けることができる。
【0017】
コンピューティングデバイスは、自律型車両の動きを制御することができる。この点で、コンピューティングデバイスは、車両の様々な構成要素と通信することができる場合がある。コンピューティングデバイスは、様々なシステム構成要素から受信したデータに基づいて、車両の様々な構成要素に命令を送信することによって、車両の方向、速度、加速度などを制御してもよい。
【0018】
自律型車両のコンピューティングデバイスまたはシステムの1つが、処理するようにプログラムされていない、または処理するのに十分な情報を受信していない状況に遭遇した場合、ランタイム例外を生成することができる。このようなランタイム例外は、処理の遅延、通信の遅延または一定期間の通信の欠如、ソフトウェアまたはハードウェアの障害、またはコンピューティングデバイスが期待どおりに動作できなくなるその他のこうした状況によって、引き起こされる可能性がある。
【0019】
例えば、車両の知覚システムは、10Hzの速度で信号を送受信するレーダシステムを含み得る。そのため、知覚システムは、100msごとにレーダ信号を受信することを予期し、場合によってはそれに頼ることがある。ただし、通信の遅延により、知覚システムが150msの間レーダ信号を受信しない場合がある。この50ミリ秒の遅延により、ランタイム例外がトリガーされる場合がある。別の例では、知覚システム車両は、障害のある電源コードの結果としてレーダが電力を失うため、予想される100ミリ秒の速度でレーダ信号を受信しない場合がある。また、でメッセージが妥当な制限時間(例えば、タイマーを使用して判定)内に受信されなかったため、ランタイム例外がトリガーされる場合もある。これは、同じまたは別のソフトウェアモジュールによって処理される場合がある。
【0020】
一部のランタイム例外は、一定期間後に自動的に解決する場合があるが、他のものは外部の介入を必要とする場合がある。例えば、レーダの通信遅延によって引き起こされるランタイム例外は、レーダ信号をレーダが受信するのを物体が阻止している結果、またはコンピューティングデバイスが処理タスクで過負荷になっている場合などの、レーダおよび/または知覚システムのコンピューティングデバイスの処理の遅延からの結果である可能性がある。最初の例では、物体が動かされるとそれによってレーダがレーダ信号を再び受信できるようになり、ランタイム例外が解決される場合がある。第二の例では、コンピューティングデバイスの負荷が正常になる可能性があり、これにより、レーダはセンサデータを車両の知覚システムおよび/または他のシステムに提供し続けることができる。前述の例はレーダに関連しているが、同様のランタイム例外と解決が車両の他のセンサとコンピューティングデバイスで発生する可能性がある。その他のランタイム例外、例えば障害のある電源コードによって引き起こされるランタイム例外は、技術者が障害のある電源コードを交換するなどの、解決するための外部の介入が必要となる場合がある。
【0021】
ただし、車両のコンピューティングデバイスは、ランタイム例外をトリガーした根本的な原因を認識していない可能性があり、そのため、車両のコンピューティングデバイスは、ランタイム例外がそれ自体で解決する可能性があるか、外部の介入が必要かどうかを認識しない可能性がある。コンピューティングデバイスがランタイム例外の原因を認識している場合でも、コンピューティングデバイスはランタイム例外が解決され得るまでの時間の程度を知らない場合がある。
【0022】
車両のコンピューティングデバイスは、予防的操作を実行する前にランタイム例外を回復するため、一定期間(または予想される時点)を設けることにより、ランタイム例外が自動的に解決される可能性を活用する場合がある。ランタイム例外が回復するために提供される時点、またはSTHにより、ランタイム例外が回復された場合に、車両は、予防的操作を実行する必要性を回避できる場合がある。したがって、自律型車両は、STH中にランタイム例外が解決されるのを待つ間、現在の軌道を維持することができる。その結果、自律型車両は、ランタイム例外が解決された場合に不必要な操作をするのを回避し、またそれによって、乗客の快適さのレベルを維持することができる。
【0023】
車両のコンピューティングデバイスは、自律型車両の現在の軌道、および自律型車両の外部の物体の投影された軌道に基づいて、STHを判定することができる。車両の現在の軌道は、車両のプランニングシステムによって生成することができる。各軌道には、車両の未来の物理的経路を説明するジオメトリコンポーネントと、車両の未来の速度と時間の経過に伴う速度の変化を説明する速度プロファイルが含まれ得る。次に、現在の軌道は、車両のコンピューティングデバイスが車両を制御するのを有効にするために運転および他の判定を行うために、車両の他の様々なシステムに送信され、処理され得る。
【0024】
車両の行動モデルシステムは、継続的に、または所定の期間に、自律型車両の外部の観測された物体ごとに、1つまたは複数の投影された軌道を生成することができる。行動モデルシステムは、知覚システムから受信したセンサデータを1つまたは複数のモデルに入力し、物体の1つまたは複数の投影された軌道を判定または生成することができる。投影された各軌道は、物体が潜在的に通過する可能性のあるパス、および物体がそのパスに沿った様々なポイントにあると予想される時間に対応する場合がある。次に、これらの計画された軌道は、車両の運転および他の決定を行うために、車両の他の様々なシステムに送信され、処理され得る。
【0025】
潜在的な衝突を特定するために、物体の投影された軌道を自律型車両の現在の軌道と比較することができる。この比較から、車両のコンピューティングデバイスは、自律型車両の現在の軌道が物体の軌道と交差する潜在可能性のある場所と時間を判定することができる。このような場所と時間は、潜在可能性のある衝突の場所と時間、または未来のある時点で衝突が発生すると予測される場所と時間に対応する場合がある。
【0026】
次に、車両のコンピューティングデバイスは、時間内に起こり得る最も早い衝突を識別し得る。車両のコンピューティングデバイスは、時間内の可能な最も早い衝突のSTHを判定する。ランタイム例外がSTH中に自動的に解決された場合、車両のコンピューティングデバイスは、予防的操作を行ったり、その他の何らかの例外処理機能を実行したりすることなく、車両を制御し続けることができる。ランタイム例外がそれ自体で解決しない場合でも、車両のコンピューティングデバイスは依然として、予防的操作を行うか、その他の何らかの例外処理機能を実行する時間がある。
【0027】
本明細書で説明する機能により、自律型車両は、自己解決するランタイム例外が発生した場合に、不必要な、または過度に慎重な予防措置を講じることを回避できる。そうすることで、自律型車両は期待どおりに動作し続けることができ、それによって、遅延や予期しない不快な操作を回避できる。それは、車両とその乗客の安全性を依然維持しながら、乗客の不快感につながる可能性がある。
【0028】
例示的なシステム
図1に示されるように、本開示の一態様による車両100は、様々な構成要素を含む。本開示の特定の態様は、特定のタイプの車両に関して特に有用であるが、車両は、どのタイプの車両であってもよく、乗用車、トラック、オートバイ、バス、レクリエーション用車両などを含むが、これらに限定されない。車両は、1つ以上のプロセッサ120、メモリ130、および汎用コンピューティングデバイスに典型的に存在する他の構成要素を含むコンピューティングデバイス110のような1つ以上の制御コンピューティングデバイスを有し得る。
【0029】
メモリ130は、1つ以上のプロセッサ120によってアクセス可能な情報を記憶し、その情報には、プロセッサ120によって実行または別様に使用され得る命令132およびデータ134が含まれる。メモリ130は、プロセッサによってアクセス可能な情報を記憶することができる任意のタイプのメモリであってもよく、それらには、コンピューティングデバイス可読媒体、またはハードドライブ、メモリカード、ROM、RAM、DVD、もしくは他の光ディスク、ならびに他の書き込み可能および読み取り専用メモリなどの電子デバイスを用いて読み取ることができるデータを記憶する他の媒体が含まれる。システムおよび方法は、前述の様々な組み合わせを含むことができ、それにより、命令およびデータの様々な部分が様々なタイプの媒体に記憶される。
【0030】
命令132は、プロセッサによって直接的に(マシンコードなど)または間接的に(スクリプトなど)実行される任意の命令セットであってもよい。例えば、命令は、コンピューティングデバイス可読媒体上にコンピューティングデバイスコードとして記憶されてもよい。その点について、「ソフトウェア」、「命令」、および「プログラム」という用語は、本明細書では、互換的に使用され得る。命令は、プロセッサによる直接処理のための物体コード形式で、または要求に応じて解釈されるか、もしくは予めコンパイルされる、スクリプトもしくは独立したソースコードモジュールのコレクションを含む、任意の他のコンピューティングデバイス言語で記憶されてもよい。命令の機能、方法、およびルーチンについては、以下に詳細に説明される。
【0031】
データ134は、命令132に従って、プロセッサ120によって検索、記憶、または修正され得る。例えば、特許請求の範囲の主題は、いかなる特定のデータ構造にも限定されないが、データは、コンピューティングデバイスレジスタ内に、すなわち、複数の異なるフィールドおよびレコードを有する表、XMLドキュメント、またはフラットファイルとしてリレーショナルデータベース内に記憶されてもよい。データはまた、任意のコンピューティングデバイス可読形式でフォーマットされてもよい。
【0032】
1つ以上のプロセッサ120は、市販のCPUなど任意の従来のプロセッサであってもよい。代替的に、1つ以上のプロセッサは、ASICまたは他のハードウェアベースプロセッサなどの専用デバイスであってもよい。図1は、プロセッサ、メモリ、およびコンピューティングデバイス110の他の要素を同じブロック内にあるものとして機能的に示しているが、プロセッサ、コンピューティングデバイス、またはメモリは、実際には、同じ物理的な筐体内に記憶されていてもいなくてもよい、複数のプロセッサ、コンピューティングデバイス、またはメモリを含むことができることは、当業者により、理解されるであろう。例えば、メモリは、ハードドライブ、またはコンピューティングデバイス110の筐体とは異なる筐体内に位置する他の記憶媒体であってもよい。したがって、プロセッサまたはコンピューティングデバイスへの言及は、並列に動作してもしなくてもよいプロセッサまたはコンピューティングデバイスまたはメモリの集合への言及を含むことが理解されよう。
【0033】
コンピューティングデバイス110は、上述したプロセッサおよびメモリ、ならびにユーザ入力装置150(例えば、マウス、キーボード、タッチスクリーン、および/またはマイクロフォン)および様々な電子ディスプレイ(例えば、スクリーンを有するモニタ、または情報を表示するように動作可能である任意の他の電気デバイス)などの、コンピューティングデバイスと接続して通常使用されるすべての構成要素を含み得る。この例では、車両は、情報または視覚体験を提供するために、内部電子ディスプレイ152、ならびに1つ以上のスピーカ154を含む。この点について、内部電子ディスプレイ152は、車両100の車内に位置していてもよく、コンピューティングデバイス110によって使用されて、車両100内の乗客に情報を提供してもよい。
【0034】
コンピューティングデバイス110はまた、1つ以上のワイヤレスネットワーク接続156も含むことにより、以下に詳細に説明するクライアントコンピューティングデバイスおよびサーバコンピューティングデバイスなどの他のコンピューティングデバイスと容易に通信することができる。無線ネットワーク接続には、Bluetooth、Bluetoothローエネルギー(LE)、携帯電話接続などの短距離通信プロトコル、ならびにインターネット、World Wide Web、イントラネット、仮想プライベートネットワーク、ワイドエリアネットワーク、ローカルネットワーク、1つ以上の企業に専用の通信プロトコルを使用するプライベートネットワーク、イーサネット、WiFi、およびHTTPを含む様々な構成およびプロトコル、ならびに上記の様々な組み合わせが含まれ得る。
【0035】
一例では、コンピューティングデバイス110は、自律運転コンピューティングシステムの制御コンピューティングデバイスであり得るか、または車両100に組み込まれ得る。この自律運転コンピューティングシステムは、以下でさらに考察されるように、メモリ130の自律制御ソフトウェアに従って車両100の動きを制御するために、車両の様々な構成要素と通信することが可能であってよい。例えば、図1に戻ると、コンピューティングデバイス110は、メモリ130の命令132に従って車両100の動き、速度などを制御するために、減速システム160、加速システム162、ステアリングシステム164、シグナリングシステム166、プランニングシステム168、ルーティングシステム170、測位システム172、知覚システム174、行動モデリングシステム176、およびパワーシステム178(すなわち、車両のエンジンまたはモータ)など、車両100の様々なシステムと通信し得る。これらのシステムのそれぞれは、これらのシステムが様々なタスクを実行できるようにするために、ソフトウェアだけでなく、様々なハードウェア(プロセッサ120およびメモリ130と同様のプロセッサおよびメモリ)を含み得る。この場合も、これらのシステムは、コンピューティングデバイス110の外部にあるものとして示されているが、実際には、これらのシステムもまた、車両100を制御するための自律運転コンピューティングシステムとしてここでも、コンピューティングデバイス110の中に組み込まれてもよい。
【0036】
一例として、コンピューティングデバイス110は、車両の速度を制御するために、車両のブレーキ、アクセルペダル、および/またはエンジンもしくはモータなど、減速システム160および/または加速システム162の1つ以上のアクチュエータと相互作用することができる。同様に、ハンドル、操縦シャフト、ならびに/またはラックアンドピニオンシステムのピニオンおよびラックなど、ステアリングシステム164の1つ以上のアクチュエータは、車両100の方向を制御するために、コンピューティングデバイス110によって使用され得る。例えば、乗用車またはトラックなどの車両100が道路上で使用するために構成される場合、ステアリングシステムは、車両の向きを変えるために車輪の角度を制御するための1つ以上のアクチュエータを含んでもよい。シグナリングシステム166は、例えば、必要に応じて方向指示器またはブレーキライトを点灯させることによって、車両の意図を他の運転者または車両に知らせるために、コンピューティングデバイス110によって使用され得る。
【0037】
プランニングシステム168は、ある場所までのルーティングシステム170によって生成された経路を判定し、これをたどるために、コンピューティングデバイス110によって使用され得る。例えば、ルーティングシステム170は、地図情報を使用して、車両の現在の場所から目的地の場所までのルートを判定することができる。プランニングシステム168は、目的地へのルートをたどるために、定期的に軌道、または未来のある期間にわたって車両を制御するための短期計画を生成することができる。この点について、プランニングシステム168、ルーティングシステム170および/またはデータ134が、詳細な地図情報、例えば、道路の形状および上昇、車線境界線、交差点、横断歩道、速度制限、交通信号、建物、標識、リアルタイム交通情報、植生、または他のそのような物体および情報を特定する高精密地図、を記憶してよい。
【0038】
図2は、交差点202を含む、車道のセクションに関する地図情報200の例である。地図情報200は、車線210、211、212、213、214、交通管制装置220、220(例えば、信号灯、一時停止標識などを含み得る)、横断歩道230、232、歩道240、242、道路標示、例えば矢印250、251、252、ならびに特徴、例えば260、261、262、263、264、265を含む様々な特徴の形状、位置、および他の特性を識別する情報を含む。いくつかの特徴のみが示され、識別されているが、地図情報200は非常に詳細であり、様々な追加の特徴を含み得る。
【0039】
本明細書では、地図情報を画像ベースの地図として描いているが、地図情報は、完全に画像ベースである必要はない(例えば、ラスタ)。例えば、地図情報は、1つ以上の道路グラフ、または道路、車線、交差点、およびこれらの特徴間の関係などの情報のグラフネットワークを含むことができる。各特徴は、グラフデータとして記憶され得、地理的場所などの情報と関連付けられ得、他の関連する特徴にリンクされているかどうかにかかわらず、例えば、一時停止標識は、道路および交差点などにリンクされ得る。いくつかの例では、関連付けられたデータは、道路グラフのグリッドベースのインデックスを含んで、特定の道路グラフの特徴の効率的な検索を可能にできる。
【0040】
測位システム172は、コンピューティングデバイス110により、地図上または地球上の車両の相対的または絶対的位置を判定するために使用され得る。例えば、測位システム172は、デバイスの緯度、経度、および/または高度の位置を判定するためのGPS受信機を含んでいてもよい。レーザを利用した位置特定システム、慣性支援GPS、またはカメラを利用した位置特定などの他の位置特定システムも、車両の位置を識別するために使用することができる。車両の位置には、緯度、経度、高度などの絶対的な地理的位置情報の他に、すぐ周りの他の車両に対する位置などの相対的な位置情報が含まれてもよく、これは、多くの場合、絶対的な地理的位置よりも少ないノイズで判定することができる。
【0041】
測位システム172はまた、加速度計、ジャイロスコープ、または別の方向/速度検出デバイスなどの、コンピューティングデバイス110と通信する他のデバイスも含んで、車両の方向および速度、またはそれらの変化を判定するようにしてもよい。例示に過ぎないが、加速デバイスは、重力の方向、または重力に対して垂直な平面に対する車両の縦揺れ、偏揺れ、または横揺れ(またはそれらの変化)を判定してもよい。このデバイスはまた、速度の増減、およびそのような変化の方向を追跡することもできる。本明細書で述べたような、デバイスによる位置および配向データの提供は、コンピューティングデバイス110、他のコンピューティングデバイス、および上記の組み合わせに自動的に提供されてもよい。
【0042】
知覚システム174はまた、他の車両、車道内の障害物、交通信号、標識、樹木などの車両の外部にある物体を検出するために1つ以上の構成要素を含む。例えば、知覚システム174は、レーザ、ソナー、レーダ、カメラ、および/またはコンピューティングデバイス110が処理することができるデータを記録する任意の他の検出デバイスを含むことができる。車両がミニバンなどの乗客車両である場合には、ミニバンは、ルーフまたは他の都合の良い位置に搭載されるレーザまたは他のセンサを含んでもよい。例えば、図3は、車両100の例示的な外観図である。この例では、ルーフ上部筐体310およびドーム状筐体312は、LIDARセンサ、ならびに様々なカメラおよびレーダユニットを含み得る。加えて、車両100の前端部に位置する筐体320、ならびに車両の運転手側および助手席側の筐体330、332は、各々、LIDARセンサを格納し得る。例えば、筐体330は、運転手ドア350の前部に位置している。車両100はまた、これも車両100のルーフに位置するレーダユニットおよび/またはカメラのための筐体340、342を含む。追加のレーダユニットおよびカメラ(図示せず)は、車両100の前端および後端に、ならびに/またはルーフもしくはルーフ上部筐体310に沿った他の位置上に位置し得る。車両100はまた、ドア350、352、車輪360、362などの典型的な乗用車両の多くの特徴を含む。
【0043】
車両の様々なシステムは、どのように車両を制御するかを判定するためおよび制御するために、自律型車両制御ソフトウェアを使用して機能し得る。例として、知覚システム174の知覚システムソフトウェアモジュールは、カメラ、LIDARセンサ、レーダユニット、ソナーユニットなどの自律型車両の1つ以上のセンサによって生成されたセンサデータを使用して、物体およびその特徴を検出および識別することができる。これらの特徴には、位置、タイプ、進行方向、配向、速度、加速度、加速度の変化、サイズ、形状などを含み得る。場合によっては、物体タイプに基づいて様々なモデルを使用する動作予測システムソフトウェアモジュールに特徴を入力して、検出された物体の予測される未来の動作を出力する。他の例では、特徴は、車両の1つ以上のセンサによって生成されたセンサデータから建設ゾーンを検出するように構成された建設ゾーン検出システムソフトウェアモジュール、ならびに車両のセンサによって生成されたセンサデータから緊急車両を検出するように構成された緊急車両検出システムなどの1つ以上の検出システムソフトウェアモジュールに入れることができる。これらの検出システムソフトウェアモジュールの各々は、様々なモデルを使用して、建設ゾーンまたは物体が緊急車両である可能性を出力し得る。検出された物体、予測された未来の行動、検出システムソフトウェアモジュールからの様々な可能性、車両の環境を識別する地図情報、車両の位置および方位を識別する測位システム172からの位置情報、車両の目的地、ならびに車両の様々な他のシステム(ルーティングシステム170によって生成されたルートを含む)からのフィードバックをプランニングシステム168のプランニングシステムソフトウェアモジュールに入力し得る。プランニングシステムは、この入力を使用して、車両が未来のある短い期間にわたってたどる軌道を生成し得る。コンピューティングデバイス110の制御システムソフトウェアモジュールは、例えば、軌道をたどるために、車両の制動、加速、およびステアリングを制御することによって、車両の動きを制御するように構成し得る。
【0044】
コンピューティングデバイス110は、様々な構成要素を制御することによって車両の方向および速度を自動的に制御してもよい。そうするために、コンピューティングデバイス110は、車両を、加速させ(例えば、加速システム162により、エンジンに提供される燃料または他のエネルギーを増加させることによって)、減速させ(例えば、エンジンに供給される燃料を減少させ、ギヤを切り替え、および/または減速システム160により制動をかけることによって)、方向転換させ(例えば、ステアリングシステム164により、車両100の前輪または後輪の向きを変えることによって)、これらの変更を合図(例えば、シグナリングシステム166の方向指示器を点灯することによって)させ得る。このため、加速システム162および減速システム160は、車両のエンジンと車両の車輪との間に様々なコンポーネントを含む、動力伝達装置の一部であり得る。ここでも、これらのシステムを制御することによって、コンピューティングデバイス110はまた、車両を自律的に操作するために、車両の動力伝達装置を制御し得る。
【0045】
例示的な方法
上述し、図に示した動作に加えて、様々な動作を、ここで説明する。以下の動作は、以下に説明する正確な順序で実行される必要がないことを理解されたい。むしろ、様々な工程が、異なる順序で、または同時に処理されてもよく、工程もまた、追加または省略されてもよい。
【0046】
車両のコンピューティングデバイスは、予防的操作を実行する前にランタイム例外を回復するため、一定期間(または予想される時点)を設けることにより、ランタイム例外が自動的に解決される可能性を活用する場合がある。ランタイム例外が回復するために提供される時点、またはSTHにより、ランタイム例外が回復された場合、車両は、予防的操作を実行する必要性を回避できる場合がある。したがって、自律型車両は、STH中にランタイム例外が解決されるのを待つ間、現在の軌道を維持することができる。その結果、自律型車両は、ランタイム例外が解決された場合に不必要な操作をするのを回避し、またそれによって、乗客の快適さのレベルを維持することができる。
【0047】
図4は、地図情報200に対応する道路400のセクションを走行する車両100を表す。道路400は、交差点202に対応する交差点402、車線210、211、212、213、214に対応する車線410、411、412、413、414、交通管制装置220、222に対応する交通制御装置420、422、横断歩道230、232に対応する横断歩道430、432、横断歩道240、242に対応する歩道440、442、矢印250、251、252に対応する矢印450、451、451、ならびに車線260、261、262、263、264、265に対応する車線460、461、462、463、464を含む様々な特徴の形状、位置、および他の特性を識別する情報を含む。この例では、車両100は、車線465の交差点402に近づいている。さらにまた、車両480は、車線465内で交差点402に接近しており、車両490は、交差点402におり、車両100に接近している(ただし、車線463と一直線上にある)。この例は、位置lおよび時間tにおける車両100を示している。
【0048】
図9は、コンピューティングデバイス110のプロセッサ120などの車両の1つまたは複数のコンピューティングデバイスの1つまたは複数のプロセッサによって実行され得る、車両100などの車両の例外処理について本明細書に記載された技術の態様の例示的なフロー図900である。ブロック910で、車両の現在の軌道が受信される。車両の現在の軌道は、ルーティングシステム170によって生成されたルート、行動モデリングシステム176によって生成された予測軌道、ならびに知覚システム174によって生成されたセンサデータおよび他のデータに基づいて、プランニングシステム168によって生成され得る。各軌道には、車両の未来の物理的経路を説明するジオメトリコンポーネントと、車両の未来の速度および時間の経過に伴う速度の変化を説明する速度プロファイルが含まれ得る。次に、現在の軌道は、例えば、コンピューティングデバイス110などの車両のコンピューティングデバイスを含む、車両の運転および他の判定を行うために、車両の他の様々なシステムに送信され、システムによって処理され得る。図5の例に目を向けると、車両100は現在、軌道500をたどっている。
【0049】
図9に戻ると、ブロック920で、車両の知覚システムによって生成されたセンサデータが受信される。このセンサデータは、車両の周囲の領域にある1つ以上の物体に対応する。例えば、知覚システム174は、車両の様々なセンサを使用してセンサデータを生成することができる。センサデータは、生または処理されたセンサデータ、ならびに車両100の周囲の領域内の物体の特性に関する他の情報であり得る。これには、例えば、位置、方位、向き、速度、加速/減速、加速/減速の変化などが含まれ得る。
【0050】
車両の行動モデルシステム176は、継続的に、または100ミリ秒ごと、またはそれより多いまたは少ないミリ秒ごとなどの所定の期間に、自律型車両の外部の観測された各物体に、1つまたは複数の投影された軌道を生成し得る。例えば、行動モデルシステム176は、物体の知覚システム174からセンサデータおよび他のデータを受信することができる。この場合も、センサデータは、生または処理されたセンサデータ、ならびに車両100の周囲の領域内の物体の特性に関する他の情報であり得る。
【0051】
ブロック930において、1つまたは複数の物体の投影された軌道を、受信されたセンサデータに基づいて判定し得る。例えば、行動モデルシステム176は、知覚システム174から受信したセンサデータを1つまたは複数のモデルに入力し、物体の1つまたは複数の投影された軌道を判定または生成することができる。次に、これらの投影された軌道は、例えば、コンピューティングデバイス110などの車両のコンピューティングデバイスを含む、車両の運転および他の判定を行うために、車両の他の様々なシステムに送信され、処理され得る。
【0052】
モデルは、同様の物体の一般的な操作手順に基づいている場合がある。例えば、ライトで停止した車両の投影された軌道は、同じライトまたは同様のライトでの他の車両の一般的な操作(例えば、速度、加速度、進行方向など)に基づく場合がある。場合によっては、モデルは同様の物体の不規則な操作に基づいていることもある。例えば、ライトで停止した車両の投影された軌道には、停止した車両の後退、急速加速、移動開始後の急速停止などに対応する軌道が含まれる場合がある。不規則な操作に基づく投影された軌道は、物理的に実行可能な可能性に限定される場合がある。言い換えれば、投影された軌道を生成するために使用される不規則な操作は、物体が実行できることが知られているアクションである可能性がある。
【0053】
投影された各軌道は、物体が潜在的に通過する可能性のあるパス、および物体がそのパスに沿った様々なポイントにあると予想される時間に対応する場合がある。例えば、行動モデルシステムは、知覚システムによって提供される前述のデータを使用して、交差点で停止した車両、および交差点を通過する車両の投影された軌道を生成することができる。図5に戻ると、交差点402で停止する可能性のある車両480について、行動モデルシステムは、投影された軌道580、582、584を生成することができる。交差点402を通過し得る車両490の場合、行動モデルシステムは、投影された軌道590、592を生成し得る。投影された軌道は5つしか表示されていないが、物体ごとにそれより多いまたは少ない生成された投影された軌道が存在する場合がある。場合によっては、道路標識や樹木などの静止物体は、行動モデルシステムによってフィルタリングされるか、さもなければ無視されるか、処理されないことがある。
【0054】
図9に戻ると、ブロック940において、1つまたは複数の物体との潜在的な衝突を、(車両の)投影された軌道および現在の軌道に基づいて判定し得る。例えば、潜在的な衝突を特定するために、物体の投影された軌道を自律型車両の現在の軌道と比較することができる。この比較から、コンピューティングデバイス110などの車両のコンピューティングデバイスは、自律型車両の現在の軌道、例えば軌道500が物体の軌道と交差する潜在可能性のある場所と時間を判定することができる。このような場所と時間は、潜在可能性のある衝突の場所と時間、または未来のある時点で衝突が発生すると予測される場所と時間に対応する場合がある。
【0055】
例えば、図6に目を向けると、自律型車両の現在の軌道は、それぞれ位置ドット600、610で表されるように、停止した車両と交差点を通過する車両の投影された軌道と、衝突するに至る可能性がある。言い換えれば、これらの位置ドットは、軌道500が車両480および490の投影された軌道と交差する位置および時間の組み合わせを表すことができる。例えば、位置ドット600は、時間tおよび位置lで起こり得る衝突を表し得、同様に、位置ドット610は、時間tおよび位置lで起こり得る衝突を表し得る。したがって、位置ドット610は、投影された軌道582に近いが、車両480と車両100は時間という点では交差しない(位置においてのみ)ので、この位置ドットは、車両480との潜在的な衝突を表さない。
【0056】
図9に戻ると、ブロック950で、時間の最も早い潜在的な衝突の1つが識別され得る。例えば、コンピューティングデバイス110などの車両のコンピューティングデバイスは、時間内に起こり得る最も早い衝突を識別し得る。上述したように、例えば、車両の現在の位置は、図4図5および図6の例で示されるように、時刻tにおいて、lである。この例では、時間内の第一の潜在的衝突は、位置lおよび時間t(すなわち、位置ドット600)で車両480と発生する可能性があり、時間内の第二の潜在的衝突は、位置lおよび時間t(すなわち、位置ドット610)で、車両490と発生する可能性が高い。
【0057】
図9に戻ると、ブロック960で、安全時間範囲は、潜在的な衝突に基づいて判定される。車両のコンピューティングデバイスは、時間において可能な最も早い衝突のSTHを判定できる。上記の例のように、時間内に起こり得る最も早い衝突は、時間tおよび位置lで発生する可能性がある。この点で、STHは特定の時点t’または現在の時刻tから時刻t’までの一定の時間であり得る。時間t’は、自律型車両が少なくとも所定の時間の前にランタイム例外を処理できるようにするために、可能な限り最も早い衝突の時間(この場合はt)の時間前の、ある所定の期間である時点であり得る次に、車両のコンピューティングデバイスは、次の方程式を使用して時間t’を解くことができる。
【数1】

この例では、f(t)は自律型車両の現在の軌道速度プロファイルであり、f(t)は自律型車両の例外処理速度プロファイルである。
【0058】
一例として、例外処理速度プロファイルは、車両が完全に停止するまで一定量の減速を適用することを含み得る。例として、減速のこの一定量は、-6m/Sまたはそれより多くまたは少なくてもよい。ただし、この減速率は緊急時に使用されるため、乗客にとってはかなり不快な場合がある。当然、加速度が時間とともに変化する、より複雑な速度プロファイルも使用できる。例えば、速度プロファイルは、ランタイム例外の原因となるデータのタイプ(遅延しているデータなど)に基づいている場合がある。例えば、ランタイム例外の原因の優先度が高い場合、知覚システムからのセンサデータが欠落しているか、タイムリーに受信されていない場合、速度プロファイルにより、車両が自動的にブレーキを「叩く」可能性がある。別の例として、リモートコンピューティングデバイスへの接続など、ランタイム例外の優先度が低い場合、速度プロファイルにより、車両がより妥当な速度で減速する可能性がある。
【0059】
図9に戻ると、ブロック970で、ランタイム例外が発生したとき、衝突を回避するための予防的操作を実行する前に、ランタイム例外が解決するのを安全時間範囲ほど長く待機しない。ランタイム例外が発生した場合には、車両のコンピューティングデバイスは、解決するために、STHの期間待つ、そうでなければむしろランタイム例外のためのtからt’までの期間待つことがある。STHが過ぎ、ランタイム例外が解決されない場合、車両のコンピューティングデバイスは例外処理応答を実行する可能性がある。この例外処理応答には、例外処理速度プロファイルが含まれる場合がある。
【0060】
図7は、図4図5、および図6の例に対応する車両100の例示的な動作状況を示している。この例では、時間tにおいて、車両100は、10m/s(すなわち、f(t))の一定の(すなわち、加速または減速しない)速度で移動する位置lにある。車両480は、位置lで距離D(例えば、100メートル)前方に配置され、停止している。上記のように、車両のコンピューティングデバイスは、時間内に可能な最も早い衝突が位置ドット600、または車両480の現在の位置lであると判定することができる。可能な最も早い衝突、tの推定時間は、この例では、現在時刻tから5秒であり得る。さらに、車両100は、-5m/sの速度で減速する(または、例えば、確実に減速する)ことができる可能性がある。この情報を考慮して、コンピューティングデバイス110などのコンピューティングデバイスは、車両480との衝突を回避するために、車両100が20m/秒から0に減速しなければならないと判定することができる。このレベルの減速は、例外処理速度プロファイルである可能性がある。
【0061】
上記のデータを使用して、コンピューティングデバイス110などの車両のコンピューティングデバイスは、自律型車両が車両480(車両480は静止したままであることを想定)の前に完全に停止するのに少なくとも4秒(20m/s/-5m/s)かかると判定し得る。したがって、車両100は、衝突を回避するために、車両480の40メートル後ろ、または別の言い方をすれば、現在位置lの60メートル前方で、減速を開始しなければならない。この点で、車両は、いずれかのランタイム例外を安全に無視しながら、次の3秒間(60m/20m/s)現在の速度で続行できる可能性がある。したがって、STHは3秒になり得る。言い換えれば、時間tで発生するランタイム例外について、車両のコンピューティングデバイスは、ランタイム例外が解決するのを3秒間待つことができる。
【0062】
上記のように、ランタイム例外がSTH中に自動的に解決された場合、車両のコンピューティングデバイスは、予防的操作を行ったり、その他の何らかの例外処理機能を実行したりすることなく、車両を制御し続けることができる。ランタイム例外がそれ自体で解決しない場合でも、車両のコンピューティングデバイスは依然として、予防的操作を行うか、その他の何らかの例外処理機能を実行する時間がある。例えば、図7に戻ると、コンピューティングデバイス100などの車両のコンピューティングデバイスは、例外処理速度プロファイルに従って減速し、車両480の前に停止する時間t(この場合、t=2s)を有し得る。
【0063】
時間tの後の2秒に対応する時間tを表す図8の例に目を向けると、車両100は、図7の例よりも車両480に近づいている。この時点でランタイム例外が発生した場合、STHはわずか1sになる。例えば、STH=3s-2s=1sである。したがって、車両のコンピューティングデバイスは、例外処理速度プロファイルに従って減速を開始する前に1秒だけ待機し、車両480の前に停止することができる。言い換えれば、車両100が位置lに到達すると、車両100は、例外処理速度プロファイルに従って減速し始めなければならない。
【0064】
STHは、定期的に、例えば、100ミリ秒より長くまたはそれより短い時間ごとに、または知覚システムから新しいセンサデータが受信されるたびに、判定(または再判定)され得る。この点で、コンピューティングデバイス110などの車両のコンピューティングデバイスは、新しい期間が判定されるまで、この期間を継続的にカウントダウンすることができる。あるいは、ランタイム例外に応答してSTHを判定することができ、STHが判定されると、カウントダウンを開始することができる。これに関して、ランタイム例外が発生すると、車両のコンピューティングデバイスは、ランタイム例外がそれ自体で解決するのを少なくともSTHで待機する場合がある。この場合も、STHの最中にランタイムエラーが自動的に解決しない場合、車両のコンピューティングデバイスが自動的に、すばやく停止したり、引張ったりするなどの予防策を開始することがある。
【0065】
ここで説明する機能により、自律型車両は、自己解決するランタイム例外が発生した場合に、不必要または過度に慎重な予防措置を講じることを回避できる。そうすることで、自律型車両は期待どおりに動作し続けることができ、それにより、乗客の不快感につながる可能性のある遅延や予期しない不快な操作を回避でき、車両とその乗客の安全性を依然維持できる。
【0066】
特段の記述がない限り、前述の代替的な例は、相互に排他的ではないが、独自の有益点を達成するために様々な組み合わせで実施され得る。上述した特徴のこれらおよび他の変形および組み合わせは、特許請求の範囲によって定義される主題から逸脱することなく利用することができるので、実施形態の前述の説明は、特許請求の範囲によって定義される主題を限定するものとしてではなく、例示としてみなされるべきである。加えて、本明細書に記載された例、ならびに「など」、「含む」などと表現された語句の提示は、特許請求の範囲の主題を特定の例に限定するものと解釈されるべきではなく、むしろ、例は、多くの可能な実施形態のうちの1つだけを例示することが意図される。さらに、異なる図面の同じ参照符号は、同じまたは類似の要素を特定することができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
【国際調査報告】