(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-26
(54)【発明の名称】フィールドデバイスのためのアドオンモジュール
(51)【国際特許分類】
G01D 3/08 20060101AFI20220519BHJP
G01T 7/00 20060101ALI20220519BHJP
【FI】
G01D3/08
G01T7/00 A
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021560487
(86)(22)【出願日】2020-03-12
(85)【翻訳文提出日】2021-11-17
(86)【国際出願番号】 EP2020056709
(87)【国際公開番号】W WO2020200689
(87)【国際公開日】2020-10-08
(31)【優先権主張番号】102019108564.0
(32)【優先日】2019-04-02
(33)【優先権主張国・地域又は機関】DE
(81)【指定国・地域】
(71)【出願人】
【識別番号】521441331
【氏名又は名称】エンドレス ウント ハウザー エスエー ウント チェーオー. カーゲー
【氏名又は名称原語表記】ENDRESS+HAUSER SE+CO.KG
【住所又は居所原語表記】Hauptstr. 1 79689 Maulburg DE
(74)【代理人】
【識別番号】100121083
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100074099
【氏名又は名称】大菅 義之
(72)【発明者】
【氏名】シュラハター マーク アンドレアス
(72)【発明者】
【氏名】トルンツァー ヴォルフガング
【テーマコード(参考)】
2F075
2G188
【Fターム(参考)】
2F075AA02
2F075AA10
2F075EE11
2F075EE14
2F075EE17
2F075EE18
2F075FF10
2G188AA08
2G188EE25
2G188GG08
2G188GG09
(57)【要約】
本発明は、少なくとも1つの測定変数(L)を測定および/または監視するためのフィールドデバイス(3)のためのアドオンモジュール(1)に関し、ここで、フィールドデバイス(3)は、プロセスに面するフィールドデバイス(3)の領域が使用場所で支配的なプロセス条件(PB)にさらされ、また、プロセスから離れる方向に向いたフィールドデバイス(3)の領域が使用場所で支配的な環境条件(UB)にさらされるような方式で、使用場所にプロセスポート(7)を用いて取り付けられ得る。アドオンモジュール(1)は、使用場所の条件に柔軟に対応できる方式で、環境条件によってフィールドデバイス(3)に課せられるストレスを捕捉することを可能にする。この目的のために、アドオンモジュール(1)は、プロセスから離れる方向に向いたフィールドデバイス(3)の領域に取り付けることができ、また、様々な測定モジュール(33)を含むモジュールツールボックスから選択可能な1つの測定モジュール(33)を挿入可能な、または挿入される少なくとも1つの受容デバイスを含み、ここで、各測定モジュール(33)は、それぞれの場合において、問題となっている少なくとも1つの環境パラメータおよび/または測定モジュール(33)に対する環境条件(UB)の少なくとも1つの影響を捕捉し、また、ここで、アドオンモジュール(1)は、評価ユニット(35)を含み、この評価ユニット(35)は、評価ユニット(35)に接続された測定モジュール(33)によって捕捉された環境パラメータおよび/または影響に基づいて、アドオンモジュール(1)を備えたフィールドデバイス(3)に作用する瞬間的なストレス、および/または、アドオンモジュール(1)を備えたフィールドデバイス(3)がその使用期間中に全体的にこれまでさらされてきた総ストレスを決定する。
【特許請求の範囲】
【請求項1】
少なくとも1つの測定変数(L)を測定および/または監視するためのフィールドデバイス(3)のためのアドオンモジュール(1)であって、
前記フィールドデバイス(3)は、前記測定変数(L)を測定によって捕捉するための測定デバイス(5)と、プロセスポート(7)とを含み、
前記プロセスポート(7)は、前記測定デバイス(5)の少なくとも一部を含み、プロセスに面する前記フィールドデバイス(3)の領域が、使用場所で支配的なプロセス条件(PB)にさらされ、かつ、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の領域が、前記使用場所で支配的な環境条件(UB)にさらされる方式で前記フィールドデバイス(3)を前記使用場所に固定するように設計されており、
前記アドオンモジュール(1)は、留め具手段(29)を含み、前記留め具手段(29)によって、前記アドオンモジュール(1)は、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の前記領域に取り付けることが可能であり、
前記アドオンモジュール(1)は、少なくとも1つの受容デバイスを含み、前記少なくとも1つの受容デバイスの中に、異なる測定モジュール(33)を含むモジュラーツールボックスから選択可能な測定モジュール(33)を挿入することが可能であり、
各測定モジュール(33)は、それぞれの測定モジュール(33)において少なくとも1つの環境パラメータおよび/または環境条件の少なくとも1つの影響を測定によって捕捉するように設計されており、および
前記アドオンモジュール(1)は、前記受容デバイスに挿入されており、かつ、評価ユニット(35)に接続されている選択された測定モジュール(33)によって捕捉された前記環境パラメータおよび/または影響に基づいて、前記アドオンモジュール(1)を備えた前記フィールドデバイス(3)に作用する瞬間的なストレスまたは総ストレスを決定するように設計されている前記評価ユニット(35)を含み、前記アドオンモジュール(1)を備える前記フィールドデバイス(3)は、前記瞬間的なストレスまたは前記総ストレスに前記フィールドデバイス(3)の耐用年数にわたって過去にさらされている、アドオンモジュール。
【請求項2】
前記モジュラーツールボックスおよび/またはアドオンモジュール(1)は、
環境温度を測定して捕捉するための温度測定モジュール(T)として設計された測定モジュール(33)と、
環境湿度、相対湿度、または絶対湿度を測定して捕捉するための湿度測定モジュール(F1)として設計された測定モジュール(33)と、
前記アドオンモジュール(1)の振動を測定して捕捉するための振動測定モジュール(V)として設計された測定モジュール(33)と、
環境中に含まれる物質、浸食性のある媒体、および/または腐食性のある媒体、塩分および/または塩素分の濃度を測定によって捕捉する濃度測定モジュール(K)として設計された測定モジュール(33)と、
放射線測定モジュール(γ)に作用する放射線、前記放射線測定モジュール(γ)に作用する太陽の放射線、または前記放射線測定モジュール(γ)に作用する放射性放射線を測定によって捕捉するための前記放射線測定モジュール(γ)として設計された測定モジュール(33)と、
湿気測定モジュール(F2)を取り囲むハウジング内に侵入する湿気を測定によって捕捉するための前記湿気測定モジュール(F2)として設計された測定モジュール(33)と、
前記環境条件にさらされる犠牲要素であって、前記犠牲要素の腐食によって変化する少なくとも1つの測定可能な特性を有する、前記犠牲要素を含む腐食測定モジュールと、および/または
各受容デバイスに挿入可能であり、また、挿入された状態で前記各受容デバイスを閉鎖するダミーモジュール(B)と、を含む、請求項1に記載のアドオンモジュール(1)。
【請求項3】
前記評価ユニット(35)は、
メモリ(37)に格納された特性データまたは特性カーブに基づいて、前記評価ユニットに取り付けられた前記測定モジュール(33)によって捕捉された前記環境パラメータおよび/または前記影響の瞬間的な値を用いて、それぞれの環境ストレス値を割り当て、および前記環境ストレス値の関数、和、または加重和として前記瞬間的なストレスを決定し、
前記過去の耐用年数にわたって継続的に決定されたストレスの積分として、前記総ストレスを決定し、
現在のストレスおよび/または前記過去の総ストレスが、このために設定された限界値を超えると、アラームを出力し、並びに/或いは
前記総ストレスに基づいて残りの耐用年数を決定する、ように設計されていることを特徴とする、請求項1から2に記載のアドオンモジュール。
【請求項4】
前記評価ユニット(35)に接続された出力(39)を含み、前記評価ユニット(35)は、前記出力を介して、前記現在のストレス、前記総ストレス、前記残りの耐用年数、および/または前記アラームを読み取り可能な形式で表示並びに/或いは提供する、請求項1から3に記載のアドオンモジュール(1)。
【請求項5】
前記アドオンモジュール(1)は、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)のハウジング(21)に取り付け可能なハウジングカバーとして設計される、請求項1から4に記載のアドオンモジュール(1)。
【請求項6】
前記受容デバイスは、前記測定モジュール(33)が、それぞれの測定モジュール(33)の少なくとも1つの外面が前記環境条件(UB)にさらされる方式で、それぞれ挿入されるスロットとして設計されており、および/または
前記測定モジュール(33)および前記受容デバイスは、接続要素(43)を有し、前記測定モジュール(33)および受容デバイスは、互いに相補的であり、前記接続要素によって、前記測定モジュール(33)は、前記受容デバイスに固定可能であり、または固定され、並びに/或いは、前記接続要素によって、前記測定モジュール(33)は、前記評価ユニット(35)に電気的に接続可能である、または接続される、請求項1から5に記載のアドオンモジュール(1)。
【請求項7】
前記モジュラーツールボックスおよび/または前記アドオンデバイス(1)の少なくとも1つの測定モジュール(33)または各測定モジュール(33)は、それに接続された前記評価ユニット(35)によって読み取り可能なモジュール識別子をそれぞれ有することを特徴とする、請求項1から6に記載のアドオンモジュール(1)。
【請求項8】
電気的接続手段(41)を含み、前記電気的接続手段(41)を介して、前記アドオンモジュール(1)は、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の前記領域に配置される前記フィールドデバイス(3)の電子機器(23)に電気的に接続可能である、または接続されることを特徴とする、請求項1から7に記載のアドオンモジュール(1)。
【請求項9】
前記アドオンモジュール(1)は、前記電気的接続手段(41)を介して、前記フィールドデバイス(3)により電力を供給可能であるように設計されていることを特徴とする、請求項8に記載のアドオンモジュール(1)。
【請求項10】
前記評価ユニット(35)は、少なくとも1つのプロセス変数(PG)を追加的に考慮して、前記瞬間的なストレスおよび/または前記総ストレスを決定するように設計されており、前記少なくとも1つのプロセス変数(PG)は、前記接続手段(41)を介して前記評価ユニット(35)に送信可能であるか、または送信され、かつ、前記少なくとも1つのプロセス変数(PG)は、前記フィールドデバイス(3)で測定により捕捉可能であるか、または捕捉され、並びに
前記プロセス変数(PG)は、前記測定変数(L)および/または少なくとも1つの補助変数(H)を含み、前記測定変数(L)および/または前記少なくとも1つの補助変数(H)は、前記測定デバイス(5)によって、或いは、前記プロセスに面する前記フィールドデバイス(3)の領域に配置されたセンサ(43)によって測定により捕捉可能であるか、または捕捉される、請求項8から9に記載のアドオンモジュール(1)。
【請求項11】
前記評価ユニット(35)は、前記メモリ(37)に格納された特性データまたは特性カーブに基づいて、各プロセス変数(PG)の前記瞬間的な値にプロセスストレス値を割り当て、前記プロセスストレス値と前記環境ストレス値の関数として、和として、または加重和として、前記瞬間的なストレスを決定するように設計されている、請求項3および10に記載のアドオンモジュール(1)。
【請求項12】
前記フィールドデバイスは、前記測定変数(L)を測定により捕捉するための前記測定デバイス(5)と、前記測定デバイス(5)の少なくとも一部を含む前記プロセスに面する前記領域と、前記プロセスから離れる方向に向いた前記領域と、前記プロセスポート(7)とを含み、
前記プロセスポート(7)は、前記プロセスに面する前記領域が、前記使用場所で支配的なプロセス条件(PB)にさらされ、また、前記プロセスから離れる方向に向いた前記領域は、前記使用場所で支配的な環境条件(UB)にさらされるように、前記使用場所で前記フィールドデバイス(3)を固定するように設計されており、
前記アドオンモジュール(1)は、前記留め具手段(29)により、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の前記領域に取り付けられる、請求項1から11に記載のアドオンモジュール(1)を備えたフィールドデバイス。
【請求項13】
請求項10から11に記載のアドオンモジュール(1)を有する請求項12に記載のフィールドデバイスであって、
前記フィールドデバイス(3)は、電子機器(23)を含み、前記電子機器(23)は、前記プロセスから離れた方向に向いた前記フィールドデバイス(3)の前記領域に配置されており、また、前記測定デバイス(5)に接続されており、および
前記フィールドデバイス(3)は、少なくとも1つのプロセス変数(PG)を測定によって捕捉し、前記電子機器(23)に接続されたインターフェース(25)、或いは、操作ユニットおよび/もしくはディスプレイを接続するために設けられており、並びに前記電子機器(23)に接続されているインターフェース(25)を介して前記少なくとも1つのプロセス変数(PG)を提供するように設計されており、
前記プロセス変数(PG)は、前記測定変数(L)および/または少なくとも1つの補助変数(H)を含み、前記測定変数(L)および/または前記少なくとも1つの補助変数(H)は、前記測定デバイス(5)による、或いは、前記プロセスに面する前記フィールドデバイス(3)の前記領域に配置されたセンサ(43)による測定によって捕捉可能であり、
前記アドオンデバイス(1)は、前記インターフェース(25)を介して前記電子機器(23)に接続される、フィールドデバイス。
【請求項14】
前記プロセスから離れる方向に向いた前記領域に配置された電子機器(23)を含み、および
前記フィールドデバイスでは、前記アドオンデバイスが前記電子機器(23)に接続され、および前記電子機器(23)を介してエネルギーが供給される、請求項12または13に記載のフィールドデバイス。
【請求項15】
前記プロセスから離れる方向に向いた前記フィールドデバイスの前記領域は、ハウジング(21)を含み、および
前記アドオンデバイス(1)は、前記ハウジング(21)に取り付けられたハウジングカバーを形成する、請求項12から14に記載のフィールドデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも1つの測定変数を測定および/または監視するためのフィールドデバイスのためのアドオンモジュールに関し、
ここで、フィールドデバイスは、測定変数を測定によって捕捉するための測定デバイスと、プロセスポートを含み、
プロセスポートは、測定デバイスの少なくとも一部を含み、使用場所でプロセスに面するフィールドデバイスの領域が使用場所で支配的(prevailing)な環境条件にさらされ、プロセスから離れる方向に向いた(面していない、反対側)フィールドデバイスの領域が使用場所で支配的な環境条件にさらされるような方法で、フィールドデバイスを使用場所に固定するように設計されている。
【0002】
前述のタイプのフィールドデバイスは、さまざまなタイプの測定変数を測定および/または監視するために、さまざまな異なる応用分野で使用される。
【0003】
そうしたフィールドデバイスの例は、圧力測定デバイス、充填レベル測定デバイス、温度測定デバイス、流量測定デバイスなどであり、これらは、例えばEndress+Hauserグループによって販売されている。
【0004】
これらのフィールドデバイスは、通常、プロセスポートを含み、このポートを用いて、それらの測定デバイスがプロセス側で測定および/または監視されるべき測定変数にさらされるように、それぞれの使用場所に取り付けることができる。さらに、それらは、通常は、測定デバイスに接続された電子機器を含み、この電子機器は、プロセス側に存在するプロセス条件から保護するために、プロセスから離れる方向に向いたフィールドデバイスの領域に配置される。これらの電子機器は、通常は、測定デバイスによる測定で捕捉可能であり、かつ、測定変数に依存する測定変数の大きさに基づいて、測定結果および/または監視結果を決定するように機能し、並びに、電子機器に接続されたインターフェースを介して出力および/または表示を提供するように機能することができる。
【0005】
フィールドデバイスで決定された計測結果および/または監視結果は、計測技術および制御技術、並びに工業生産および/または加工プロセスなどのプロセスオートメーションにおいて、プロセスの監視、制御、および/または規制に利用されている。そのため、フィールドデバイスの誤動作、故障、そして、もちろん、測定結果および/または監視結果の不具合は、人間および環境に対して、使用場所で実行する処理に対して、並びに/或いは、これらのプロセスによって生成される製品に深刻な影響を与える可能性がある。
【0006】
測定デバイスは、或る状況下では、プロセス側のフィールドデバイスから非常に不利なプロセス条件(例えば、高温および/または高圧など)にさらされ得ることが知られており、これらのプロセス条件は、時間の経過とともにフィールドデバイスの動作性(operability)に有害な影響を与えるような方法で測定デバイスにストレスを与える。信頼性の高いエラーフリーの動作を保証するために、これらの測定デバイスは、プロセス条件によって引き起こされる機能低下が許容範囲を超える前に交換される必要がある。これに関連して、DE10 2004 063 469 A1には、測定デバイスにストレスを与えるプロセスパラメータが、プロセス条件にさらされているフィールドデバイスの測定デバイスによって測定され、そこから測定デバイスの瞬間的なストレスが決定される方法が記載されている。さらに、耐用年数中に継続的に測定されたストレスに基づいて、耐用年数中に総合的に測定装置がこれまでさらされた総ストレスが決定される。総ストレスが所定の限界値を超える場合、測定デバイスは交換される。限界値を下回った場合、総ストレスに基づいて残りの耐用年数が予測され、残りの耐用年数が経過する前に測定デバイスが交換される。
【0007】
しかし、フィールドデバイスは、或る状況下では非常に不利なプロセス条件にさらされるだけでなく、使用場所において支配的な環境条件にも耐えなければならない。例えば、フィールドデバイスが使用場所で強い太陽の放射線にさらされる場合、フィールドデバイスに含まれているシールの劣化が早まる恐れがある。フィールドデバイスが使用場所において塩分を含んだ周囲の雰囲気にさらされる場合、そこで腐食のリスクが高まる。たんに例として上述した環境パラメータに加えて、使用場所に依存して、個別に、または互いに組み合わせて、特定の状況下でフィールドデバイスの動作性を著しく損なう可能性のある、多様なさらなる環境パラメータが存在することはもちろんである。
【0008】
フィールドデバイスの測定デバイスにストレスを与えるプロセスパラメータとは対照的に、このプロセスパラメータは、フィールドデバイスによって測定および/または監視されるべき測定変数に由来しており、それゆえ、或るタイプのフィールドデバイスについては既知であり同じであるが、フィールドデバイスの製造においては、後にそれらが使用される環境は一般的に予測できない。従って、フィールドデバイスの製造において、後の使用場所でどの環境パラメータがフィールドデバイスに大きなストレスを与え得るかは分かっていない。
【0009】
これは、今日、フィールドデバイスが、それぞれのデバイスに対して予め定められた最大耐用年数の前に、製造業者によって再調整され、補修され、および/または交換されることをたいてい考慮に入れている。この場合、特に厳しい環境条件が通常は予想される洋上システムの使用場所などの特定のカテゴリの使用場所に対しては、対応する短い耐用年数を設定することができる。安全上の理由から、それぞれのカテゴリの使用場所で起こりうる最悪の環境条件にも適合するよう、簡潔に範囲を決めなければならない。この結果、それぞれのカテゴリの使用場所で、環境条件により著しく低いストレスしか受けないフィールドデバイスは、短くなった耐用年数が経過した後に、再調整され、補修され、および/または交換されることになる。この結果、運用コストの余計な増加をもたらす。
【0010】
逆に、フィールドデバイスは、使用場所において、最大耐用年数の評価時に想定した上限値を少なくとも一時的に超える環境パラメータにさらされる可能性がある。それゆえ、最大耐用年数を迎える前に、環境条件に起因してこのフィールドデバイスの動作性が既に損なわれてしまうことになる恐れがある。例えば、廃水処理に使用されるフィールドデバイスは、その特殊な場所に起因して、周囲の雰囲気に含まれる浸食性のある媒体の増加した濃度(例えば、この工場で通常発生する濃度を大幅に超える増加した塩素含量など)にさらされる可能性がある。
【0011】
本発明の目的は、環境条件によってフィールドデバイスに与えられるストレスを捕捉するためのデバイスを特定することであり、これにより、使用場所の状態に柔軟に適用可能な形態で、そこに存在するストレス関連の影響変数を考慮することが可能になる。
【0012】
この目的のために、本発明は、少なくとも1つの測定変数を測定および/または監視するためのフィールドデバイスのためのアドオンモジュールを含み、
ここで、フィールドデバイスは、測定変数を測定によって取得するための測定デバイスと、プロセスポートとを含み、
プロセスポートは、測定デバイスの少なくとも一部を含む使用場所でプロセスに面するフィールドデバイスの領域が使用場所で支配的な環境条件にさらされ、プロセスから離れる方向に向いたフィールドデバイスの領域が使用場所で支配的な環境条件にさらされるような方法で、フィールドデバイスを使用場所に固定するように設計されており、
アドオンモジュールは、留め具手段を含み、留め具手段によって、アドオンモジュールは、プロセスから離れる方向に向いたフィールドデバイスの領域に取り付けることが可能であり、
アドオンモジュールは、少なくとも1つの受容デバイスを含み、少なくとも1つの受容デバイスの中へと、異なる測定モジュールを含むモジュールツールボックスから選択可能な測定モジュールを挿入することが可能であるか、または挿入され、
各測定モジュールは、それぞれの測定モジュールにおいて少なくとも1つの環境パラメータおよび/または環境条件の少なくとも1つの影響を測定によって捕捉するように設計されており、および
アドオンモジュールは、受容デバイスに挿入され、評価ユニットに接続された選択された測定モジュールによって捕捉された環境パラメータおよび/または影響に基づいて、アドオンモジュールを備えたフィールドデバイスに作用する瞬間的なストレスまたは総ストレスを決定するように設計された評価ユニットを含み、そのストレスに、アドオンモジュールを搭載したフィールドデバイスは、その全耐用年数にわたってさらされてきている。
【0013】
本発明に係るアドオンモジュールは、測定モジュールの対象とされた選択により、フィールドデバイスの使用場所に存在する条件に柔軟に適用され得るという利点がある。そのため、それぞれの使用場所において、フィールドデバイスに大きなストレスを与え得る程度に発生するそれらの環境パラメータおよび/または影響を測定により捕捉することが、費用対効果の高い方法で可能となる。この点で特に有利なのは、この目的のためには、フィールドデバイスの製造において、フィールドデバイスの後の使用場所におけるストレスに関連した程度では全く発生しない場所特有の環境パラメータおよび/または影響をすでに知っている必要はなく、また、工場で各フィールドデバイスに、各ケースにおいて多種多様な変数を捕捉するための複数のデバイスを装備する必要もないことである。
【0014】
第1の発展形態は、モジュラーシステムに備えられるアドオンモジュールを含み、および/またはこのアドオンモジュールは:
環境温度を測定することで捕捉するための温度測定モジュールとして設計された測定モジュールと、
湿度測定モジュールとして設計された測定モジュールであって、環境湿度、相対湿度、または絶対湿度を測定することで捕捉するための測定モジュールと、
アドオンモジュールの振動を測定することで捕捉するための振動測定モジュールとして設計された測定モジュールと、
環境に含まれる物質、浸食性の媒体および/または腐食性の媒体、塩分および/または塩素分の濃度を測定することで捕捉するための濃度測定モジュールとして設計された測定モジュールと、
放射線測定モジュールに作用する放射線、放射線測定モジュールに作用する太陽の放射線、または放射線測定モジュールに作用する放射性放射線を測定することで捕捉するための放射線測定モジュールとして設計された測定モジュールと、
湿気測定モジュールを取り囲むハウジング内に侵入する湿気を測定することで捕捉するための湿気測定モジュールとして設計された測定モジュールと、
環境条件にさらされる犠牲要素であって、犠牲要素の腐食によって変化する少なくとも1つの測定可能な特性を有する犠牲要素を含む、腐食測定モジュールと、および/または
受容デバイスに挿入可能であり、また、挿入された状態で各受容デバイスを閉鎖するダミーモジュールと、を含む。
【0015】
第1の実施形態では、評価ユニットが以下のように設計されたアドオンモジュールを含み、
評価ユニットは、メモリに格納された特性データまたは特性カーブに基づいて、それに取り付けられた測定モジュールによって捕捉された環境パラメータおよび/または影響の瞬間的な値によって、それぞれの環境ストレス値を割り当て、環境ストレス値の関数、和、または加重和として瞬間的なストレスを決定し、
過去の耐用年数にわたって継続的に決定されたストレスの積分として、総ストレスを決定し、
評価ユニットは、現在のストレスおよび/または過去の総ストレスが、この目的のために設定された限界値を超えると、アラームを出力し、並びに/或いは
評価ユニットは、総ストレスに基づいて残りの耐用年数を決定する。
【0016】
第2の実施形態は、評価ユニットに接続された出力を含むアドオンモジュールを含み、この出力を介して評価ユニットは、現在のストレス、総ストレス、残りの耐用年数、および/またはアラームを、読み取り可能な形式で表示および/または提供する。
【0017】
第2の発展形態では、アドオンモジュールは、プロセスとは離れる方向に向いたフィールドデバイスの領域に取り付け可能なハウジングカバーとして設計される。
【0018】
第3の発展形態は、アドオンモジュールを含み、
アドオンモジュールにおいて、受容デバイスは、それぞれの測定モジュールの少なくとも1つの外面が環境条件にさらされるように、測定モジュールがそれぞれ挿入可能なまたは挿入されるスロットとして設計されており、
測定モジュールおよび受容デバイスは、接続要素を有し、その接続要素は、互いに補完的(complementary)であり、その接続要素によって、測定モジュールが受容デバイスに固定可能でありまたは固定され、並びに/或いは、その接続要素によって、測定モジュールが評価ユニットに電気的に接続可能、または接続される。
【0019】
第4の発展形態は、モジュラーツールボックスおよび/またはアドオンデバイスの測定モジュールの少なくとも1つまたは各測定モジュールが、それに接続された評価ユニットによって読み取ることが可能なモジュール識別子をそれぞれ有するアドオンモジュールを含む。
【0020】
第5の発展形態は、電気的接続手段を含むアドオンモジュールを含み、電気的接続手段を介してアドオンモジュールは、プロセスから離れる方向に向いたフィールドデバイスの領域に配置されたフィールドデバイスの電子部品に電気的に接続可能である、または接続される。
【0021】
第5の発展形態によれば、アドオンモジュールは、電気的接続手段を介してフィールドデバイスによって電力が供給され得るように設計されている。
【0022】
第5の発展形態またはその発展形の発展によれば、
評価ユニットは、フィールドデバイスによって捕捉可能であるか、または捕捉される少なくとも1つのプロセス変数を更に考慮して、瞬間的なストレスおよび/または総ストレスを決定するように設計されており、少なくとも1つのプロセス変数は、接続手段を介して評価ユニットに送信可能である、または送信され、並びに
プロセス変数は、測定変数および/または少なくとも1つの補助変数を含み、これらは測定デバイスによる測定、または、プロセスに面するフィールドデバイスに配置されたセンサによる測定によって捕捉可能である、または捕捉される。
【0023】
第1の実施形態および後の発展形態に係るアドオンモジュールの発展形によれば、評価ユニットは、各ケースにおいて、メモリに格納された特性データまたは特性カーブに基づいて、各プロセス変数の瞬間的な値にプロセスストレス値を割り当て、プロセスストレス値および環境ストレス値の関数、和、または加重和として現在のストレスを決定する、ように設計されている。
【0024】
本発明は、さらに、本発明に係るアドオンモジュールを備えたフィールドデバイスを含み、
アドオンモジュールは、測定変数を測定して捕捉するための測定デバイスと、測定デバイスの少なくとも一部分に面する領域と、プロセスから離れる方向に向いた領域と、プロセスポートとを含み、
プロセスポートは、プロセスに面する領域が使用場所で支配的なプロセス条件にさらされ、およびプロセスから離れる方向に向いた領域が使用場所で支配的な環境条件にさらされるように、使用場所にフィールドデバイスを固定するように設計されており、
アドオンモジュールは、留め具手段により、フィールドデバイスのプロセスから離れる方向に向いた領域に取り付けられる。
【0025】
第5の発展形態またはその発展形によるアドオンモジュールを備えたフィールドデバイスの発展形態は、以下を特徴とし、
フィールドデバイスは、測定デバイスに接続された電子機器を含み、電子機器は、フィールドデバイスのプロセスから離れる方向に向いた領域に配置されており、および
フィールドデバイスは、少なくとも1つのプロセス変数を測定によって捕捉し、電子機器に接続されたインターフェースを介して、或いは操作ユニットおよび/またはディスプレイを接続するために設けられており、および電子機器に接続されているインターフェースを介して少なくとも1つのプロセス変数を提供し、
プロセス変数は、測定変数および/または少なくとも1つの補助変数を含み、これらは測定デバイスによって、或いは、プロセスに面するフィールドデバイスの領域に配置されたセンサによって測定され得、並びに
アドオンデバイスは、インターフェースを介して電子機器に接続される。
【0026】
本発明は、さらに、本発明に係るフィールドデバイスを含み、
フィールドデバイスは、プロセスから離れる方向に向いた領域に配置された電子機器を含み、および
そのなかで、アドオンデバイスは電子機器に接続され、電子機器を介してエネルギーが供給される。
【0027】
本発明は、さらに、本発明に係るフィールドデバイスを含み、その中で、
フィールドデバイスのプロセスから離れる方向に向いた領域は、ハウジングを含み、および
アドオンデバイスは、ハウジングに取り付けられたハウジングカバーを形成する。
【0028】
次に、本発明とその利点を、3つの実施形態を示す図面の図を用いて詳細に説明する。図において同じ要素には同じ参照番号が付される。
【図面の簡単な説明】
【0029】
【
図1】アドオンモジュールを備え、使用場所に設置されるフィールドデバイスを示す。
【0030】
本発明は、少なくとも1つの測定変数Lを測定および/または監視するためのフィールドデバイス3のためのアドオンモジュール1と、このようなアドオンモジュール1を備えたフィールドデバイス3とを含む。本発明に係るアドオンモジュール1を備えたフィールドデバイス3の一例が
図1に示される。
【0031】
本発明に係るアドオンモジュール1は、フィールドデバイス3と組み合わせて使用することができ、フィールドデバイス3は、測定変数Lを測定によって捕捉するための測定デバイス5と、プロセスポート7とを含む。この場合、プロセスポート7は、測定デバイス5の少なくとも一部を含むプロセスに面するフィールドデバイス3の領域が、使用場所で支配的なプロセス条件PBにさらされ、およびフィールドデバイス3のプロセスから離れる方向に向いた領域が、使用場所で支配的な環境条件UBにさらされるように、フィールドデバイス3を使用場所に固定するように設計されている。
【0032】
図1は、コンテナ9内に位置する充填物11の充填レベルLを測定および/または監視するための充填レベル測定デバイスとして設計されたフィールドデバイス3の一例を示しており、そのプロセス接続部7は、ここでは、例えば、ここに示されているカウンターフランジなどのように、プロセスポート13に取り付けられるフランジとして設計されており、これは、使用場所に設置されており、また、この目的のために補完的である。代りに、従来の技術で知られている他のプロセスポートの変形形態を使用できることはもちろんである。
【0033】
一例として、ここに示されている測定デバイス5は、コンテナ9内に延びる棒状またはケーブル状のプローブを含み、このプローブは、ここではコンテナ9内で支配的なプロセス条件PBにさらされており、このプローブを用いて、充填レベルLに依存する変数を測定によって捕捉することができる。適切な充填レベルに依存する変数は、例えば、充填レベルLに依存する静水圧、または、この場合は電極として機能するプローブとプローブを囲むコンテナ9の容器壁とによって形成されるコンテナCの充填レベルLに依存する静電容量であり、これらは、コンテナ9内に配置されたプローブの端部領域15に配置された圧力センサ17による測定によって捕捉することができる。代りにまたは加えて、導波管として、この場合に機能するプローブに沿って電磁信号Sをコンテナ9内へと送信し、および、充填レベルLに依存して実行時間後に、充填材料表面19で反射されて戻されたそのエコー信号Rを受信するように、充填レベル測定デバイスを設計することができる。この場合、測定によって捕捉され得る実行時間は、充填レベルLに依存する変数を形成し、その変数に基づいてフィールドデバイス3は充填レベルLを測定および/または監視する。
【0034】
先行技術から知られているフィールドデバイスにおいて通例であるように、本発明に係るアドオンモジュール1を備えることが可能な、または備えているフィールドデバイス3のプロセスから離れる方向に向いたフィールドデバイス3の領域は、随意に、
図1にオプションとして示されているハウジング21をそれぞれ含むことが可能であり、ハウジング21の中には、
図1にオプションとして示される電子機器23が配置される。これらの電子機器23は、好ましくは、
a)それに接続された測定デバイス5にエネルギーを供給し、
b)それに接続された測定デバイス5による測定で捕捉された変数により、測定変数Lに対応する測定結果および/または監視結果を検出し、並びに/或いは
c)電子機器23に接続されたインターフェース25を介して、フィールドデバイス3で決定された測定結果および/または監視結果を提供する、ように設計される。
【0035】
随意に、フィールドデバイス3は、リレー出力、電流出力、信号出力、および/または、フィールドデバイス3をデータバスライン(例えばフィールドバス)に接続するためのデータバスライン、適切な出力などのインターフェース25に接続された出力(出力部、output)27を含むことができ、この出力を介して、フィールドデバイス3によって決定された測定結果および/または監視結果が出力され得、および/または問い合わせされ得る。それの代りに、またはそれに加えて、電子機器23およびインターフェース25は、随意に、測定結果および/または監視結果を、ここでは図示していないがインターフェース25に接続可能な操作インターフェースおよび/またはディスプレイなどのユニットに送信するように、並びに/或いは、このユニットにエネルギーを供給するように設計されることができる。先行技術から知られている複数のフィールドデバイスが前述の出力、電子機器、および/またはインターフェースを有する場合であっても、本発明に係るアドオンモジュール1は、対応する電子機器、インターフェース、および/または出力を持たないフィールドデバイス3と組み合わせて使用することも可能であることを、ここでは予防策として指摘しておく。
【0036】
アドオンモジュール1は、留め具手段29を含み、この留め具手段によって、アドオンモジュール1は、プロセスから離れる方向に向いたフィールドデバイス3の領域に取り付け可能であるか、または取り付けられる。留め具手段29としては、従来技術で知られている留め具手段、例えば、テンションベルト、クランプデバイス、プラグアンドソケットデバイス、フランジ、および/またはスレッド(thread)などが適している。この場合、プロセスから離れる方向に向いたフィールドデバイス3の領域において、これと補完的(complementary)な留め具手段31がフィールドデバイス側で必要とされるか否かは、留め具手段29の選択に依存する。
図1は、アドオンモジュール1の留め具手段29と、フィールドデバイス3のプロセスから離れる方向に向いた領域に配置された補完的な留め具手段31とが、互いにねじ込むことが可能なスレッドとして設計される例を示す。
【0037】
さらに、アドオンモジュール1は、少なくとも1つの受容デバイスを含み、好ましくは、図には詳細には示されていない複数の受容デバイスを含み、そのそれぞれに、異なる測定モジュール33を含むモジュールツールボックスから選択され得る測定モジュール33を挿入することができる。この場合、モジュールツールボックスの各測定モジュール33は、それぞれ、少なくとも1つの環境パラメータ、および/または、それぞれの測定モジュール33に対する環境条件の少なくとも1つの影響を測定によって捕捉するように設計されている。
【0038】
特に、以下に例として挙げた測定モジュール33がこの目的に適している。このようにして、モジュラーツールボックスおよび/またはアドオンモジュール1は、例えば、
-環境温度を測定により捕捉するための温度測定モジュールTとして設計された測定モジュール33、
-湿度測定モジュールF1として設計された測定モジュール33であって、環境湿度、相対湿度、または絶対湿度を測定により捕捉するための測定モジュール33、
-アドオンモジュール1の振動を測定により捕捉するための振動測定モジュールVとして設計された測定モジュール33、
-環境中に含まれる物質、浸食性の媒体および/または腐食性の媒体、塩分および/または塩素分の濃度を測定により捕捉するための濃度測定モジュールKとして設計された測定モジュール33、
-放射線測定モジュールγに作用する放射線、放射線測定モジュールγに作用する太陽の放射線、または放射線測定モジュールγに作用する放射性放射線を測定により捕捉するための放射線測定モジュールγとして設計された測定モジュール33、を含む。
【0039】
これらの測定モジュール33には、例えば、それぞれの変数を測定によって捕捉するために、従来技術から知られているセンサを使用することができる。
【0040】
これに代えて、または追加で、モジュラーツールボックスおよび/またはアドオンモジュール1は、少なくとも1つの更なる環境パラメータおよび/または環境条件の少なくとも1つの更なる影響を測定によって捕捉するために、少なくとも1つの更なる測定モジュール33を含むことができることはもちろんである。この一例は、湿度測定モジュールF2を取り囲むハウジング内に侵入する湿気を測定によって捕捉するための湿度測定モジュールF2として設計された測定モジュール33である。さらなる例は、犠牲要素を含む腐食測定モジュールRであり、この犠牲要素は、環境条件にさらされ、腐食測定モジュールRによって測定可能な特性であり、また、犠牲要素の腐食によって変化する特性を有する。犠牲要素としては、例えば、測定回路に接続された犠牲陽極であって、その電気抵抗が腐食の結果として測定回路によって測定されて捕捉される犠牲陽極が、好適である。
【0041】
随意に、測定モジュール33に加えて、モジュラーツールボックスおよび/またはアドオンモジュール1は、少なくとも1つのダミーモジュールBを含むこともできる。これらのダミーモジュールBはそれぞれが、それぞれの受容デバイスを閉鎖するように受容デバイスに挿入されることが可能である。ダミーモジュールBは、測定モジュール33の1つを受容する必要のないアドオンモジュール1の過剰な受容デバイスを、それらによって閉じることができるという利点がある。
【0042】
それぞれのアドオンモジュール1の使用場所でのストレスに関連する環境パラメータおよび/または影響を測定により捕捉するのに個別に適した測定モジュール33が、モジュラーツールボックスから選択され、アドオンモジュール1に挿入される。この目的のために、アドオンモジュール1の受容デバイスの数よりも少ない数の測定モジュール33のみが必要な場合、好ましくは、それぞれの場合において、ダミーモジュールBの1つが残りの受容デバイスに挿入される。それゆえ、スイミングプールで使用されるフィールドデバイス3のためのアドオンモジュール1は、温度測定モジュールT、大気中の湿度を計測する湿度測定モジュールF1、環境中に含まれる塩素含量を計測するための濃度測定モジュールK、およびダミーモジュールBを備えることができる。この例を
図1に示す。同様に、掘削リグで使用されるフィールドデバイス3のためのアドオンモジュール1は、振動測定モジュールV、腐食測定モジュールR、太陽の放射線を測定して捕捉するための放射線測定モジュールγ、および周囲に含まれる塩分含量を測定して捕捉するための濃度測定モジュールKを備えることができる。このサンプルを
図2に示す。
【0043】
本発明に係るアドオンモジュール1はそれぞれ、受容デバイスに挿入された選択された測定モジュール33であって、評価ユニット35に接続された選択された測定モジュール33によって捕捉された環境パラメータおよび/または効果に基づいて、アドオンモジュール1を備えたフィールドデバイス3に作用する瞬間的なストレスまたは総ストレスを決定するように設計された評価ユニット35を含み、これに、アドオンモジュール1を備えたフィールドデバイス3は、その全耐用年数にわたって以前からさらされている。
【0044】
本発明は、前述のような利点がある。本発明の個々の特徴のうち、個別におよび/または互いに組み合わせて使用できるいくつかの随意の好ましい実施形態を以下に詳細に説明する。
【0045】
評価ユニット35は、メモリ37に格納された特性データまたは特性カーブに基づいて、それに接続された測定モジュール33によって捕捉された環境パラメータおよび/または影響の瞬間的な値に、それぞれの環境ストレス値を割り当てて、環境ストレス値の関数として、環境ストレス値の和として、または環境ストレス値の加重和として、瞬間的なストレスを決定するように随意に設計することができる。これに代えてまたは加えて、評価ユニット35は、耐用年数にわたって継続的に決定された瞬間的なストレスの積分値として総ストレスを決定するように、随意に好ましくは設計される。
【0046】
これに代えてまたは加えて、評価ユニット35は、瞬間的なストレスおよび/または過去の総ストレスが、この目的のために指定された限界値を超えると、すぐにアラームを出力するように設計されることが好ましい。
【0047】
これに代えてまたは加えて、評価ユニット35は、総ストレスに基づいて残りの耐用年数を決定するように設計されることが好ましい。これにより、残りの耐用年数が経過する前に実施されるべきフィールドデバイス3のメンテナンスおよび/またはキャリブレーション、或いは、残りの耐用年数が経過する前に実施されるべきフィールドデバイス3の交換またはフィールドデバイス3の測定デバイス5の交換を、適宜スケジュールすることができるという利点がある。
【0048】
随意に、アドオンモジュール1は、評価ユニット35に接続された出力39を含み、出力39を介して評価ユニット35は、瞬間的なストレス、総ストレス、および/または残りの耐用年数を読み取り可能な形式で出力、表示、および/または提供し、随意にアラームも発行する。
【0049】
これに代えてまたは加えて、アドオンモジュール1は、好ましくは、電気的接続手段41を含み、それを介して、アドオンモジュール1は、プロセスから離れる方向に向いたフィールドデバイス3の領域に配置されたフィールドデバイス3の電子機器23に電気的に接続可能であるか、または接続される。
【0050】
この場合、アドオンモジュール1は、電気的接続手段41を介してフィールドデバイス3から電力が供給され得るように設計されることが随意に好ましい。代りに、補助デバイス1は、独自の電源を含むことができ、また、別の電源ユニットを介して供給されることもできる。
【0051】
これに代えてまたは加えて、評価ユニット35は、接続手段41を介して評価ユニット35に送信可能であるか、または送信され、また、フィールドデバイス3による測定によって捕捉される、少なくとも1つのプロセス変数PGを追加的に考慮して、瞬間的なストレスおよび/または総ストレスを決定するように設計されることが好ましい。これにより、プロセス側でフィールドデバイス3に作用し、また、フィールドデバイス3の機能的な障害につながり得るプロセス条件も、この点において考慮することができるという利点がある。プロセス変数PGは、好ましくは、測定変数Lおよび/または少なくとも1つの補助変数Hを含み、これらは、測定デバイス5による測定、またはプロセスに面するフィールドデバイス3に配置されているセンサ43による測定によってそれぞれ捕捉することができる、または捕捉される。例えば、プロセスに面するフィールドデバイス3の領域に作用するプロセス条件PBのプロセスパラメータ、例えば、温度センサによって測定されたプロセス温度および/または圧力センサによって測定されたプロセス圧力などは、補助変数Hとして好適である。
【0052】
この実施形態の変形例では、評価ユニット35は、例えば、メモリ37に記憶された特性データまたは特性カーブに基づいて、各場合における各プロセス変数PGにプロセスストレス値を割り当て、環境ストレス値とプロセスストレス値の関数として、和として、または加重和として、瞬間的なストレスを決定するように、随意に設計され得る。
【0053】
前述の実施形態に関わりなく、フィールドデバイス3の電子機器23へのアドオンモジュール1の接続手段41の電気的接続は、インターフェース25を介して好ましくは行われ、これは、フィールドデバイス3内にどのみち存在しており、また、エネルギー伝送および/またはプロセス変数PGの伝送に適している。特に、従来技術から知られているフィールドデバイスに備えられている前述のフィールドデバイスは、制御インターフェースおよび/またはディスプレイなどのユニットを接続するのに適している。
【0054】
フィールドデバイス3の電子機器23へのアドオンモジュール1の可能な望ましい電気的接続に関して、および/または、プロセスから離れる方向に向いたフィールドデバイス3の領域へのアドオンモジュール1の可能な限り単純な設置性に関して、現在特に有利であると考えられる実施形態は、アドオンモジュール1を、電子機器23を含むフィールドデバイス3のハウジング21に取り付け可能なハウジングカバーとして設計することで構成される。この実施形態は、
図1および
図2に示されており、既存のフィールドデバイス3または従来のハウジングカバーを含む既に使用されているフィールドデバイス3でさえ、アドオンモジュール1が従来のハウジングカバーの代わりにハウジング21に取り付けられるという点で、必要に応じていつでもアドオンモジュール1を取り付けできるという利点がある。従来のハウジングカバーが上述のユニットの1つを含むフィールドデバイス3は、従来のハウジングカバーの代わりにされるアドオンモジュール1が、とにかくユニットを接続するために意図されたインターフェース25を介して電子機器23に接続可能であるか、または接続されるという利点がある。
【0055】
アドオンモジュール1の上述の実施形態に関わりなく、アドオンモジュール1の受容デバイスは、好ましくはスロットとして設計されており、その中に測定モジュール33を、受容デバイスの1つでそれぞれ使用される各測定モジュール33が環境条件にさらされる少なくとも1つの外部を有するように挿入することができる。
図1および
図2は、例えば、
図2に示す接続要素45などのように、測定モジュール33と受容デバイスとが互いに補完関係にある実施形態を示しており、それによって、測定モジュール33は、受容デバイスに固定可能であるか、または固定され、並びに/或いは、評価ユニット35に電気的に接続可能であるか、または接続される。
【0056】
随意に、モジュラーツールボックスの測定モジュール33またはアドオンデバイス1に挿入された測定モジュール33は、それに接続された評価ユニット35によって読み出すことが可能なモジュール識別子をそれぞれ有することができる。これにより、評価ユニット35は、それに接続された測定モジュール33を自動的に検出し、それゆえ、(複数の)測定モジュール33が取り付けられた直後に、その動作に適合できるという利点がある。
【符号の説明】
【0057】
[参照符号の一覧]
1 アドオンモジュール、 25 インターフェース
3 フィールドデバイス、 27 出力
5 測定デバイス 29、 留め具手段
7 プロセス接続、 31 留め具手段
9 コンテナ、 33 測定モジュール
11 充填材料、 35 評価ユニット
13 プロセスポート、 37 メモリ
15 端部領域、 39 出力
17 圧力センサ、 41 接続手段
19 充填材料表面、 43 センサ
21 ハウジング、 45 接続要素
23 電子機器
【手続補正書】
【提出日】2021-11-17
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
少なくとも1つの測定変数(L)を測定および/または監視するためのフィールドデバイス(3)のためのアドオンモジュール(1)であって、
前記フィールドデバイス(3)は、前記測定変数(L)を測定によって捕捉するための測定デバイス(5)と、プロセスポート(7)とを含み、
前記プロセスポート(7)は、前記測定デバイス(5)の少なくとも一部を含み、プロセスに面する前記フィールドデバイス(3)の領域が、使用場所で支配的なプロセス条件(PB)にさらされ、かつ、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の領域が、前記使用場所で支配的な環境条件(UB)にさらされる方式で前記フィールドデバイス(3)を前記使用場所に固定するように設計されており、
前記アドオンモジュール(1)は、留め具手段(29)を含み、前記留め具手段(29)によって、前記アドオンモジュール(1)は、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の前記領域に取り付けることが可能であり、
前記アドオンモジュール(1)は、少なくとも1つの受容デバイスを含み、前記少なくとも1つの受容デバイスの中に、異なる測定モジュール(33)を含むモジュラーツールボックスから選択可能な測定モジュール(33)を挿入することが可能であり、
各測定モジュール(33)は、それぞれの測定モジュール(33)において少なくとも1つの環境パラメータおよび/または環境条件の少なくとも1つの影響を測定によって捕捉するように設計されており、および
前記アドオンモジュール(1)は、前記受容デバイスに挿入されており、かつ、評価ユニット(35)に接続されている選択された測定モジュール(33)によって捕捉された前記環境パラメータおよび/または影響に基づいて、前記アドオンモジュール(1)を備えた前記フィールドデバイス(3)に作用する瞬間的なストレスまたは総ストレスを決定するように設計されている前記評価ユニット(35)を含み、前記アドオンモジュール(1)を備える前記フィールドデバイス(3)は、前記瞬間的なストレスまたは前記総ストレスに前記フィールドデバイス(3)の耐用年数にわたって過去にさらされている、アドオンモジュール。
【請求項2】
前記モジュラーツールボックスおよび/またはアドオンモジュール(1)は、
環境温度を測定して捕捉するための温度測定モジュール(T)として設計された測定モジュール(33)と、
環境湿度、相対湿度、または絶対湿度を測定して捕捉するための湿度測定モジュール(F1)として設計された測定モジュール(33)と、
前記アドオンモジュール(1)の振動を測定して捕捉するための振動測定モジュール(V)として設計された測定モジュール(33)と、
環境中に含まれる物質、浸食性のある媒体、および/または腐食性のある媒体、塩分および/または塩素分の濃度を測定によって捕捉する濃度測定モジュール(K)として設計された測定モジュール(33)と、
放射線測定モジュール(γ)に作用する放射線、前記放射線測定モジュール(γ)に作用する太陽の放射線、または前記放射線測定モジュール(γ)に作用する放射性放射線を測定によって捕捉するための前記放射線測定モジュール(γ)として設計された測定モジュール(33)と、
湿気測定モジュール(F2)を取り囲むハウジング内に侵入する湿気を測定によって捕捉するための前記湿気測定モジュール(F2)として設計された測定モジュール(33)と、
前記環境条件にさらされる犠牲要素であって、前記犠牲要素の腐食によって変化する少なくとも1つの測定可能な特性を有する、前記犠牲要素を含む腐食測定モジュールと、および/または
各受容デバイスに挿入可能であり、また、挿入された状態で前記各受容デバイスを閉鎖するダミーモジュール(B)と、を含む、請求項1に記載のアドオンモジュール(1)。
【請求項3】
前記評価ユニット(35)は、
メモリ(37)に格納された特性データまたは特性カーブに基づいて、前記評価ユニットに取り付けられた前記測定モジュール(33)によって捕捉された前記環境パラメータおよび/または前記影響の瞬間的な値を用いて、それぞれの環境ストレス値を割り当て、および前記環境ストレス値の関数、和、または加重和として前記瞬間的なストレスを決定し、
前記過去の耐用年数にわたって継続的に決定されたストレスの積分として、前記総ストレスを決定し、
現在のストレスおよび/または前記過去の総ストレスが、このために設定された限界値を超えると、アラームを出力し、並びに/或いは
前記総ストレスに基づいて残りの耐用年数を決定する、ように設計されていることを特徴とする、請求項1から2
のいずれか一項に記載のアドオンモジュール。
【請求項4】
前記評価ユニット(35)に接続された出力(39)を含み、前記評価ユニット(35)は、前記出力を介して、前記現在のストレス、前記総ストレス、前記残りの耐用年数、および/または前記アラームを読み取り可能な形式で表示並びに/或いは提供する、請求項1から3
のいずれか一項に記載のアドオンモジュール(1)。
【請求項5】
前記アドオンモジュール(1)は、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)のハウジング(21)に取り付け可能なハウジングカバーとして設計される、請求項1から4
のいずれか一項に記載のアドオンモジュール(1)。
【請求項6】
前記受容デバイスは、前記測定モジュール(33)が、それぞれの測定モジュール(33)の少なくとも1つの外面が前記環境条件(UB)にさらされる方式で、それぞれ挿入されるスロットとして設計されており、および/または
前記測定モジュール(33)および前記受容デバイスは、接続要素(43)を有し、前記測定モジュール(33)および受容デバイスは、互いに相補的であり、前記接続要素によって、前記測定モジュール(33)は、前記受容デバイスに固定可能であり、または固定され、並びに/或いは、前記接続要素によって、前記測定モジュール(33)は、前記評価ユニット(35)に電気的に接続可能である、または接続される、請求項1から5
のいずれか一項に記載のアドオンモジュール(1)。
【請求項7】
前記モジュラーツールボックスおよび/または前記アドオンデバイス(1)の少なくとも1つの測定モジュール(33)または各測定モジュール(33)は、それに接続された前記評価ユニット(35)によって読み取り可能なモジュール識別子をそれぞれ有することを特徴とする、請求項1から6
のいずれか一項に記載のアドオンモジュール(1)。
【請求項8】
電気的接続手段(41)を含み、前記電気的接続手段(41)を介して、前記アドオンモジュール(1)は、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の前記領域に配置される前記フィールドデバイス(3)の電子機器(23)に電気的に接続可能である、または接続されることを特徴とする、請求項1から7
のいずれか一項に記載のアドオンモジュール(1)。
【請求項9】
前記アドオンモジュール(1)は、前記電気的接続手段(41)を介して、前記フィールドデバイス(3)により電力を供給可能であるように設計されていることを特徴とする、請求項8に記載のアドオンモジュール(1)。
【請求項10】
前記評価ユニット(35)は、少なくとも1つのプロセス変数(PG)を追加的に考慮して、前記瞬間的なストレスおよび/または前記総ストレスを決定するように設計されており、前記少なくとも1つのプロセス変数(PG)は、前記接続手段(41)を介して前記評価ユニット(35)に送信可能であるか、または送信され、かつ、前記少なくとも1つのプロセス変数(PG)は、前記フィールドデバイス(3)で測定により捕捉可能であるか、または捕捉され、並びに
前記プロセス変数(PG)は、前記測定変数(L)および/または少なくとも1つの補助変数(H)を含み、前記測定変数(L)および/または前記少なくとも1つの補助変数(H)は、前記測定デバイス(5)によって、或いは、前記プロセスに面する前記フィールドデバイス(3)の領域に配置されたセンサ(43)によって測定により捕捉可能であるか、または捕捉される、請求項8から9
のいずれか一項に記載のアドオンモジュール(1)。
【請求項11】
前記評価ユニット(35)は、
メモリ(37)に格納された特性データまたは特性カーブに基づいて、前記評価ユニットに取り付けられた前記測定モジュール(33)によって捕捉された前記環境パラメータおよび/または前記影響の前記瞬間的な値を用いて、それぞれの環境ストレス値を割り当て、および前記環境ストレス値の関数、和、または加重和として前記瞬間的なストレスを決定し、および
前記メモリ(37)に格納された特性データまたは特性カーブに基づいて、各プロセス変数(PG)の前記瞬間的な値にプロセスストレス値を割り当て、前記プロセスストレス値と前記環境ストレス値の関数として、和として、または加重和として、前記瞬間的なストレスを決定する、ように設計されている、請求
項10に記載のアドオンモジュール(1)。
【請求項12】
前記フィールドデバイスは、前記測定変数(L)を測定により捕捉するための前記測定デバイス(5)と、前記測定デバイス(5)の少なくとも一部を含む前記プロセスに面する前記領域と、前記プロセスから離れる方向に向いた前記領域と、前記プロセスポート(7)とを含み、
前記プロセスポート(7)は、前記プロセスに面する前記領域が、前記使用場所で支配的なプロセス条件(PB)にさらされ、また、前記プロセスから離れる方向に向いた前記領域は、前記使用場所で支配的な環境条件(UB)にさらされるように、前記使用場所で前記フィールドデバイス(3)を固定するように設計されており、
前記アドオンモジュール(1)は、前記留め具手段(29)により、前記プロセスから離れる方向に向いた前記フィールドデバイス(3)の前記領域に取り付けられる、請求項1から11
のいずれか一項に記載のアドオンモジュール(1)を備えたフィールドデバイス。
【請求項13】
請求項10から11
のいずれか一項に記載のアドオンモジュール(1)を有する請求項12に記載のフィールドデバイスであって、
前記フィールドデバイス(3)は、電子機器(23)を含み、前記電子機器(23)は、前記プロセスから離れた方向に向いた前記フィールドデバイス(3)の前記領域に配置されており、また、前記測定デバイス(5)に接続されており、および
前記フィールドデバイス(3)は、少なくとも1つのプロセス変数(PG)を測定によって捕捉し、前記電子機器(23)に接続されたインターフェース(25)、或いは、操作ユニットおよび/もしくはディスプレイを接続するために設けられており、並びに前記電子機器(23)に接続されているインターフェース(25)を介して前記少なくとも1つのプロセス変数(PG)を提供するように設計されており、
前記プロセス変数(PG)は、前記測定変数(L)および/または少なくとも1つの補助変数(H)を含み、前記測定変数(L)および/または前記少なくとも1つの補助変数(H)は、前記測定デバイス(5)による、或いは、前記プロセスに面する前記フィールドデバイス(3)の前記領域に配置されたセンサ(43)による測定によって捕捉可能であり、
前記アドオンデバイス(1)は、前記インターフェース(25)を介して前記電子機器(23)に接続される、フィールドデバイス。
【請求項14】
前記プロセスから離れる方向に向いた前記領域に配置された電子機器(23)を含み、および
前記アドオンデバイス
は、前記電子機器(23)に接続され、および前記電子機器(23)を介してエネルギーが供給される、請求項12または13に記載のフィールドデバイス。
【請求項15】
前記プロセスから離れる方向に向いた前記フィールドデバイスの前記領域は、ハウジング(21)を含み、および
前記アドオンデバイス(1)は、前記ハウジング(21)に取り付けられたハウジングカバーを形成する、請求項12から14
のいずれか一項に記載のフィールドデバイス。
【国際調査報告】