(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-30
(54)【発明の名称】多結晶合成ダイヤモンド材料
(51)【国際特許分類】
C23C 16/27 20060101AFI20220523BHJP
C30B 29/04 20060101ALI20220523BHJP
【FI】
C23C16/27
C30B29/04 E
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021557773
(86)(22)【出願日】2020-03-26
(85)【翻訳文提出日】2021-09-28
(86)【国際出願番号】 EP2020058561
(87)【国際公開番号】W WO2020201016
(87)【国際公開日】2020-10-08
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】GB
(81)【指定国・地域】
(71)【出願人】
【識別番号】514233369
【氏名又は名称】エレメント シックス テクノロジーズ リミテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100119013
【氏名又は名称】山崎 一夫
(74)【代理人】
【識別番号】100123777
【氏名又は名称】市川 さつき
(74)【代理人】
【識別番号】100111796
【氏名又は名称】服部 博信
(74)【代理人】
【識別番号】100193493
【氏名又は名称】藤原 健史
(72)【発明者】
【氏名】ウィリアムズ グリフィズ トレフォー
(72)【発明者】
【氏名】バルマー リチャード スチュアート
【テーマコード(参考)】
4G077
4K030
【Fターム(参考)】
4G077AA03
4G077AB03
4G077AB09
4G077BA03
4G077DB07
4G077DB19
4G077ED04
4K030AA09
4K030AA17
4K030BA27
4K030BB03
4K030CA02
4K030FA01
4K030HA01
(57)【要約】
多結晶CVD合成ダイヤモンドウェハの製造方法を開示する。CVDプロセスを用い、第1多結晶CVD合成ダイヤモンドウェハを基材上で第1の厚みまで成長させる。第2小ウェハを多結晶CVD合成ダイヤモンドウェハから切り取る。第2小ウェハをキャリア上に位置させ、追加の多結晶CVD合成ダイヤモンド材料を第2小ウェハ上で第2の厚みまで成長させて、第1及び第2の厚みを組み合わせた総厚みを有する多結晶CVD合成ダイヤモンド材料を作製する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
多結晶CVD合成ダイヤモンドウェハの製造方法であって、
第1CVD反応器に基材を設置することと;
プロセスガスを前記第1CVD反応器に導入し、前記CVD反応器内の前記プロセスガスが炭素含有ガス及び水素を含むこと、及び前記プロセスガスを用いてプラズマを形成することと;
前記基材上で第1多結晶CVD合成ダイヤモンドウェハを第1の厚みまで成長させることと;
前記第1CVD反応器から前記第1多結晶CVD合成ダイヤモンドウェハを取り出すことと;
前記基材から前記第1多結晶CVD合成ダイヤモンドウェハを取り外すことと;
前記多結晶CVD合成ダイヤモンドウェハから少なくとも1つの第2小ウェハを切り取ることと;
キャリア上に前記少なくとも1つの第2小ウェハを位置させることと;
第2CVD反応器に前記キャリア及び第2小ウェハを設置することと;
プロセスガスを前記第2CVD反応器に導入し、前記第2CVD反応器内の前記プロセスガスが窒素、炭素含有ガス、及び水素を含むこと、及び前記プロセスガスを用いてプラズマを形成することと;
前記第2小ウェハ上で追加の多結晶CVD合成ダイヤモンド材料を第2の厚みまで成長させて、前記第1及び第2の厚みを組み合わせた総厚みを有する多結晶CVD合成ダイヤモンド材料を作製することと、
を含む方法。
【請求項2】
前記第2CVD反応器が前記第1CVD反応器である、請求項1に記載の方法。
【請求項3】
前記第2小ウェハが前記第1多結晶CVD合成ダイヤモンドウェハの少なくとも中心部から切り取られ、前記中心部が前記第1多結晶CVD合成ダイヤモンドウェハの総面積の少なくとも70%であり、前記第1多結晶CVD合成ダイヤモンドウェハが少なくとも前記中心部に実質的にクラックを有さず、前記中心部には前記第1多結晶CVD合成ダイヤモンドウェハの両方の外主面と交わり、長さが2mm超まで伸びるクラックが存在しない、請求項1又は請求項2に記載の方法。
【請求項4】
前記基材が60mmから200mm、80mmから150mm、90mmから110mm、又は95mmから105mmの範囲である最大長さ寸法を有する、請求項1から3のいずれか一項に記載の方法。
【請求項5】
前記キャリアが多結晶CVD合成ダイヤモンド表面を含む、請求項1から4のいずれか一項に記載の方法。
【請求項6】
前記第2小ウェハが、ブレイジング、ソルダリング、又は機械的貼合のいずれかにより、前記キャリア上に位置する、請求項5に記載の方法。
【請求項7】
前記基材上の端及び中心点間の温度差が60℃以下、40℃以下、20℃以下、又は10℃以下である、請求項1から7のいずれか一項に記載の方法。
【請求項8】
前記多結晶CVD合成ダイヤモンドウェハから複数の第2小ウェハを切り取ることと、前記複数の第2小ウェハの少なくとも1つを前記キャリアに貼り合わせることとを更に含む、請求項1から7のいずれか一項に記載の方法。
【請求項9】
前記第1の厚みが最低でも0.2mm、最低でも0.5mm、最低でも1.0mm、最低でも2.0mm、最低でも3.0mm及び最低でも4.0mmのいずれかから選択される、請求項1から8のいずれか一項に記載の方法。
【請求項10】
前記第2の総厚みが最低でも0.2mm、最低でも0.5mm、最低でも1.0mm、最低でも2.0mm、最低でも3.0mm及び最低でも4.0mmのいずれかから選択される、請求項1から9のいずれか一項に記載の方法。
【請求項11】
前記基材が炭化物形成金属である、請求項1から10のいずれか一項に記載の方法。
【請求項12】
第2小ウェハ上における追加の多結晶ダイヤモンドの成長前に、前記少なくとも1つの第2小ウェハの表面を加工することを更に含む、請求項1から11のいずれか一項に記載の方法。
【請求項13】
加工される前記表面が、前記基材に最初に隣接した表面である、請求項12に記載の方法。
【請求項14】
前記第1多結晶CVD合成ダイヤモンドウェハを成長させることと、前記第1多結晶CVD合成ダイヤモンド及び前記追加の多結晶CVD合成ダイヤモンド材料が異なる性質を有するように、時間、出力密度、圧力及びガス組成のいずれかから選択される異なる条件を用い、前記追加の多結晶CVD合成ダイヤモンド材料を成長させることと、を更に含む、請求項1から13のいずれか一項に記載の方法。
【請求項15】
前記第1CVD反応器及び前記第2CVD反応器のいずれかがマイクロ波プラズマCVD反応器である、請求項1から14のいずれか一項に記載の方法。
【請求項16】
多結晶CVD合成ダイヤモンド材料であって、
前記多結晶CVD合成ダイヤモンド材料の厚みを通る室温の平均熱伝導率が1700から2400Wm
-1K
-1;
総厚みが少なくとも2.5mmであり、
前記厚みが第1の成長条件中に成長した第1多結晶ダイヤモンド材料の第1の厚み、及び第2の成長条件中に成長した第2多結晶ダイヤモンド材料の第2の厚みを含み、前記第1の厚み及び前記第2の厚みが成長界面により分けられる、材料。
【請求項17】
前記材料が2つの相対する外主面を有し、前記材料が実質的にクラックを有さず、前記多結晶CVD合成ダイヤモンド材料の両方の外主面と交わるクラックが存在しない、請求項16に記載の多結晶CVD合成ダイヤモンド材料。
【請求項18】
前記多結晶CVD合成ダイヤモンド材料の前記厚みを通る室温の前記平均熱伝導率が、少なくとも1750Wm
-1K
-1、1800Wm
-1K
-1、1850Wm
-1K
-1、1900Wm
-1K
-1、又は1950Wm
-1K
-1のいずれかから選択される、請求項16又は17に記載の多結晶CVD合成ダイヤモンド材料。
【請求項19】
前記多結晶CVD合成ダイヤモンド材料が、少なくとも10mm、少なくとも15mm、少なくとも20mm、少なくとも25mm、少なくとも30mm、少なくとも40mm、少なくとも50mm、少なくとも75mm及び少なくとも100mmのいずれかから選択される最大長さ寸法を有する、請求項16から18のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項20】
前記総厚みが少なくとも2.75mm、3.0mm、3.25mm、又は3.5mmのいずれかから選択される、請求項16から19のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項21】
前記成長界面が前記第1の厚みの5%以下、前記第1の厚みの2%以下、及び前記第1の厚みの1%以下のいずれかから選択される厚みを有する、請求項16から20のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項22】
第1多結晶ダイヤモンド材料の前記第1の厚みが、第2多結晶ダイヤモンド材料の前記第2の厚みと異なる組成を有する、請求項16から21のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項23】
第1多結晶ダイヤモンド材料の前記第1の厚みが、第2多結晶ダイヤモンド材料の前記第2の厚みと異なる厚みを有する、請求項16から22のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項24】
請求項1から15のいずれか一項の方法により作製される多結晶CVD合成ダイヤモンド材料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多結晶化学蒸着(CVD)合成ダイヤモンド材料の製造、及び該材料の作製方法に関する。
【背景技術】
【0002】
ダイヤモンド材料を合成する化学蒸着(CVD)プロセスは当技術分野で周知である。ダイヤモンドがグラファイトと比較して準安定である領域では、CVD条件下におけるダイヤモンドの合成は、バルク熱力学ではなく表面動力学により引き起こされる。CVDによるダイヤモンド合成は、標準的に通常メタン状のごく一部の炭素(通常<5%)を用いて実施されるが、他の炭素含有ガスを過剰な分子水素中で利用することもできる。分子水素を2000K超の温度に加熱すると、原子水素に著しく解離される。好適な基板材料の存在下、合成ダイヤモンド材料を蒸着させることができる。
マイクロ波プラズマで活性化されたCVDダイヤモンド合成システムは、通常原料ガスの供給及びマイクロ波電力源の両方と連結したプラズマ反応器を含む。プラズマ反応器は、定常マイクロ波を支持する共振空洞を形成するように構成される。炭素源及び分子水素を含む原料ガスがプラズマ反応器に供給され、定常マイクロ波により活性化されて、高電場領域においてプラズマを形成することができる。好適な基材がプラズマに極めて接近して提供されると、反応性炭素含有ラジカルがプラズマから基材に拡散することができ、基材に蒸着することができる。原子水素はプラズマから基材に拡散し、基材から非ダイヤモンド炭素を選択的にエッチング除去することもでき、ダイヤモンド成長が起こり得る。
CVDプロセスを用いた合成ダイヤモンド膜成長のために考えられる様々なプラズマ反応器は当技術分野で公知であり、マイクロ波プラズマCVD反応器、熱フィラメント反応器、プラズマジェット反応器、及びDCカソードアークジェット反応器が挙げられる。このような反応器は様々な異なる構造を有する。一般的な特徴はプラズマチャンバ;プラズマチャンバに配置される基材ホルダ;プラズマを形成するための電源;プラズマチャンバにプロセスガスを供給する、及びプロセスガスをプラズマチャンバから除去するためのガスフローシステム;並びに基材ホルダ上の基材の温度を制御するための温度制御システムを含む。
先行技術文献で開示されるマイクロ波プラズマ反応器を用いて、シリコンウェハ又は炭化物形成耐熱性金属ディスクなど、好適な基材上に化学蒸着により多結晶ダイヤモンドウェハを成長させることができる。このような多結晶CVDダイヤモンドウェハは、成長したままの状態では一般的に目に見えるほど不透明であるが、ウェハの相対する面を研磨することで透明にし、光学的用途のための透明な多結晶ダイヤモンドウィンドウを作製することができる。
【0003】
ダイヤモンド材料は高い熱伝導率を有するため、熱伝導要素として有用である。例えば、ディスクレーザーはレーザー利得材料の薄いディスクを配置した熱拡散基材を有する場合がある。この薄いディスクはレーザー利得を有するミラーとして作用するため、アクティブミラーと呼ばれることも多い。熱拡散基材は、基材の熱を抽出し取り除く冷却材にさらされる場合がある。出力カプラーは、アクティブミラーの反対に配置されて、光空洞を形成する。アクティブミラーは例えばダイオードレーザーで活性化され、高出力レーザー光線は出力カプラーを通して放射される。ディスクレーザーのアクティブミラーを搭載するための熱拡散基材として多結晶CVD合成ダイヤモンドウェハを使うことが知られている。ダイヤモンド材料は、その極めて高い熱伝導率のため、このような用途において有用であることが判明している。更に、ダイヤモンド材料は非常に低い熱膨張係数を有し、熱変形が小さい。
多結晶CVD合成ダイヤモンド試料の熱的性能は、試料の物理的寸法(径及び厚み)並びに試料を形成するダイヤモンド材料の「質」によって決まる。例えば、厚く、大きな面積試料は薄く、小さな面積試料より優れた熱拡散機能性を有する傾向がある。更に、熱伝導率は粒度、不純物、及び/又は欠陥、例えば成長中にダイヤモンド材料に取り込まれる非ダイヤモンド炭素により影響を受けることが知られている。また、材料品質はウェハ形状及び成長速度に密接に関係する。例えば、厚みを増加させた成長試料は、不純物及び/又は欠陥が多結晶CVD合成ダイヤモンドウェハに取り込まれる割合を増加させる傾向がある。更に、径を増加させた成長試料は、不純物及び/又は欠陥が多結晶CVD合成ダイヤモンド試料に取り込まれる割合、特に試料の周囲で取り込まれる割合を増加させる傾向がある。また更に、成長速度を上昇させた成長試料は、不純物及び/又は欠陥が多結晶CVD合成ダイヤモンド試料に取り込まれる割合を増加させる傾向がある。
【0004】
剛性のために、一部の用途では、例えば高出力レーザービームがダイヤモンドを通過するとき、使用中にCVD合成ダイヤモンドの硬さがたわみに耐えるのに十分であることが望ましい。硬さを増加させる1つの方法は、厚みを増加させることである。しかし、厚み、径及び/又は成長速度を増加させた成長ウェハは、合成プロセス中にウェハのクラッキングの問題も引き起こし得るため、約2mm超の厚みのウェハを成長させることは非常に難しい。
より厚いダイヤモンドウェハを提供する1つの解決法は、例えばブレイジングにより2つのウェハを結合することである。しかし、これはウェハ間の界面の原因となり、一様な低熱伝導率の不均一領域、光の透過が影響を受ける点、及び機械的により弱い点を取り込む場合があるため、この解決法は望ましくない。
更に、成長時間は何週間もの期間で評価することができ、成長運転中の電源障害などの事象が、得られる多結晶ダイヤモンド材料を使用できないようにする場合がある。運転開始時に問題(クラッキング又は汚染)が生じるなら、これは言及されない場合がある。運転終了前の数週間であり得るため、運転しても任意の使用できる多結晶ダイヤモンド材料を提供できない場合がある。
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記を考慮して、本発明の特定の実施形態の目的は、運転障害の影響を受けにくい多結晶CVDダイヤモンドを成長させるロバスト法を提供することである。
【課題を解決するための手段】
【0006】
第1の態様によれば、多結晶CVD合成ダイヤモンドウェハの製造方法を提供する。この方法は、
第1CVD反応器に基材を設置することと;
プロセスガスを第1CVD反応器に導入し、CVD反応器内のプロセスガスが炭素含有ガス及び水素を含むこと、プロセスガスを用いてプラズマを形成することと;
基材上で第1多結晶CVD合成ダイヤモンドウェハを第1の厚みまで成長させることと;
第1CVD反応器から第1多結晶CVD合成ダイヤモンドウェハを取り出すことと;
基材から第1多結晶CVD合成ダイヤモンドウェハを取り外すことと;
多結晶CVD合成ダイヤモンドウェハから少なくとも1つの第2小ウェハを切り取ることと;
キャリア上に少なくとも1つの第2小ウェハを位置させることと;
第2CVD反応器にキャリア及び第2小ウェハを設置することと;
プロセスガスを第2CVD反応器に導入し、第2CVD反応器内のプロセスガスが窒素、炭素含有ガス、及び水素を含むこと、プロセスガスを用いてプラズマを形成することと;
第2小ウェハ上で追加の多結晶CVD合成ダイヤモンド材料を第2の厚みまで成長させて、第1及び第2の厚みを組み合わせた総厚みを有する多結晶CVD合成ダイヤモンド材料を作製することと、を含む。
【0007】
第2小ウェハ上で成長させる利点は、小ウェハではウェハの表面における成長中の温度差がより低いことである。更に、小ウェハの最大長さ寸法の厚みに対する比率の低下は、小ウェハがより硬く、追加の多結晶ダイヤモンドの成長中に収縮し、薄い層に裂ける可能性が低いことを意味する。
選択肢として、第2CVD反応器は第1CVD反応器である。
選択肢として、第2小ウェハを第1多結晶CVD合成ダイヤモンドウェハの少なくとも中心部から切り取る。中心部は第1多結晶CVD合成ダイヤモンドウェハの総面積の少なくとも70%であり、第1多結晶CVD合成ダイヤモンドウェハは、少なくとも中心部に実質的にクラックを有さず、中心部には第1多結晶CVD合成ダイヤモンドウェハの両方の外主面と交わり、長さが2mm超まで伸びるクラックは存在しない。
基材は任意に、60mmから200mm、80mmから150mm、90mmから110mm、又は95mmから105mmの範囲である最大長さ寸法を有する。
選択肢として、キャリアは多結晶CVD合成ダイヤモンド表面を含む。
第2小ウェハは、ブレイジング、ソルダリング又は機械的貼合のいずれかにより、キャリア上に任意に位置する。
基材上における端及び中心点の温度差は、任意に60℃以下、40℃以下、20℃以下、又は10℃以下のいずれかである。
【0008】
本方法は、任意に多結晶CVD合成ダイヤモンドウェハから複数の第2小ウェハを切り取ることと、複数の第2小ウェハの少なくとも1つをキャリアに貼り合わせることとを更に含む。
選択肢として、第1の厚みが最低でも0.2mm、最低でも0.5mm、最低でも1.0mm、最低でも2.0mm、最低でも3.0mm及び最低でも4.0mmのいずれかから選択される。
選択肢として、第2の総厚みが最低でも0.2mm、最低でも0.5mm、最低でも1.0mm、最低でも2.0mm、最低でも3.0mm及び最低でも4.0mmのいずれかから選択される。
基材は任意に炭化物形成金属から形成される。
本方法は、第2小ウェハ上における追加の多結晶ダイヤモンドの成長前に、任意に少なくとも1つの第2小ウェハの表面を加工することを更に含む。
選択肢として、加工される表面は基材に最初に隣接した表面である。これは、その表面に位置するダイヤモンド粒子が反対の表面のダイヤモンド粒子より小さいため、有利である。小さなダイヤモンド粒子は、追加の多結晶ダイヤモンドの次の成長のために好適である。
本方法は任意に、第1多結晶CVD合成ダイヤモンドウェハを成長させることと、第1多結晶CVD合成ダイヤモンド及び追加の多結晶CVD合成ダイヤモンド材料が異なる性質を持つように、時間、出力密度、圧力及びガス組成のいずれかから選択される異なる条件を用い、追加の多結晶CVD合成ダイヤモンド材料を成長させることとを更に含む。
選択肢として、第1CVD反応器及び第2CVD反応器のいずれかは、マイクロ波プラズマCVD反応器である。
【0009】
第2の態様によれば、多結晶CVD合成ダイヤモンド材料の厚みを通る室温の平均熱伝導率が1700から2400Wm-1K-1であり、総厚みが少なくとも2.5mmである多結晶CVD合成ダイヤモンド材料を提供する。厚みは第1の成長条件を用いて成長した第1多結晶ダイヤモンド材料の第1の厚み、及び第2の成長条件を用いて成長した第2多結晶ダイヤモンド材料の第2の厚みを含み、第1の厚み及び第2の厚みが成長界面により分けられる。
選択肢として、この材料は相対する外主面を有し、実質的にクラックを有さず、多結晶CVD合成ダイヤモンド材料の両方の外主面と交わるクラックは存在しない。
選択肢として、多結晶CVD合成ダイヤモンド材料の厚みを通る室温の平均熱伝導率は、少なくとも1750Wm-1K-1、1800Wm-1K-1、1850Wm-1K-1、1900Wm-1K-1又は1950Wm-1K-1のいずれかから選択される。
選択肢として、多結晶CVD合成ダイヤモンド材料は、少なくとも10mm、少なくとも15mm、少なくとも20mm、少なくとも25mm、少なくとも30mm、少なくとも40mm、少なくとも50mm、少なくとも75mm及び少なくとも100mmのいずれかから選択される最大長さ寸法を有する。
選択肢として、多結晶CVD合成ダイヤモンド材料の総厚みは少なくとも2.75mm、3.0mm、3.25mm、又は3.5mmのいずれかから選択される。
成長界面は、任意に第1の厚みの5%以下、第1の厚みの2%以下及び第1の厚みの1%以下の厚みを有する。
第1多結晶ダイヤモンド材料の第1の厚みは、任意に第2多結晶ダイヤモンド材料の第2の厚みと異なる組成を有する。
第1多結晶ダイヤモンド材料の第1の厚みは、任意に第2多結晶ダイヤモンド材料の第2の厚みと異なる厚みを有する。
【0010】
第3の態様によれば、上記第1の態様に記載した方法により作製される多結晶CVD合成ダイヤモンド材料を提供する。
【0011】
非限定的な実施形態が実施例により、及び添付図を参照して以下に説明される。
【図面の簡単な説明】
【0012】
【
図2】
図2a~cは平面図に
図1のプロセスを模式的に説明する。
【
図3】
図3は
図1の方法により成長した多結晶CVD合成ダイヤモンド材料を示す断面顕微鏡写真である。
【
図4】
図4は
図2の多結晶CVD合成ダイヤモンドのトリミングした高倍率画像である。
【
図5】
図5は
図3の断面のDiamondview(商標)画像である。
【
図6】
図6は研磨した成長表面の微分干渉観察(DIC)画像である。
【
図7】
図7a~cは側立面図(ノンスケール)に成長したままの多結晶CVDダイヤモンド材料の厚みの変動、及び多結晶CVDダイヤモンド材料の表面の加工効果を模式的に説明する。
【
図8】
図8a~dは側立面図(ノンスケール)に新しい成長表面として基材に隣接するウェハの表面を用いる効果を模式的に示す。
【発明を実施するための形態】
【0013】
高い収率、及び成長運転障害の早期特定は、多結晶CVDダイヤモンドウェハを第1の厚みまで成長させることと、このウェハの使用できる部分を1つ又は複数の小さな多結晶CVDダイヤモンドウェハに切り取ることと、その後小さな多結晶CVDダイヤモンドウェハ上でダイヤモンド成長を継続することとにより達成することができることを本発明者は理解している。このようにして、成長運転の開始時に問題が生じる場合、第1多結晶CVDダイヤモンドウェハを加工して小ウェハを形成するとき、この問題は早期に特定される。更に、小ウェハ上で継続したダイヤモンド成長が80%ほどの収率を有すると、これは、運転全体で有効な収率を有さない先行技術と比べて向上している。本方法の更なる利点は、最終物の厚みを通る異なる点で異なる性質を有するダイヤモンドを成長させることができることである。本方法の更なる利点は、多結晶CVDダイヤモンドをニアネットシェイプで成長させることができ、これにより少ない加工で最終製品を成形することである。
本プロセスは
図1のフロー図に示され、以下の番号付けはフロー図と一致する。
【0014】
S1.基材を第1CVD反応器に設置する。好適なCVD反応器の例は、国際公開第2104/026930号に記載されている。当業者に周知である耐熱性炭化物形成金属、ダイヤモンド被覆基材など、任意の好適な基材を用いてよい。基材を加工して、表面粗さを小さくする。CVDダイヤモンド成長の前に、耐熱性金属基材を清潔にして、確実に加工によるすべての汚染を除去することができ、及び/又は種を添加してダイヤモンド成長用の核生成を補助することができる。基材の典型的なサイズは60mmから200mm、80mmから150mm、90mmから110mm又は95mmから105mmである。
S2.プロセスガスを導入し、イオン化させて基材近くにプラズマを形成する。プロセスガスとしては、水素及びメタンなどの炭素含有ガスが挙げられる。多結晶ダイヤモンドをドープする必要があれば、他のガスを添加してもよい。他の種類のガスの例としては、ホウ素含有ガス及び窒素含有ガスが挙げられる。
マイクロ波プラズマCVD反応器、熱フィラメント反応器、プラズマジェット反応器、及びDCカソードアークジェット反応器のいずれかを用いるなど、当業者に公知の任意の好適な方法によりプラズマを形成することができる。
高出力密度及び高圧力条件は、あるグレードの多結晶ダイヤモンド材料を高成長速度で合成するのに有利であることが判明しているが、出力密度及び圧力が高すぎると、成長条件は不安定になり、均一に制御するのが難しくなる。
一部はマイクロ波出力により、一部は基材の近くを流れる冷却ガスを使用することにより、基材の温度を制御してよい。通常、基材の端及び中心点間の温度差は、60℃以下、49℃以下、20℃以下、又は10℃以下である。基材内のひずみ及び基材上で成長するダイヤモンド材料を低減するために低い温度差が望まれるが、これを達成するのは困難になり得る。基材の最大長さ寸法を増加させるほど、温度差を制御することは困難になる。
【0015】
S3.第1多結晶CVD合成ダイヤモンドウェハを基材上で第1の厚みまで成長させる。
S4.第1多結晶CVD合成ダイヤモンドウェハを第1CVD反応器から取り出す。基材からも取り外してよい。
S5.
図2aに示すように、多結晶CVD合成ダイヤモンドウェハ1を加工して、多結晶CVD合成ダイヤモンドウェハから第2小ウェハ2を切り取る。
図2aは、多結晶CVD合成ダイヤモンドウェハ1の平面図及び側立面図を示す。例えばレーザー切断、ダイヤモンドが好適な導電性組成を有するのであれば放電加工機(EDM)、及び機械的切断等の任意の好適な切断技術を使用することができる。その後、第2小ウェハ2を清潔にして、グラファイト及び他の汚染物質を除去することもでき、更に加工して、必要な粗さ、平坦度及び均一な(又は制御された)厚みを有する表面を得ることができる。
図2aに示すように、複数の第2小ウェハ2を多結晶CVD合成ダイヤモンドウェハ1から切り取ることができる。すべての多結晶CVD合成ダイヤモンドウェハ1が更なるダイヤモンド成長のために十分な質を有するわけではないことに留意する。クラック、不純物及び含有物は、多結晶CVD合成ダイヤモンドウェハ1の切片を不適当にし得る。通常、このような領域は多結晶CVD合成ダイヤモンドウェハの外周に面しており、多結晶CVD合成ダイヤモンドウェハ1の中心部のみが使用に適する場合がある。
S6.
図2bに示すように、第2小ウェハ2を任意の好適な手段によりキャリア3上に位置させる。このような手段の例としては、ブレイジング、ソルダリング及び機械的貼合が挙げられる。大抵の場合、第2小ウェハ2及びキャリア3間で均一な熱接触を有することが重要であり、このようにして確実に第2小ウェハ2表面の温度及び表面の温度変動を制御することができ、ホットスポットが第2小ウェハ2及びキャリア3間に生じないようにする。キャリアとしては、他の小ウェハ、炭化物形成金属、多結晶ダイヤモンドで被覆された炭化物形成金属、又は当業者に公知の他の好適な材料を挙げることができる。なお、複数の第2小ウェハ2をキャリア上に位置させることができる。
【0016】
S7.キャリア3及び第2小ウェハ2(又はウェハ)を第2CVD反応器に設置する。第2CVD反応器は第1多結晶CVD合成ダイヤモンドウェハを成長させるのに用いるのと同じCVD反応器でよく、又は異なるCVD反応器でよい。
S8.プロセスガスを反応器に導入し、イオン化させて基材の近くにプラズマを形成する。プロセスガスとしてはメタンなど炭素含有ガス、水素が挙げられ、プロセスガスはプラズマを形成する。多結晶ダイヤモンドをドープする必要があれば、他のガスを添加してもよい。他の種類のガスの例としては、ホウ素含有ガス及び窒素含有ガスが挙げられる。通常成長条件は、フロー図のS2で上述したものと類似している。しかし、成長条件が著しく異なる場合、異なる性質を有するダイヤモンドが生じる。例えば、耐摩耗性が高いダイヤモンドの第1層、及び熱伝導率が高い第2層を有するダイヤモンド材料が望ましい場合がある。
S9.追加の多結晶CVD合成ダイヤモンド材料4を第2小ウェハ2上で成長させて、第2の総厚みの多結晶CVD合成ダイヤモンド材料を作製する。
S10.第2小ウェハ2を第2CVD反応器から取り出し、必要があれば更なる加工のためにキャリアから取り外して、ヒートスプレッダ又は光学窓など、最終製品を成形する。或いは、第2小ウェハを更に加工することができ、工程S6からS9を繰り返して、3層以上のダイヤモンド材料を作製する。
得られるダイヤモンド材料を調査すると、S2及びS3で成長したダイヤモンドの層、並びに工程S8及びS9で成長したダイヤモンドの層間に成長界面がはっきり見える。この界面は成長条件が同一であっても明らかである。これは発光又は組織の変化として観察することができる。成長条件が工程S2及びS8で同一であっても、その成長条件までの傾きにより、目に見える成長界面が残る。
【0017】
例示的なプロセスにおいて、直径100mmの炭化物形成金属ディスク状の基材を研磨して、表面粗さRaを1μm未満とした。ダイヤモンド合成プロセスでは、出力密度が3.5Wmm-2、圧力が約200トールであり、水素及び炭素含有ガスを含むプロセスガスを有するマイクロ波プラズマCVD反応器を用いた。約2.5mmの厚みの第1多結晶CVDダイヤモンドウェハを作製した。
第1多結晶CVDダイヤモンドウェハを複数の第2小ウェハにレーザー切断し、それぞれを直径25mmとした。各第2小ウェハを酸中で煮沸することにより清潔にして、グラファイト及び他の汚染物質を除去した。
多結晶CVD合成ダイヤモンドで被覆された第2のタングステンディスクを提供し、第2小ウェハをタングステンディスクの被覆表面に取り付けた。
第2小ウェハを有する第2のタングステンディスクをCVD反応器に戻し、成長運転を行って0.8mmの厚みまで第2層を成長させ、総厚みを3.3mmとした。
【0018】
図3は最終の多結晶CVD合成ダイヤモンド材料5を示す断面顕微鏡写真である。
図4は
図3の多結晶CVD合成ダイヤモンド1のトリミングした高倍率画像である。
ダイヤモンド材料の第1層6は、いくつかのマイクロフィーチャ及び他の欠陥を含んでいた。マイクロフィーチャは国際公開第2013/087702号に記載されている。多結晶ダイヤモンド試料の光学顕微鏡検査は、一般的に個別の粒子内で合成中に形成される「マイクロフィーチャ」と呼ばれる微細なクラック様フィーチャの存在を明らかにしており、これはほぼ確実に粒子内応力の結果である。これらのマイクロフィーチャの形は様々であるが、通常約50~100μmの半径を有し、ダイヤモンド材料の特定の物性に悪影響を及ぼすことが示されている。マイクロフィーチャは、倍率約50倍の顕微鏡で調べることができる。
追加したダイヤモンド材料の第2層7は、第1層2よりマイクロフィーチャが少なかった。第1層6及び第2層7間の界面8は、隙間を実質的に有さないことが判明しており、第2層3の表面が機械的に加工された時でも、第1層6及び第2層7間に層間剥離は起こらなかった。
【0019】
図5は
図4の断面のDiamondview(商標)画像であり、初期の材料は特有の青及び赤の着色を有する。Diamondviewは、ダイヤモンドに短波紫外線光を照射することにより表面蛍光を明らかにする。赤色着色は多結晶ダイヤモンド粒子内の窒素-空孔中心により生じる。青色着色は転位及び粒子境界により生じる。二層を観察すると、第1層6はいくつかの赤色着色を含有し、第2層7はごく少量の赤色着色を含有する。
図6は第2層7の研磨した成長表面の微分干渉観察(DIC)画像である。これは、露出する一部の粒子以外の認識できるフィーチャが無く、隙間が無い点で、割れ目をほとんど有さない高品質材料に予想されるような表面を示す。
多結晶CVDダイヤモンドが成長すると、通常ダイヤモンド表面の厚みの変動は厚みの約10%である。
図7aは、側立面図に小ウェハ2を模式的に示す。小ウェハの表面9は粗く、厚みは平均厚みの約10%の差で変動する。
図7bに示すように、一度追加のダイヤモンド10が小ウェハ2上で成長すると、成長界面11を小ウェハ2及び追加のダイヤモンド10間に確認することができる。通常、成長界面は小ウェハ2の平均厚みの約10%の厚みを有する。以下の工程S1からS10ではなく、二層の成長間で成長条件が単純に変化するなら、成長界面も観察される。
第2層の表面を加工して、成長表面上の表面粗さを低減し、第2ウェハ2の厚みの変動を低減すると、
図7cに示すように、非常に薄い成長界面を観察することができる。この厚みは第1の厚みの5%以下、第1の厚みの2%以下、又は第1の厚みの1%以下の場合がある。このような加工は当業者に周知であり、ラップ仕上げ、研削、研磨、及び他の周知の技術を挙げることができる。
なお、この加工は各小ウェハ2の表面に適用することができ、又は小ウェハ2に切り取る前に多結晶CVD合成ダイヤモンドウェハ1の表面に適用することができる。
【0020】
更なる実施形態において、加工され、追加のダイヤモンド材料10のための成長表面を形成する小ウェハ2の表面は、最初の成長段階で基材に最初に隣接した表面である。CVD多結晶ダイヤモンドが成長するにつれ、粒子は粗くなる。従って成長開始時に基材に隣接する粒子は、通常基材に隣接する表面の反対の面の粒子より小さい。これを
図8に示す。
図8aは、粗面9及び基材に元々隣接する反対面11を有する小ウェハ2を示す。反対面も加工する必要がある表面粗さ(図示せず)を有することに留意する。小ウェハ2を反転し、主な表面9、11の両方を加工して、表面粗さを小さく、厚みを均一にする(
図8b及び8cに示す)。
粗面9の平均粒度は、反対面の平均粒度より大きい。より小さな粒度がより均一な多結晶ダイヤモンド材料を作製するため、反対面11は、追加の多結晶CVDダイヤモンド10を成長させる面として用いられる。
【0021】
本方法は好ましい実施形態を参照して詳細に示され、記載されているが、添付のクレームで定められる本発明の範囲を逸脱することなく、形状及び細部に様々な変化を加えることができることを当業者は理解するであろう。
【手続補正書】
【提出日】2021-09-28
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
多結晶CVD合成ダイヤモンドウェハの製造方法であって、
第1CVD反応器に基材を設置することと;
プロセスガスを前記第1CVD反応器に導入し、前記CVD反応器内の前記プロセスガスが炭素含有ガス及び水素を含むこと、及び前記プロセスガスを用いてプラズマを形成することと;
前記基材上で第1多結晶CVD合成ダイヤモンドウェハを第1の厚みまで成長させることと;
前記第1CVD反応器から前記第1多結晶CVD合成ダイヤモンドウェハを取り出すことと;
前記基材から前記第1多結晶CVD合成ダイヤモンドウェハを取り外すことと;
前記多結晶CVD合成ダイヤモンドウェハから少なくとも1つの第2小ウェハを切り取ることと;
キャリア上に前記少なくとも1つの第2小ウェハを位置させることと;
第2CVD反応器に前記キャリア及び第2小ウェハを設置することと;
プロセスガスを前記第2CVD反応器に導入し、前記第2CVD反応器内の前記プロセスガスが窒素、炭素含有ガス、及び水素を含むこと、及び前記プロセスガスを用いてプラズマを形成することと;
前記第2小ウェハ上で追加の多結晶CVD合成ダイヤモンド材料を第2の厚みまで成長させて、前記第1及び第2の厚みを組み合わせた総厚みを有する多結晶CVD合成ダイヤモンド材料を作製することと、
を含む方法。
【請求項2】
前記第2CVD反応器が前記第1CVD反応器である、請求項1に記載の方法。
【請求項3】
前記第2小ウェハが前記第1多結晶CVD合成ダイヤモンドウェハの少なくとも中心部から切り取られ、前記中心部が前記第1多結晶CVD合成ダイヤモンドウェハの総面積の少なくとも70%であり、前記第1多結晶CVD合成ダイヤモンドウェハが少なくとも前記中心部に実質的にクラックを有さず、前記中心部には前記第1多結晶CVD合成ダイヤモンドウェハの両方の外主面と交わり、長さが2mm超まで伸びるクラックが存在しない、請求項1又は請求項2に記載の方法。
【請求項4】
前記キャリアが多結晶CVD合成ダイヤモンド表面を含む、請求項1から
3のいずれか一項に記載の方法。
【請求項5】
前記多結晶CVD合成ダイヤモンドウェハから複数の第2小ウェハを切り取ることと、前記複数の第2小ウェハの少なくとも1つを前記キャリアに貼り合わせることとを更に含む、請求項1から
4のいずれか一項に記載の方法。
【請求項6】
第2小ウェハ上における追加の多結晶ダイヤモンドの成長前に、前記少なくとも1つの第2小ウェハの表面を加工することを更に含む、請求項1から
5のいずれか一項に記載の方法。
【請求項7】
前記第1多結晶CVD合成ダイヤモンドウェハを成長させることと、前記第1多結晶CVD合成ダイヤモンド及び前記追加の多結晶CVD合成ダイヤモンド材料が異なる性質を有するように、時間、出力密度、圧力及びガス組成のいずれかから選択される異なる条件を用い、前記追加の多結晶CVD合成ダイヤモンド材料を成長させることと、を更に含む、請求項1から
6のいずれか一項に記載の方法。
【請求項8】
前記第1CVD反応器及び前記第2CVD反応器のいずれかがマイクロ波プラズマCVD反応器である、請求項1から
7のいずれか一項に記載の方法。
【請求項9】
多結晶CVD合成ダイヤモンド材料であって、
前記多結晶CVD合成ダイヤモンド材料の厚みを通る室温の平均熱伝導率が1700から2400Wm
-1K
-1;
総厚みが少なくとも2.5mmであり、
前記厚みが第1の成長条件中に成長した第1多結晶ダイヤモンド材料の第1の厚み、及び第2の成長条件中に成長した第2多結晶ダイヤモンド材料の第2の厚みを含み、前記第1の厚み及び前記第2の厚みが成長界面により分けられる、材料。
【請求項10】
前記材料が2つの相対する外主面を有し、前記材料が実質的にクラックを有さず、前記多結晶CVD合成ダイヤモンド材料の両方の外主面と交わるクラックが存在しない、請求項
9に記載の多結晶CVD合成ダイヤモンド材料。
【請求項11】
前記多結晶CVD合成ダイヤモンド材料が、少なくとも10mm、少なくとも15mm、少なくとも20mm、少なくとも25mm、少なくとも30mm、少なくとも40mm、少なくとも50mm、少なくとも75mm及び少なくとも100mmのいずれかから選択される最大長さ寸法を有する、請求項
9又は10に記載の多結晶CVD合成ダイヤモンド材料。
【請求項12】
前記成長界面が前記第1の厚みの5%以下、前記第1の厚みの2%以下、及び前記第1の厚みの1%以下のいずれかから選択される厚みを有する、請求項
9から
11のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項13】
第1多結晶ダイヤモンド材料の前記第1の厚みが、第2多結晶ダイヤモンド材料の前記第2の厚みと異なる組成を有する、請求項
9から
12のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項14】
第1多結晶ダイヤモンド材料の前記第1の厚みが、第2多結晶ダイヤモンド材料の前記第2の厚みと異なる厚みを有する、請求項
9から
13のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
【請求項15】
請求項1から
8のいずれか一項の方法により作製される多結晶CVD合成ダイヤモンド材料。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0021
【補正方法】変更
【補正の内容】
【0021】
本方法は好ましい実施形態を参照して詳細に示され、記載されているが、添付のクレームで定められる本発明の範囲を逸脱することなく、形状及び細部に様々な変化を加えることができることを当業者は理解するであろう。
本発明は、以下の事項を含んでいると捉えることもできる。
(付記1)
多結晶CVD合成ダイヤモンドウェハの製造方法であって、
第1CVD反応器に基材を設置することと;
プロセスガスを前記第1CVD反応器に導入し、前記CVD反応器内の前記プロセスガスが炭素含有ガス及び水素を含むこと、及び前記プロセスガスを用いてプラズマを形成することと;
前記基材上で第1多結晶CVD合成ダイヤモンドウェハを第1の厚みまで成長させることと;
前記第1CVD反応器から前記第1多結晶CVD合成ダイヤモンドウェハを取り出すことと;
前記基材から前記第1多結晶CVD合成ダイヤモンドウェハを取り外すことと;
前記多結晶CVD合成ダイヤモンドウェハから少なくとも1つの第2小ウェハを切り取ることと;
キャリア上に前記少なくとも1つの第2小ウェハを位置させることと;
第2CVD反応器に前記キャリア及び第2小ウェハを設置することと;
プロセスガスを前記第2CVD反応器に導入し、前記第2CVD反応器内の前記プロセスガスが窒素、炭素含有ガス、及び水素を含むこと、及び前記プロセスガスを用いてプラズマを形成することと;
前記第2小ウェハ上で追加の多結晶CVD合成ダイヤモンド材料を第2の厚みまで成長させて、前記第1及び第2の厚みを組み合わせた総厚みを有する多結晶CVD合成ダイヤモンド材料を作製することと、
を含む方法。
(付記2)
前記第2CVD反応器が前記第1CVD反応器である、付記1に記載の方法。
(付記3)
前記第2小ウェハが前記第1多結晶CVD合成ダイヤモンドウェハの少なくとも中心部から切り取られ、前記中心部が前記第1多結晶CVD合成ダイヤモンドウェハの総面積の少なくとも70%であり、前記第1多結晶CVD合成ダイヤモンドウェハが少なくとも前記中心部に実質的にクラックを有さず、前記中心部には前記第1多結晶CVD合成ダイヤモンドウェハの両方の外主面と交わり、長さが2mm超まで伸びるクラックが存在しない、付記1又は付記2に記載の方法。
(付記4)
前記基材が60mmから200mm、80mmから150mm、90mmから110mm、又は95mmから105mmの範囲である最大長さ寸法を有する、付記1から3のいずれか一項に記載の方法。
(付記5)
前記キャリアが多結晶CVD合成ダイヤモンド表面を含む、付記1から4のいずれか一項に記載の方法。
(付記6)
前記第2小ウェハが、ブレイジング、ソルダリング、又は機械的貼合のいずれかにより、前記キャリア上に位置する、付記5に記載の方法。
(付記7)
前記基材上の端及び中心点間の温度差が60℃以下、40℃以下、20℃以下、又は10℃以下である、付記1から7のいずれか一項に記載の方法。
(付記8)
前記多結晶CVD合成ダイヤモンドウェハから複数の第2小ウェハを切り取ることと、前記複数の第2小ウェハの少なくとも1つを前記キャリアに貼り合わせることとを更に含む、付記1から7のいずれか一項に記載の方法。
(付記9)
前記第1の厚みが最低でも0.2mm、最低でも0.5mm、最低でも1.0mm、最低でも2.0mm、最低でも3.0mm及び最低でも4.0mmのいずれかから選択される、付記1から8のいずれか一項に記載の方法。
(付記10)
前記第2の総厚みが最低でも0.2mm、最低でも0.5mm、最低でも1.0mm、最低でも2.0mm、最低でも3.0mm及び最低でも4.0mmのいずれかから選択される、付記1から9のいずれか一項に記載の方法。
(付記11)
前記基材が炭化物形成金属である、付記1から10のいずれか一項に記載の方法。
(付記12)
第2小ウェハ上における追加の多結晶ダイヤモンドの成長前に、前記少なくとも1つの第2小ウェハの表面を加工することを更に含む、付記1から11のいずれか一項に記載の方法。
(付記13)
加工される前記表面が、前記基材に最初に隣接した表面である、付記12に記載の方法。
(付記14)
前記第1多結晶CVD合成ダイヤモンドウェハを成長させることと、前記第1多結晶CVD合成ダイヤモンド及び前記追加の多結晶CVD合成ダイヤモンド材料が異なる性質を有するように、時間、出力密度、圧力及びガス組成のいずれかから選択される異なる条件を用い、前記追加の多結晶CVD合成ダイヤモンド材料を成長させることと、を更に含む、付記1から13のいずれか一項に記載の方法。
(付記15)
前記第1CVD反応器及び前記第2CVD反応器のいずれかがマイクロ波プラズマCVD反応器である、付記1から14のいずれか一項に記載の方法。
(付記16)
多結晶CVD合成ダイヤモンド材料であって、
前記多結晶CVD合成ダイヤモンド材料の厚みを通る室温の平均熱伝導率が1700から2400Wm
-1
K
-1
;
総厚みが少なくとも2.5mmであり、
前記厚みが第1の成長条件中に成長した第1多結晶ダイヤモンド材料の第1の厚み、及び第2の成長条件中に成長した第2多結晶ダイヤモンド材料の第2の厚みを含み、前記第1の厚み及び前記第2の厚みが成長界面により分けられる、材料。
(付記17)
前記材料が2つの相対する外主面を有し、前記材料が実質的にクラックを有さず、前記多結晶CVD合成ダイヤモンド材料の両方の外主面と交わるクラックが存在しない、付記16に記載の多結晶CVD合成ダイヤモンド材料。
(付記18)
前記多結晶CVD合成ダイヤモンド材料の前記厚みを通る室温の前記平均熱伝導率が、少なくとも1750Wm
-1
K
-1
、1800Wm
-1
K
-1
、1850Wm
-1
K
-1
、1900Wm
-1
K
-1
、又は1950Wm
-1
K
-1
のいずれかから選択される、付記16又は17に記載の多結晶CVD合成ダイヤモンド材料。
(付記19)
前記多結晶CVD合成ダイヤモンド材料が、少なくとも10mm、少なくとも15mm、少なくとも20mm、少なくとも25mm、少なくとも30mm、少なくとも40mm、少なくとも50mm、少なくとも75mm及び少なくとも100mmのいずれかから選択される最大長さ寸法を有する、付記16から18のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
(付記20)
前記総厚みが少なくとも2.75mm、3.0mm、3.25mm、又は3.5mmのいずれかから選択される、付記16から19のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
(付記21)
前記成長界面が前記第1の厚みの5%以下、前記第1の厚みの2%以下、及び前記第1の厚みの1%以下のいずれかから選択される厚みを有する、付記16から20のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
(付記22)
第1多結晶ダイヤモンド材料の前記第1の厚みが、第2多結晶ダイヤモンド材料の前記第2の厚みと異なる組成を有する、付記16から21のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
(付記23)
第1多結晶ダイヤモンド材料の前記第1の厚みが、第2多結晶ダイヤモンド材料の前記第2の厚みと異なる厚みを有する、付記16から22のいずれか一項に記載の多結晶CVD合成ダイヤモンド材料。
(付記24)
付記1から15のいずれか一項の方法により作製される多結晶CVD合成ダイヤモンド材料。
【国際調査報告】