IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エヴァ インコーポレイテッドの特許一覧

特表2022-527550マルチモード導波管光検出器を有するLIDARシステム
<>
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図1
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図2
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図3
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図4
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図5A
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図5B
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図6
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図7A
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図7B
  • 特表-マルチモード導波管光検出器を有するLIDARシステム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-06-02
(54)【発明の名称】マルチモード導波管光検出器を有するLIDARシステム
(51)【国際特許分類】
   G01S 7/481 20060101AFI20220526BHJP
   G01C 3/06 20060101ALI20220526BHJP
【FI】
G01S7/481 A
G01C3/06 120Q
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021559227
(86)(22)【出願日】2020-03-18
(85)【翻訳文提出日】2021-12-03
(86)【国際出願番号】 US2020023316
(87)【国際公開番号】W WO2020205240
(87)【国際公開日】2020-10-08
(31)【優先権主張番号】16/375,511
(32)【優先日】2019-04-04
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521095112
【氏名又は名称】エヴァ インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【弁理士】
【氏名又は名称】鈴木 博子
(72)【発明者】
【氏名】ベーザディ ベーサン
(72)【発明者】
【氏名】コカオグル オマー ピー
(72)【発明者】
【氏名】ガニエ キース
(72)【発明者】
【氏名】アヴチ オーウザン
(72)【発明者】
【氏名】オザ ニール エヌ
(72)【発明者】
【氏名】レズク ミナ
【テーマコード(参考)】
2F112
5J084
【Fターム(参考)】
2F112AD01
2F112BA05
2F112BA06
2F112BA07
2F112CA05
2F112DA15
2F112DA21
2F112DA30
2F112EA01
2F112FA07
5J084AA05
5J084AA07
5J084AC02
5J084BA01
5J084BA08
5J084BA21
5J084BA31
5J084BA41
5J084BA49
5J084BA50
5J084BB04
5J084BB15
5J084BB16
5J084BB19
5J084BB27
5J084BB28
5J084BB31
5J084BB33
5J084CA08
5J084CA42
5J084EA01
5J084EA05
5J084EA07
5J084EA22
(57)【要約】
光ビームを放出するように構成された光源を含む光検出及び測距(LIDAR)装置を提供する。LIDAR装置は、ターゲット信号として光ビームの第1の部分と局所振動子信号として光ビームの第2の部分とを受信し、かつターゲット信号と局所振動子信号を結合するように構成された自由空間光学系を更に含む。LIDAR装置は、結合した信号を受信するように構成されたマルチモード(MM)導波管を含む。
【選択図】図3
【特許請求の範囲】
【請求項1】
光ビームを放出するように構成された光源と、
ターゲット信号として前記光ビームの第1の部分と局所振動子信号として該光ビームの第2の部分とを受信し、かつ、前記ターゲット信号と前記局所振動子信号とを結合するように構成された自由空間光学系と、
結合された信号を受信するように構成されたマルチモード(MM)導波管と、
を含むことを特徴とする光検出及び測距(LIDAR)装置。
【請求項2】
偏光ビームスプリッタであって、該偏光ビームスプリッタを通して第1の偏光状態の光を第1の方向に通過させ、かつ第2の偏光状態の光を該第1の方向とは異なる第2の方向に反射するように構成された前記偏光ビームスプリッタを更に含む請求項1に記載のLIDAR装置。
【請求項3】
前記偏光ビームスプリッタを通過する前記光ビームを平行化するように構成された第2のレンズ光学系を更に含む請求項2に記載のLIDAR装置。
【請求項4】
前記MM導波管から前記結合された信号を受信するように構成された導波管光検出器を更に含む請求項1に記載のLIDAR装置。
【請求項5】
前記光源、導波管光検出器、及びMM導波管は、フォトニクスチップ上に位置決めされる請求項4に記載のLIDAR装置。
【請求項6】
前記自由空間光学系は、前記光ビームの偏光状態を変換するように構成された偏光波長板と、該光ビームを平行化するように構成されたレンズと、を含む請求項1に記載のLIDAR装置。
【請求項7】
前記偏光波長板は、4分の1波長板又は半波長板のうちの一方を含む請求項6に記載のLIDAR装置。
【請求項8】
前記偏光波長板は、前記光ビームの前記第2の部分を前記局所振動子信号として戻すために反射器又はコーティングを更に含む請求項6に記載のLIDAR装置。
【請求項9】
第2の光ビームを放出する第2の光源を更に含み、前記光ビームの第1の波長が、該第2の光ビームの第2の波長とは異なる、請求項1に記載のLIDAR装置。
【請求項10】
ダイクロイックミラーを含むデマルチプレクサであって、該ダイクロイックミラーが、前記第1の波長の前記光ビームを反射し、かつ前記第2の波長の前記第2の光ビームが該ダイクロイックミラーを通過することを可能にするように構成される前記デマルチプレクサを更に含む請求項9に記載のLIDAR装置。
【請求項11】
前記第1の波長の前記光ビームを第1の折り返しミラーに向けてかつ前記第2の波長の前記第2の光ビームを第2の折り返しミラーに向けて誘導するように構成された分散要素を含むデマルチプレクサを更に含む請求項9に記載のLIDAR装置。
【請求項12】
前記第2の光ビームに関する第2の結合された信号を受信するように構成された第2の導波管光検出器を更に含む請求項9に記載のLIDAR装置。
【請求項13】
光検出及び測距(LIDAR)システムの光源により、ターゲットに向けて光ビームを発生させる段階と、
前記LIDARシステムにより、前記ターゲットによる前記光ビームの反射に関するターゲット信号と自由空間光学系による該光ビームの反射に関する局所振動子信号とを受信する段階と、
マルチモード(MM)導波管の中に前記ターゲット信号と前記局所振動子信号を結合する段階と、
を含むことを特徴とする方法。
【請求項14】
導波管光検出器により、前記MM導波管から結合された信号を受信する段階を更に含む請求項13に記載の方法。
【請求項15】
前記LIDARシステム、前記MM導波管、及び前記導波管光検出器は、フォトニクスチップ上にある請求項14に記載の方法。
【請求項16】
前記光ビームを発生させる段階は、前記自由空間光学系により、前記光ビームの偏光状態を変換する段階を含む請求項13に記載の方法。
【請求項17】
前記LIDARシステムの第2の光源により、前記光ビームとは異なる波長を有する第2の光ビームを前記ターゲットに向けて発生させる段階と、
前記LIDARシステムにより、前記ターゲットによって反射された前記第2の光ビームに関する第2のターゲット信号と、前記自由空間光学系によって反射された前記光ビームに関する第2の局所振動子信号とを受信する段階と、
第2のMM導波管の中に前記第2のターゲット信号と前記第2の局所振動子信号を結合する段階と、
を更に含む請求項13に記載の方法。
【請求項18】
前記第2のターゲット信号及び前記第2の局所振動子信号は、前記光ビームに関する第1の波長の光を反射するダイクロイックミラーを通過して、前記第2のMM導波管の中に第2の波長の前記第2の光ビームを反射する折り返しミラーへ向けられる、請求項17に記載の方法。
【請求項19】
前記第2のターゲット信号及び前記第2の局所振動子信号は、前記第2のMM導波管の中に該第2のターゲット信号及び該第2の局所振動子信号を反射する折り返しミラーに、該第2のターゲット信号及び該第2の局所振動子信号を向けるように構成された分散要素を通過する請求項17に記載の方法。
【請求項20】
第2の導波管光検出器により、前記第2のMM導波管から第2の結合された信号を受信する段階を更に含む請求項17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願〕
この出願は、これにより引用によって本明細書にその内容全体が組み込まれる2019年4月4日出願の米国特許出願第16/375,511号の「35 U.S.C.§119(e)」の下での利益を主張するものである。
【0002】
本発明の開示は、一般的に、2次元にわたる距離と速度の同時測定を提供する光検出及び測距(LIDAR)に関する。
【背景技術】
【0003】
高速走査ミラーは、殆どの従来のLIDARシステムにおいて光景を照明するのに使用される主な構成要素である。1つのミラーは、典型的にX方向(方位角)に沿って高速で走査し、一方で別のミラーは、Y方向(仰角)に沿って低速で走査する。光の放出とターゲット反射からの検出とは、典型的に単一モードファイバを通じて同軸的に行われる。収集された光は、距離情報及び潜在的には速度情報を抽出するのに使用される測定遅延又は変更周波数痕跡を有する。点毎に検出された距離情報が走査ミラーからの角度位置フィードバックと組み合わされた時に、3D(点群)ポイントクラウドを確立することができる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
より高いフレームレートを達成するために、ミラーの角速度、特により高速の走査方向でのスキャナ(本発明の場合ではXスキャナ)のミラーの角速度が高められる。高い角速度によるミラーと単一モードファイバベースの検出を使用する場合、遠隔物体からのターゲット信号は激しく劣化する。信号劣化は、光信号(パルス又は周波数掃引式)の発射時から遠隔散乱ターゲットからの同じ信号の収集時までのスキャナミラーの角度位置の差に主として起因する。この僅かな角度変化は、結合効率を低減するファイバ先端でのターゲット信号のウォークオフを引き起こし、これは、より弱い信号検出として顕在化する。そのような劣化は、ファイバ径が小さくなる例えば~10μm直径を有する単一モードファイバの時に又はミラーの角速度が高くなる時により厳しくなる。
【課題を解決するための手段】
【0005】
本発明の開示は、限定ではないが以下の例示的実施を含む。
【0006】
一部の例示的実施は、光ビームを放出するように構成された光源を含む光検出及び測距(LIDAR)装置を提供する。LIDAR装置は、ターゲット信号としての光ビームの第1の部分と局所振動子信号としての光ビームの第2の部分とを受信してターゲット信号と局所振動子信号を結合するように構成された自由空間光学系を含む。LIDAR装置は、結合された信号を受信するように構成されたマルチモード(MM)導波管を更に含むことができる。
【0007】
一部の例示的実施は、ターゲットに向けて光ビームを光検出及び測距(LIDAR)システムの光源によって発生させる段階を含む方法を提供する。本方法は、ターゲットによる光ビームの反射に関するターゲット信号と自由空間光学系による光ビームの反射に関する局所振動子信号とをLIDARシステムによって受信する段階を含む。本方法は、マルチモード(MM)導波管の中にターゲット信号と局所振動子信号を結合する段階を更に含む。
【0008】
本発明の開示のこれら及び他の特徴、態様、及び利点は、以下の詳細説明を下記で簡単に説明する添付図面と共に読むことから明らかであろう。本発明の開示は、本発明の開示に列挙する2、3、4、又は5以上の特徴又は要素のあらゆる組合せをそのような特徴又は要素が本明細書に説明する特定の例示的実施において明示的に組み合わされるか又は他に列挙されるか否かに関わらず含む。この開示は、全体論的に読まれるように意図しており、そのために本発明の開示の内容が他に明確に指定しない限り、本発明の開示のいずれの分離可能な特徴又は要素もその態様及び例示的実施のいずれにおいても組合せ可能なものとして見られるものとする。
【0009】
従って、この「発明の概要」は、本発明の開示の一部の態様の基本的な理解を提供するように一部の例示的実施を要約するために単に提供されることは認められるであろう。従って、上述の例示的実施は単なる例に過ぎず、本発明の開示の範囲又は精神をいずれにせよ狭めるものと解釈すべきではないことは認められるであろう。他の例示的実施、態様、及び利点は、一部の上述の例示的実施の原理を一例として示す添付図面と共に以下の詳細説明から明らかになるであろう。
【0010】
本発明の開示の実施形態及び実施は、以下に与える詳細説明から及び特定の実施形態又は実施に限定するように取るべきではなく説明及び理解のみを目的とする本発明の開示の様々な態様及び実施の添付図面からより完全に理解されるであろう。
【図面の簡単な説明】
【0011】
図1】本発明の開示の例示的実施によるLIDARシステムを示す図である。
図2】本発明の開示の実施形態による走査システムの光回路の態様を示す図である。
図3】本発明の開示の実施形態によるLIDARシステムの態様を示す図である。
図4】本発明の開示の実施形態による複数の光源を有するLIDARシステムの態様を示す図である。
図5A】本発明の開示の実施形態による例示的デマルチプレクサの図である。
図5B】本発明の開示の一部の実施形態による例示的デマルチプレクサの図である。
図6】走査システムの光回路の態様を示す図である。
図7A】本発明の開示の実施形態により複数の光ビームを発生する複数の光源を有するLIDARシステムの態様を示す図である。
図7B】本発明の開示の他の実施形態により複数の光ビームを発生する複数の光源を有するLIDARシステムの態様を示す図である。
図8】本発明の開示の実施によりマルチモード導波管の中にターゲット信号と局所振動子信号を結合する方法の流れ図である。
【発明を実施するための形態】
【0012】
本発明の開示の例示的実施は、改善された走査LIDARシステムに関する。本発明の開示の例示的実施は、従来のLIDARシステムの欠点及び従来のFM LIDARシステムの制限を解消するために周波数変調(FM)とコヒーレント検出とを使用するタイプのLIDARに基づいている。歴史的に、FM LIDARシステムは、ビームの復路での多大な損失を欠点とし、従って、多くの場合に非常に嵩高なそのようなシステムは、飛行時間(TOF)LIDARシステムと同程度の距離を測定するのにより高い平均ビーム出力電力を必要とする。しかし、この距離は、目に安全な出力電力に対する作動距離によって制限される。
【0013】
本発明の開示の例示的実施は、コヒーレント検出を用いて距離と速度を同時に測定するように構成され、他のLIDARシステムからのクロストークに対するノイズ耐性という追加の利点を有する。距離、フレームレート、又は検出を改善するために他の実施は、非コヒーレントシステムと併用することができる。例示的実施は、ビームの復路での光損失を最小にし、それによってシステムの測定距離が長くする。更に、非劣化光源を使用することにより、例示的実施は、小型性と変化する環境条件下での相対的安定性とに起因して望ましいプラットフォームである集積シリコンフォトニクスにおいて多くの場合に使用される成熟した波長分割多重化(WDM)技術を利用することができる。
【0014】
上述のように、ターゲット信号の戻り時のファイバ先端での偏心は、結合効率の低下の主な発生源である。ファイバ先端において偏心した戻り光の阻害効果を軽減するために、従来のFM LIDARシステムは、単一モード(SM)導波管の中に局所振動子(LO)信号をターゲット信号と結合することができる。結合した信号は、次に、光学的光検出器に提供することができる。一般的に、ターゲット信号とLO信号とを結合する効率は、光検出器上でのLO信号とターゲット信号との空間的重複に基づく。SM導波管のモードフィールド径は比較的小さいので、ターゲット信号をSM導波管と結合するのは非常に困難であり、かつ製造することが困難である。更に、SM導波管は、同軸ビーム走査の時間依存の悪影響、例えば、不十分なデスキャン又は信号収差を補償しない。
【0015】
本発明の開示の例示的実施は、LO信号とターゲット信号を結合して、結合された信号をマルチモード(MM)導波管に提供するFM LIDARシステムによって上記及び他の欠点に対処する。システムを離れる光の偏光状態は、自由空間光学系の偏光波長板を用いて変換することができる。偏光波長板の後に、光の一部分は、LO信号としてシステムに向けて反射して戻すことができ、同時に残りの光は環境に進行し、それをシステムの視野(FOV)内にある1又は2以上の物体がターゲット信号として反射して戻すことができる。自由空間光学系は、LO信号と受信ターゲット信号とを結合して、結合された信号を発生するように構成することができる。自由空間光学系内で、ターゲット信号はLO信号と干渉し、結合された信号を形成する。結合された信号の偏光状態が変換されるので、結合された信号は、SM導波管と比較してより大きいモード面積を有する1又は2以上のMM導波管に偏光ビームスプリッタによって反射することができる。次に、結合された信号は、1又は2以上の導波管光検出器(WGPD)に提供することができる。
【0016】
従って、結合された信号をMM導波管に提供することにより、FM LIDARシステムの性能が改善される。MM導波管は、SM導波管と比較した時により大きいモード面積を有するので、結合された信号をMM導波管と結合する段階は、SM導波管を利用する従来のFM LIDARシステムと比較した時により効率的であり、FM LIDARシステムの性能及び製造機能を改善する。更に、結合された信号を受信するのにMM導波管を使用することは、同軸LIDARシステムに固有のものであると考えられる不十分なデスキャン効果及び収差を補償するのに役立たせることができる。
【0017】
図1は、本発明の開示の例示的実施によるLIDARシステム100を示している。LIDARシステム100は、いくつかの構成要素の各々の1又は2以上を含むが、図1に示すものよりも少ないか又は追加の構成要素を含むことができる。LIDARシステム100は、交通システム、製造システム、測定システム、医療システム、及びセキュリティシステム等であるがこれらに限定されない任意のセンシング市場で実施することができる。例えば、自動車産業では、説明するビーム送出システムは、自動運転者支援システム又は自律走行車両のための空間認識を支援することができる周波数変調連続波(FMCW)デバイスのフロントエンドになる。図示のように、LIDARシステム100は、フォトニクスチップ上に実施された光回路101を含む。光回路101は、能動的光学構成要素と受動的光学構成要素の組合せを含むことができる。能動的光学構成要素は、光信号などを発生、増幅、又は検出することができる。一部の例では、能動的光回路は、異なる波長の光ビーム、1又は2以上の光学増幅器、又は1又は2以上の光学検出器などを含む。
【0018】
自由空間光学系115は、光信号を搬送して光信号を能動的光回路の適切な入力/出力ポートに経路指定及び操作するための1又は2以上の光学導波管を含むことができる。自由空間光学系115は、タップ、波長分割マルチプレクサ、スプリッタ/コンバイナ、偏光ビームスプリッタ、又はコリメータなどを含むことができる。一部の実施形態では、後に議論するように、自由空間光学系115は、偏光状態を変換し、受信偏光光をPBSを用いて光学検出器に向けるための構成要素を含むことができる。
【0019】
光学スキャナ102は、走査パターンに従って環境を走査するように光信号をステアリングするためにそれぞれの直交軸に沿って回転可能である1又は2以上の走査ミラーを含む。例えば、走査ミラーは、1又は2以上のガルバノメータによって回転可能にすることができる。光学スキャナ102は、環境内の任意の物体上に入射する光を光回路101の受動的光回路構成要素に戻される戻り光ビームの中に収集する。例えば、戻り光ビームは、偏光ビームスプリッタによって光学検出器に向けることができる。ミラー及びガルバノメータに加えて、光学走査システムは、4分の1波長板、レンズ、又は反射防止被覆窓などのような構成要素を含むことができる。
【0020】
光回路101及び光学スキャナ102を制御及びサポートするために、LIDARシステム100は、LIDAR制御システム110を含む。LIDAR制御システム110は、LIDARシステム100のための処理デバイスを含むことができる。実施形態では、処理デバイスは、マイクロプロセッサ又は中央演算処理装置などのような1又は2以上の汎用処理デバイスとすることができる。より具体的には、処理デバイスは、複合命令セットコンピュータ(CISC)マイクロプロセッサ、縮小命令セットコンピュータ(RISC)マイクロプロセッサ、超長命令語(VLIW)マイクロプロセッサ、又は他の命令セットを実施するプロセッサ、又は命令セットの組合せを実施するプロセッサとすることができる。処理デバイスは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、又はネットワークプロセッサなどのような1又は2以上の専用処理デバイスとすることができる。
【0021】
一部の実施形態では、LIDAR制御システム110は、デジタル信号プロセッサのような信号処理ユニット112を含むことができる。LIDAR制御システム110は、光学ドライバ103を制御するためのデジタル制御信号を出力するように構成される。一部の実施形態では、デジタル制御信号は、信号変換ユニット106を通してアナログ信号に変換することができる。例えば、信号変換ユニット106は、デジタル/アナログ変換器を含むことができる。次に、光学ドライバ103は、レーザ及び増幅器のような光源を駆動するための駆動信号を光回路101の能動的構成要素に提供することができる。一部の実施形態では、複数の光源を駆動するために、いくつかの光学ドライバ103及び信号変換ユニット106を設けることができる。
【0022】
LIDAR制御システム110は、光学スキャナ102に対するデジタル制御信号を出力するようにも構成される。運動制御システム105は、LIDAR制御システム110から受信した制御信号に基づいて光学スキャナ102のガルバノメータを制御することができる。例えば、デジタル/アナログ変換器は、LIDAR制御システム110からの座標経路指定情報を光学スキャナ102内のガルバノメータによって解釈可能な信号に変換することができる。一部の実施形態では、運動制御システム105は、光学スキャナ102の構成要素の位置又は作動に関する情報をLIDAR制御システム110に戻すことができる。例えば、アナログデジタルコンバータは、次に、ガルバノメータの位置に関する情報をLIDAR制御システム110によって解釈可能な信号に変換することができる。
【0023】
LIDAR制御システム110は、到着するデジタル信号を解析するように更に構成される。この点に関して、LIDARシステム100は、光回路101が受信する1又は2以上のビームを測定するための光学受信機104を含む。例えば、基準ビーム受信機は、能動的光回路からの基準ビームの振幅を測定することができ、アナログデジタルコンバータは、基準受信機からの信号をLIDAR制御システム110によって解釈可能な信号に変換する。ターゲット受信機は、ターゲットの距離及び速度に関する情報をビート周波数変調光信号の形態で搬送する光信号を測定する。反射ビームは、局所振動子からの第2の信号と混合することができる。光学受信機104は、ターゲット受信機からの信号をLIDAR制御システム110によって解釈可能な信号に変換するための高速アナログデジタルコンバータを含むことができる。
【0024】
一部の用途では、LIDARシステム100は、環境の画像を取り込むように構成された1又は2以上の撮像デバイス108、システムの地点を与えるように構成された全地球測位システム109、又は他のセンサ入力を更に含むことができる。LIDARシステム100は、画像処理システム114を含むことができる。画像処理システム114は、画像及び地点を受信し、これらの画像及び地点又はそれらに関する情報をLIDAR制御システム110又はLIDARシステム100に接続された他のシステムに送るように構成することができる。
【0025】
何らかの例による作動において、LIDARシステム100は、2次元にわたって距離と速度を同時に測定するために非劣化光源を使用するように構成される。この機能は、周囲環境の距離、速度、方位角、及び仰角の実時間長測距を可能にする。一部の例示的実施では、システムは、複数の変調光ビームを同じターゲットに指定する。
【0026】
一部の例では、走査処理は、光学ドライバ103及びLIDAR制御システム110を用いて始まる。LIDAR制御システム110は、1又は2以上の光ビームを独立に変調するように光学ドライバ103に命令し、これらの変調信号は、受動的光回路を通ってコリメータに伝播する。コリメータは、この光を運動制御サブシステムによって定められた事前プログラミングされたパターンにわたって環境を走査する光学走査システムに向ける。光回路は、光が光回路101を離れる時に光の偏光を変換するための偏光波長板を含むことができる。実施形態では、偏光波長板は、4分の1波長板又は半波長板とすることができる。偏光光の一部分は、光回路101に反射して戻すことができる。例えば、レンズシステム又は平行化システムは、光の一部分を光回路101に反射して戻すための自然な反射特性又は反射コーティングを有することができる。
【0027】
環境から反射して戻された光信号は、光回路101を通して受信機に至る。この光の偏光は変換されるので、この光は、光回路101に反射して戻された偏光光部分と共に偏光ビームスプリッタが反射することができる。従って、光源と同じファイバ又は導波管に戻るのではなく、この反射光は、別個の光学受信機に反射される。これらの信号は互いに干渉し、結合された信号を発生する。ターゲットから戻る各ビーム信号は、時間シフト波形を生成する。2つの波形間の時間位相差は、光学受信機(光検出器)上で測定されるビート周波数を発生させる。次に、結合された信号は、光学受信機104に反射することができる。ビームを偏光して光学受信機104に向ける光回路101の構成に対しては後で説明する。
【0028】
光学受信機104からのアナログ信号は、ADCを用いてデジタル信号に変換される。次に、デジタル信号は、LIDAR制御システム110に送られる。次に、信号処理ユニット112は、デジタル信号を受信してこれらを解釈することができる。一部の実施形態では、信号処理ユニット112はまた、運動制御システム105及びガルバノメータ(図示せず)から位置データを受信し、かつ画像処理システム114から画像データを受信する。次に、信号処理ユニット112は、光学スキャナ102が追加の点を走査する時に環境内の点の距離及び速度に関する情報を有する3Dポイントクラウドを発生させることができる。信号処理ユニット112は、周囲の区域内の物体の速度及び距離を決定するために3Dポイントクラウドデータに画像データを重ねることができる。更に、システムは、正確な地球上の地点を与えるために衛星利用ナビゲーション地点データを処理する。
【0029】
図2は、走査システムの光回路200の態様を示している。例えば、図2の光回路200は、一部の例示的実施に従って図1に関して示したLIDARシステム100の光回路101の一部とすることができる。図示のように、光源202は、LIDARシステムの受動的光学構成要素にレーザビームのような光ビームを提供するように構成される。例えば、光源202は、レーザ源とすることができる。光ビームは、偏光ビームスプリッタ(PBS)214を非偏光光として通過することができる。PBS214を通過した後に、光ビームは、自由空間光学系212に入射することができる。実施形態では、自由空間光学系212は、レンズ210と偏光波長板208を含むことができる。レンズ210は、光をフォーカス/平行化するのに使用することができる。偏光波長板208の使用によって光ビームの偏光を変換することができる。次に、光ビームの偏光は、円偏光に変換されることになる。実施形態では、偏光波長板208は、偏光光の一部分を光源202に向けて反射して戻すことができる。一部の実施形態では、レンズ210又は偏光波長板208上で別個のミラー、マイクロレンズアレイ、フィルタ、又は反射コーティングを使用することができる。光の反射部分は、ターゲットからの戻り光との干渉のための局所振動子になる。
【0030】
この図は、自由空間光学系212のレンズ210及び偏光波長板208の特定の配置を示すが、他の実施形態では、自由空間光学系212のレンズ210、偏光波長板208、及び他の構成要素を様々な構成で配置することができる。例えば、自由空間光学系212は、光ビームが偏光波長板208を通してレンズ210に至るように構成することができる。一部の実施形態では、レンズ210は、偏光光の一部分を光源202に向けて反射して戻すことができる。一部の実施形態では、偏光波長板208は、PBS214の前に配置することができる。次に、PBS214の傾斜角は、光ビームの一部分が局所振動子信号としてWGPD204に向けて経路変更されるように調節することができる。
【0031】
偏光波長板208を通過した後に、光ビームは環境に伝送され、パルスの一部分は、1又は2以上の物体から反射して戻ることができる。例えば、光は、図1に関して議論した1又は2以上の高速走査ミラーによってラスターパターンで環境に伝送することができる。反射光の一部分は、光源202の方向にターゲット信号として戻ることができる。自由空間光学系212は、受信ターゲット信号を局所振動子信号と結合して空間的に位置合わせされて共伝播する結合された信号を発生するように構成することができる。ターゲット信号と局所振動子信号とを含む結合された信号は偏光されているので、結合された信号が偏光ビームスプリッタ206に戻った時に、結合された信号は、光源202に戻るのではなく導波管光検出器204に反射される。局所振動子信号とターゲットからの信号とは、干渉して結合された信号を発生する。従って、2つの信号を互いに干渉させる必要はない。その後に、結合された信号は、ターゲット点における環境に関する距離、速度、又は他のファクタを解釈するために用いることができる。
【0032】
図3は、本発明の開示の実施形態によるLIDARシステム300の態様を示している。LIDARシステム300は、LIDARシステム300の1又は2以上の構成要素を含むフォトニクスチップ302を含むことができる。実施形態では、図1で上述のように、光回路101は、フォトニクスチップ302上に実施される。光回路101は、光ビームを発生することができ、この光ビームは、その単一モード伝播用に構成された単一モード導波管306に通される。一部の実施形態では、光ビームは、SM導波管306から光ビームのモード面積を拡大するように構成された任意的なビーム拡大器308aに提供することができる。
【0033】
フォトニクスチップ302の射出時に、光ビームは、上述のように偏光ビームスプリッタ(PBS)214を通過することができる。実施形態では、PBS214に入射する前に光ビームを平行化するためにフォトニクスチップ302とPBS214の間にレンズ(図示せず)を配置することができる。LIDARシステム300は、図2で上述したように、光の偏光を変換し、光の一部分を局所振動子信号314として反射し、ターゲット信号と局所振動子信号を結合するなどを行うための自由空間光学系212を更に含むことができる。
【0034】
光の偏光の変換時に、光ビームの一部分は、スキャナ312(例えば、図1の光学スキャナ102)を通してターゲット316に向けて伝送することができる。光ビームがターゲット316に当たると、ビームの一部分は、ターゲット信号318としてLIDARシステム300に戻される。ターゲット信号318は、自由空間光学系212によって受信され、そこで上述したように局所振動子信号314と結合される。次に、結合された信号は、PBS214によって受信され、マルチモード(MM)導波管326に向けて経路変更される。実施形態では、結合された信号は、PBS214から1又は2以上の折り返しミラー316を通してMM導波管326に経路変更することができる。一部の実施形態では、MM導波管326に入射する前に、結合された信号は、そのモード面積を拡大するために任意的なビーム拡大器308bに通すことができる。次に、結合された信号は、MM導波管326を通過することができ、導波管光検出器(WGPD)320によって受信される。その後に、結合された信号は、ターゲット点における環境に関する距離、速度、又は他のファクタを解釈するために用いることができる。
【0035】
図4は、本発明の開示の実施形態による複数の光源を有するLIDARシステム400の態様を示している。LIDARシステム400は、LIDARシステム400の1又は2以上の構成要素を含むフォトニクスチップ402を含むことができる。実施形態では、フォトニクスチップ402は、図1で上述したように光回路101を含むことができる。光回路101は、光ビームを発生する複数の光源を含むことができる。実施形態では、第1の光ビームは、第1の波長(例えば、λ1)を有することができ、第2の光ビームは、第2の波長(例えば、λ2)を有することができる。光ビームの発生時に、これらの光ビームは、互いにマルチプレクサ(MUX)404によって単一出力ビームに多重化することができる。多重化された光ビームは、その単一モード伝播用に構成された単一モード導波管406に通すことができる。一部の実施形態では、光ビームは、そのモード面積を拡大するように構成されたビーム拡大器408aに提供することができる。
【0036】
フォトニクスチップ402の射出時に、光ビームは、上述のように偏光ビームスプリッタ(PBS)414を通過することができる。実施形態では、PBS414に入射する前に光ビームを平行化するためにフォトニクスチップ402とPBS414の間にレンズ(図示せず)を配置することができる。LIDARシステム400は、図2で上述したように、光の偏光を変換し、光の一部分を局所振動子信号422として反射し、ターゲット信号418と局所振動子信号422とを結合するなどを行うための自由空間光学系412を更に含むことができる。
【0037】
光の偏光の変換時に、光ビームの一部分は、スキャナ424(例えば、図1の光学スキャナ102)を通してターゲット416に向けて伝送することができる。光ビームがターゲット416に当たると、ビームの一部分は、ターゲット信号418としてLIDARシステム400に戻される。ターゲット信号418は、自由空間光学系412によって受信され、そこで上述したように局所振動子信号422と結合される。次に、結合された信号はPBS414によって受信され、デマルチプレクサ(DEMUX)430に向けて経路変更される。DEMUX430は、光ビームを受信し、波長に基づいて、光ビームの第1の部分を第1の場所に、及び光ビームの第2の部分を第2の場所に経路変更するように構成することができる。例えば、DEMUX430は、第1の波長λ1を有する光ビームの第1の部分を第1の場所に、及び第2の波長λ2を有する光ビームの第2の部分を第2の場所に経路変更することができる。DEMUX430に関する更なる詳細に関しては、下記で図5A及び図5Bで説明する。
【0038】
第1のLO信号と第1の波長λ1を有する第1のターゲット信号とを含む第1の結合された信号は、DEMUX430によって第1のMM導波管426aに向けて経路変更することができる。一部の実施形態では、第1のMM導波管426aに入射する前に、第1の結合された信号は、そのモード面積を拡大するように構成されたビーム拡大器408bに通すことができる。次に、第1の結合された信号は、第1のMM導波管426aを通過することができ、第1の導波管光検出器(WGPD)420aによって受信される。
【0039】
第2のLO信号と第2の波長λ2を有する第2のターゲット信号とを含む第2の結合された信号は、DEMUX430によって第2のMM導波管426bに向けて経路変更することができる。一部の実施形態では、第2のMM導波管426aに入射する前に、第2の結合された信号は、そのモード面積を拡大するように構成されたビーム拡大器408cに通すことができる。次に、第2の結合された信号は、第2のMM導波管426bを通過することができ、第2の導波管光検出器(WGPD)420bによって受信される。
【0040】
図5Aは、本発明の開示の実施形態による例示的デマルチプレクサ500の図である。実施形態では、デマルチプレクサ(DEMUX)500は、図4のDEMUX430に対応することができる。DEMUX500は、ダイクロイックミラー502と折り返しミラー504とを含むことができる。
【0041】
ダイクロイックミラー502は、特定の波長の光ビームを反射/経路変更し、一方で異なる波長の光ビームがダイクロイックミラー502を通過することを可能にするように構成することができる。例えば、ダイクロイックミラー502は、λ1の波長を有する光ビームを経路変更し、一方でλ2の波長を有する光ビームがダイクロイックミラー502を通過することを可能にするように構成することができる。図5Aを参照すると、ダイクロイックミラー502は、λ1の波長を有する光ビームを経路変更し、一方でλ2の波長を有する光ビームがダイクロイックミラー502を通過することを可能にするように構成されている。従って、λ1の波長を有する第1のLO信号及び第1のターゲット信号を含む結合された信号の第1の部分は、図4で上述したようにMM導波管426aの中に経路変更される。
【0042】
λ2の波長を有する第2のLO信号及び第2のターゲット信号を含む結合された信号の第2の部分は、ダイクロイックミラー502を通過し、折り返しミラー504によって図4で上述したようにMM導波管426bの中に経路変更される。
【0043】
図5Bは、本発明の開示の一部の実施形態による例示的デマルチプレクサ550の図である。実施形態では、デマルチプレクサ(DEMUX)550は、図4のDEMUX430に対応することができる。DEMUX550は、分散要素552と折り返しミラー554及び556とを含むことができる。
【0044】
分散要素552は、光ビームの複数の部分を光ビームの波長に基づいて異なる角度に分散させるように構成された1又は2以上の材料で形成することができる。例えば、分散要素552は、λ1の波長を有する光ビームの第1の部分を第1の角度に及びλ2の波長を有する光ビームの第2の部分を第2の角度に向けるように構成することができる。図5Bを参照すると、分散要素552は、λ1の波長を有する光ビームの第1の部分を折り返しミラー554に向く第1の角度に及びλ2の波長を有する光ビームの第2の部分を折り返しミラー556に向く第2の角度に向けるように構成される。折り返しミラー554は、光ビームの第1の部分を第1のMM導波管426aに経路変更するように構成することができ、折り返しミラー556は、光ビームの第2の部分を第2のMM導波管426bに経路変更するように構成することができる。
【0045】
従って、λ1の波長を有する第1のLO信号及び第1のターゲット信号を含む結合された信号の第1の部分は、分散要素552によって折り返しミラー554にかつMM導波管426aの中に経路変更される。λ2の波長を有する第2のLO信号及び第2のターゲット信号を含む結合された信号の第2の部分は、分散要素552によって図4で上述したように折り返しミラー556にかつMM導波管426bの中に経路変更される。
【0046】
図6は、走査システムの光回路600の態様を示している。例えば、図6の光回路600は、一部の例示的実施により、図1に関して示したLIDARシステム100の光回路101の一部とすることができる。図示のように、光回路600は、複数の光源602a、602bと複数のWGPD604a、604bとを含む。複数の光源602a、602b及びWGPD604a、604bは、単一期間内で複数のデータ点を与えることができる。従って、高速走査ミラーのより少ない回転が、追加のデータを与えることができる。光回路600の残余は、図2に関して上述したものと同じか又は同様とすることができる。例えば、光回路600は、光の偏光を変換するための偏光波長板608及び光を平行化するためのレンズ610などを有する自由空間光学系412を含むことができる。一部の実施形態では、戻り光が反射される時に光源602a、602bとWGPD604a、604bとが位置合わせされるようにPBS414の位置合わせを設定することができる。一部の実施形態では、複数の光源602a、602b、複数のWGPD604a、604b、並びに複数のPBS414が存在することができる。ある点での距離データ又は速度データを発生させるために、WGPD604a、604bの各々において受信される信号を別個に解析することができる。一部の実施形態では、複数の光源602a、602bは、異なる波長の光ビームを提供することができる。
【0047】
図7Aは、本発明の開示の実施形態に従って複数の光ビームを発生する複数の光源を有するLIDARシステム700の態様を示している。LIDARシステム700の構成要素は、LIDARシステム400の構成要素と同様とすることができる。しかし、各々が1つの光ビームを発生する2つの光源を有する代わりに、2つの光源は、各々2つの光ビームを発生する。例えば、第1の光源は、第1の波長を有する第1の光ビームと第2の波長を有する第2の光ビームとを発生することができる。同様に、第2の光源は、第3の波長を有する第3の光ビームと第4の波長を有する第4の光ビームとを発生することができる。
【0048】
第1の光源によって発生された複数の光ビームは、互いにMUX404aによって多重化することができ、第2の光源によって発生された複数の光ビームは、互いにMUX404bによって多重化することができる。次に、第1の光源(例えば、光源1)からの多重化ビーム及び第2の光源(例えば、光源2)からの多重化ビームは、上述のようにターゲット416に向けて誘導される。ターゲット信号418が受信されてLO信号422と結合される。結合された信号は、PBS414によってDEMUX430に向けて経路変更される。DEMUX430は、波長と光源とに基づいて結合された信号を分離するように構成される。例えば、DEMUX430は、第1の光源(例えば、光源1)からの第1の波長(例えば、λ1)に対応する結合された信号の第1の部分を分離し、それをMM導波管426aに向けて誘導することができる。DEMUX430は、第2の光源からの第1の波長に対応する結合された信号の第2の部分を分離し、それをMM導波管426bに向けて誘導することができる。更に、DEMUX430は、第1の光源からの第2の波長(例えば、λ2)に対応する結合された信号の第3の部分を分離し、それをMM導波管426cに向けて誘導することができる。同様に、DEMUX430は、第2の光源からの第2の波長に対応する結合された信号の第4の部分を分離し、それをMM導波管426dに向けて誘導することができる。
【0049】
複数の光ビームを発生する2つの光源を有するものとして説明したが、本発明の開示の実施形態は、異なる波長の複数の光ビームを発生する任意の個数のレーザ源も利用することができる。例えば、異なる波長の2又は3以上の光ビームを発生する単一光源を有するLIDARシステムは、本発明の開示の態様を利用することができる。
【0050】
図7Bは、本発明の開示の他の実施形態に従って複数の光ビームを発生する複数の光源を有するLIDARシステム750の態様を示している。LIDARシステム750の構成要素は、LIDARシステム700の構成要素と同様とすることができる。しかし、複数の光源によって利用される1つの受動的光回路セットを有する代わりに、図7Bでは、光源の各々は、対応する受動的光回路セットを有することができる。例えば、第1の光源は、対応するPBS414aと自由空間光学系412aとスキャナ424aとを有することができ、第2の光源は、対応するPBS414bと自由空間光学系412bとスキャナ424bとを有することができる。同様に、光源の各々は、図4図5で上述したように波長に基づいて受信した結合された信号を分離する対応するDEMUX(例えば、DEMUX430a及び430b)を有することができる。明瞭化の目的で、MM導波管426a~426dの前に任意的なビーム拡大器を示していない。しかし、一部の実施形態では、MM導波管426a~426dの前のフォトニクスチップ402上にビーム拡大器を配置することができる。
【0051】
複数の光ビームを発生する2つの光源を有するものとして説明したが、本発明の開示の実施形態は、異なる波長の複数の光ビームを発生する任意の個数のレーザ源も利用することができる。例えば、異なる波長の2又は3以上の光ビームを発生する単一光源を有するLIDARシステムは、本発明の開示の態様を利用することができる。
【0052】
図8は、本発明の開示の実施に従ってマルチモード導波管の中にターゲット信号と局所振動子信号を結合する方法800の流れ図を示している。実施形態では、方法800の様々な部分は、図1図3、及び図4それぞれのLIDARシステム100、300、及び/又は400によって実施することができる。
【0053】
図8を参照すると、方法800は、様々な実施形態によって使用される例示的機能を示している。方法800では、特定の機能ブロック(「ブロック」)を開示するが、そのようなブロックは例である。すなわち、複数の実施形態は、方法800に列挙する様々な他のブロック又はブロックの変形を実施するのに適している。方法800でのブロックは、提供するものとは異なる順序で実施することができ、方法800でのブロックの全てが実施されるわけではないことは認められる。
【0054】
ブロック802では、LIDARシステムの光源は、ターゲットに向けて光ビームを発生する。実施形態では、複数の光源が複数の光ビームを発生することができる。一部の実施形態では、複数の光ビームは、異なる波長を有することができる。発生された光ビームは、上述のようにターゲットに向けてPBS及び自由空間光学系を通過することができる。実施形態では、1又は2以上の光ビームの偏光は、偏光波長板によって変換することができる。
【0055】
ブロック804では、LIDARシステムは、ターゲットによる光ビームの反射に関するターゲット信号を受信する。LIDARシステムは、図2及び図6で上述したように自由空間光学系による光ビームの反射に関する局所振動子信号を更に受信することができる。実施形態では、複数のターゲット信号と複数の光源によって発生された複数の局所振動子信号とは、LIDARシステムによって受信することができる。
【0056】
ブロック806では、LIDARシステムは、マルチモード(MM)導波管の中にターゲット信号と局所振動子信号を結合する。実施形態では、LIDARシステムの自由空間光学系は、ターゲット信号と局所振動子信号とが空間的に位置合わせされて共伝播するようにこれらの信号を結合するように構成することができる。結合された信号は、PBS及び/又は1又は2以上の折り返しミラーによってMM導波管に向けて経路変更することができる。実施形態では、次に、結合された信号は、MM導波管を通して導波管に提供することができる。一部の実施形態では、導波管光検出器とMM導波管は、同じフォトニクスチップ上に存在することができる。
【0057】
複数の光ビームを発生するのに複数の光源を利用する実施形態では、DEMUXを利用して第1の波長を有する第1の結合された信号を第1のMM導波管の中にかつ第2の波長を有する第2の結合された信号を第2のMM導波管の中に向けることができる。一部の実施形態では、DEMUXは、図5Aに上述したようにダイクロイックミラーと折り返しミラーとを含むことができる。一部の実施形態では、DEMUXは、図6Bに上述したように分散要素と1又は2以上の折り返しミラーとを含むことができる。
【0058】
以上の説明は、本発明の開示の一部の実施形態の明快な理解をもたらすために特定のシステム、構成要素、及び方法などの実施例のような数々の特定の詳細を示したものである。しかし、当業者には、本発明の開示の少なくとも一部の実施形態はこれらの特定の詳細なしに実施することができることは明らかであろう。他の事例では、本発明の開示を不要に不明瞭にすることを回避するために公知の構成要素又は方法を詳細には説明せず、簡単なブロック図フォーマットで提示した。従って、図示した特定の詳細は例示的なものに過ぎない。特定の実施形態は、これらの例示的詳細とは異なり、かつ依然として本発明の開示内にあると考えることができる。
【0059】
本明細書を通して「一実施形態」又は「実施形態」への言及は、これらの実施形態に関して説明した特定の特徴、構造、又は特性が少なくとも1つの実施形態内に含まれることを意味する。従って、本明細書にわたる様々な箇所での「一実施形態では」又は「実施形態では」という語句の出現は、その全てが必ずしも同じ実施形態に言及しているとは限らない。これに加えて、用語「又は」は、排他的「又は」ではなく包含的「又は」を意味するように意図している。
【0060】
本明細書では、方法の作動を特定の順序に示して説明したが、各方法の作動順序は、ある一定の作動を逆の順序で実施することができるように又はある一定の作動を少なくとも部分的に他の作動と同時に実施することができるように変更することができる。別の実施形態では、異なる作動の命令又は部分作動は、断続方式又は交替方式である場合がある。
【0061】
「要約」に説明するものを含む例示した本発明の実施の以上の説明は、包括的であること又は本発明を開示した厳密な形態に限定するように意図していない。本明細書では、本発明の特定の実施及び本発明に関する実施例を例示目的で説明したが、当業者が認識するように本発明内で様々な均等修正が可能である。本明細書では、「例」又は「例示的」という言葉を例、事例、又は実施形態として機能することを意味するように使用する。本明細書で「例」又は「例示的」として説明するいずれの態様又は設計も必ずしも他の態様又は設計に優って好ましいか又は有利であると解釈すべきではない。そうではなく、「例」又は「例示的」という言葉の使用は、概念を具体的な形で提供するように意図している。この出願に使用する場合に、用語「又は」は、排他的「又は」ではなく包含的「又は」を意味するように意図している。すなわち、他に指定しない限り又は関連から明らかでない限り、「Xは、A又はBを含む」は、自然な包含的置換物のうちのいずれかを意味するように意図している。すなわち、XがAを含む、XがBを含む、又はXがAとBの両方を含む場合に、「Xは、A又はBを含む」は、これらの事例のうちのいずれかの下で満たされる。これに加えて、この出願及び特許請求の範囲内に使用する冠詞「a」及び「an」は、他に指定しない限り又は関連から単数形を指示することが明らかでない限り、「1又は2以上」を意味すると一般的に解釈しなければならない。更に、全体を通して用語「実施形態」、「一実施形態」、「実施」、又は「一実施」の使用は、同じ実施形態又は実施を意味することをそのように説明しない限り意図しない。更に、本明細書に使用する用語「第1」、「第2」、「第3」、「第4」などは、様々な要素の間で区別するためのラベルであるように意図しており、これらの用語の数字表示に従う序数の意味を必ずしも有するとは限らない場合がある。
【符号の説明】
【0062】
101 光回路
300 LIDARシステム
302 フォトニクスチップ
306 単一モード導波管
314 局所振動子信号
図1
図2
図3
図4
図5A
図5B
図6
図7A
図7B
図8
【国際調査報告】