IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エアロバイロメント,インコーポレイテッドの特許一覧

特表2022-529378高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法
<>
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図1
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図2
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図3
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図4
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図5
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図6
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図7
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図8
  • 特表-高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-06-21
(54)【発明の名称】高空域長期滞空航空機の分散制御コンピューティングシステムおよび方法
(51)【国際特許分類】
   G06F 11/07 20060101AFI20220614BHJP
   G06F 11/20 20060101ALI20220614BHJP
【FI】
G06F11/07 157
G06F11/20 628
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021563031
(86)(22)【出願日】2020-04-23
(85)【翻訳文提出日】2021-12-20
(86)【国際出願番号】 US2020029640
(87)【国際公開番号】W WO2020219765
(87)【国際公開日】2020-10-29
(31)【優先権主張番号】62/838,783
(32)【優先日】2019-04-25
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/855,593
(32)【優先日】2019-05-31
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/838,833
(32)【優先日】2019-04-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】517211229
【氏名又は名称】エアロバイロメント,インコーポレイテッド
【氏名又は名称原語表記】AeroVironment,Inc.
(74)【代理人】
【識別番号】110001302
【氏名又は名称】特許業務法人北青山インターナショナル
(72)【発明者】
【氏名】リソスキ,デレク
(72)【発明者】
【氏名】セクリスト,ウィリアム,スチュアート
【テーマコード(参考)】
5B034
5B042
【Fターム(参考)】
5B034BB02
5B034CC01
5B042JJ15
5B042JJ21
5B042KK02
5B042KK04
(57)【要約】
2以上の飛行制御コンピュータ(FCC)(112、113)のうちの第1のFCC(112)と、2以上のFCCのうちの第2のFCC(113)と、第1のFCCと通信する少なくとも1のセレクタ(182)と、少なくとも1のセレクタ(182)と通信する少なくとも1のウォッチドッグウィンドウ(180)であって、FCC(112)により放出される電気パルス(192、194、196)に基づいて、第1のFCC(112)のパフォーマンスを監視する少なくとも1のウォッチドッグウィンドウとを備え、少なくとも1のウォッチドッグウィンドウが、第1のFCCにより放出される電気パルスのうちの障害パルスを検出するように構成され、セレクタが、第1のFCCにより放出された検出した障害パルスに基づいて、第2のFCCにトグルで切り換えるように構成されている、システム、デバイスおよび方法である。
【選択図】図4
【特許請求の範囲】
【請求項1】
2以上の飛行制御コンピュータ(FCC)(112、113)のうちの第1のFCC(112)と、
前記2以上のFCCのうちの第2のFCC(113)と、
前記第1のFCCと通信する少なくとも1のセレクタ(182)と、
前記少なくとも1のセレクタ(182)と通信する少なくとも1のウォッチドッグウィンドウ(180)であって、前記FCC(112)により放出される電気パルス(192、194、196)に基づいて、前記第1のFCC(112)のパフォーマンスを監視する少なくとも1のウォッチドッグウィンドウとを備え、
前記少なくとも1のウォッチドッグウィンドウが、前記第1のFCCにより放出された電気パルスのうちの障害パルスを検出するように構成され、
前記セレクタが、前記第1のFCCにより放出された、検出した障害パルスに基づいて、前記第2のFCCにトグルで切り換えるように構成されていることを特徴とするシステム。
【請求項2】
請求項1に記載のシステムにおいて、
前記検出した障害パルスが、好ましい範囲を外れたパルスであることを特徴とするシステム。
【請求項3】
請求項1に記載のシステムにおいて、
前記検出した障害パルスが、ビートをスキップするパルスであることを特徴とするシステム。
【請求項4】
請求項1に記載のシステムにおいて、
前記検出した障害パルスが、ベースラインパルスの好ましい範囲外の周波数および振幅を有するパルスであることを特徴とするシステム。
【請求項5】
請求項1に記載のシステムにおいて、
前記セレクタが、前記第1のFCCへの電力をリセットするようにさらに構成されていることを特徴とするシステム。
【請求項6】
請求項5に記載のシステムにおいて、
前記セレクタは、前記第1のFCCへの電力をリセットした後、前記第1のFCCにトグルで切り換えるように構成されていることを特徴とするシステム。
【請求項7】
請求項6に記載のシステムにおいて、
前記少なくとも1のウォッチドッグウィンドウが、前記セレクタにより前記第1のFCCにトグルで切り換えた後に、前記第1のFCCのパフォーマンスを監視するようにさらに構成されていることを特徴とするシステム。
【請求項8】
ウォッチドッグウィンドウ(180)により、2以上の飛行制御コンピュータ(FCC)のうちの第1のFCC(112)のパフォーマンスを監視するステップであって、前記パフォーマンスが、前記第1のFCCによって放出される電気パルス(192、194、196)に基づくものである、ステップと、
前記ウォッチドッグウィンドウを介して、前記第1のFCCにより放出された電気パルスのうちの障害パルスを検出するステップと、
前記ウォッチドッグウィンドウと通信するセレクタにより、前記第1のFCCにより放出された検出した障害パルスに基づいて、第2のFCC(113)にトグルで切り換えるステップとを備えることを特徴とする方法。
【請求項9】
請求項8に記載の方法において、
前記検出した障害パルスが、好ましい範囲を外れたパルスであることを特徴とする方法。
【請求項10】
請求項8に記載の方法において、
前記検出した障害パルスが、ビートをスキップするパルスであることを特徴とする方法。
【請求項11】
請求項8に記載の方法において、
前記検出した障害パルスが、ベースラインパルスの好ましい範囲外の周波数および振幅を有するパルスであることを特徴とする方法。
【請求項12】
請求項8に記載の方法において、
前記セレクタを介して、前記第1のFCCへの電力をリセットするステップをさらに含むことを特徴とする方法。
【請求項13】
請求項12に記載の方法において、
前記第1のFCCへの電力をリセットした後に、前記セレクタにより第1のFCCにトグルで切り換えるステップをさらに備えることを特徴とする方法。
【請求項14】
請求項13に記載の方法において、
前記ウォッチドッグウィンドウを介して、前記セレクタにより前記第1の飛行制御コンピュータ(FCC)をトグルで切り換えた後に、前記第1のFCCのパフォーマンスを監視するステップをさらに備えることを特徴とする方法。
【請求項15】
飛行制御コンピュータ(112)であって、
フィールドプログラマブルゲートアレイ(FPGA)(152)と、
FCCバス(160)を介して前記FPGAと通信する飛行制御コンピュータ(FCC)プロセッサ(153)と、
前記FPGAおよびFCCプロセッサと通信する複数のシリアルポート(170)と、
前記複数のシリアルポートと通信するコントローラチップであって、前記FCCバスのパラレル出力を、前記複数のシリアルポートのうちのシリアルポートを介して送信するためにシリアル形式に変換するように構成されたコントローラチップとを備えることを特徴とする飛行制御コンピュータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、飛行制御コンピュータに関し、より詳細には、無人航空機(UAV)用の飛行制御コンピュータに関する。
【0002】
関連出願の相互参照
本出願は、2019年4月25日に出願された米国仮特許出願第62/838,783号、2019年4月25日に出願された米国仮特許出願第62/838,833号、並びに、2019年5月31日に出願された米国仮特許出願第62/855,593号の優先権および利益を主張するものであり、これらすべての内容はあらゆる目的のために引用により本明細書に援用されるものとする。
【背景技術】
【0003】
無人航空機(UAV)は、制御された持続的な飛行が可能な航空機である。UAVは、機内パイロットがおらず、UAVに搭載された飛行制御コンピュータ(FCC)が、航空機の中央情報部である。FCCは1または複数のプロセッサを含み、当該FCCがUAVの機能を制御する。
【発明の概要】
【0004】
システムの実施形態は、2以上の飛行制御コンピュータ(FCC)のうちの第1のFCCと、2以上のFCCのうちの第2のFCCと、第1のFCCと通信する少なくとも1のセレクタと、少なくとも1のセレクタと通信する少なくとも1のウォッチドッグウィンドウであって、FCCにより放出される電気パルスに基づいて、第1のFCCの性能を監視する少なくとも1のウォッチドッグウィンドウとを含むことができ、少なくとも1のウォッチドッグウィンドウが、第1のFCCにより放出された電気パルスのうちの障害パルスを検出するように構成され、セレクタが、第1のFCCにより放出された検出した障害パルスに基づいて、第2のFCCにトグルで切り換えるように構成され得る。
【0005】
追加のシステムの実施形態では、検出した障害パルスが、好ましい範囲を外れたパルスであってもよい。追加のシステムの実施形態では、検出した障害パルスが、ビートをスキップするパルスであってもよい。追加のシステムの実施形態では、検出した障害パルスが、ベースラインパルスの好ましい範囲外の周波数および振幅を有するパルスであってもよい。
【0006】
追加のシステムの実施形態では、セレクタが、第1のFCCへの電力をリセットするようにさらに構成されるものであってもよい。追加のシステムの実施形態では、セレクタは、第1のFCCへの電力をリセットした後、第1のFCCにトグルで切り換えるように構成されるものであってもよい。追加のシステムの実施形態では、少なくとも1のウォッチドッグウィンドウが、セレクタにより第1のFCCにトグルで切り換えた後に、第1のFCCの性能を監視するようにさらに構成されるものであってもよい。
【0007】
方法の実施形態は、ウォッチドッグウィンドウにより、2以上の飛行制御コンピュータ(FCC)のうちの第1のFCCの性能を監視するステップであって、性能が、第1のFCCにより放出される電気パルスに基づくものである、ステップと、ウォッチドッグウィンドウを介して、第1のFCCによって放出された電気パルスのうちの障害パルスを検出するステップと、ウォッチドッグウィンドウと通信するセレクタにより、第1のFCCにより放出された検出した障害パルスに基づいて、第2のFCCにトグルで切り換えるステップとを含むことができる。
【0008】
追加の方法の実施形態では、検出した障害パルスが、好ましい範囲を外れたパルスであってもよい。追加的な方法の実施形態では、検出した障害パルスが、ビートをスキップするパルスであってもよい。追加の方法の実施形態では、検出した障害パルスが、ベースラインパルスの好ましい範囲外の周波数および振幅を有するパルスであってもよい。
【0009】
追加の方法の実施形態は、セレクタを介して、第1のFCCへの電力をリセットするステップをさらに含むことができる。追加の方法の実施形態は、第1のFCCへの電力をリセットした後に、セレクタにより第1のFCCにトグルで切り換えるステップをさらに含むことができる。追加の方法の実施形態は、ウォッチドッグウィンドウを介して、セレクタにより第1の飛行制御コンピュータ(FCC)をトグルで切り換えた後に、第1のFCCのパフォーマンスを監視するステップを含むことができる。
【0010】
飛行制御コンピュータの実施形態は、フィールドプログラマブルゲートアレイ(FPGA)と、FCCバスを介してFPGAと通信する飛行制御コンピュータ(FCC)プロセッサと、FPGAおよびFCCプロセッサと通信する複数のシリアルポートと、複数のシリアルポートと通信するコントローラチップであって、FCCバスのパラレル出力を、複数のシリアルポートのうちのシリアルポートを介して送信するためのシリアル形式に変換するように構成されたコントローラチップとを含むことができる。
【図面の簡単な説明】
【0011】
図面中の構成要素は必ずしも一定の縮尺である必要はなく、代わりに本発明の原理を説明することに重点が置かれている。同様の参照符号は、様々な図を通じて対応の部品を示す。実施形態は、例として示されており、かつ、添付の図面の図に限定されるものではない。
図1図1は、一実施形態に係る、分散制御コンピューティングを有する無人航空機のシステムを示している。
図2図2は、一実施形態に係る、分散制御コンピューティングのためのコンピューティングデバイスの最上階層の機能ブロック図を示している。
図3図3は、一実施形態に係る、複数のシリアルポートを含む分散制御コンピューティングのためのコンピューティングデバイスを示している。
図4図4は、一実施形態に係る、2つのコンピューティングデバイスのパフォーマンスを監視するためのシステムを示している。
図5図5は、一実施形態に係る、分散制御コンピューティングのためのコンピューティングデバイスに関連する電気パルスを示している。
図6図6は、一実施形態に係る、飛行制御コンピュータのパフォーマンスを監視するための分散制御コンピューティングのための方法の流れ図を示している。
図7図7は、システムおよびプロセスの一実施形態を実行するためのコンピューティングシステムの上位階層のブロック図およびプロセスを示している。
図8図8は、一実施形態を実行することができる例示的なシステムのブロック図およびプロセスを示している。
図9図9は、本明細書に開示のシステムおよびプロセスの一実施形態を実行するためのクラウドコンピューティング環境を示している。
【発明を実施するための形態】
【0012】
以下の説明は、本明細書に開示される実施形態の一般的原理を説明する目的で行われ、かつ、本明細書に開示される概念を限定することを意味するものではない。さらに、本明細書で説明する特定の特徴は、様々な可能な組み合わせ及び順列の各々において、他の説明する特徴と組み合わせて使用されることができる。本明細書で他の方法で特に定義されない限り、すべての用語は、説明から暗示される意味、並びに、当業者によって理解される及び/又は辞書、論文などで定義される意味を含む、可能な限りより広い解釈を与えられるべきである。
【0013】
本明細書に開示のシステムおよび方法の実施形態は、無人航空機(UAV)の飛行制御コンピュータ(FCC)のための分配制御コンピューティングを含むことができる。一例では、UAVが、高空域長期滞空ソーラー航空機である。FCCにとって、情報処理システムと外部システムとの間の所望の通信回線、いわゆる「入力/出力」または「I/O」のすべてを物理的に収容することは困難である。FCCは、フィールドプログラマブルゲートアレイ(FPGA)を用いて制御およびプログラムすることができる。FPGAは、1または複数の論理演算を実行するように製造後にプログラムすることができるという意味で、現場でプログラム可能な集積回路である。FPGAは、中央処理装置(CPU)とバスで接続され、必要なI/Oをすべて処理することができる。このようなポイントツーポイントの設計では、航空機のアビオニクスのノードごとに1つの接続のみが確立され、各ノードには特定のタスクが割り当てられる。そのような構成は、CPUに負担をかける高いシリアルトラフィックにつながる可能性がある。
【0014】
さらに、FCCが正常に動作しない場合にUAVが飛行を維持することができるように、FCCのパフォーマンスを監視するシステムを持つことが重要である。UAVは、少なくとも2のFCCを有することができ、FCCの少なくとも1つが、他のFCCが正常に動作しない場合のバックアップとして機能する。さらに、チェッカまたはセレクタのマトリクスが、各FCCのパフォーマンスを監視する場合もある。1つのFCCに障害が発生した場合にも、バックアップのFCCに切り替えることで、UAVは飛行を維持することができる。このアプローチは、複雑になるため、セレクタのいずれか1つに障害が生じる可能性が高くなる。さらに、マトリクス構成は、デバッグが困難であり、非常に多くの配線が必要であり、実装に多大の費用がかかる可能性がある。さらに、マトリクス構成は、かなりの電力を必要とする可能性があり、アーキテクチャの構築が難しい場合がある。
【0015】
一実施形態では、FCCが、プロセッサに近接するFPGAファブリックを備えたプロセッサを有する。FPGAは、そこに収容された電子機器を損傷させる可能性のある高周波の太陽放射からコンピュータを保護するのに役立つ放射線耐性を有する。プロセッサ/FPGAシステムには、複数のシリアルポートが接続されている。FPGAを用いて回路を作成すると、シリアルポートとピンの接続の柔軟性を高めることができる。一実施形態では、FCCは、シリアルポートの容量が増加している。一般に、シリアルポートの総数に対する制約は、物理的なI/Oピンの数と、FPGAのサイズである。一実施形態では、20個のシリアルポートがFCCに配置され、実質的なI/Oを提供する。この構成は、航空機のアビオニクスのすべてのノードがリッスンして通信する、いわゆる「パーティーライン」を提供する。
【0016】
20個のシリアルポートの各々は、飛行制御システムの異なる要素に接続することができる。例えば、バス、データリンク、トランスポンダなどのためのポートが存在する場合がある。このシステムは、最小限のメンテナンスで済み、プロセッサに過度の負担をかけることなく制御を正確に分散することができる。さらに、このシステムは低電力で動作することができる。例えば、典型的なイーサネット接続構成では、約1ワットの電力を使用するのに対し、FCCでは、ミリワット(mW)の電力で測定されるおおよその範囲で電力使用量を有する。
【0017】
上述したFCCの分散制御コンピューティングのためのシステムは、FCCのパフォーマンスを監視することをさらに含む。より具体的には、障害の場合にあるFCCから別の同一のFCCに自動切換するためのシステムを本明細書で説明する。一実施形態では、FCCに接続されたセレクタが、単純な構成を有し、例えば、論理ゲート、トランジスタなどを含まない。セレクタの個々の態様に障害が生じる可能性がある。しかしながら、セレクタが単純であるため、システムに障害モードが殆ど存在せず、よって信頼性が遥かに高くなる可能性がある。
【0018】
一実施形態では、各FCCが、FCCプログラミングおよびFCC回路によって生成されるパルスまたは「ウォッチドッグ」を有する。セレクタに関連付けられたウォッチドッグウィンドウは、電気パルスを検出することができる。ウォッチドッグウィンドウが、パフォーマンス仕様が満たされていないこと、例えば、パルスの欠如を検出した場合、セレクタは第2のFCCにトグルで切り換えることができ、一方、第1のFCCは、電源を入れ直して、例えばシャットオフしてからオンに戻すことができる。さらに、第1のFCCの電源がリセットされ、特定された問題が解決される場合がある。FCCは、航空機の安全性が保証されるような十分に短い時間で復旧し、再び稼働する可能性がある。したがって、セレクタが正常なバックアップFCCにトグルで切り換えるため、UAVは継続的な飛行を維持することができる。
【0019】
図1を参照すると、無人航空機(UAV)101の飛行制御コンピュータ(FCC)112のための分散制御コンピューティングのためのシステム100が示されている。UAVは、機内パイロットのいない航空機であり、自律的または遠隔的に飛行することができる。一実施形態では、UAV101が高空域長期滞空航空機である。一実施形態では、UAV101が、1または複数のモータ、例えば、1~40のモータを有し、100フィート~400フィートの翼幅を有することができる。一実施形態では、UAV101が、約260フィートの翼幅を有することができ、翼の表面を覆う太陽電池アレイによって駆動される複数のモータ、10個の電気モータによって推進することができ、それによりゼロエミッションをもたらすことができる。UAV101は、海抜約65,000フィート、雲の上の高度で飛行し、着陸せずに最大数ヶ月間の連続的な長期ミッションを行うように設計されている。
【0020】
高空域長期滞空UAV101は、UAVの軽量なペイロードに少なくとも部分的に起因して、高高度で最適に機能し、着陸に頼ることなく、かなりの期間の持続的な飛行が可能である。一実施形態では、高空域長期滞空UAV101は、約3,000ポンドの重量があり、2以上の外翼パネルセクションおよび1または複数の中央翼パネルセクションを含み、翼パネルセクションの相互の着脱および/または中央パネルへの着脱が可能であるため、UAV101の効率的な組立および分解を提供することができる。
【0021】
一実施形態では、UAV101には機内パイロットがいない。このため、UAV101に搭載された飛行制御コンピュータ(FCC)112は、航空機の中央情報部である。FCC112は、飛行パターンの決定、UAV101の方向の変更など、UAV101の機能の多くを部分的または完全に制御することができる。一実施形態では、FCC112が、気象条件、ペイロードオペレータの目的、航空隊内の他のUAVの飛行パターンおよび様々な外部センサに基づいて、飛行パターンを決定することができる。一実施形態では、オペレータがUAV101の飛行パターンを決定する。
【0022】
図2は、高空域長期滞空航空機のFCC112の最上階層の機能ブロック図の一例を示している。FCC112は、少なくとも、中央処理装置(CPU)などのプロセッサ153、アドレス可能なメモリ154と、外部デバイスインタフェース156、例えば、任意選択的なUSBポートおよび関連する処理、および/またはイーサネットポートおよび関連する処理、および任意選択的なユーザインタフェース、例えば、ステータスライトのアレイ、センサ、および1または複数のトグルスイッチ、および/またはタッチスクリーンを備える。任意選択的には、アドレス可能なメモリが、例えば、フラッシュメモリ、EPROM、および/またはディスクドライブまたは他のハードドライブであってもよい。これらの要素は、データバス160を介して互いに通信することができる。
【0023】
いくつかの実施形態では、アプリケーション164のサポート等を行うオペレーティングシステム162を介して、プロセッサ153は、通信チャネルを確立するプロセスのステップを実行するように構成されるものであってもよい。
【0024】
FCC112はさらに、一群の衛星から位置データを受信するように構成された全地球測位システム(GPS)126に接続されるか、またはそれらと通信することができる。さらに、FCC112は、地上GPS受信機と連携して、地上に繰り返しのGPS信号を送信するため、かつ/または地上に補助周波数帯域で変換されたGPS信号を地上RF受信機へと送信するための送信機157を含むことができる。
【0025】
図3に示すように、FCCプロセッサ153は、フィールドプログラマブルゲートアレイ(FPGA)ファブリック152に接続することができる。FPGA152は、1または複数の論理演算を実行するように製造後にFPGAをプログラムすることができるという意味で、現場プログラム可能な集積回路であり得る。より具体的には、FPGA152は、インターコネクトファブリックに囲まれる論理セルの集合体、または「ルックアップテーブル」(LUT)を含むことができる。LUTおよびインターコネクトファブリックはプログラム可能であり、アルゴリズムを実装するシステムを提供する。一実施形態では、FPGA152が、異なる論理機能を実装するように再プログラムすることができ、これにより、柔軟な再構成可能なコンピューティングを提供することができる。
【0026】
FPGA152は、プロセッサ153のI/O能力を拡張するのを助けることができる。FPGA152は、複雑なアルゴリズムを実装するために、論理ゲートおよびRAMブロックの大きなリソースを有することができる。FPGA152のアーキテクチャは、LUT、ルーティングチャネルおよびI/Oパッドから構成することができ、I/Oパッドが、プロセッサ153とFCC112内の他の周辺機器との間のメモリマッピングを可能にする。
【0027】
FPGA152は、そこに収容された電子機器を損傷させる可能性のある高周波の太陽放射からコンピュータを保護するのに役立つ放射線耐性を有することができる。一実施形態では、FPGA152は、カリフォルニア州アリソビエホのMicrosemi CorporationのSmartFusion(登録商標)2 FPGAであってもよい。
【0028】
複数のシリアルポート170は、FCC112に接続され、バスなどの入力176を介して、プロセッサ153およびFPGA152と通信することができる。一実施形態では、各シリアルポート170が、情報が一度に1ビットずつFCC112に出入りするシリアル通信インターフェースであってもよい。一実施形態では、シリアルポート170が、コントローラチップ、例えば、汎用非同期送受信回路とインターフェースをとる。コントローラチップは、図2に示すように、FCCバス160のパラレル出力を受け取り、その出力を、シリアルポート170を介して送信するためにシリアル形式に変換するように構成され得る。シリアルポート170は、FPGA152から最小限のサポートソフトウェアを必要とする場合がある。シリアルポート170は、オスとメスとに区分することができ、シリアルポート170のコネクタは、オスメス反対のコネクタとのみ嵌合することができる。一般的には、オスのシリアルポートコネクタは突出したピンを有し、メスのコネクタはソケットを有する。一実施形態では、シリアルポート170が、メス型である出力174に嵌合し得るオス型コネクタを有することができる。出力174は、外部要素172、例えば、モデム、トランスポンダおよびUAVのアビオニクスに関連する他の外部要素に接続するケーブルであってもよい。
【0029】
構成は、FPGA152により作成することができ、それによりシリアルポートとピンの柔軟性を高めることができる。一実施形態では、FCC112は、シリアルポートの容量を増加させることができる。一般に、シリアルポートの総数に対する制約は、シリアルポート170の物理的I/Oピンの数と、FPGA152のサイズである。一実施形態では、複数のシリアルポート、例えば20個のシリアルポートがFCC112に配置されている。
【0030】
20個のシリアルポートを有する実施形態は、FCC112に実質的なI/Oを提供することができる。20個のシリアルポート170の各々は、FCC112の異なる外部要素172に接続されるものであってもよい。例えば、バス、モデム、データリンク、トランスポンダなどのためのポートが存在する場合がある。20個のシリアルポート170は、最小限のメンテナンスで済み、プロセッサ153に過度の負担をかけることなく、制御を正確に分散することができる。一実施形態では、シリアルポート170が、プロセッサ153に要求される処理量を減らすことができる。さらに、20個のシリアルポートの構成は、FCC112を低電力で動作させることができる。例えば、典型的なイーサネット接続構成では、約1ワットの電力を使用するのに対し、FCCでは、ミリワット(mW)の電力で測定されるおおよその範囲で電力使用量を有する。
【0031】
分散制御コンピューティングのためのシステムは、FCC112のパフォーマンスを監視することをさらに提供することができる。より具体的には、図4に示すように、システムは、正常に動作しない場合に第1のFCC112から第2のFCC113にトグルで切り換える自動スイッチを含む。FCC112、113は、明確にするために、図3に示すようなシリアルポート170を省いて示されている。一実施形態では、第1のFCC112が、第2のFCC113と同一であり得る。一実施形態では、セレクタ182が、出力185を介してFCC112、113に接続されたマイクロコントローラであってもよい。さらに、セレクタ182は、論理ゲートやトランジスタなどを持たない構成を有することができる。別の実施形態では、複数のセレクタをFCC112、113に接続することができる。
【0032】
一実施形態では、統合されたウォッチドッグウィンドウ180を、セレクタ182のチップ上に配置することができる。別の実施形態では、ウォッチドッグウィンドウ180を、FCCのシャーシ内の外部拡張カード上に配置することができる。ウォッチドッグウィンドウ180は、少なくとも1のセレクタ182と通信して、FCC112、113の各々が発する電気パルス、または「ウォッチドッグ」を監視することができる。ウォッチドッグウィンドウは、UAVに搭載されたFCC112、113のように、オペレータが容易にアクセスできない組み込みシステムに見られることがある。そのようなシステムでは、FCC112、113は、正常に動作しない場合にFCCを再起動するためにオペレータに依存しなくてもよい。
【0033】
一実施形態では、1または複数のセンサ190を両方のFCC112、113に接続することができる。一実施形態では、システムが3つのセンサ190を含むことができる。一実施形態では、各センサが同一であってもよい。各センサ190は、出力184を介して、FCCの健全性およびパフォーマンスに関連する情報を検知することができる。3つのセンサ190は、三重冗長の重要な飛行センサシステムを提供することができる。一実施形態では、FCC112、113が、FCC112、113のパフォーマンスを評価するために、3つのセンサ190の冗長セットの中間値を選択することができる。
【0034】
一実施形態では、ウォッチドッグウィンドウ180が、ハートビートがFCC112の回路を通過する際に、FCC112によって生成される電気パルス、または「ハートビート」を監視する。例えば、図5に示すように、正常な信号192がウォッチドッグウィンドウ180によって監視され、この場合、信号192の周波数ウィンドウが、図4に示すように、適切に機能している第1のFCC112のための好ましい範囲内にある。別の時点では、ウォッチドッグウィンドウ180が、パルス194のように、ビートが遅すぎるパルスまたはビートをスキップするパルスを検出することができる。さらに別の時点では、ウォッチドッグウィンドウ180が、パルス196のように、ビートが速すぎるパルスを検出することができる。一実施形態では、パフォーマンス仕様は、FCCハートビートの周波数および振幅が、ベースラインパルスの特定のパーセンテージ範囲内にあることを要求し得る。一実施形態では、信号192が周波数ウィンドウの外にある場合、例えば、ハートビートが速過ぎたり遅過ぎたりすると、FCC112がリセットされることとなる。障害パルスは、好ましい範囲外のパルス、ビートをスキップするパルス、好ましい範囲よりも遅いパルス、好ましい範囲よりも速いパルス、ベースラインパルスの好ましい範囲外の周波数および振幅を有するパルスであり得る。
【0035】
一実施形態では、ウォッチドッグウィンドウ180がハートビートを検出しない場合、または検出したハートビートが第1のまたはアクティブなFCC112の異常、例えば、連続するパルス間に時間の遅れがある場合、ウォッチドッグウィンドウ180は、第2またはバックアップのFCC113にトグルで切り換えるようにセレクタ182に伝えることができる。一実施形態では、第1のFCC112への電力がリセットされ、特定された問題が、メモリおよびプロセッサのリセットによって、解決される場合がある。このため、第1のFCC112は、電源を入れ直した直後にバックアップして再び動作することができ、これによりUAVは連続飛行を維持することができる。さらに、セレクタ182が正常な第2またはバックアップのFCC113にトグルで切り換えるため、第2またはバックアップのFCC113で動作している間、連続飛行が妨げられることはない。いくつかの実施形態では、第2またはバックアップのFCC113が、第1のFCC112の複製であってもよい。
【0036】
一実施形態では、ウォッチドッグウィンドウ180によって、稼働中のFCC112について正常なパルスが検出されるが、ウォッチドッグウィンドウ180によってバックアップのFCC113についてパルスが検出されない場合、セレクタ182はバックアップのFCC113にトグルで切り換えない。一実施形態では、各FCC112、113が、約8時間以上持続することができ、これは、FCC112、113の一方が故障した後にUAVを着陸させるのに十分な時間であり得る。電力が完全に遮断されて、どちらのFCCも電源を入れて機能することができない場合、UAVは着陸手順を実行することができる。一実施形態では、着陸手順が、飛行終了システムの起動によって実行されるものであってもよい。
【0037】
図6には、FCCのパフォーマンスを監視するための分配制御コンピューティングの方法200のフローチャートが例示されている。一実施形態では、ウォッチドッグウィンドウ180などのウォッチドッグウィンドウが、FCC112、113などのFCCによって放出される電気パルス、または「ウォッチドッグ」を監視するために、セレクタ182などの少なくとも1のセレクタと通信することができる。ウォッチドッグウィンドウは、ハートビートが第1のFCCの回路を通過する際に、第1のFCCによって生成される電気パルス(または「ハートビート」)を監視する(ステップ202)。一実施形態では、パフォーマンス仕様は、第1のFCCのハートビートの周波数および振幅が、ベースラインパルスの特定のパーセンテージ範囲内にあることを要求し得る。ウォッチドッグウィンドウは、パルスの欠如、またはパルスが適切に機能しているFCCのための好ましい周波数範囲の周波数ウィンドウの外にあることを検出することができる(ステップ204)。ウォッチドッグウィンドウは、障害パルスを検出することができる。障害パルスは、好ましい範囲外のパルス、ビートをスキップするパルス、好ましい範囲よりも遅いパルス、好ましい範囲よりも速いパルス、ベースラインパルスの好ましい範囲外の周波数および振幅を有するパルスであり得る。ウォッチドッグウィンドウは、バックアップの第2のFCCにトグルで切り換えるようにセレクタに伝えることができる(ステップ206)。その後、第2のFCCは、UAVを制御し、UAVの飛行を維持することができる(ステップ208)。第1のFCCへの電力をリセットすることができ、特定された問題が、メモリおよびプロセッサのリセットにより、解決される場合がある(ステップ210)。このため、第1のFCCは、電源を入れ直した直後にバックアップして再び作動することができ、よってUAVは、継続的な飛行を維持することができる。セレクタは、第1のFCCが作動すると、ウォッチドッグウィンドウによって、第1のFCCに戻るようにトグルで切り換えるように伝えることができる(ステップ212)。UAVは、第1のFCCが作動したら、第1のFCCで飛行を持続することができる(ステップ214)。ウォッチドッグウィンドウは、第1のFCCによって生成された電気パルスを監視し続けることができる(ステップ216)。
【0038】
図7は、本明細書に開示される、システム及びプロセスの一実施形態を実施するのに有用なコンピュータシステムを備えるコンピューティングシステムを示すハイレベルブロック図500である。システムの実施形態は、異なるコンピューティング環境で実施され得る。コンピュータシステムは、1以上のプロセッサ502を含み、かつさらに、(例えば、グラフィックス、テキスト及び他のデータを表示するための)電子ディスプレイデバイス504と、メインメモリ506(例えば、ランダムアクセスメモリ(RAM))と、ストレージデバイス508と、リムーバブルストレージデバイス510(例えば、リムーバブルストレージドライブ、リムーバブルメモリモジュール、磁気テープドライブ、光ディスクドライブ、コンピュータソフトウェア及び/又はデータをその中に格納したコンピュータ可読媒体)と、ユーザインタフェースデバイス511(例えば、キーボード、タッチスクリーン、キーパッド、ポインティングデバイス)と、通信インタフェース512(例えば、モデム、ネットワークインタフェース(イーサネットカードなど)、通信ポート、又はPCMCIAスロット及びカード)と、を含むことができる。通信インタフェース512は、ソフトウェア及びデータがコンピュータシステムと外部デバイスとの間で転送されることを可能にする。システムはさらに、前述のデバイス/モジュールが示されるように接続される通信インフラストラクチャ514(例えば、通信バス、クロスオーバーバー又はネットワーク)を含む。
【0039】
通信インタフェース514を介して転送される情報は、信号を伝送し、かつ、ワイヤ又はケーブル、光ファイバ、電話回線、携帯電話/携帯電話リンク、無線周波数(RF)リンク及び/又は他の通信チャネルを使用して実装され得る通信リンク516を介して、通信インタフェース514によって受信されることができる電子、電磁、光又は他の信号などの信号の形態であり得る。本明細書のブロック図及び/又はフローチャートを表すコンピュータプログラム命令は、コンピュータ、プログラム可能なデータ処理装置又は処理装置にロードされて、そこで一連の操作を実行させて、コンピュータ実装プロセスを生成し得る。
【0040】
実施形態は、実施形態に係る方法、装置(システム)及びコンピュータプログラム製品のフローチャート図及び/又はブロック図を参照して説明された。そうした例/図の各ブロック又はそれらの組み合わせは、コンピュータプログラム命令によって実施されることができる。コンピュータプログラム命令は、プロセッサに提供されると、プロセッサを介して実行する命令がフローチャート及び/又はブロック図で特定された機能/動作を実施するための手段を作成するように、機械を生成する。フローチャート/ブロック図の各ブロックは、実施形態を実施するハードウェア及び/又はソフトウェアモジュール又はロジックを表し得る。代替の実施では、ブロックに示されている機能は、図に示されている順序から外れて、同時に発生し得る。
【0041】
コンピュータプログラム(すなわち、コンピュータ制御ロジック)は、メインメモリ及び/又は補助メモリに格納される。コンピュータプログラムはまた、通信インタフェース512を介して受信され得る。そうしたコンピュータプログラムは、実行されると、コンピュータシステムが本明細書で論じられるような実施形態の特徴を実行することを可能にする。特に、コンピュータプログラムは、実行されると、プロセッサ及び/又はマルチコアプロセッサがコンピュータシステムの特徴を実行することを可能にする。そうしたコンピュータプログラムはコンピュータシステムのコントローラを表す。
【0042】
図8は、一実施形態が実施され得る例示的なシステム600のブロック図を示している。システム600は、1以上のサーバコンピューティングシステム630に接続された、家庭用電子機器などの1以上のクライアントデバイス601を含む。サーバ630は、情報を通信するためのバス602又は他の通信メカニズムと、情報を処理するための、バス602に結合されたプロセッサ(CPU)604と、を含む。サーバ630はまた、プロセッサ604によって実行される情報及び命令を格納するための、バス602に結合された、ランダムアクセスメモリ(RAM)又は他の動的ストレージデバイスなどのメインメモリ606を含む。メインメモリ606はまた、実行中の一時変数又は他の中間情報、若しくは、プロセッサ604によって実行される命令を格納するために使用され得る。サーバコンピュータシステム630は、プロセッサ604のための静的情報及び命令を格納するための、バス602に結合されたリードオンリーメモリ(ROM)608又は他の静的ストレージデバイスをさらに含む。磁気ディスク又は光ディスクなどのストレージデバイス610が、提供され、かつ、情報及び命令を格納するためにバス602に結合される。バス602は、例えば、ビデオメモリ又はメインメモリ606をアドレス指定するための32本のアドレスラインを包含し得る。バス602はまた、例えば、CPU604、メインメモリ606、ビデオメモリ及びストレージ610などのコンポーネント間及びコンポーネントの中でデータを転送するための32ビットデータバスを含み得る。代替として、別個のデータライン及びアドレスラインの代わりに、多重化データ/アドレスラインが使用され得る。
【0043】
サーバ630は、バス602を介して、コンピュータユーザに情報を表示するためのディスプレイ612に結合され得る。情報及びコマンド選択をプロセッサ604に通信するため英数字及び他のキーを含む入力デバイス614がバス602に結合される。別のタイプ又はユーザ入力デバイスは、プロセッサ604への方向情報及びコマンド選択を通信するため、かつ、ディスプレイ612上のカーソル移動を制御するためのマウス、トラックボール又はカーソル方向キーなどのカーソル制御616を備える。
【0044】
一実施形態によれば、メインメモリ606に包含される1以上の命令の1以上のシーケンスを実行するプロセッサ604によって機能が実行される。そうした命令は、ストレージデバイス610などの別のコンピュータ可読媒体からメインメモリ606に読み込まれ得る。メインメモリ606に包含される命令のシーケンスの実行により、プロセッサ604は、本明細書に記載のプロセスステップを実行する。マルチプロセッシング構成の1以上のプロセッサが採用されて、メインメモリ606に包含される命令のシーケンスを実行し得る。代替の実施形態では、ハードワイヤード回路が、ソフトウェア命令に代えて又はソフトウェア命令と組み合わせて使用されて実施形態を実施し得る。したがって、実施形態は、ハードウェア回路及びソフトウェアの特定の組み合わせに限定されない。
【0045】
「コンピュータプログラム媒体」、「コンピュータ使用可能媒体」、「コンピュータ可読媒体」及び「コンピュータプログラム製品」という用語は、一般に、メインメモリ、補助メモリ、リムーバブルストレージドライブ、ハードディスクドライブにインストールされたハードディスク及び信号などの媒体を示すために使用される。これらのコンピュータプログラム製品は、コンピュータシステムにソフトウェアを提供するための手段である。コンピュータ可読媒体は、コンピュータシステムが、コンピュータ可読媒体からデータ、命令、メッセージ又はメッセージパケット及び他のコンピュータ可読情報を読み取ることを可能にする。コンピュータ可読媒体は、例えば、フロッピーディスク、ROM、フラッシュメモリ、ディスクドライブメモリ、CD-ROM及び他のパーマネントストレージなどの不揮発性メモリを含み得る。例えば、データ及びコンピュータ命令などの情報をコンピュータシステム間で転送する場合に役立つ。さらに、コンピュータ可読媒体は、コンピュータがそうしたコンピュータ可読情報を読み取ることを可能にする有線ネットワーク又は無線ネットワークを含むネットワークリンク及び/又はネットワークインタフェースなどの一時的な状態媒体(transitory state medium)におけるコンピュータ可読情報を含み得る。コンピュータプログラム(コンピュータ制御ロジックとも呼ばれる)は、メインメモリ及び/又は補助メモリに格納される。コンピュータプログラムはまた、通信インタフェースを介して受信され得る。そうしたコンピュータプログラムは、実行されると、コンピュータシステムが本明細書で論じられるような実施形態の特徴を実行することを可能にする。特に、コンピュータプログラムは、実行されると、プロセッサマルチコアプロセッサがコンピュータシステムの特徴を実行することができるようにする。したがって、そうしたコンピュータプログラムは、コンピュータシステムのコントローラを表す。
【0046】
一般に、本明細書で使用される「コンピュータ可読媒体」という用語は、実行のためにプロセッサ604に命令を提供することに参加した任意の媒体を指す。そうした媒体は、不揮発性媒体、揮発性媒体及び伝送媒体を含むがこれらに限定されない多くの形態をとり得る。不揮発性媒体は、例えば、ストレージデバイス610などの光学ディスク又は磁気ディスクを含む。揮発性媒体は、メインメモリ606などの動的メモリを含む。伝送媒体は、バス602を構成するワイヤを含む同軸ケーブル、銅線及び光ファイバを含む。伝送媒体は、電波や赤外線データ通信中に生成されるものなど、音響波又は光波の形態をとることもできる。
【0047】
コンピュータ可読媒体の一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ又は他の任意の磁気媒体、CD-ROM、他の任意の光学媒体、パンチカード、紙テープ、孔のパターンを有するその他の任意の物理媒体、RAM、PROM、EPROM、FLASH-EPROM、その他のメモリチップ又はカートリッジ、以下で説明する搬送波又はコンピュータが読み取ることができる任意の他の媒体を含む。
【0048】
様々な形態のコンピュータ可読媒体は、実行のためにプロセッサ604に1以上の命令の1以上のシーケンスを保持することに関与され得る。例えば、命令は、最初に、リモートコンピュータの磁気ディスク上で実行され得る。リモートコンピュータは、命令を動的メモリにロードし、かつ、モデムを使用して電話回線を介して命令を送信することができる。サーバ630にローカルなモデムは、電話回線でデータを受信し、かつ、赤外線送信機を使用してデータを赤外線信号に変換することができる。バス602に結合された赤外線検出器は、赤外線信号で保持されたデータを受信し、かつ、そのデータをバス602に配置することができる。バス602は、データをメインメモリ606に伝送し、そこからプロセッサ604が命令を読み出して実行する。メインメモリ606から受信された命令は、任意選択的に、プロセッサ604による実行の前又は後のいずれかで、ストレージデバイス610に格納され得る。
【0049】
サーバ630はまた、バス602に結合された通信インタフェース618を含む。通信インタフェース618は、現在一般にインターネット628と呼ばれている世界規模のパケットデータ通信ネットワークに接続されているネットワークリンク620に結合する双方向データ通信を提供する。インターネット628は、デジタルデータストリームを保持する電気信号、電磁気信号又は光信号を使用する。様々なネットワークを介した信号及びネットワークリンク620上の信号並びにサーバ630へ及びサーバ630からデジタルデータを保持する通信インタフェース618を通じた信号は、情報を伝送する例示的な形態又は搬送波である。
【0050】
サーバ630の別の実施形態では、インタフェース618は通信リンク620を介してネットワーク622に接続されている。例えば、通信インタフェース618は、ネットワークリンク620の一部を構成することができる対応のタイプの電話回線へのデータ通信接続を提供するための統合サービスデジタルネットワーク(ISDN)カード又はモデムであり得る。別の例として、通信インタフェース618は、互換性のあるLANへのデータ通信接続を提供するためのローカルエリアネットワーク(LAN)カードであり得る。無線リンクも実装され得る。そうした任意の実装において、通信インタフェース618は、様々なタイプの情報を表すデジタルデータストリームを保持する電気電磁信号又は光信号を送受信する。
【0051】
ネットワークリンク620は、通常、1以上のネットワークを通じて他のデータデバイスへのデータ通信を提供する。例えば、ネットワークリンク620は、ローカルネットワーク622を通じて、ホストコンピュータ624又はインターネットサービスプロバイダ(ISP)によって操作されるデータ機器への接続を提供し得る。次に、ISPは、インターネット628を通じてデータ通信サービスを提供する。ローカルネットワーク622及びインターネット628は両方とも、デジタルデータストリームを保持する電気信号、電磁気信号又は光信号を使用する。様々なネットワークを通じた信号及びネットワークリンク620上の信号並びにサーバ630へ及びサーバ630からデジタルデータを伝送する通信インタフェース618を通じた信号は、情報を伝送する例示的な形態又は搬送波である。
【0052】
サーバ630は、ネットワーク、ネットワークリンク620及び通信インタフェース618を通じて、電子メールを含むメッセージ及びデータ、プログラムコードを送受信することができる。さらに、通信インタフェース618は、USB/チューナを備えることができ、ネットワークリンク620は、サーバ630をケーブルプロバイダ、衛星プロバイダ、又は、別のソースからのメッセージ、データ及びプログラムコードを受信するための他の地上伝送システムに接続するためのアンテナ又はケーブルであり得る。
【0053】
本明細書で説明される実施形態の例示的なバージョンは、サーバ630を含むシステム600などの分散処理システムにおける論理演算として実装され得る。実施形態の論理演算は、サーバ630内で実行される一連のステップとして、及び、システム600内の相互接続された機械モジュールとして実装され得る。実装は、選択の問題であり、実施形態を実施するシステム600の性能に依存することができる。したがって、実施形態の前記例示的なバージョンを構成する論理演算は、例えば、演算、ステップ又はモジュールと呼ばれる。
【0054】
上述したサーバ630と同様に、クライアントデバイス601は、プロセッサ、メモリ、ストレージデバイス、ディスプレイ、入力デバイス、及び、サーバ630との通信用のインターネット628、ISP又はLAN622にクライアントデバイスを接続するための通信インタフェース(例えば、電子メールインタフェース)を含むことができる。
【0055】
システム600は、クライアントデバイス601と同じ方法で動作するコンピュータ(例えば、パーソナルコンピュータ、コンピューティングノード)605をさらに含むことができ、ユーザは、1以上のコンピュータ605を利用して、サーバ630内のデータを管理することができる。
【0056】
ここで図9を参照すると、例示的なクラウドコンピューティング環境50が示されている。示されるように、クラウドコンピューティング環境50は、例えば、携帯情報端末(PDA)、スマートフォン、スマートウォッチ、セットトップボックス、ビデオゲームシステム、タブレット、モバイルコンピューティングデバイス又は携帯電話54A、デスクトップコンピュータ54B、ラップトップコンピュータ54C、及び/又は、自動車コンピュータシステム54Nなどのクラウド消費者によって使用されるローカルコンピューティングデバイスが通信し得る1以上のクラウドコンピューティングノード10を備える。ノード10は互いに通信し得る。それらは、物理的又は仮想的に、上述したプライベート、コミュニティ、パブリック又はハイブリッドクラウド、若しくは、それらの組み合わせなどの1以上のネットワークにグループ化され得る(図示せず)。これにより、クラウドコンピューティング環境50は、クラウド消費者がローカルコンピューティングデバイス上でリソースを維持する必要がないサービスとして、インフラストラクチャ、プラットフォーム及び/又はソフトウェアを提供することができる。図9に示すコンピューティングデバイス54A~Nのタイプが例示のみを意図していること、及び、コンピューティングノード10及びクラウドコンピューティング環境50が、任意のタイプのネットワーク及び/又はネットワークアドレス可能接続を介して(例えば、ウェブブラウザを使用して)任意のタイプのコンピュータ化されたデバイスと通信することができることが理解される。
【0057】
上記の実施形態の特定の特徴及び態様の様々な組み合わせ及び/又は部分的組み合わせが、行われてもよく、かつ、依然として本発明の範囲内にあるものと考えられる。したがって、開示された実施形態の様々な特徴及び態様は、開示された発明の様々なモードを形成するために、互いに組み合わせられるか又は互いに置き換えられ得ることが理解されるべきである。さらに、例として本明細書に開示される本発明の範囲は、上述した特定の開示された実施形態によって限定されるべきではないことが意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
【国際調査報告】