(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-06-29
(54)【発明の名称】電気化学インピーダンス分光法のための、コンピュータにより実施される方法および測定装置
(51)【国際特許分類】
G01R 31/389 20190101AFI20220622BHJP
H01M 10/48 20060101ALI20220622BHJP
G01R 31/378 20190101ALI20220622BHJP
【FI】
G01R31/389
H01M10/48 P
G01R31/378
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021563257
(86)(22)【出願日】2020-04-30
(85)【翻訳文提出日】2021-11-08
(86)【国際出願番号】 EP2020061984
(87)【国際公開番号】W WO2020221841
(87)【国際公開日】2020-11-05
(32)【優先日】2019-05-02
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】510304715
【氏名又は名称】ザ ヨーロピアン ユニオン、リプレゼンテッド バイ ザ ヨーロピアン コミッション
【氏名又は名称原語表記】The European Union,represented by the European Commission
(74)【代理人】
【識別番号】110000659
【氏名又は名称】弁理士法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】クリストン,アコシュ
(72)【発明者】
【氏名】フラン,アンドレアス
【テーマコード(参考)】
2G216
5H030
【Fターム(参考)】
2G216BA56
2G216CB15
5H030AA06
5H030AS20
5H030FF42
5H030FF43
5H030FF44
(57)【要約】
電気化学セルの電気化学インピーダンス分光法のための、コンピュータにより実施される方法。本方法は、電位または電流に所定の搬送波波形を有する周期的な摂動を印加するステップと、上記電位または電流の他方に対する周期的な摂動の影響と、電気化学セルの作用電極の変位または応力とを同時に測定するステップと、ロックインアンプを使用して、上記電位または電流の他方から、上記所定の搬送波波形を有する電気的パラメータ信号を抽出し、上記変位または応力測定信号から、上記所定の搬送波波形を有する機械的パラメータ信号を抽出するステップとを含む。これにより、2つの異なる物理パラメータにおける応答を、単一の周期的な摂動をさらに別の物理パラメータに印加することで、測定することが可能になる。抽出した信号成分を分析することにより、電気化学セルの電気化学的挙動と機械的挙動との間の結合効果に関する情報が明らかになる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
作用電極および少なくとも1つの第2の電極を含む電気化学セルの電気化学インピーダンス分光法のための、コンピュータにより実施される方法であって、
a)前記電気化学セルの第1の電気的パラメータに所定の搬送波波形を有する周期的な摂動を印加するステップであって、前記第1の電気的パラメータが、電位および電流のうちの一方である、ステップと、
b)前記電気化学セルの第2の電気的パラメータと、前記作用電極の機械的パラメータとに対する前記周期的な摂動の影響を同時に測定するステップであって、前記第2の電気的パラメータが、前記電位および電流のうちの他方であり、前記機械的パラメータが、変位および応力のうちの一方である、ステップと、
c)第1のロックインアンプを使用して、第2の電気的パラメータ測定信号から、前記所定の搬送波波形を有する第2の電気的パラメータ信号を抽出するステップと、
d)第2のロックインアンプを使用して、機械的パラメータ測定信号から、前記所定の搬送波波形を有する機械的パラメータ信号を抽出するステップと
を含む、方法。
【請求項2】
e)前記第2の電気的パラメータ信号および前記機械的パラメータ信号を周波数領域に変換して、前記電気化学セルの電気的パラメータと機械的パラメータとの間の結合を決定するステップ
をさらに含む、請求項1に記載のコンピュータにより実施される方法。
【請求項3】
前記ステップa)が、前記周期的な摂動を前記電位に印加することを含み、
前記周期的な摂動が、好ましくは1~50mV、特に5~20mVの振幅を有する、
請求項1または2に記載のコンピュータにより実施される方法。
【請求項4】
電気活性材料電気複素インピーダンスZ
Eを決定するステップをさらに含み、
電気機械的インピーダンスZ
εおよび化学機械的インピーダンスZ
Liが、以下の式を使用して決定され、
【数1】
式中、Z
eは前記電気化学セルの電気的インピーダンスであり、Z
mは前記電気化学セルの機械的インピーダンスであり、Eは電極電位であり、R
Ωはオーム降下であり、εは歪みであり、C
dlは二重層静電容量であり、Lは変換係数であり、c
Liは作用電気活材料中のリチウムイオン濃度であり、Fはファラデー定数であり、jは虚数であり、ωは前記周期的な摂動の周波数である、請求項3に記載のコンピュータにより実施される方法。
【請求項5】
前記ステップb)が、
機械的カプラを使用して前記変位を測定すること、
レーザ干渉技術を使用して前記変位を測定すること、
ビーム曲げ技術を使用して前記応力を測定すること
のうちいずれか1つを含む、請求項1から4のいずれか一項に記載のコンピュータにより実施される方法。
【請求項6】
前記周期的な摂動が、0.1mHz~10MHz、特定的には1mHz~1MHz、より特定的には1mHz~100kHz、最も特定的には1mHz~20Hzの周波数を有する、請求項1から5のいずれか一項に記載のコンピュータにより実施される方法。
【請求項7】
前記ステップa)が、複数の異なる周波数を含む信号として前記所定の搬送波波形を選択することを含む、請求項1から6のいずれか一項に記載のコンピュータにより実施される方法。
【請求項8】
電気化学インピーダンス分光法のための測定装置であって、
作用電極および少なくとも1つの第2の電極を含む電気化学セルと、
前記作用電極および少なくとも1つの第2の電極に接続され、前記電気化学セルの電位を測定する電位センサと、
前記作用電極および少なくとも1つの第2の電極に接続され、前記電気化学セルの電流を測定する電流センサと、
前記作用電極の機械的パラメータを測定するように構成された機械センサであって、前記機械的パラメータが、変位および応力のうちの一方である、機械センサと、
前記電気化学セルの第1の電気的パラメータを周期的に摂動させるための摂動手段であって、前記第1の電気的パラメータが、前記電位および電流のうちの一方である、摂動手段と、
前記電位センサおよび電流センサのうちの一方に接続された第1のロックインアンプと、
前記機械センサに接続された第2のロックインアンプと、
請求項1から7のいずれか一項に記載の方法のステップを実行するように構成されたコントローラと
を備える、装置。
【請求項9】
前記少なくとも1つの第2の電極が、対向電極および参照電極を含み、前記電位センサが前記参照電極に接続され、前記電流センサが前記対向電極に接続される、請求項8に記載の測定装置。
【請求項10】
前記機械センサが非接触変位センサである、請求項8または9に記載の測定装置。
【請求項11】
前記電気化学セルが、リチウムイオン電池、ナトリウムイオン電池、および固体リチウム電池のうちの1つであるか、または、前記電気化学セルが、使用時に測定可能な体積変化を有する電気活性材料を含む、請求項8から10のいずれか一項に記載の測定装置。
【請求項12】
開口部を有するハウジングと、
前記開口部を覆う可撓性膜であって、前記ハウジングに固定して取り付けられた外側領域と、前記作用電極が取り付けられた実質的に平坦な内側領域と、特に少なくとも2つの折り線によって、前記外側領域と前記内側領域とを接続する中間領域とを含み、前記中間領域には少なくとも1つの折り線が設けられている、可撓性膜とをさらに備える、請求項8から11のいずれか一項に記載の測定装置。
【請求項13】
前記可撓性膜が円筒対称性を有する、請求項12に記載の測定装置。
【請求項14】
前記可撓性膜が導電性材料からなる、請求項12または13に記載の測定装置。
【請求項15】
前記作用電極に対向する前記可撓性膜の外面が反射性である、請求項12から14のいずれか一項に記載の測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作用電極および少なくとも1つの第2の電極を含む電気化学セルの電気化学インピーダンス分光法のための、コンピュータにより実施される方法に関する。また、本発明は、電気化学セルの電気化学インピーダンス分光法のための測定装置に関する。
【背景技術】
【0002】
電池などの電気化学セルは、ハイブリッド車両や、フル電気車両、電力網関連の蓄電装置など、様々な用途において重要である。近年、電池市場では、収益の観点から、鉛蓄電池に代わってリチウムイオン電池が主流になっている。これは、主に、従来の電池と比較してリチウムイオン電池がエネルギー密度に関して優れているためである。リチウムイオン電池は今後も重要であるが、他の種類の電池がさらに高いエネルギー密度をもたらすことが期待されている。しかしながら、他の種類の電池については、機械的変形など、電気化学セルにはない、いくつかの課題を調べる必要がある。
【0003】
電池材料は、リチウムイオン電池の場合、リチウム化などの化学反応や電気化学反応によって著しく膨張することがある。電気化学反応と同時に電池材料に外圧が加わると、膨張が抑制され、電池材料内に応力が蓄積する(拡散誘起応力)。膨張および収縮の繰り返しや、電池材料の内部または界面における応力により、機械的損傷が生じ、劣化や故障に至る可能性がある。現在のリチウムイオン電池(例えば、負極がグラファイト、正極がニッケルマンガンコバルト酸化物でできている)では、電極の厚さの変化は数%にとどまるものの、機械的損傷が報告されている。
【0004】
今後、機械的効果や劣化がさらに重要になることが予想される。例えば、リチウムイオン電池のグラファイト負極にシリコンを添加すると、応力や膨張が著しく大きくなる。これは、グラファイトの膨張に比べると、リチウム化によるシリコンの膨張が10倍以上であるために引き起こされる。電池の新しい概念のための他の候補となる電極材料もまた、従来のリチウムイオン電極と比べて著しく膨張することがある。
【0005】
さらに、現在のリチウムイオン電池では、液体電解質が機械的応力を少なくとも部分的に受容することで、劣化および損傷の回避に役立つ。しかしながら、将来の有望な電池技術と考えられている固体電池では、代わりに固体電解質を使用するが、当然ながら機械的応力を受容する能力は下がる。イオン移動度および機械的整合性を同時に確保するため、固体電池においては、特別に設計された固体間インターフェースが必要とされる。
【0006】
多孔質燃料電池のように、吸水面の再構築や劣化によって体積変化や応力が生じるような、他の固体または部分的に固体の電気化学システムでは、機械的挙動と電気化学的挙動との間の相互作用の理解することが重要であり得る。
【0007】
要約すると、機械的効果は、電池などの将来の電気化学システムの設計において、特に電池寿命に対して重要な役割を果たすと予想される。さらに、安全面を考慮すると、例えば、過酷な条件下では、機械的故障が短絡を引き起こす可能性がある。
【0008】
植込み型電極の寿命および安全性に対する機械的効果の影響に対処するために、非特許文献1(2016年12月30日公開)は、特に刺激時の電極の挙動を分析するためのセンサフレームワークを提案している。センサフレームワークは、電気化学セルの作用電極および対向電極の挙動を測定するための電気化学インピーダンスセンサ、応力センサおよび温度センサを含む。応力センサおよび温度センサは共に単一のロックインアンプに接続され、ノイズ中の抵抗の小さな変化を確実に検出することができる。すなわち、ロックインアンプは、応力および温度測定の信号対ノイズ比を改善する。
【0009】
電気化学インピーダンスセンサは、電圧に周期的な摂動を印加し、摂動電流信号を分析することによって電気化学インピーダンス分光法(EIS)を実行するために使用される。応力センサおよび温度センサは、正弦波、すなわち周期的な摂動によって励起されたホイートストンブリッジ構成で組み合わされる。ロックインアンプを用いて、周期的な摂動による抵抗の変化を測定した。
【先行技術文献】
【非特許文献】
【0010】
【非特許文献1】Stefan B.Riegerら、「Concept and Development of an Electronic Framework Intended for Electrode and Surrounding Environment Characterization In Vivo」、Sensors 2017,17,59,doi:10.3390/s17010059
【発明の概要】
【発明が解決しようとする課題】
【0011】
発明の開示
本発明の目的は、電気化学セルの電気化学的および機械的特性を測定する、改良された方法を提供することである。
【課題を解決するための手段】
【0012】
本発明に係る目的は、作用電極および少なくとも1つの第2の電極を含む電気化学セルの電気化学インピーダンス分光法のための、コンピュータにより実施される方法によって達成される。本方法は、a)上記電気化学セルの第1の電気的パラメータに所定の搬送波波形を有する周期的な摂動を印加するステップであって、上記第1の電気的パラメータが、電位および電流のうちの一方である、ステップと、b)上記電気化学セルの第2の電気的パラメータと、上記作用電極の機械的パラメータとに対する上記周期的な摂動の影響を同時に測定するステップであって、上記第2の電気的パラメータが、上記電位および電流のうちの他方であり、上記機械的パラメータが、変位および応力のうちの一方である、ステップと、c)第1のロックインアンプを使用して、第2の電気的パラメータ測定信号から、上記所定の搬送波波形を有する第2の電気的パラメータ信号を抽出するステップと、d)第2のロックインアンプを使用して、機械的パラメータ測定信号から、上記所定の搬送波波形を有する機械的パラメータ信号を抽出するステップとを含む。
【0013】
本発明に係る方法によれば、2つの異なる物理パラメータにおける応答を、単一の周期的な摂動をさらに別の物理パラメータに印加することにより、測定することが可能である。特に、電気化学セルの電気的パラメータの1つ、すなわち、電流または電圧が周期的に摂動されるが、この摂動の影響は、電気化学セルの他の電気的パラメータと、機械的パラメータ、すなわち、応力または変位との両方で同時に測定される。2つのロックインアンプ、すなわち、測定されたパラメータ毎に1つのロックインアンプを使用することにより、測定信号から、印加された摂動と同じ搬送波波形を有する信号成分を取り出すことが可能である。抽出された信号成分、すなわち、第2の電気的パラメータ信号および機械的パラメータ信号を分析することによって、電気化学セルの電気化学的挙動と機械的挙動との間の結合効果に関する情報を確認することが可能であり、したがって、結合挙動を確認することができなかった既存の方法を改善する。
【0014】
上述したStefan B.Riegerらの刊行物のセンサフレームワークで使用した方法では、EISおよびホイートストンブリッジに使用された摂動および測定値(応力測定を含む)が、必要なハードウェア構成要素のいずれも互いに接続されることなく互いに完全に分離されていたため、結合挙動を確認することができなかったことを指摘しておく。
【0015】
本発明の一実施形態では、本方法は、e)上記第2の電気的パラメータ信号および上記機械的パラメータ信号を周波数領域に変換して、上記電気化学セルの電気的パラメータと機械的パラメータとの間の結合を決定するステップをさらに含む。
【0016】
動的システムの周波数領域分析は周知の技術であり、複数の科学分野で使用されている。電気的、電気化学的または機械的であり得るシステムの状態方程式は、常微分方程式または偏微分方程式からなる。様々な励起下でのシステム挙動を記述する伝達関数は、元の方程式のラプラス変換を使用することによって算出することができる。これは、システムの時間挙動を周波数領域に変換する。この一般的な方法は、電気回路、電気化学または機械的安定性の問題に適用することができる。その結果、第2の電気的パラメータ信号および機械的パラメータ信号を周波数領域に変換することは、電気化学セルの電気的パラメータと機械的パラメータとの間の結合挙動を決定するための実用的で信頼性が高く高速な方法である。
【0017】
本発明の一実施形態では、上記ステップa)が、上記周期的な摂動を上記電位に印加することを含み、上記周期的な摂動が、好ましくは1~50mV、特に5~20mVの振幅を有する。
【0018】
ボルタンメトリの技術、すなわち、電位を摂動させる技術は、その逆の対応するアンペロメトリの技術、すなわち、電流を摂動させる技術よりも広く使用されている。したがって、周期的な摂動を電位に印加することは、電気化学セルを摂動させるための実用的で信頼性の高い方法である。さらに、電位摂動の好ましい振幅は、電気化学インピーダンス分光法の基本理論に従ってシステムの線形性を維持するために選択される。そのような振幅値は、電気化学セルの安全帯内にあることも分かっている。
【0019】
本発明の好ましい実施形態では、本方法は、電気活性材料電気複素インピーダンスZ
Eを決定するステップをさらに含み、電気機械的インピーダンスZ
εおよび化学機械的インピーダンスZ
Liが、以下の式を使用して決定され、
【数1】
式中、Z
eは上記電気化学セルの電気的インピーダンスであり、Z
mは上記電気化学セルの機械的インピーダンスであり、Eは電極電位であり、R
Ωはオーム降下であり、εは歪みであり、C
dlは二重層静電容量であり、Lは変換係数であり、c
Liは作用電気活性材料中のリチウムイオン濃度であり、Fはファラデー定数であり、jは虚数であり、ωは上記周期的な摂動の周波数である。
【0020】
インピーダンスは、電気化学セルの有効抵抗を定量化する。電気活性材料の電気複素インピーダンス、電気機械的インピーダンスおよび化学機械的インピーダンスを決定することによって、印加された周期的な摂動が様々な有効抵抗に及ぼす影響を確認することが可能である。
【0021】
本発明の一実施形態では、上記ステップb)が、機械的カプラを使用して上記変位を測定すること、レーザ干渉技術を使用して上記変位を測定すること、ビーム曲げ技術を使用して上記応力を測定することのうちいずれか1つを含む。好ましくは、変位を測定するために非接触レーザ干渉技術が使用される。
【0022】
非接触レーザ干渉技術を使用することにより、電気化学セルの機械的挙動への影響が最小限に抑えられる。影響は、例えば、機械的カプラの質量に起因する可能性があり、この質量は慣性モーメントを誘発する。
【0023】
本発明の一実施形態では、上記周期的な摂動が、0.1mHz~10MHz、特定的には1mHz~1MHz、より特定的には1mHz~100kHz、最も特定的には1mHz~20Hzの周波数を有する。
【0024】
0.1mHz~10MHzの範囲は、既知のインピーダンス分光器の電流能力であり、1mHz~1MHzのより狭い範囲は、典型的には電気化学的に最も活性な周波数範囲である。また、1mHz~100kHzのさらに狭い範囲は、従来の変位センサはこの範囲で特に高感度であるため、選択される。また、1mHz~20Hzの最も狭い範囲は、典型的には機械的に活性な領域である。
【0025】
本発明の一実施形態では、上記ステップa)が、複数の異なる周波数を含む信号として上記所定の搬送波波形を選択することを含む。
【0026】
複数の異なる周波数、すなわち、複数の周波数値の重畳を含む単一の所定の搬送波波形を使用することにより、異なる周波数を有する異なる所定の搬送波波形を順次適用する場合と比較して、電気機械的および化学機械的インピーダンスをより高速で算出することが可能になる。
【0027】
また、本発明に係る目的は、電気化学インピーダンス分光法のための測定装置によって達成される。本装置は、作用電極および少なくとも1つの第2の電極を含む電気化学セルと、上記作用電極および少なくとも1つの第2の電極に接続され、上記電気化学セルの電位を測定する電位センサと、上記作用電極および少なくとも1つの第2の電極に接続され、上記電気化学セルの電流を印加または測定する電流センサと、上記作用電極の機械的パラメータを測定するように構成された機械センサであって、上記機械的パラメータが、変位および応力のうちの一方である、機械センサと、上記電気化学セルの第1の電気的パラメータを周期的に摂動させるための摂動手段であって、上記第1の電気的パラメータが、上記電位および電流のうちの一方である、摂動手段と、上記電位センサおよび電流センサのうちの一方に接続された第1のロックインアンプと、上記機械センサに接続された第2のロックインアンプと、上述の方法のステップを実行するように構成されたコントローラとを備える。
【0028】
測定装置の利点は、上述のコンピュータにより実施される方法と同じである。
【0029】
本発明の一実施形態では、上記少なくとも1つの第2の電極が、対向電極および参照電極を含み、上記電位センサが参照電極に接続され、上記電流センサが対向電極に接続される。
【0030】
このような3電極式電気化学セルは、作用電極での摂動を抑えるために電流を流しながら、唯一の第2の電極が一定の電位を維持することが困難である2電極式電気化学セルの問題を解決する。
【0031】
本発明の一実施形態では、上記機械センサが非接触変位センサである。非接触変位を使用する利点は、非接触レーザ干渉技術を参照して上述されている。
【0032】
本発明の一実施形態では、上記電気化学セルが、リチウムイオン電池、ナトリウムイオン電池、および固体リチウム電池のうちの1つであるか、または、上記電気化学セルが、使用時に測定可能な体積変化を有する電気活性材料を含む。
【0033】
本発明の一実施形態では、本装置は、開口部を有するハウジングと、上記開口部を覆う可撓性膜であって、上記ハウジングに固定して取り付けられた外側領域と、上記作用電極が取り付けられた実質的に平坦な内側領域と、特に少なくとも2つの折り線によって、上記外側領域と上記内側領域とを接続する中間領域とを含み、上記中間領域には少なくとも1つの折り線が設けられている、可撓性膜とをさらに備える。
【0034】
上述したように、作用電極が、機械的パラメータ測定によって引き起こされる慣性モーメントをできるだけ受けないことが有利である。この実施形態では、膜は、中間領域に少なくとも1つの折り線を有するように特別に設計される。少なくとも1つの折り線は、折り線に隣接する中間領域エリアを内側および外側に折り畳むことができるため、膜の内側領域が容易に上下に動くことを可能にする。したがって、作用電極の変位の歪みが最小限に抑えられる。
【0035】
好ましくは、上記可撓性膜が円筒対称性を有する。これは、変位歪みの最小化にあまり効果的でない平面対称性などの他の構成を除外する。
【0036】
好ましくは、上記可撓性膜が導電性材料からなる。
【0037】
この実施形態では、膜は電気化学セルの集電体として作用し、活性材料に直接接触する。非導電性材料からなる膜を使用することは可能であるが、回路を閉塞するために作用電極を活性材料に接続する必要がある。この後者の構成は対称性を有さず、機械的および電気化学的インピーダンス測定の両方を歪める可能性がある。
【0038】
好ましくは、上記作用電極に対向する上記可撓性膜の外面が反射性である。これは、レーザビームがより容易に反射されるので、変位を測定するための非接触レーザ干渉技術との組合わせで特に有利である。
以下の説明および添付の図面により、本発明をさらに説明する。
【図面の簡単な説明】
【0039】
【
図2】
図1の測定装置を用いた、電気化学インピーダンス分光法のための、コンピュータにより実施される方法のフローチャートである。
【
図3】本発明の好ましい実施形態による測定装置の概略図である。
【
図4】
図3の測定装置に使用される可撓性膜の上面図である。
【
図5】
図3の測定装置に使用することができる、代替的な可撓性膜の上面図である。
【
図6】別の膜を有する
図3の測定装置を示す図である。
【
図7】本発明に係る測定装置を使用して決定した電気化学セルの時間領域挙動の一例を示す図である。
【
図8】
図7の電気化学セル測定のナイキスト表示およびボード表示(挿入図)で測定されたZ
eを示す図である。
【
図9】
図7の電気化学セル測定のボード表示で測定されたZ
mを示す図である。
【
図10】
図7の電気化学セル測定のオーム抵抗および容量性インピーダンスを除く電気化学インピーダンスを示す図である。
【
図11】
図7の電気化学セル測定の算出された電気機械的Z
ε抵抗および化学機械的Z
Li抵抗を示す図である。
【発明を実施するための形態】
【0040】
以下、特定の実施形態に関して、また、特定の図面を参照して本発明を説明するが、本発明はこれらではなく、特許請求の範囲によってのみ限定される。記載の図面は概略的なものに過ぎず、非限定的である。図面では、いくつかの要素の寸法は誇張されており、したがって例示目的のために縮尺通りに描かれていない場合がある。寸法や相対寸法は、本発明の実施に対する実際の換算に必ずしも対応しない。
【0041】
また、本明細書および特許請求の範囲における「第1」、「第2」、「第3」などの用語は、類似の要素を区別するために使用されるものであって、必ずしも連続的または時系列的な順序を説明するためのものではない。用語は、適切な状況下で交換可能であり、本発明の実施形態は、本明細書に記載または例示されている以外の順序で実現することができる。
【0042】
また、本明細書および特許請求の範囲における「上部」、「底部」、「上方」、「下方」はなどの用語は、説明の目的で使用される。このように使用される用語は、適切な状況下で交換可能であり、本明細書に記載の本発明の実施形態は、本明細書に記載または図示されている以外の向きで実現することができる。
【0043】
また、様々な実施形態は、「好ましい」とされているものの、本発明の範囲を限定するものではなく、本発明を実施することができる例示的な方法として解釈されるべきである。
【0044】
図1は、本発明に係る測定装置の概略図である。測定装置は、作用電極12(例えば、グラファイト、シリコン、リチウム-ニッケル-コバルト-マンガン酸化物から作製される)と、対向電極14(例えば、Li金属またはNa金属から作製される)と、参照電極16(例えば、Li金属から作製される)とを含む典型的な3電極方式を用いる。セパレータ18(例えば、ガラスフリットまたは多孔質セラミック材料から作製される)は、作用電極12と対向電極14との間に位置し、両電極12、14と直接的にイオン接触している。両電極12、14およびセパレータ18は、電解質(例えば、エチレンカーボネートおよびジメチルカーボネートで希釈したLiPF
6)に浸漬される。セパレータ18とは反対の電極表面12、14の側には、集電体20、22が取り付けられ、これらは導管26を介して互いに接続されて閉回路を形成する。上部集電体20は膜24に取り付けられ、膜24は、例えば、電極12、14、16およびセパレータ18、すなわち、電気化学セル全体が外部環境から遮蔽されるハウジング(図示せず)を封止するために使用され得る。
【0045】
また、測定装置は、単一の電極が対向電極および参照電極の両方として作用する共通の2電極構成を使用してもよいことが容易に理解される。この場合、電気的インピーダンスは対向電極のインピーダンスの影響を受けるため、測定の精度が低下する。また、4つ以上の電極を本発明に係る測定装置と共に使用してもよい。
【0046】
作用電極12は、セパレータ18に浸漬された電解質と接触し、導管32によって作用電極12、対向電極14および参照電極16に接続されたポテンシオスタット60を使用することによって、制御された方法で参照電極16に対して所望の電位を印加する。摂動の印加後、作用電極12の電位は定常状態の値と異なり、電解質および対向電極14との間の電荷の移動が起こる。このように、作用電極12は、第1の半セルとして作用する。参照電極16は、既知の摂動非依存電位を有する半セルの電位を画定する。その役割は、作用電極12の電位を測定および制御する際の基準として作用することであり、いかなる時点においても電流を流すべきではない。対向電極14は、導管32によって作用電極12で観察される電流のバランスをとるために必要なすべての電流を流す。
【0047】
一般に、3電極システムは、リチウムイオン電池、ナトリウムイオン電池または固体リチウム電池などの電気化学セルを試験するために使用される。ただし、測定装置は、使用中に測定可能な体積変化を有する電気活性材料を有する任意の種類の電気化学セルを試験するために使用してもよい。
【0048】
作用電極12および対向電極14は、回路26で測定された電流信号を生成することを可能にし、該電流信号は接続部62を介して第1のロックインアンプ28に伝達される。
【0049】
測定装置は、膜24の変位によって作用電極12の変位を測定するための変位センサ36をさらに備える。変位信号は、接続部34を介して第2のロックインアンプ30に伝達される。
図1の実施形態では、変位センサ36は、膜24との機械的接触に依存している。
【0050】
また、測定装置は、後述するように、メモリを有し、装置の動作を制御する処理装置などのコントローラ(図示せず)を含む。測定装置を動作させる方法100を、
図2のフローチャートを参照して説明する。
【0051】
予備ステップにおいて、第1の電気的パラメータ(例えば開回路電位)の平衡(開回路)値を、第2の電気的および機械的パラメータの定常状態(すなわち、定数)が確立されるまで、ポテンシオスタットによって印加する。
【0052】
ステップ102において、所定の搬送波波形を有する周期的な摂動を電気化学セルの第1の電気的パラメータに印加する。第1の電気的パラメータは電位および電流のうちの一方である。図示した実施形態では、第1の電気的パラメータは電位である。好ましくは、周期的な摂動は、振幅が1~50mV、特定的には5~20mVであり、周波数が0.1mHz~10MHz、特定的には1mHz~1MHz、より特定的には1mHz~100kHz、最も特定的には1mHz~20Hzである。
【0053】
電位摂動の振幅は、電気化学インピーダンス分光法の基本理論に従ってシステムの線形性を維持するために選択される。そのような振幅値は、電気化学セルの安全帯内にあることも分かっている。また、0.1mHz~10MHzの範囲は、既知のインピーダンス分光器の電流能力であり、1mHz~1MHzのより狭い範囲は、典型的には電気化学的に最も活性な周波数範囲である。また、1mHz~100kHzのさらに狭い範囲は、従来の変位センサがこの範囲で特に高感度であるため、選択される。また、1mHz~20Hzの最も狭い範囲は、典型的には機械的に活性な領域である。これらの値は単なる指標であり、調査中の材料の機械的特性に応じて他の値を使用してもよいことは容易に理解される。
【0054】
ステップ102は、複数の異なる周波数を含む所定の搬送波波形で周期的な摂動を印加することを含んでもよい。このような複数の周波数値の重畳も適用することができ、システムの応答を測定して、以下に説明するように量Ze、Zmを測定することができる。その後、電気機械的および化学機械的インピーダンスの評価および計算は、以下に説明するように同一である。このような重畳搬送波波形の利点は、方法がより速いというところであるが、精度が失われる可能性がある。
【0055】
あるいは、以下により詳細に説明するように、方法100を複数回繰り返し、その後の反復において単一周波数の所定の搬送波波形の周波数を変化させることによって、異なる周波数での挙動を定量化してもよい。
【0056】
ステップ104において、第2の電気的パラメータおよび機械的パラメータの応答、すなわち周期的な摂動の影響を測定する。一般に、第2の電気的パラメータは、電位および電流の他方、すなわち、測定装置内の電流であり、機械的パラメータは、変位および応力の一方、すなわち、測定装置内の変位である。
【0057】
測定装置の目的は、任意の多入力Wを任意の多出力Yに伝達する伝達関数Zを決定することであり、すなわち、以下の式で決定する。
Y=Z(W) (1)
【0058】
以下では、摂動された任意の入力または出力信号
Xは、以下の形式で表される。
【数2】
式中、
は入力の定常状態であり、Re{}は入力の実部(real part、実数部)であり、Δ
Xは複素時間非依存量であり、ωは摂動の周波数であり、jは虚数である。さらに、複素時間非依存量は以下の式で表される。
Δ
X=|Δ
X(ω)|exp(jφ) (3)
式中、|Δ
X(ω)|は摂動の振幅であり、φは位相シフトである。
【0059】
電気化学セルが線形挙動を(例えば、摂動の十分に低い振幅を維持することによって)示すという仮定の下、伝達関数Zはテンソルであり、式(1)は行列式に変わる。
【数3】
式中、ΔWおよびΔYは、それぞれΔ
Xの一般化量から導出される入力および出力の複素量であり、Z
i,kは、基本伝達関数である。
【0060】
以下では、入力WUは作用電極と参照電極との間の電位の摂動であり、YIは摂動された電流であり、YDは摂動された変位出力である。Zeは電気化学セルの電気的インピーダンスであり、虚数部が減少すると(すなわち、位相シフトφ=0の場合)オーム抵抗RΩになる。電気化学セルのオーム抵抗の決定方法は当業者にとって周知であり、例えば、電気化学インピーダンス分光法の理論の説明を参照されたい。Zmは、電気化学セルの機械的インピーダンスである。
【0061】
ステップ106において、ロックインアンプ28、30を使用して、第2の電気的パラメータ測定信号、すなわち、電流測定値と、機械的パラメータ測定信号、すなわち、変位測定値との、潜在的にノイズの多い信号から情報を抽出する。第2の電気的パラメータ信号および機械的パラメータ信号は、ステップ102において印加された周期的な摂動と同じ搬送波波形を有する。特に、ロックインアンプ28、30は、量ZmおよびZeを直接測定する。ただし、これらの量は、対象の活性材料の機械的および電気的インピーダンスに必ずしも等しくない。したがって、材料の抵抗を算出するためにさらなる変換が必要である。
【0062】
測定装置の入出力信号の一例を
図7に示す。曲線1は作用電極12における電位摂動を表し、曲線2は電流応答を表し、曲線3は膨張計応答を表す。
【0063】
ステップ108において、抽出された信号を周波数領域に変換する。これは、高速フーリエ変換またはウェーブレット分析などの他の既知の技術を使用して行うことができる。図示の実施形態では、ステップ106および108は、ロックインアンプ28、30によって同時に実行し、すなわち、ロックインアンプ28、30は両方とも、測定信号を抽出し、これらを周波数領域に変換して、電気化学セルZeの複素電気的インピーダンスと、電気化学セルZmの複素機械的インピーダンスとを決定する。
【0064】
ロックインアンプ28、30の出力信号の一例を
図8および
図9に示す。
図8は、曲線4における電気化学セルZ
eの複素電気的インピーダンスのナイキスト表示と、曲線5におけるZ
eの振幅および曲線6におけるZ
eの位相のボード表示とを示す。
図9は、曲線7のZ
mの振幅および曲線8のZ
mの位相のボード表示を示す。曲線8の位相シフトは、10
-1~10
3Hzの間でノイズが非常に多いように見え、これは、システムの機械的感度がこの領域では低いことを意味する。10
3Hzを超えると、ローパスフィルタが実装されているため、膨張計は信号を正確に測定することができない。その結果、機械的インピーダンスは、この特定の材料の領域1mHz~1Hzでのみ測定する価値がある。
【0065】
ステップ110において、電気活性材料の電気複素インピーダンスZE、電気機械的インピーダンスZεおよび化学機械的インピーダンスZLiを、ZeおよびZmから始めて決定する。
【0066】
電気化学セルの電気的インピーダンスは、活性材料の電気抵抗とセルの内部オーム抵抗RΩ(例えば、電解質抵抗、接触抵抗など)との和である。後者は電気活性材料に関連しないため、減算する必要がある。したがって、電極電位E(V)=WU-YIRΩおよび電気活性材料の電気複素インピーダンスZEが、以下の式に示すように導入される。
ZE=Ze-RΩ (5)
【0067】
図10は、電気活性材料の電気複素インピーダンスZ
Eの一例を、ナイキスト表示で示している。
【0068】
変位信号は、例えばボルトで測定することができるため、いくつかの実施形態では、機械信号YDも変換する必要があり得る。したがって、単調な、好ましくは線形の関数を導入して、以下の式に示すように、メートル単位の変位変換を行う。
ε=L(YD)=LYD+L0 (6)
式中、ε(mで表される)は材料の歪み(または他の実施形態ではPaで表される応力)であり、Lは線形変換関数(例えば、mV-1で表される)であり、L0は変位センサ36のベースライン(mで表される)、例えば定常状態の値である。
【0069】
電気機械的インピーダンスZ
εは、以下の式を使用して算出することができる。
【数4】
【0070】
変換関数が線形でない場合、そのラプラス変換は、電気機械的インピーダンスZ
εを決定するために必要であり、式(7)に組み込まれるべきである。電気機械的インピーダンスは、特定の熱力学的力、すなわち、電極電位に対する材料膨張の抵抗を反映する。電気機械的インピーダンスZ
εの一例を、
図11の曲線9にて示す。
【0071】
あるいは、測定装置により複素インピーダンス量を決定する場合、以下の式を使用する。
【数5】
式中、Y
Iは電流信号であり、電気機械的インピーダンスZ
εは以下のように決定することができる。
【数6】
【0072】
活性材料の他の重要な特徴は、ある化学変化(すなわち、加えられた熱力学的力に関係なく)に対する抵抗である。電気活性材料については、ファラデー電荷から算出することができる。電気化学インピーダンス分光法の基本理論では、すべての電極は特定の容量を有し、電位または電流の摂動中に充放電される。このいわゆる二重層充電電流は、材料の還元または酸化に変換されないため、この部分を差し引く必要がある。化学機械的インピーダンスZ
Liは、以下の式から求めることができる。
【数7】
式中で、C
dlは、標準的な電気化学インピーダンス分光法計算を使用してZ
eのナイキストプロットまたはボードプロットから決定することができる二重層静電容量であり、c
Liは、作用電気活性材料中のリチウムイオン濃度であり、Fはファラデー定数である。
【0073】
インピーダンスは、電気化学セルの有効抵抗を定量化する。電気的インピーダンス、機械的インピーダンスおよび化学機械的インピーダンスを決定することによって、上記の式を使用して、印加された周期的な摂動が様々な有効抵抗に及ぼす影響を確認することが可能である。
【0074】
上記において略述したように、方法100は、異なる周波数での電気化学セルの挙動を決定するために、異なる所定の搬送波波形で順次使用することができる。
【0075】
第1の手法では、最大値(例えば、100kHz)から最小値(例えば、1mHz)まで下がる周波数掃引が使用される。単一の摂動の複数の周期が単一の周波数値で適用され、Ze、Zmの測定後、次の所定の単一の周波数値に進む。所定の周波数値の数は、10回の変化毎に少なくとも1つであるが、好ましくは少なくとも5つである。この手法で約1Hzまで下げると、測定は比較的高速であり、これは、測定中にシステムの状態があまり変化しないことを意味する。ただし、系統誤差が発生する可能性があるため、周波数走査を少なくとも2回繰り返すことが望ましい。
【0076】
第2の手法では、例えば、最小値と最大値との間の周波数範囲から複数の単一周波数をランダムに選択することによって、代替周波数走査が適用される。この方法には系統誤差がない場合があるが、システムの状態は時間とともに変化する場合がある。
【0077】
第3の手法では、上述したように、搬送波自体が複数の周波数の重畳である。
【0078】
図3は、本発明に係る測定装置の概略図である。
図1を参照して前述した素子または構成要素はとは、符号について、下2桁は同じであるが、その前に「3」が付いている。
【0079】
また、測定装置は、作用電極312、対向電極314、参照電極316およびセパレータ318を有する典型的な3電極システムに基づく。これらの構成要素は、電気化学セルを外部環境から遮蔽するためのハウジング338内に封入される。ハウジング338には、膜324によって覆われた開口部が設けられており、この膜も回路を閉塞する。膜324は、膜324の外側領域344を固定する封止リング346によってハウジング338に固定される。膜324の外側領域344をハウジング338に固定するために他の方法、例えば接着剤が利用可能であることが理解される。図示していないが、測定装置の様々な他の構成要素、例えばロックインアンプ、コントローラなどもハウジング338に収容してもよい。
【0080】
測定装置には、レーザ干渉技術を用いて作用電極312の変位を測定する非接触変位センサ(図示せず)が設けられている。具体的には、非接触変位センサは、膜324の内側領域342の垂直移動を測定し、内側領域342は、任意選択的に、
図1の測定装置同様、ハウジング338の内側の集電体(図示せず)を介して、作用電極312が取り付けられている領域である。使用レーザ干渉を考慮すると、膜324の外面、少なくとも内側領域342が反射性である場合に有利である。
【0081】
内側領域342と外側領域344とは、中間領域358によって互いに接続されている。中間領域358は、折り線350によって内側領域342に接続され、折り線348によって外側領域344に接続される。一実施形態では、中間領域358は、少なくとも0.1mmおよび最大5mm、好ましくは最大1mmの幅wを有する。図示した実施形態では、内側領域342と外側領域344との間に高低差Hがある。高さHは、0.05mm以上1mm以下、好ましくは0.5mm以下である。また、内側領域342は、外側領域344よりも高い位置にあってもよいことが理解される。
【0082】
中間領域358には、
図3および
図4に示した実施形態において、3つの折り線352、354、356が設けられている。これらの折り線352、354、356は、内側領域342が垂直方向により自由に移動できることを保証する。特に、内側領域342の垂直移動は、折り線352、354、356の間の中間領域358の部分に対してそれらの相対的な向きを変化させる。これにより、内側領域342は、完全に平坦な膜324と比較して、垂直方向に移動しやすくなる。
【0083】
図6に示す代替実施形態に示すように、作用電極312の変位の歪みを最小限に抑えるために、最低3つの折り線348、350、354が必要であることは容易に理解される。
【0084】
図4は、膜324の上面図である。
図4は、膜324が円筒対称性を有することを示す。ただし、円筒対称性を有する膜324が好ましいが、他の構成も可能である。例えば、
図6に示す装置で使用するための、
図5に示す平面対称性である。
【0085】
本開示の態様を特定の実施形態に関して説明したが、これらの態様は、特許請求の範囲によって定義される本発明の範囲内で他の形態で実施されてもよいことは容易に理解される。
【国際調査報告】