IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ブルーテスト、アクチボラグの特許一覧 ▶ ゲフレ テストテクニック アクチボラグの特許一覧

特表2022-531366利得平坦性基準に合致する無線通信性能測定
<>
  • 特表-利得平坦性基準に合致する無線通信性能測定 図1
  • 特表-利得平坦性基準に合致する無線通信性能測定 図2
  • 特表-利得平坦性基準に合致する無線通信性能測定 図3
  • 特表-利得平坦性基準に合致する無線通信性能測定 図4
  • 特表-利得平坦性基準に合致する無線通信性能測定 図5
  • 特表-利得平坦性基準に合致する無線通信性能測定 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-07-06
(54)【発明の名称】利得平坦性基準に合致する無線通信性能測定
(51)【国際特許分類】
   H04B 17/309 20150101AFI20220629BHJP
   G01R 29/10 20060101ALI20220629BHJP
【FI】
H04B17/309
G01R29/10 E
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021564889
(86)(22)【出願日】2020-04-29
(85)【翻訳文提出日】2021-10-29
(86)【国際出願番号】 EP2020061909
(87)【国際公開番号】W WO2020229187
(87)【国際公開日】2020-11-19
(31)【優先権主張番号】1930150-6
(32)【優先日】2019-05-10
(33)【優先権主張国・地域又は機関】SE
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.3GPP
(71)【出願人】
【識別番号】519315899
【氏名又は名称】ブルーテスト、アクチボラグ
【氏名又は名称原語表記】BLUETEST AB
(71)【出願人】
【識別番号】521476997
【氏名又は名称】ゲフレ テストテクニック アクチボラグ
(74)【代理人】
【識別番号】100103816
【弁理士】
【氏名又は名称】風早 信昭
(74)【代理人】
【識別番号】100120927
【弁理士】
【氏名又は名称】浅野 典子
(72)【発明者】
【氏名】マルムレーヴ, ペデル
(72)【発明者】
【氏名】レハマー, ロバート
(57)【要約】
周波数帯域(235)での残響チャンバ(110)における少なくとも一つの試験対象装置(DUT)(120)の性能を測定するための方法であって、前記方法が、反復して、残響チャンバによってフェージングシナリオを生成すること(S1);周波数帯域に含まれる少なくとも一つの測定副帯域(230)を同定すること(S2)、但し少なくとも一つの測定副帯域は、利得平坦性基準に従う;少なくとも一つの同定された測定副帯域において少なくとも一つのDUTの性能を測定し(S3)、それによって少なくとも一つの性能測定結果を生成すること;少なくとも一つの性能測定結果を蓄積すること(S4);及び測定カバレージを決定し(S5)、測定カバレージがカバレージ基準に合致する場合には性能測定を終結することを含む。
【選択図】 図3
【特許請求の範囲】
【請求項1】
周波数帯域(235)での残響チャンバ(110)における少なくとも一つの試験対象装置(DUT)(120)の性能を測定するための方法であって、前記方法が、反復して、
残響チャンバ(110)によってフェージングシナリオを生成すること(S1)、
周波数帯域(235)に含まれる少なくとも一つの測定副帯域(230)を同定すること(S2)、但し少なくとも一つの測定副帯域は、利得平坦性基準に従う、
少なくとも一つの同定された測定副帯域において少なくとも一つのDUT(120)の性能を測定し(S3)、それによって少なくとも一つの性能測定結果を生成すること、
少なくとも一つの性能測定結果を蓄積すること(S4)、及び
測定カバレージを決定し(S5)、測定カバレージがカバレージ基準に合致する場合には性能測定を終結すること
を含む、方法。
【請求項2】
フェージングシナリオを生成することが、残響チャンバ(110)を充填するかどうかを選択すること(S11)、残響チャンバ(110)の内側のモードかくはん器(140,150)又は変位機構(160)の配置を変化させること、残響チャンバ(110)の内側の一組の試験アンテナから一つの試験アンテナを選択すること、及び残響チャンバ(110)のコヒーレンス帯域幅を選択することのいずれかを含む、請求項1に記載の方法。
【請求項3】
利得平坦性基準が、測定副帯域中の利得差(S21)の尺度を含む、請求項1又は2に記載の方法。
【請求項4】
複数の測定副帯域(S22)が、各反復において同定されることができる、請求項1~3のいずれかに記載の方法。
【請求項5】
測定副帯域が最小数のリソースブロック(S23)にわたって広がるか及び/又は最小周波数範囲(S24)にわたって広がるときにのみ、測定副帯域が同定される、請求項1~4のいずれかに記載の方法。
【請求項6】
測定された性能が、エラーベクトル振幅(EVM)の測定値(S31)を含む、請求項1~5のいずれかに記載の方法。
【請求項7】
測定された性能が、パケット誤り率(PER)の測定値(S32)を含む、請求項1~6のいずれかに記載の方法。
【請求項8】
性能測定値が、自動化された測定値の組(S33)の一部である、請求項1~7のいずれかに記載の方法。
【請求項9】
測定カバレージが、周波数範囲カバレージ(S51)に基づいて及び/又は推定測定精度(S52)に基づいて決定される、請求項1~8のいずれかに記載の方法。
【請求項10】
反復して、蓄積された測定結果に補償関数を付与する(S6)ことを含む、請求項1~9のいずれかに記載の方法。
【請求項11】
請求項1~10のいずれかに記載の方法を実施するためのプログラムコード手段を含むコンピュータプログラム(620)であって、前記プログラムが、コンピュータで又は制御ユニット(160)の処理回路(510)で実行される、コンピュータプログラム(620)。
【請求項12】
周波数帯域(235)での残響チャンバ(110)における少なくとも一つの試験対象装置(DUT)(120)の性能を測定するための制御ユニット(160)であって、制御ユニットが、
残響チャンバ(110)によってフェージングシナリオを生成すること、
周波数帯域(235)に含まれる少なくとも一つの測定副帯域(230)を同定すること、但し少なくとも一つの測定副帯域は、利得平坦性基準に従う、
少なくとも一つの同定された測定副帯域において少なくとも一つのDUT(120)の性能を測定し、それによって少なくとも一つの性能測定結果を生成すること、
少なくとも一つの性能測定結果を蓄積すること、及び
測定カバレージを決定し、測定カバレージがカバレージ基準に合致する場合には性能測定を終結すること
を反復して行なうように構成された、処理回路(510)及びインターフェース(520)を含む、制御ユニット(160)。
【請求項13】
制御ユニットが、連続したフェージングシナリオを自動的に進めるように適応されている、請求項12に記載の制御ユニット(160)。
【請求項14】
請求項12又は13に記載の制御ユニット(160)を含む測定装置(100)。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、アンテナ装置および無線装置のための試験装置に関する。アンテナシステムの性能の測定および無線装置の試験のためのシステムおよび方法も開示される。
【背景技術】
【0002】
電磁残響チャンバ(ERC)またはモードかくはんチャンバ(MSC)としても知られる残響チャンバ(RC)が、様々な無線装置の無線通信(OTA)性能を測定するための効果的なツールとなっている。RCは、主として、無線周波数反射環境におけるアンテナシステムの性能(即ち、試験対象装置(DUT)が多重伝播にさらされる場合のアンテナシステムの性能)を評価するために使用される。
【0003】
RCにおいて、信号が、試験アンテナ装置によって、無線周波数を反射させる壁を内側に備えている閉じたチャンバもしくはキャビティに注入されるか、又は拾い上げられる。注入された信号は、多数の異なる軌道を通り、複数回の反射の後にDUTに到達する。これにより、受信器において無線周波数信号のフェージング状態が生じる。モードかくはんプレートおよび/またはDUTが配置されたターンテーブルを動かすことによって、チャンバの幾何学形状が変化し、従ってDUTが被るフェージング状態が変化する。従って、様々な入射波組成を有する多数のフェージング状態を効率的な方法で試験することができるリッチ等方性マルチパス(RIMP)環境が効率的に生成される。
【0004】
しかしながら、RIMP環境は、より無響な環境で通常伝導性のエラーベクトル振幅(EVM)の測定のような特定のタイプの測定の結果に影響を与える。それゆえ、EVM測定は、伝導タイプの測定方法を使用して実施されることが通常であり、そこではDUTと測定装置の間で試験信号を移すためにケーブルが使用される。
3GPP TS 36.104 V16.1.0は、Section6.5.2及びAnnex EにおいてEVM測定について述べている。
【発明の概要】
【0005】
本開示の目的は、残響チャンバ又は同種の測定装置において少なくとも一つのDUTの性能を測定するための技術を提供することである。
【0006】
この目的は、周波数帯域での残響チャンバにおける少なくとも一つのDUTの性能を測定するための方法によって達成される。この方法は、反復して、残響チャンバによってフェージングシナリオ(fading scenario)を生成し、周波数帯域に含まれる少なくとも一つの測定副帯域を同定することを含み、少なくとも一つの測定副帯域は、利得平坦性基準に従う。この方法はまた、少なくとも一つの同定された測定副帯域において少なくとも一つのDUTの性能を測定し、それによって少なくとも一つの性能測定結果を生成すること、及び少なくとも一つの性能測定結果を蓄積することを含む。この方法は、次いで測定カバレージを決定し、測定カバレージがカバレージ基準に合致する場合には性能測定を終結することを含む。
【0007】
このようにして、実質的に測定が平坦なフェージング環境でなされたかのように周波数選択無線伝播環境においてDUTの性能を測定することが可能になる。これが、本発明の利点である。
【0008】
本発明の別の利点は、様々なタイプの測定、例えば電磁両立性(EMC)及び電磁障害(EMI)が、EVMの測定のような残響チャンバで通常なされない測定とともにバッチモードでなされることができることである。
【0009】
実施形態によれば、フェージングシナリオを生成することは、残響チャンバを充填するかどうかを選択すること、及び/又は残響チャンバのコヒーレンス帯域幅を選択することを含む。充填及びコヒーレンス帯域幅は、RCの内側の無線伝搬環境の周波数選択性に影響を与える。従って、有利には、ここに開示される測定装置は、様々なレベルの周波数選択性を有する様々な伝搬シナリオに対して適応されることができる。
【0010】
実施形態によれば、利得平坦性基準は、測定副帯域中の利得差の尺度を含む。これは、様々な測定ニーズに適応されることができる融通のきく平坦性基準であり、それは本発明の利点である。平坦性基準は、測定精度と測定時間の間のトレードオフとして選択されることができ、それは本発明の利点である。
【0011】
実施形態によれば、複数の測定副帯域が各反復において同定されることができる。これは、測定時間を短くし、及び/又は測定精度を高め、それは本発明の利点である。
【0012】
実施形態によれば、測定副帯域が最小数のリソースブロックにわたって広がるか及び/又は測定副帯域が最小周波数範囲にわたって広がるときにのみ、測定副帯域が同定される。副帯域に対して最小数のリソースブロックにわたって広がることを要求することによって、及び/又は副帯域に対して最小周波数範囲にわたって広がることを要求することによって、スプリアスな影響及び一時的な挙動が測定結果で避けられ、測定精度の向上に導く。
【0013】
実施形態によれば、測定された性能は、エラーベクトル振幅(EVM)測定値を含む。従って、有利には、例えば3GPP TS 36.104 V16.1.0 Section6.5.2及びAnnex Eで特定される測定が実施されることができ、それは、ロングタームエボリューション(LTE)及び新しい無線(NR)システムが、開示された技術によって性能に関して特徴づけられることを可能にするので有利である。
【0014】
実施形態によれば、性能測定値は、自動化された測定値の組の一部である。これは、オペレータの都合の良さと測定精度の向上の両方を与え、それは本発明の利点である。
【0015】
実施形態によれば、測定カバレージは、周波数範囲カバレージに基づいて決定される。十分な周波数カバレージは、信頼できる測定結果と相関することが多く、それは、反復方法が信頼できる終結機構によって信頼性高く終結されることを意味し、それは本発明の利点である。また、目標カバレージを調整することによって測定精度と測定時間の間のトレードオフがなされることができ、それは本発明の利点である。
【0016】
実施形態によれば、測定カバレージは、推定された測定精度に基づいて決定される。結果として、この方法は、十分な精度が得られるまで終結されない。それは信頼できる測定結果に導き、それは本発明の利点である。
【0017】
さらにここには、様々な方法に関連して上で述べたのと同じ利点と関連した制御ユニット、コンピュータプログラム、及び測定装置が開示される。
【0018】
一般に、特許請求の範囲において使用される全ての用語は、本明細書で別段の定めがない限り、この技術分野におけるそれらの用語の通常の意味に従って解釈されるべきである。「要素、装置、構成要素、手段、工程、など」への言及は全て、特に明記されない限り、要素、装置、構成要素、手段、工程、などの少なくとも1つの実例を指すものとして、非排他的に解釈されるべきである。本明細書に開示されるあらゆる方法の工程は、特に明示されない限り、開示のとおりの順序で実行される必要はない。本発明のさらなる特徴および利点が、添付の特許請求の範囲および以下の説明を検討することで、明らかになるであろう。本発明の範囲から逸脱することなく、本発明の様々な特徴を組み合わせて、以下で説明される実施形態以外の実施形態を生み出すことができることを、当業者であれば理解できるであろう。
【図面の簡単な説明】
【0019】
次に、本開示を、添付の図面を参照してさらに詳しく説明する。
【0020】
図1図1は、試験対象の無線装置の性能を測定するための例示的な測定装置を概略的に示す。
【0021】
図2図2は、周波数の関数としてのチャネル利得を示すグラフである。
【0022】
図3図3は、概念方法を示すフローチャートである。
【0023】
図4図4は、例示的な方法の詳細を示すフローチャートである。
【0024】
図5図5は、制御ユニットを概略的に示す。
【0025】
図6図6は、コンピュータプログラム製品を示す。
【発明を実施するための形態】
【0026】
次に、本開示のいくつかの態様を、添付の図面を参照してさらに充分に説明する。しかしながら、本明細書に開示される種々の装置および方法は、多数の異なる形態で実現可能であり、本明細書に記載される態様に限定されると解釈されるべきではない。図中の同様の番号は、全体を通して、同様の要素を指している。
【0027】
本明細書において使用される用語は、あくまでも本開示の態様を説明するためのものにすぎず、本発明を限定しようとするものではない。本明細書において使用される場合、単数形(「a」、「an」、および「the」)は、そのようでないことが文脈から明らかでない限り、複数形も含むように意図される。
【0028】
上述のように、残響チャンバ(RC)は、マルチパス伝搬の状況において無線システムを試験するための単刀直入な解決策を提供する。RCは、多入力多出力(MIMO)として知られる通信のために送信器および受信器の複数のアンテナ間のマルチパス信号伝搬に依存する装置、および同時にいくつかの周波数帯域を使用して動作する装置の試験のために特に適する。
【0029】
試験信号は、試験対象装置(DUT)によって又はRCの試験アンテナ装置によってのいずれかで注入されることができると理解される。従って、RCは、送信側(TX)及び受信側(RX)の両方のDUT無線操作、又は両方を同時に測定するために使用されることができる。また、TX及びRXの両方のDUT操作が測定されることができるので、3GPPアップリンク仕様を3GPPダウンリンク仕様と同様に試験することができる。
【0030】
無響チャンバ(AC)は、無線通信装置の試験の解決策として長い歴史を有する。ACは、無線信号吸収材料によって囲まれたチャンバまたはキャビティである。その最も顕著な特徴は、反射信号のレベルがきわめて低いことであり、即ちRCとは反対である。ACは、一般に、試験対象装置が単一の到来方向から入射する無線信号に曝される場合の無線(OTA)性能の測定に使用される。
【0031】
伝導タイプの測定は、DUTがケーブルを介して直接測定装置に接続される測定である。即ち、DUTと測定装置の間に無線信号伝搬は全くない。
【0032】
図1は、周波数帯域における少なくとも一つのDUT120の性能を測定するための測定装置100を概略的に示す。
【0033】
ここでは、DUT120の性能は、他に示さない限り、少なくとも部分的にエラーベクトル振幅(EVM)に関して測定される。相対コンステレーション誤差(relative constellation error)(RCE)とも時には称されるEVMは、デジタル無線送信器又は受信器の性能を定量化するために使用される尺度である。理想的な送信器によって送られた又は理想的な受信器によって受信された信号は、理想的な位置に正確に全てのコンステレーション点を持つだろう。しかし、実施における様々な欠陥(例えば熱雑音、キャリア漏れ、低イメージ周波数抑圧比、位相雑音など)は、実際のコンステレーション点を理想的な位置から逸脱させる。大雑把に述べると、EVMは、理想的な位置から点がどのくらい遠いかの尺度である。
【0034】
雑音、ひずみ、スプリアス信号、及び位相雑音は全て、EVMを劣化させる。従ってEVMは、デジタル通信に使用するための無線受信器又は送信器の品質の包括的な尺度を与える。3GPP TS 36.104 V16.1.0は、Section6.5.2及びAnnex EにおいてEVMについて述べている。
【0035】
実施形態によれば、DUT120は、3GPPのNew Radio(NR)システムの一部又は3GPP仕様に基づくLong Term Evolution(LTE)システムの一部である。DUT120はさらに、直交周波数分割多重方式(OFDM)信号を送信及び/又は受信するように配置されることができる。
【0036】
DUT120の性能は、ここでは放射図、透過係数、反射係数、及び/又はSパラメータのようなDUT特性に関するものであることができる。DUTの性能はさらに、ビット誤り率(BER)、パケット誤り率(PER)又は機能不全のような信頼性測定のようなシステムレベル上の性能に関するものであることができる。性能はさらに、準拠性試験などに関するものであることができる。
【0037】
性能測定の一部のタイプ、例えばDUTがRIMP環境にさらされるフェージング試験、又はEMC/EMI測定は、伝統的にRCを使用して実施され、測定の一部の他のタイプ、例えばEVM測定は、伝統的により周波数的に平坦なフェージングシナリオで実施されてきた。一連の様々な測定をバッチモードで、又は並列に同時に実施することが望ましいことが多い。これは、周波数選択フェージングを生成するRCにおいて伝統的なEVM測定技術を使用する問題であるかもしれない。
【0038】
図1中の測定装置100は、DUT120を囲むように構成された無線周波数反射壁111を内側に有するチャンバ110を備える。測定装置はまた、一つ以上のモードかくはん器140,150を備え、それらは、チャンバ110の内側で様々なフェージングシナリオを生成するために動かされることができる。試験アンテナ130は、無線信号131をDUTに送信したり、無線信号131をDUTから受信したりするように構成される。これらの信号は、ここでは関心のある幾つかの周波数帯域に制限されることが想定される。
【0039】
一部の実施形態によれば、複数の又は一組の試験アンテナがチャンバ110の内側に配置される。測定システムは、そのとき様々なアンテナ間で切り換えることによっても様々なフェージングシナリオを生成することができる。
【0040】
DUT120は、ここではターンテーブル160の上に配置されて示され、ターンテーブル160は、例えばDUT120と試験アンテナ130の間の配置関係を変更するために使用されることができる変位機構である。例えばDUTアンテナ図に依存して、変位機構を操作することはまた、DUTによって経験されるような様々なフェージングシナリオを生成するだろう。
【0041】
一つ以上の吸収体170をチャンバ110中に配置してチャンバを「充填(load)」することができる。当然、吸収体が多いほど、チャンバの内側の環境は、周波数選択性が少なくなるだろう。極端なケースは、マルチパス伝搬が全くないか又は極めてわずかなマルチパス伝播しか生じない既知の無響測定チャンバによって表わされる。従って、吸収体は、チャンバのコヒーレンス帯域幅に影響を与える。RCに対する吸収体の効果は知られており、ここではより詳細に述べられないだろう。
【0042】
制御ユニット160はまた、測定装置100に含まれ、測定を実施するように配置される。制御ユニットは、例えば試験信号を生成し、測定結果を決定し、測定結果を記憶するように適応される。制御ユニット160はまた、残響チャンバを制御するように、即ちモードかくはん器140,150を動かすことによって様々なフェージングシナリオを生成するように配置される。制御ユニットは、図5に関連して以下により詳細に記載されるだろう。
【0043】
チャンバ110及び測定装置は、一般に無線周波数反射環境を生成するように構成された既知の残響チャンバと同様である。それゆえ、図1に示された測定装置100は、本明細書においてより詳細に述べられないだろう。
【0044】
図2は、周波数(Hz)の関数として試験アンテナ130とDUT120の間のリンク131についてのチャネル利得(dB)のグラフ200を示す。利得は、既知の確率的な態様でチャンバ110中の反射環境のために周波数にわたって変化する。利得曲線210の位置及び一般的な形状は、モードかくはん器140,150の位置によって、そして潜在的には変位機構160によっても少なくとも部分的に決定される。もしこれらのいずれかが動かされるなら、そのとき利得曲線210は、形状を変化する。即ち、ノッチ220は、利得及び周波数において動き、本質的に平坦な部分230が出現するかもしれず、そこでは周波数応答は、いかなる有意な変化も示さない。
【0045】
直交周波数分割多重方式(OFDM)は、3GPP TS 36.104 V16.1.0で述べたように多くの無線システムで普及している変調方式である。OFDMは、相対的に狭い帯域幅の副搬送波を使用してタイムスロットにおいて情報を運ぶ。時間窓にわたる通信のために使用される副搬送波の群は、リソースブロック(RB)として言及される。図2は、例示的なOFDMシステムの副搬送波240を概略的に示す。特に、副搬送波250の幾つかは、副帯域230に含まれ、それは、より平坦な利得曲線特性を示す。
【0046】
一例によれば、DUT120は、OFDMベースの無線伝送ユニットである。DUTは、3GPP無線条件に従って、又はIEEE 802.11 Wi-Fi無線条件、又はそれらに類似の条件に従って特定されてもよい。
【0047】
フェージング条件では、試験対象又はDUT120からの信号131は、チャンバ110の内側で反射された信号の相対的な位相に依存して減衰又は増幅され、スペクトルの部分において得られる信号は、副帯域230でのように元の信号に近いだろう。どのくらい頻繁に深いフェージング下落220が起こるかは、例えば使用されるチャンバ110のサイズ、及びどのくらい多くの吸収体170がチャンバ110中に配置されるかに依存する。
【0048】
ここで与えられる概念は、連続又は段階的なフェージング中の様々なモードかくはん器の位置についてかなり平坦なスペクトルを有する周波数副帯域を見出し、様々なチャンバ構成からのスペクトルの様々な部分を一緒に突き通すことによってRBの全て又は少なくとも大多数に基づいた結果を生成することである。これは、モードかくはん器が動かされるときにフェージング下落及び平坦な副帯域の周波数位置が変化するので可能であるだろう。従って、最終的には、全てのRB又はRBの少なくとも大多数は、平坦な条件で測定されることができる。
【0049】
図3は、例えばEVMの測定を実施するためのこの概念を示すフローチャートを示す。この方法は、一部の確定的な位置でモードかくはん器を構成することによって又はランダム構成を付与することによってチャンバ110の内側のフェージングシナリオを生成するS1ことによって開始する。得られたフェージングパターンは、次いで測定を実施するために好適な副帯域を決定するために分析される。これらの副帯域は、かなり平坦である。即ち、副帯域は、伝導タイプの測定又は無響チャンバの内側の測定のものと類似する利得特性を示す。測定は、次いで副帯域で実施されS3、測定結果は、蓄積されるS4。これまでカバーされた測定副帯域に基づいて、十分な測定カバレージが得られたかどうかS5、即ち測定手順が終結されることができるかどうかが決定される。「十分な測定カバレージ」の定義は、条件に依存して各測定キャンペーンについて規定される。一部の測定は、全体のカバレージ、即ち関心のある全周波数帯域が少なくとも一回測定されていることを要求するかもしれない。他のあまり厳格でない測定は、例えば関心のある周波数帯域のうちの一定の百分率がカバーされることだけを要求するかもしれない。この百分率は、例えば関心のある全周波数帯域の80%又は90%であることができる。
【0050】
記載された方法の一部の態様は、標準EVM測定技術に従って、例えば3GPP TS 36.104 V16.1.0.に記載のように信号131のIQキャプチャを実施することに基づく。IQキャプチャは、無線信号131の一区域をサンプリングし、その区域を複素数(即ち、同位相及び直角位相成分)として記憶することに関する。この信号は、上述のように信号コンステレーションに関することができ、EVMは、測定されることができる。IQキャプチャのスペクトル情報は、FFT又はそれに類似するものによって、信号のどの周波数帯部分が限定されたフェージングの影響を有するかを決定するために分析されることができる。スペクトル中のどこで信号が十分に「平坦」に見えるかに基づいて、その領域におけるリソースブロックがEVM測定のために選択される。基底帯域信号のサンプリング及びIQデータは、知られており、ここではさらに詳細に述べられないだろう。
【0051】
完全に計算されたEVMは、多数の異なるフェージングシナリオについて、即ち多数の異なるモードかくはん器位置について測定結果を蓄積することによって得られることができる。
【0052】
EVM測定結果の重み付けされた平均化はまた、各キャプチャについての部分的なEVM結果がRBレベルで記憶されるときに任意選択的に使用されることができる。従ってIQキャプチャにおける多くのリソースブロックに基づく結果(従って、より正確であることが多い)は、より限定された数のRBに基づく測定(従って、正確さに劣ることが多い)より最終結果に対して大きい影響を持つだろう。
【0053】
各EVM測定はまた、同定された測定副帯域において様々な平坦な部分の間の利得差を埋め合わせるために利得レベルについて調整されることができる。
【0054】
例示的なEVM測定技術は、3GPP TS 36.104 V16.1.0.を参照して記載されるだろう。3GPP TS 36.104 V16.1.0.によるEVM測定は、測定中の周波数領域データの等化の実施で行なわれるだろう。振幅及び位相のための参照信号副搬送波における等化係数は、時間平均された参照信号副搬送波(即ち、三つの副搬送波のうちの一つ)の周波数領域における移動平均を計算することによって得られる。移動平均窓寸法は、19である。チャネルの縁における又はその近くの参照副搬送波については、窓寸法は、応じて減少される。
【0055】
副搬送波は、15kHz又は7.5kHzのいずれかであることができ、リソースブロックは、12個又は24個の副搬送波からなる。20MHzのLong Term Evolution(LTE)信号の場合には、各RBは、12の副搬送波幅である。この場合の全信号は、100RBである。
【0056】
移動平均操作は、次のようにして実施される。即ち、第一副搬送波が平均化されず、第二のものが最初の三つの平均であり、同様の操作が第十の副搬送波まで及びそれ以降も行なわれ、そこではチャネルの上縁に到達するまで窓寸法は19であり、到達後に窓寸法は1に減少する。これは、もちろん伝導タイプの環境では有益であり、そこでは信号は、周波数領域においてかなり平坦であり、広い窓が平均化の増加によって受信器ノイズを減少する。しかしながら、かなりフェージングされた環境では、これは、スペクトル中のフェージングの影響が等化プロセスにおいて隣接する副搬送波に影響することを意味し、等化器は、チャネルのコヒーレンス帯域幅の外側では適用可能でない。従って、適切なEVM測定は、可能でない。
【0057】
もし等化器が代わりに例えば7の窓寸法までを使用するにすぎないなら、得られる等化されたスペクトルは、等化されていないスペクトルに近くなり、それは、フェージングの影響がすぐ隣りの三つの副搬送波に制限されることを意味する。
【0058】
どのRBを分析に使用するかの選択は、等化器操作の後にIQ信号のスペクトルで実施される。一例によれば、選択されたレベルの1~2dB以内である周波数スペクトルの部分がEVM測定のために使用される。
【0059】
スペクトルの出現に基づいて、ピーク信号に最も近い最も共通のレベルが選択され、もし十分に高い数のRBがこの選択によってカバーされるなら、EVM分析は、それらのRBで実施される。この方法は、十分なスペクトルがカバーされるときを決定するために既に分析されたRBがどれかを追跡する。
【0060】
チャンバ110における吸収体170を有さない試験の場合、スペクトルは平坦な部分を実質的に全く持たないので、各キャプチャについて必要な数のRBを減少することが有益でありうる。必要な数の十分に平坦な部分が関心のある周波数帯域全体を通して又はスペクトルの規定された百分率で同定されるまで多数のIQキャプチャが処理される。フェージング低下は高い確率でIQキャプチャごとに様々な周波数で起こるので、試験時間は、前に測定されていない周波数で十分に平坦な部分を見出す確率によって決定される。それゆえ、100%のRBは、同定のために例えば80%と比べて実質的に長い時間を必要とすることがあるかもしれない。
【0061】
周波数選択フェージングからの追加の測定誤差を除去しかつ伝導タイプの測定にさらに近い結果を達成するためにEVM測定結果に対するRCの影響を校正する可能性は、選択肢として考えられることができる。この校正は、モードかくはん器位置が十分にカバーされることを確実にするためにかなり長い時間測定信号キャプチャに基づくことができる。既知の信号での最良の達成可能な結果に基づいて、追加の不確実性の計算を実施することも可能である。追加の誤差は、信号中のEVMに相関しないので、全誤差分散は、以下のようにして得られることができる:
【0062】
これは、チャンバからの寄与が以下のものであることを意味する:
【0063】
測定中の測定結果は、チャンバについて補償されることができるだけである。なぜなら我々は、生成によって生じたEVMと分析によって生じたEVMとを分離する可能性を持たないからである。これは、測定について我々が以下のものを使用できることを意味する:
【0064】
チャンバ不確実性の測定は、ユーザに利用可能ないずれかの方法で、例えばDUTについての繰返し測定によって又はコヒーレンス帯域幅から導かれる分析計算によって推定されることができる。
【0065】
カバーされたリソースブロックの例えば80%に制限された測定を実施することは、測定時間に対して大きな影響を持つが、幾らかの周波数制限障害(例えば変調にスプリアスな極めて高い出力)がある場合には誤った測定結果に潜在的に導きうる。そのため、100%RBが少なくとも証明目的のために推奨される。しかし、ほとんどの状況において、リソースブロックの数についての80%の最小の限定は、結果として実質的に短い試験時間で正確な結果を生み出すだろう。
【0066】
図4は、上述したことに対応する方法を示すフローチャートである。周波数帯域235にわたって残響チャンバ110において少なくとも一つのDUT120の性能を測定するための方法が示されている。この方法は、終結条件が満たされるまで、又は予め決められた数の反復が実施されるまで一連の操作を反復する反復方法である。図4に示された操作順序は、必ずしも操作が実施される順序である必要はなく、他の操作順序も確実に可能である。また、一部の操作は、反復ごとに実施される必要はない。例えば、終結基準は、当業者によって理解されるように、反復ごとに評価される必要はないかもしれない。
【0067】
この方法は、残響チャンバ110によってフェージングシナリオを生成することS1を含む。フェージングシナリオは、チャンバの内側のRIMP環境の実現である(即ち、図2に示されるようなノッチ、低下、及びおそらくより平坦な部分を有する利得曲線)。フェージングシナリオは、例えばモードかくはん器140,150をシフトすることによって、又はターンテーブル160を操作することによって、又は複数の試験アンテナ間で切り換えることによって生成されることができる。換言すれば、実施形態によれば、フェージングシナリオを生成することは、残響チャンバ110の内側のターンテーブル160のような変位機構又はモードかくはん器の配置を変化させることS12を含む。
【0068】
制御ユニット160は、ランダムに又はある種の決定的チャンバ構成順序に従って、連続したフェージングシナリオを自動的に進めるように適応されることができる。決定的チャンバ構成順序を使用することと関連した利点は、あるレベルの反復性が得られることである。
【0069】
一部の実施形態によれば、残響チャンバ110を充填するかどうかは、任意選択的に選択されるS11ことができる。充填は、例えばチャンバ110内に一つ以上の吸収体170を挿入することを含む。吸収体が多いほど、周波数利得曲線200は平坦になるだろう。しかし、極めて平坦な曲線は、他のタイプの性能測定のために好ましくないかもしれない。それがトレードオフが必要でありうる理由である。
【0070】
一部の他の実施形態によれば、フェージングシナリオを生成することは、残響チャンバ110のコヒーレンス帯域幅を選択することS13を含む。この選択は、様々な充填及びモードかくはん器構成での実験によってなされることができるか、又はそれは、あるコヒーレンス帯域幅を与えるチャンバ構成のリストから読み出されることができる。
【0071】
発生したフェージングシナリオを与えられると、この方法は、次いで周波数帯域235に含まれる少なくとも一つの測定副帯域230を同定することS2を含み、そこでは少なくとも一つの測定副帯域は、利得平坦性基準に従う。一つより多い測定副帯域S22が、もちろん各反復において同定されることができる。また、ある反復について測定副帯域が同定されることができず、その場合において新しいフェージング実現が生成されることができることが理解される。利得平坦性は、多数の異なる方法で測定されることができ、開示された方法が幅広い種類の利得平坦性基準で使用されることができることが理解される。多くの好適な利得平坦性基準は、測定副帯域中のあるタイプの利得差の尺度(S21)を含む。例えば、測定副帯域候補中の最大と最小の利得の差は、1~2dB以下であることが要求されうる。分散又は標準偏差の尺度はまた、平坦性基準を規定するために使用されることができる。
【0072】
好適な測定副帯域を見出す一つの方法は、あるピーク利得位置で開始し、平坦性基準を監視しながらある周波数方向に周波数窓を拡張することである。周波数窓は、次いで利得平坦性基準がもはや満たされなくなるまで拡張される。
【0073】
同定された測定副帯域に対する最小の制限は、任意選択的に課されてもよい。従って、一部の実施形態によれば、測定副帯域は、測定副帯域が最小数のリソースブロックS23にわたって広がる場合にのみ同定される。一部の他の実施形態によれば、測定副帯域は、測定副帯域が最小周波数範囲S24にわたって広がる場合にのみ同定される。
【0074】
少なくとも一つの同定された測定副帯域230が与えられると、この方法は、少なくとも一つの同定された測定副帯域において少なくとも一つのDUT120の性能を測定しS3、それによって少なくとも一つの性能測定結果を生成することを含む。
【0075】
なされる測定のタイプは異なってもよい。しかし、開示された方法は、エラーベクトル振幅(EVM)測定S31、ビット誤り率(BER)又はパケット誤り率(PER)測定S32のいずれかで使用するために特に好適であり、それらは、平坦なフェージング試験シナリオをとる条件と関連されてもよい。
【0076】
任意選択的に、性能測定値は、自動化された測定値の組の一部である。
【0077】
測定操作からのいずれの測定結果も次いで蓄積される。即ち、この方法は、少なくとも一つの性能測定結果を蓄積することS4を含む。時間が経過して測定が反復すると、もっと多くの測定結果が得られるだろう。高い確率で、測定副帯域は、関心のある周波数帯域において様々な場所で同定されるだろう。従って、最終的には、関心のある周波数帯域のほとんど又は全ては、少なくとも一つの測定副帯域によってカバーされる。
【0078】
この方法は、測定カバレージを決定しS5、測定カバレージがカバレージ基準に合致する場合には性能測定を終結することを含む。カバレージ基準は、用途に基づいて選択されることができる。もし精度が極めて重要であるなら、厳しいカバレージ基準(例えば複数の測定副帯域が関心のある全周波数帯域を全体としてカバーしなければならないこと)が使用されることができる。しかし、もし測定時間が精度より重要であるなら、測定基準を緩和することができる。
【0079】
一部の実施形態によれば、測定カバレージは、周波数範囲カバレージS51(例えば少なくとも一つの測定副帯域によってカバーされなければならない関心のある周波数帯域の百分率)に基づいて決定される。この百分率のための好適な値は、80%又は90%であることができる。
【0080】
一部の他の実施形態によれば、測定カバレージは、推定される測定精度S52に基づいて決定される。測定精度は、例えば測定値の変動に基づいて決定されることができる。蓄積後の測定が落ちついたように見えるとき、測定は終結されてもよい。
【0081】
任意選択的に、この方法は、蓄積された測定結果に補償関数を適用する(S6)ことを含む。この補償関数は、様々な測定効果を補償することができる。例えば、多くの測定副帯域によってカバーされた関心のある周波数帯域の部分における測定が、まばらにカバーされただけの周波数範囲と比べて、最終測定結果においてより重く重み付けされることができる。
【0082】
図5は、ここで述べた実施形態による制御ユニット160の構成要素を多数の機能ユニットに関して概略的に示す。処理回路510は、例えば記憶媒体530の形でコンピュータプログラム製品に記憶されたソフトウェア指示を実施することができる、好適な中央処理ユニットCPU、マルチプロセッサ、マイクロコントローラ、デジタル信号プロセッサDSPなどの一つ以上のいずれかの組み合わせを使用して与えられる。処理回路510はさらに、少なくとも一つの特定用途向け集積回路ASIC又はフィールドプログラマブルゲートアレイFPGAとして与えられることができる。
【0083】
特に、処理回路510は、図4に関連して述べた方法のように一連の操作又は工程を制御ユニット160に行なわせるように構成される。例えば、記憶媒体530は、一連の操作を記憶することができ、処理回路510は、記憶媒体530から一連の操作を検索して、制御ユニット160に一連の操作を行なわせるように構成されることができる。一連の操作は、一連の実行可能な指示として与えられることができる。従って、処理回路510は、本明細書によって開示された方法のように方法を実施するように配置される。
【0084】
記憶媒体530はまた、永続的記憶装置を含むことができ、それは、例えば磁気記憶装置、光記憶装置、固体状態記憶装置又は遠隔装着記憶装置のいずれか一つ又は組み合わせであることができる。
【0085】
制御ユニット160は、試験アンテナ装置130及び少なくとも一つのDUT120のような少なくとも一つの外部装置との通信のためのインターフェース520をさらに含むことができる。従って、インターフェース520は、一つ以上の送信器及び受信器を含むことができ、それらは、アナログ及びデジタル構成要素、及び有線及び無線通信のために好適な多数のポートを含むことができる。
【0086】
処理回路510は、例えばデータ及び制御信号をインターフェース520及び記憶媒体530に送ることによって、インターフェース520からデータ及び報告を受けることによって、及び記憶媒体530からデータ及び指示を検索することによって、制御ユニット160の一般的な操作を制御する。制御ノードの関連する機能、並びに他の構成要素は、ここで与えられる概念を妨げないために省略される。
【0087】
制御ユニット160の中心機能は、試験信号131をインターフェース520を介して例えば試験アンテナ装置130に又は少なくとも一つのDUT120に送ることである。試験信号131は、例えば制御信号及びデータ信号を含むことができる。試験信号は、基底帯域信号又は無線周波数信号であることができる。
【0088】
制御ユニットはまた、予め規定されたパターンの変位に従って、又はあるフィードバック信号に対する応答として適切に変位ユニット160(例えばターンテーブル)の操作を制御するように構成されることができる。
【0089】
制御ユニットが実行する様々な制御プログラムは、記憶媒体530に記憶されることができる。
【0090】
要するに、ここには、周波数帯域235での残響チャンバ110における少なくとも一つの試験対象装置DUT120の性能を測定するための制御ユニット160が開示される。制御ユニットは、
残響チャンバ110によってフェージングシナリオを生成すること、
周波数帯域235に含まれる少なくとも一つの測定副帯域230を同定すること、但し少なくとも一つの測定副帯域は、利得平坦性基準に従う、
少なくとも一つの同定された測定副帯域において少なくとも一つのDUT120の性能を測定し、それによって少なくとも一つの性能測定結果を生成すること、
少なくとも一つの性能測定結果を蓄積すること、及び
測定カバレージを決定し、測定カバレージがカバレージ基準に合致する場合には性能測定を終結すること
を反復して行なうように構成された、処理回路510及びインターフェース520を含む。
【0091】
また、ここには、制御ユニット160を含む、図1に示された測定装置100のような測定装置が開示されている。
【0092】
図6は、制御ユニット160によって実行可能な一連の操作610を含むコンピュータプログラム製品600を概略的に示す。一連の操作610を、制御ユニット160内の記憶媒体530へとロードすることができる。一連の操作は、図4に関連して上で述べた方法に相当し得る。
【0093】
図6の例において、コンピュータプログラム製品600は、CD(コンパクトディスク)またはDVD(デジタル多用途ディスク)またはブルーレイディスクなどの光ディスクとして示されている。コンピュータプログラム製品を、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、または電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)などのメモリとして、より具体的にはUSB(ユニバーサルシリアルバス)メモリまたはコンパクトフラッシュ(登録商標)メモリなどのフラッシュメモリなどの外部メモリにおける装置の不揮発性記憶媒体として、具現化させることも可能である。従って、コンピュータプログラムは、ここでは、図示の光ディスク上のトラックとして概略的に示されているが、コンピュータプログラムは、コンピュータプログラム製品に適した任意の方法で記憶されることができる。
図1
図2
図3
図4
図5
図6
【国際調査報告】