IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ センモーション ゲーエムベーハーの特許一覧 ▶ エムシージー モーション キャプチャー ゲーエムベーハーの特許一覧

特表2022-531900足と支持表面との間の力を検出するためのセンサ素子、センサ配置、センサシステム、および方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-07-12
(54)【発明の名称】足と支持表面との間の力を検出するためのセンサ素子、センサ配置、センサシステム、および方法
(51)【国際特許分類】
   G01L 1/20 20060101AFI20220705BHJP
   A61B 5/11 20060101ALI20220705BHJP
   G01L 5/00 20060101ALI20220705BHJP
【FI】
G01L1/20 G
A61B5/11 210
G01L5/00 101Z
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021566181
(86)(22)【出願日】2020-04-17
(85)【翻訳文提出日】2021-12-13
(86)【国際出願番号】 EP2020060875
(87)【国際公開番号】W WO2020224937
(87)【国際公開日】2020-11-12
(31)【優先権主張番号】19172791.6
(32)【優先日】2019-05-06
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】521485531
【氏名又は名称】センモーション ゲーエムベーハー
(71)【出願人】
【識別番号】521485542
【氏名又は名称】エムシージー モーション キャプチャー ゲーエムベーハー
(74)【代理人】
【識別番号】100120891
【弁理士】
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100165157
【弁理士】
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100205659
【弁理士】
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100126000
【弁理士】
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100185269
【弁理士】
【氏名又は名称】小菅 一弘
(72)【発明者】
【氏名】エルテルト トーマス
(72)【発明者】
【氏名】クィアテク アンドレ
(72)【発明者】
【氏名】フェルッカース オリヴァー
【テーマコード(参考)】
2F051
4C038
【Fターム(参考)】
2F051AA18
2F051AB07
2F051BA07
4C038VA04
4C038VA12
4C038VB14
(57)【要約】
本開示は、足と支持表面との間の力を検出するためのセンサ素子(10)を提供する。抵抗器アレイセンサ素子(10)は、第一の層(11)であって、非導電性キャリア箔(12)と、その長手方向に少なくとも部分的に沿って延びる第一の半導電層(13)とを備える、第一の層と、複数の導電性セクション(19)を備える層と、少なくとも1つの電気接続領域(17)と、第二の層(14)であって、非導電性キャリア箔(15)と、その長手方向に少なくとも部分的に沿って延びる第二の半導電層(16)とを備える、第二の層と、を備え、少なくとも1つの電気接続領域(17)は、1つの半導電層(13、16)と接触し、電源に接続されるように構成され、半導電層(13、16)は、互いに離れて配置され、センサ素子(10)に加えられる力に依存する表面積と互いに選択的に接触し、それによって、センサ素子(10)の抵抗値が変化する。
【選択図】図5
【特許請求の範囲】
【請求項1】
足と支持表面との間の力を検出するためのセンサ素子(10)であって、
第一の層(11)であって、非導電性キャリア箔(12)と、前記第一の層(11)の長手方向に少なくとも部分的に沿って延びる第一の半導電層(13)と、を備える、第一の層(11)と、
第二の層(14)であって、非導電性キャリア箔(15)と、前記第二の層(14)の長手方向に少なくとも部分的に沿って延びる第二の半導電層(16)とを備える、第二の層(14)と、
複数の導電性セクション(19)を備える層と、
少なくとも1つの電気接続領域(17)と、
を備え、
前記少なくとも1つの電気接続領域(17)は、前記第一の層および前記第二の層(14)の1つの前記半導電層(13、16)と接触し、電源に接続されるように構成され、
前記第一の半導電層(13)および前記第二の半導電層(16)は、互いに離れて配置され、前記センサ素子(10)に加えられる前記力に応じて互いに選択的に接触するようになっており、それによって、前記センサ素子(10)の抵抗値が変化する、
センサ素子。
【請求項2】
前記第一の半導電層(13)と前記第二の半導電層(16)とは、互いに対向する2つの表面を形成し、前記2つの表面は、無荷重状態で互いに離間しており、前記センサ素子(10)に加えられる前記力に応答して、接触させることができ、前記2つの表面が互いに接触する面積が、前記センサ素子(10)の抵抗値を示す、請求項1に記載のセンサ素子。
【請求項3】
前記抵抗値は、前記2つの層が互いに接触する表面積に比例する、請求項1または2に記載のセンサ素子。
【請求項4】
前記複数の導電性セクション(19)は、前記第二の層(14)のキャリア箔(15)上に配置され、前記第二の層(14)の前記半導電層(16)と接触し、前記複数の導電性セクションは、前記第二の層(14)の長手方向に対して横方向に延びる、請求項1~3のいずれか一項に記載のセンサ素子。
【請求項5】
前記複数の導電性セクション(19)は、前記センサ素子の厚み方向において考慮される場合、キーボードまたは鍵盤を形成する、請求項1~4のいずれか一項に記載のセンサ素子。
【請求項6】
前記複数の導電性セクション(19)はストライプ状であり、2つの隣接するストリップは前記第二の層(14)の長手延長方向に離間している、請求項1~5のいずれか一項に記載のセンサ素子。
【請求項7】
前記複数の導電性セクション(19)を備える層が、前記第二の層(14)の前記半導電層(16)に少なくとも部分的に埋め込まれている、請求項1~6のいずれか一項に記載のセンサ素子。
【請求項8】
前記電気接続領域(17)は、好ましくは層として形成され、前記第一の層(11)の前記半導電層(13)に少なくとも部分的に埋め込まれている、請求項1~7のいずれか一項に記載のセンサ素子。
【請求項9】
少なくとも2つの第一および/または第二の半導電層(13、16)が、その長手延長方向に対して平行に配置され、前記2つの第一および/または第二の半導電層(13、16)が、前記少なくとも1つの電気接続領域(17)を介して互いに接続される、請求項1~8のいずれか一項に記載のセンサ素子。
【請求項10】
前記第一の層および前記第二の層(11、14)は、その間に配置された中間炭素層および/または接着剤(18)によって離間して配置された前記第一の半導電層および前記第二の半導電層とともに積層されている、請求項1~9のいずれか一項に記載のセンサ素子。
【請求項11】
足と支持表面との間の力を検出するためのセンサ配置(100)であって、
前記請求項1~10のいずれか一項に記載の複数のセンサ素子(10)であって、前記センサ素子(10)は、少なくとも実質的に共通の平面内で互いに隣接して配置される、複数のセンサ素子(10)と、
個々の前記センサ素子を第一および第二の電位および/または評価デバイスに接続するように構成された複数の電線(120)と、
を備え、
前記センサ配置(100)は、少なくとも1つのノッチ(102)を有する少なくとも1つの周辺輪郭(101)を備え、前記少なくとも1つのノッチ(102)は前記周辺輪郭(101)に対して内側に向けられ、および/または
前記センサ配置(100)は、少なくとも1つの材料凹部(103)を有する少なくとも1つの周辺輪郭(101)を備え、前記少なくとも1つの材料凹部(103)は前記周辺輪郭(101)内に配置される、センサ配置。
【請求項12】
足と支持表面との間の力を検出するためのセンサシステム(200)であって、
可変抵抗を有し、それに加えられた前記力に応答して電気検出信号を提供するように適合され、第一の電位に接続された、請求項1~10のいずれか一項に記載の少なくとも1つのセンサ素子(10)と、
前記センサ素子の前記電気検出信号に電気的に影響を及ぼすように適合され、第二の電位に接続された抵抗器アレイ(210)と、
前記センサ素子の電気的に影響を受けた前記電気信号を取得するように適合された、少なくとも1つの入力チャネルと、変換された前記電気検出信号に基づいてデジタル検出信号を提供する少なくとも1つの出力チャネルと、を有する変換器(220)と、
前記電気検出信号に影響を及ぼすために使用される抵抗器アレイの1つ以上の抵抗器の回路構成を決定するように適合されたデータ処理手段(230)と、
を備える、センサシステム。
【請求項13】
前記データ処理手段(230)は、相対抵抗または電圧値に関連する前記1つ以上の抵抗器の前記回路構成を決定するようにさらに適合される、請求項12に記載のセンサシステム。
【請求項14】
前記データ処理手段(230)は、使用される前記1つ以上の抵抗器の前記回路構成を決定することによって、使用される前記変換器の測定範囲を設定するようにさらに適合され、前記測定範囲は前記変換器(220)の所定の分解能よりも小さい、請求項12または13に記載のセンサシステム。
【請求項15】
前記データ処理手段(230)は、検出信号の特性を決定し、前記測定範囲(MR)を上限(T2)と下限(T1)との間に設定するようにさらに適合され、前記上限(T2)と下限(T1)との間の前記検出信号の前記特性(SC)は、少なくとも準線形であるように決定される、請求項14に記載のセンサシステム。
【請求項16】
前記データ処理手段は、前記センサ素子(10)の所望の感度に関連する前記測定範囲(MR)の上限および/または下限を設定するようにさらに適合される、請求項15に記載のセンサシステム。
【請求項17】
請求項12~16のいずれか一項に記載のセンサシステム(200)を使用して、足と支持表面との間の力を検出する方法であって、
センサ素子(10)から、力検出信号を取得するステップと、
前記力検出信号を分析して、前記力検出信号の少なくとも非線形特性を検出するステップと、
構成信号を生成するステップであって、構成信号は、前記力検出信号が基づく前記電気検出信号に影響を及ぼすために使用される抵抗器アレイの1つ以上の抵抗器の構成を含み、前記構成は、検出された非線形特性に基づいて決定される、ステップと、
前記構成信号を提供すステップであって、前記構成信号は、前記抵抗器アレイ(210)の前記構成を設定するために使用される、ステップと、
を含む、方法。
【請求項18】
前記構成信号を提供した後、前記センサシステム(200)の測定動作が、前記抵抗器アレイに接続された少なくとも1つのセンサ素子(10)を使用して行われ、前記抵抗器アレイの前記構成が、下限閾値および上限閾値を有する前記少なくとも1つのセンサ素子の測定範囲を規定する、請求項17に記載の方法。
【請求項19】
被験者の歩行を分析するためのコンピュータ実装方法であって、
請求項12~16のいずれか一項に記載のセンサシステム(200)を使用して、被験者の少なくとも1つの歩行サイクルの地面反力の時間経過を決定するステップと、
前記地面反力の決定された前記時間経過を正規化するステップと、
正規化された前記時間経過を基準と比較するステップと、
前記比較の結果に基づいて前記被験者の歩行を決定するステップと、を含む、コンピュータ実装方法。
【請求項20】
命令を含むコンピュータプログラムであって、前記命令は、コンピュータによって前記コンピュータプログラムが実行されると、前記コンピュータに、請求項17もしくは18に記載の方法、または請求項19に記載の方法を実行させる、コンピュータプログラム。
【請求項21】
請求項20に記載のコンピュータプログラムを記憶したコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、歩行解析の分野に関し、特に、足と支持表面との間の力を検出するためのセンサ素子、センサ配置、センサシステム、および方法に関する。さらに、本開示は、対応するコンピュータプログラムおよびコンピュータ可読媒体に関する。
【背景技術】
【0002】
歩行分析は、例えば、臨床診断の手段として使用することができる。筋骨格系、結合組織および神経疾患は、承認されたリハビリテーションサービス全体の約41%を占めることが分かっている。関節炎性疾患および損傷と、いわゆる「ランニング関連損傷」(RRI)とは、その発生頻度のために、歩行関連障害の観点から、極めて重要である。しかしながら、同時に、神経障害性/虚血性病因や慢性非特異的背部痛などの慢性疾患がますます重要になってきている。すべての現象が共通して有することは、それらが歩行技術に関連していることである。直接的な関係が証明される場合もあるが、今日でもまだ説明のつかない多くの病気や傷害では、少なくとも歩行との間接的な関係があるようである。ここでは、観察された関係が原因となっているのか、それとも代償性のあるものであるかは明確でないことが多い。医療における持続可能な改善を達成するためには、これらの問題を大規模で縦断的な検査によって明らかにしなければならず、これは、現在の技術的な可能性の欠如のために、適切な品質で適度に実施することができていない。
【0003】
このように歩行分析は、臨床診断の手段となるが、現在、主に複雑でコスト集約的な検査システムを介して行われている。同時に、多くの傷害および疾患の経過は、利用可能な検査システムのために全く不明である。
【0004】
実験室外の移動歩行分析システムのための周知技術は、FSR(Force Sensing Resistor:力感知抵抗器)ベースのシステムである。基本的に、いわゆるFSRセンサは、2つのプラスチック/ポリマー膜から構成され、この2つは、それらの構成的な設計に応じて、非導電性材料の薄いギャップ、空隙などによって互いに分離され得る。膜の一方は、通常、2組の電極を含み、他方は、半導体インクで印刷される。この3つの構成要素の構成によって、センサ表面に規定の力を加えることによって、構成要素の抵抗ができるだけ予測可能に変化することが可能になる。導電性材料および非導電性材料は、通常、スクリーン印刷によってキャリアフィルムに塗布される。ここでは、半導体インクが使用され、これは、本質的にカーボンブラックまたはカーボングラファイト混合物からなり得る。さらに、絶縁するために、他の材料と密着するために、また可撓性を高めるために、基板を追加することもある。検出フィルムの表面に力が作用すると、インクが圧縮されて機械的に変形する。次いで、マトリクスの導電性粒子が電極に接触し、センサフィルムの抵抗が変化する。加えられる力が大きければ大きいほど、より多くの接点または抵抗ブリッジを閉じることができる。その結果は、力に反比例する抵抗比であり、非線形信号特性を表す。
【0005】
FSRセンサの上述の説明をより良く示すために、図1Aおよび1Bは、従来技術によるFSRセンサの機能原理または主要な構築設計をそれぞれ概略断面図で示す。したがって、図1Aは、無荷重状態におけるFSRセンサ1を示し、図1Bは、力の影響下におけるFSRセンサ1を示す。FSRセンサ1は、第一のプラスチック/ポリマー膜2および第二のプラスチック/ポリマー膜3を備え、これらは空隙4によって互いに分離されている。半導体インク5は、第一のプラスチック/ポリマー膜2と第二のプラスチック/ポリマー膜3との間に配置され、空隙4の全長(または厚さ)にわたって延在する。さらに、接着剤層6が、第一および第二のプラスチック/ポリマー膜2、3の間に配置されている。図1Bにおいて、圧縮力Fは、第一のプラスチック/ポリマー膜2の表面にFSRセンサ1の厚み方向に加えられ、圧縮の結果としてインク5が機械的変形する。これは、インクが圧縮されると、抵抗が変化し、この抵抗が、上述したように、非線形信号特性を有する。
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記の移動歩行分析システムは、信号特性が非線形であるために、測定が非常に不正確になるので、移動歩行分析で使用するには使用にあまり適していない。さらに、例えば、靴およびインソールは、特に、人間の筋肉および脂肪組織は、それらの材料構造のために、すべて非線形システムである。いくつかの非線形システム(そのうちのいくつかは、予期しない特性を有する)の組み合わせは、大きな課題を提起する。原則として、非線形性は、特性曲線の漸進的な範囲に、わずかな偏差があっても、かなりの偏差をもたらす可能性がある。
【0007】
したがって、移動歩行分析システムにおいて、信号特性が非線形であることの影響を低減する必要があり得る。
【課題を解決するための手段】
【0008】
本開示は、センサ素子、センサ配置、センサシステム、および方法を提供し、これらは、移動歩行分析システムにおける非線形信号特性の影響を低減する。
【0009】
本開示の第一の態様は、足と支持表面との間の力を検出するために特に構成されるセンサ素子を提供する。特に、センサ素子は、検出を実行するために靴またはインソールに配置されるように構成されてもよい。このセンサ素子は、
第一の層であって、非導電性キャリア箔と、前記第一の層の長手方向に少なくとも部分的に沿って延び、導電性領域と接触している第一の半導電層とを備える、第一の層と、
複数の導電性セクションを備える層と、
少なくとも1つの電気接続領域と、
第二の層であって、非導電性キャリア箔と、前記第二の層の長手方向に少なくとも部分的に沿って延びる第二の半導電層とを備える、第二の層と、
を備え、
前記少なくとも1つの電気接続領域は、前記第一の層および前記第二の層の1つの前記半導電層と接触し、電源に接続されるように構成され、
前記第一の半導電層および前記第二の半導電層は、互いに離れて配置され、前記センサ素子に加えられる前記力に応じて互いに選択的に接触するようになっており、それによって、前記センサ素子の抵抗値が変化する。
【0010】
したがって、センサ素子は、加えられた力に応答して、少なくとも準線形または少なくともほぼ線形の信号特性を提供することができる。センサ素子は、荷重または力が加わると、(接触)表面が変化しするので、電気抵抗も変化する。さらに、センサ素子は、低い一桁のキロオーム(kΩ)範囲の低い入力インピーダンスを有する。好ましくは、抵抗値は、より高い第一の値から、より低い第二の値に変化する。第一の値は、力の正確な決定、またはソールまたは人体組織の材料特性に対する非線形挙動のトレーサビリティを可能にすることができ、第二の値は、信号を処理するための単純な電子回路の使用を可能にすることができる。センサ素子によって、位置に依存せず、選択的な荷重導入が可能になる。これは、靴またはインソールのような柔軟な環境での移動設定において、FSRセンサで要求されるような一定の全面的な荷重導入が保証されないため、移動歩行分析に役立つ基準になる。FSR技術によって引き起こされる非線形性の問題は、使用されるインクの圧縮経路が低いために、センサメカニクスにおいて本質的な原因があるので、材料の変動および環境の変化(温度と湿度)による材料の変化は、非常に重要である。FSR技術とは対照的に、センサ素子は、(センサ素子の厚み方向に関連して)垂直経路変化を使用せず、少なくとも本質的に水平経路変化を使用する。また、半導電層は、圧縮特性を有する必要はない。その理由は、それ自体が測定媒体を表す半導電層ではなく、接触面であるためである。これにより、より均質で明確に充填された半導電層構造を使用することができる。圧縮が不要なので、半導電層構造を著しく平坦にして、最小限にすることができる。
上記の2つの点によって、インクの経年劣化も、あるいは定期的な荷重または過剰な荷重によるインクの特性の変化も防止する。これにより、センサ素子は、事実上、破壊されることはない。
【0011】
センサ素子は、少なくともいくつかの実施形態では、センサマトリクスの一部を形成してもよく、あるいは少なくともいくつかの実施形態では、センサマトリクスであってもよく、またはセンサマトリクスを構成してもよい。センサ素子がセンサマトリクスの一部を形成する場合、複数のセンサ素子は、実質的に共通の平面内で互いに隣接して配置されてもよい。各センサ素子は、加えられる力によって引き起こされた荷重条件に従って、変化し得る割り当てられた信号を出力するように構成されてもよい。第一および/または第二の層のキャリア箔は、ポリエステルなどの適切なプラスチックから形成されてもよく、約50~150マイクロメートル(μm)、好ましくは約80~120μm、好ましくは約100μmの厚さを有してもよい。第一および/または第二の半導電層は、インクとして、特にカーボンインクとして形成することができる。導電性領域は、銀含有インクまたは銀インクなどの導電性インクによって形成することができる。導電性領域は、電気回路への接続として機能することができ、さらに、第一の層と第二の層との間に配置することができる炭素中間層の導体およびコネクタとして機能することができる。この炭素層は、表面および混合物によって決定され得る規定された電気抵抗を有し得る。この表面の抵抗は、用途に応じて選択することができる。銀は、例えば、グラファイトよりも電気伝導率が高いので、抵抗、特に入力インピーダンスが大幅に低下する。
【0012】
一実施形態によれば、抵抗値は、好ましくは逆に、2つの層が互いに接触している表面積に比例し得る。例えば、抵抗値は、接触表面積が増加するにつれて、減少し得る。したがって、センサ素子は、線形信号特性を提供するようになっている。
【0013】
一実施形態では、抵抗値は、無荷重状態で最大であってもよい。言い換えると、抵抗値は、接触表面積が最小である場合、または接触表面積がゼロである場合に、最大であってもよい。より一般的には、抵抗値は、面積が大きくなるにつれて減少し得る。この結果、センサ素子の低インピーダンス出力信号が得られるので、より簡単に、おそらく電子機器などの性能が低い手段でも処理できる。
【0014】
一実施形態によれば、導電性セクションは、第一の半導電層および/またはセンサ素子の全体的な抵抗値を低減することができる。このため、センサ素子の出力信号の信号特性および/または処理をさらに改善することができる。
【0015】
一実施形態では、抵抗値は、垂直力が伝達されるストライプ状の導電性セクションの面積に依存して、減少することもある。
【0016】
一実施形態によれば、導電性セクションは、銀インクで構成されてもよく、好ましくは、非導電性箔上に塗布され、例えば、印刷される。銀インクの組成は、例えば、センサ素子の信号特性または他の特性を調整するために変化させることができる。
【0017】
一実施形態では、導電性セクションは、例えば、銀インクの形態で、約0.5~15μm、1~10μm、2~8μm、3~6μm、好ましくは約5μmの厚さに塗布することができる。この厚さが薄いために、特に、センサ素子が平坦になる。
【0018】
一実施形態によると、第一の半導電層は、好ましくは、導電性セクションの上に印刷されたカーボンインクで構成されてもよく、任意選択で、導電性セクションを第一の半導電層に埋め込む。
【0019】
一実施形態では、第一の半導電層を、約1~30μm、2~20μm、5~15μm、8~12μm、好ましくは約10μmの厚さで塗布してもよい。この厚さが薄いために、特に、センサ素子が平坦になる。
【0020】
一実施形態によれば、電気接続領域は、銀インクで構成される。任意選択で、電気接続領域は、非導電性箔上に印刷してもよい。
【0021】
一実施形態では、電気接続領域は、約0.5~15μm、1~10μm、2~8μm、3~6μm、好ましくは約5μmの厚さで適用されてもよい。この厚さが薄いために、特に、センサ素子が平坦になる。
【0022】
一実施形態によると、第二の半導電層は、好ましくは、電気接続領域の上に印刷されたカーボンインクで構成されてもよく、任意選択で、それによって、導電性セクションを第二の半導電層に埋め込む。
【0023】
一実施形態では、第二の半導電層は、約1~30μm、2~20μm、5~15μm、8~12μm、好ましくは約10μmの厚さである。この厚さが薄いために、特に、センサ素子が平坦になる。
【0024】
一実施形態において、第一の半導電層および第二の半導電層は、2つの離間した表面を形成し、この2つの表面は、無荷重状態で(センサ素子に力が加わらないとき)互いに離間しており、センサ素子に加わる力に応答して接触し、この2つの表面が互いに接触する面積が、センサ素子の抵抗値を示す。したがって、センサ素子は、荷重または力が加わると、(接触)表面が変化するので、電気抵抗も変化する。これにより、接触面積指向の測定が可能になり、その結果、少なくとも準線形、ほぼ線形または線形のセンサ信号特性が得られる。その理由は、接触中の表面のサイズの影響は、抵抗に比例して定義することができるからである。
【0025】
一実施形態では、少なくとも2つの第一および/または第二の半導電層は、それらの長手延長方向に対して少なくとも部分的に平行または非平行に配置されてもよい。本明細書で使用されるように、少なくとも2つの第一および/または第二の半導電層の重なり合う面積が、センサ素子の接触表面積を決定する。
【0026】
一実施形態では、少なくとも2つの第一および/または第二の半導電層は、面積が互いに異なっていてもよい。好ましくは、少なくとも2つの第一および/または第二の半導電層の面積は、約40%まで、より好ましくは約25%まで、最も好ましくは約10%まで、互いに異なる。少なくとも2つの第一および/または第二の半導電層の面積が互いに異なる場合、より小さい領域を有する半導電層が、センサ素子の接触表面積を決定する。
【0027】
一実施形態では、少なくとも2つの第一および/または第二の半導電層は、それらの長手延長方向に対して少なくとも部分的に平行に配置されてもよく、面積が互いに異なってもよい。製造の観点から、前記少なくとも2つの第一および/または第二の半導電層は、必ずしも完全に平行に配置される必要もまなく、および/または正確に同じ面積を有さないことが有利である。なぜなら、少なくとも2つの第一および/または第二の半導電層の重なり合う面積が、センサ素子の接触表面積を決定するからである。これは、製造公差の余地を与え、このため、次いで、製造コストを削減する。その理由は、特に、センサ素子の第一および第二の層が、その構成要素のそれぞれとともに、別個のユニットとして最初に製造され、その後、一緒に積層されるからである。
【0028】
一実施形態によれば、複数の導電性セクションが、第一の層および第二の層のうちの他方のキャリア箔上に配置され、第一の層および第二の層のうちの他方の半導電層と接触し得、導電性セクションが、第一の層および第二の層のうちの他方の長手方向に対して横方向に延びる。導電性セクションは、また、バー(bars)または水平ストライプ(horizontal stripes)と称されてもよい。さらに、導電性セクションは、銀含有インクまたは銀インクなどの導電性インクによって形成することができ、その厚さを約1~20μm、好ましくは約2~10μm、好ましくは約5μmにすることができる。したがって、導電性セクションによって、センサ素子に不均一な荷重を与えることができ、このことは、少なくとも靴またはインソールの設定において予想されている。水平ストライプによって、ストライプの配置(ステップの数)が示唆するように、センサ素子の長手方向の信号変動の検出だけでなく、横方向の信号変動の検出も可能になる。その理由は、抵抗は、それらの上に部分的にしか載っていないストライプによっても変調することができるからである。FSR技術は、一定の表面荷重を必要とするが、センサ素子は、複数の導電性セクションがあるために、複数のポイントで荷重を受けることができるからである。センサ素子は、常に同じ信号応答を送る。
【0029】
一実施形態では、複数の導電性セクションは、センサ素子の厚み方向から考慮したとき、または見たとき、キーボードまたは鍵盤(claviature)を形成する。これにより、センサ素子の出力信号を縦方向と横方向の両方でモデル化することができる。いくつかの実施形態では、2つ以上のキーボードまたは鍵盤を設けることができ、好ましくは1つの共通平面内に配置される。
【0030】
さらなる実施形態では、複数の導電性セクションは、様々な配置または形状を形成してもよく、ストライプパターン、三角形パターン、矩形パターン、樹枝状パターン、または前述のパターンのうちの1つ以上の組み合わせを含む配置または形状を含むが、これらに限定されない。
【0031】
一実施形態によれば、導電性セクションはストライプ状であってもよく、2つの隣接するストリップは、第一および/または第二の層の長手延長方向に離間している。したがって、センサ素子は、キーボードまたは鍵盤のように機能するクロスストライプまたは水平ストライプの配置を含むことができる。連続した半導電層は、ここでは著しく異なって反応する。加えて、機械的構造によって、特にクロスストライプまたは水平ストライプを通して、ストライプの配置(ステップの数)が示唆するように、センサの長手方向の信号変動の検出だけでなく、横方向の信号変動の検出も可能になる。その理由は、抵抗が部分的に露出した銀/炭素ストライプのみによってもモデル化され得るからである。
【0032】
一実施形態では、複数の導電性セクションは、層を形成してもよく、あるいは層によって構成されてもよい。さらに、いくつかの実施形態では、層および/または導電性セクションは、第一の層の半導電層に少なくとも部分的に埋め込まれてもよい。これは、抵抗に影響を及ぼし、および/または抵抗を調整するので、特に、半導電層の抵抗値が減少し、および/または電気伝導率が増加することがある。導電性セクションを、例えば、その寸法、物質組成などを修正することによって、選択的に変更すると、センサ素子の出力信号特性を調整することができる。
【0033】
上述のいずれか一項に記載のセンサ素子は、前記電気接続領域が、好ましくは層として形成され、前記第一の層の前記半導電層に少なくとも部分的に埋め込まれている。
【0034】
一実施形態によると、導電性セクションは、これが引き起こされる個々のセクションにかかわらず、少なくとも実質的に同一である電気信号を提供するように構成されてもよい。したがって、センサ素子上の荷重が不均等に分布する場合、この荷重も認識することができる。なぜなら、信号強度、信号品質などが、それぞれのケースで、少なくともほぼ同じであるためである。
【0035】
一実施形態では、少なくとも2つの第一および/または第二の半導電層は、それらの長手延長方向に対して平行または少なくとも部分的に平行)に配置され、2つの第一および/または第二の半導電層は、少なくとも1つの電気接続領域を介して互いに接続される。任意選択で、少なくとも2つの第一および/または第二の半導電層は、導電性インクによって形成された複数の導電性セクションを有することができ、複数の導電性セクションは、第一および第二の層のうちの他方のキャリア箔上に配置され、第一および第二の層のうちの他方の半導電層と接触し、導電性セクションは、第一および第二の層のうちの他方の長手方向に対して横方向に延びる。したがって、感度の高い測定センサ素子を、センサの長手方向およびセンサの横方向に、多数の測定点を設けることができる。
【0036】
一実施形態によれば、第一の層および第二の層は、それらの間に配置された炭素中間層および/または接着剤によって離間された第一の半導電層および第二の半導電層とともに積層されてもよい。いくつかの実施形態では、積層は、少なくとも1つのノッチを有する少なくとも1つの周辺輪郭を備え、少なくとも1つのノッチは周辺輪郭に対して内側に向けられ、および/または積層は、少なくとも1つの材料凹部を有する少なくとも1つの周辺輪郭を備え、少なくとも1つの材料凹部は周辺輪郭内に配置される。したがって、堅牢なセンサ素子を提供することができる。少なくとも1つのノッチおよび/または材料凹部が提供される場合、層の1つまたは複数の箔での皺の形成は、少なくとも低減または防止され得るので、箔および/またはセンサ配置は、より耐久性が良くなり、堅牢なものになる。
【0037】
一実施形態では、第一の層は底部層であってもよく、第二の層は頂部層であってもよい。用語「頂部」および「底部」は、例えば、靴またはインソールにおける配置を指すことができ、ここで、アウトソールは、通常、底部にあり、靴を着用するとき、またはインソールが足の上にあるとき、足は、頂部にある。
【0038】
本開示の第二の態様は、足と支持表面との間の力を検出するためのセンサ配置を提供する。センサ配置は、検出を実行するために、靴またはインソールに配置されるように構成されてもよい。センサ配置は、
第一の態様のいずれかの実施形態に記載の複数のセンサ素子であって、前記センサ素子は、少なくとも実質的に共通の平面内で互いに隣接して配置される、複数のセンサ素子と、
個々の前記センサ素子を第一および第二の電位および/または評価デバイスに接続するように構成された複数の電線と、
を備え、
前記センサ配置は、少なくとも1つのノッチを有する少なくとも1つの周辺輪郭を備え、前記少なくとも1つのノッチは前記周辺輪郭に対して内側に向けられ、および/または
前記センサ配置は、少なくとも1つの材料凹部を有する少なくとも1つの周辺輪郭を備え、前記少なくとも1つの材料凹部は前記周辺輪郭内に配置される。したがって、層の1つまたは複数の箔での皺の形成は、少なくとも低減または防止され得るので、箔および/またはセンサ配置は、より耐久性が良くなり、堅牢なものになる。センサ付き箔を収縮包装または実装すると、特にインソールにおいて、インソールの上部材料および下部材料が剪断運動するので、その結果、荷重が掛かる過程で皺が形成されることがある。皺が形成された結果として、電線自体およびセンサ自体の両方に影響を及ぼす亀裂が発生する可能性がある。箔は、剪断運動に加えて、足の3Dの動きと変形にも耐えることができるはずである。
【0039】
本開示の第三の態様は、足と支持表面との間の力を検出するためのセンサシステムを提供する。センサシステムは、検出を実行するために、靴またはインソールに配置されるように構成されてもよい。センサシステムは、
可変抵抗を有し、それに加えられた前記力に応答して電気検出信号を提供するように適合され、第一の電位に接続された、第一の態様のいずれかの実施形態による少なくとも1つのセンサ素子と、
前記センサ素子の前記電気検出信号に電気的に影響を及ぼすように適合され、第二の電位に接続された抵抗器アレイと、
前記センサ素子の電気的に影響を受けた前記電気信号を取得するように適合された、少なくとも1つの入力チャネルと、変換された前記電気検出信号に基づいてデジタル検出信号を提供する少なくとも1つの出力チャネルと、を有する変換器と、
前記電気検出信号に影響を及ぼすために使用される抵抗器アレイの1つ以上の抵抗器の回路構成を決定するように適合されたデータ処理手段と、
を備える。したがって、センサシステムは、単純な構成的設計を有する。さらに、測定範囲の閾値は、したがって、抵抗器を選択することによって規定することができる。ハードウェアを予想される荷重範囲に調整することも可能である。さらに、相対的なセンサ固有の基準点を使用することができ、これにより、測定範囲のみについての較正を行うことが可能となる。センサ素子の動作範囲がその全体的な特性の線形部分にある限り、この較正は、すべてのセンサ素子に適用可能であり、センサ素子が他の影響によって破壊または妨害されない限り動作する。相対的な基準点を使用することで、センサのダイナミクスの変化による外乱の影響(例えば、温度または湿度の上昇によるインクの軟化)は、全く受けない。特に有効性と再現性との理由から、電圧範囲の全体ではなく、最大電圧の約45%~約75%の間の範囲のみを用いる。例えば、変換器の分解能が12ビットであり、したがって、4096の電圧レベルを有する場合、一方で、8ビット、16ビットなどの他の値も可能であるが、これは、下限閾値が最大電圧レベルの45%で、電圧レベル1843であり、上限閾値が最大電圧の75%で、電圧レベル3072である。したがって、1229、すなわち、3072-1843=1229の電圧レベルを、力の分解能または測定のために、利用することができる。センサが、例えば、800N/cmの力のために設計されている場合、これは、仮定された直線範囲で、0.65N/ビットの分解能が達成され得ることを意味する。下限閾値および上限閾値を規定することによって、ほぼ直線的な範囲が、既存の非直線的センサ特性で、定義されてもよい。
【0040】
いくつかの実施形態では、SIL抵抗器アレイであり得る抵抗器アレイ、アナログ・デジタル変換器(ADC)であり得る変換器、および/または、例えば、Atmega328などのようなArduinoプラットフォームベースのマイクロプロセッサなどの適切なマイクロプロセッサであり得るデータ処理手段を、プリント回路基板(PCB)上に配置することができる。また、抵抗器アレイは、マイクロプロセッサの内部プルアップ抵抗器によって提供されてもよく、この抵抗器は、必要に応じてオンまたはオフにスイッチされ得ることに留意されたい。構成要素の給電は、例えば、電池、一次電池または二次電池のようなエネルギー蓄積装置、またはピエゾ素子のような電力発生要素を介して提供することができる。
【0041】
いくつかの実施形態では、PCBのアナログ入力は、抵抗器アレイを介して、例えば、(抵抗器アレイの抵抗器の数)×(それらの抵抗値)、例えば(8)×(2.2kΩ)、または他の適切な値で、GNDに接続されてもよい。これらは、入力が空のときに、AD入力をゼロにプルダウンするプルダウン抵抗であってもよい。いくつかの実施形態では、可変抵抗値を有する少なくとも1つのセンサ素子は、PCBに接続され、逆側の動作電圧、例えば3.3Vまたは他の適切な電圧値に接続されてもよく、それによって、変換器における電圧は、外部抵抗の低下に比例して増加する。外部抵抗の抵抗値が無荷重状態で2.2kΩであると仮定すると、変換器での電圧は、動作電圧の50%になることがある。
【0042】
一実施形態によれば、データ処理手段は、相対抵抗または相対電圧値に関連する1つ以上の抵抗器の回路構成を決定するように、さらに適合され得る。
【0043】
したがって、抵抗器を選択することによって測定範囲の閾値を規定することは、さらに改善され得る。相対抵抗または相対電圧が基準点として使用される場合、オフセットは50%(例えば、2048ビット)にとどまり、測定範囲はそれぞれの感度に関係なく一定に保たれる。
【0044】
一実施形態では、データ処理手段は、使用される1つ以上の抵抗器の回路構成を決定することによって、使用される変換器の測定範囲を設定するようにさらに適合されてもよく、この測定範囲は、変換器の所定の分解能よりも小さい。したがって、抵抗器を選択することによって測定範囲の閾値を規定することは、さらに改善され得る。
【0045】
一実施形態によれば、データ処理手段は、検出信号の特性を決定し、測定範囲を上限と下限の間に設定するようにさらに適合されてもよく、上限と下限の間の検出信号の特性は、少なくとも準線形であると判断される。したがって、抵抗器を選択することによって測定範囲の閾値を規定することは、さらに改善され得る。
【0046】
一実施形態では、データ処理手段は、センサ素子の所望の感度に関連する測定範囲の上限および/または下限を設定するようにさらに適合されてもよい。したがって、抵抗器を選択することによって測定範囲の閾値を規定することは、さらに改善され得る。
【0047】
本開示の第四の態様は、足と支持表面との間の力を検出するための方法を提供する。この方法は、第二の態様によるセンサシステムとともに使用するのに特に適している。この方法は、
力検出信号を取得するステップと、
前記力検出信号を分析して、前記力検出信号の少なくとも非線形特性を検出するステップと、
構成信号を生成するステップであって、構成信号は、前記力検出信号が基づく電気検出信号に影響を及ぼすために使用される抵抗器アレイの1つ以上の抵抗器の構成を含み、前記構成は、検出された非線形特性に基づいて決定される、ステップと、
前記構成信号を提供すステップと、を含む。
【0048】
したがって、測定範囲の閾値は、使用する抵抗器を選択することによって、定義することができる。ハードウェアを予想される荷重範囲に調整することも可能である。さらに、相対的なセンサ固有の基準点を使用することができ、これにより、測定範囲のみについての較正を行うことが可能となる。相対的な基準点を使用することで、センサのダイナミクスの変化による外乱の影響(例えば、温度または湿度の上昇によるインクの軟化)は、全く受けない。特に有効性と再現性との理由から、電圧範囲の全体ではなく、最大電圧の約45%~約75%の間の範囲のみを用いる。このようなウィンドウベースのアプローチ、すなわち、測定範囲を制限することによって、別のセンサに頼る必要なしに、感度に関する微調整を行うことも可能になる。また、低電圧範囲のセンサの感度をより低くすることも、あるいは高電圧範囲のセンサの感度をより高くすることも、範囲がどれだけ大きいか、あるいは限界範囲が曲線上のどこにあるかに応じて、可能である。
【0049】
いくつかの実施形態では、力検出信号は、第一の態様の任意の実施形態による少なくとも1つのセンサ素子によって取得することができる。
【0050】
一実施形態によれば、構成信号を供給した後、抵抗器アレイの構成を設定することができる。
【0051】
一実施形態では、構成信号を提供した後、センサシステムの測定動作は、抵抗器アレイに接続された少なくとも1つのセンサ素子を使用して実行され得、抵抗器アレイの構成は、下限閾値および上限閾値を有する少なくとも1つのセンサ素子の測定範囲を規定する。したがって、測定範囲の閾値は、使用する抵抗器を選択することによって、定義することができる。ハードウェアを予想される荷重範囲に調整することも可能である。さらに、相対的なセンサ固有の基準点を使用することができ、これにより、測定範囲のみについての較正を行うことが可能となる。相対的な基準点を使用することで、センサのダイナミクスの変化による外乱の影響(例えば、温度または湿度の上昇によるインクの軟化)は、全く受けない。特に有効性と再現性との理由から、電圧範囲の全体ではなく、最大電圧の約45%~約75%の間の範囲のみを用いる。このようなウィンドウベースのアプローチ、すなわち、測定範囲を制限することによって、別のセンサに頼る必要なしに、感度に関する微調整を行うことも可能になる。また、低電圧範囲のセンサの感度をより低くすることも、あるいは高電圧範囲のセンサの感度をより高くすることも、範囲がどれだけ大きいか、あるいは限界範囲が曲線上のどこにあるかに応じて、可能である。
【0052】
本開示の第五の態様は、被験者の歩行を分析および/または診断するためのコンピュータ実装方法を提供する。この方法は、
第三の態様によるセンサシステムを使用して、被験者の少なくとも1つの歩行サイクルの地面反力の時間経過を決定するステップと、
前記地面反力の決定された時間経過を正規化するステップと、
正規化された前記時間経過を基準と比較するステップと、
前記比較の結果に基づいて前記被験者の歩行を決定するステップと、を含む。
【0053】
言い換えると、第三の態様によるセンサシステムは、被験者の歩行を診断、監視、および/または分析するために使用されてもよい。この目的のために、第一の態様のセンサ素子のうちの1つまたは複数を、好ましくは、センサ配置などとして、靴、インソールなどの中に配置することができる。決定された時間経過を正規化するステップと、および/または正規化された前記時間経過を基準と比較するステップと、および/または前記比較の結果に基づいて前記被験者の歩行を決定するステップは、例えば、第三の態様のデータ処理手段を用いて、センサシステム自体が自動的に行うことも、あるいはコンピューティングクラウドやサーバなど、センサシステムから離れた場所に配置され得るパーソナルコンピュータやスマートフォンなどの別のコンピュータデバイスによって行うこともできる。基準は、データベースなどに格納されているデータセットであってもよい。正規化された時間経過を基準と比較するステップ、および/または歩行を決定するステップは、数値的方法、推定方法などを利用することができる。
【0054】
本開示の第六の態様は、足と支持表面との間の力を検出するためのコンピュータプログラムを提供し、このコンピュータプログラムは、プログラムがコンピュータおよび/またはデータ処理手段、例えば第三の態様のデータ処理手段によって実行されると、コンピュータに第四の態様のいずれかの実施形態による方法を実行させる命令を含む。本明細書で使用されるように、上記の態様の足と支持表面との間の力は、地面反力とも呼ばれ得る。
【0055】
本開示の第七の態様は、第六の態様のコンピュータプログラムを記憶したコンピュータ可読媒体を提供する。
【0056】
したがって、コンピュータプログラム要素は、本開示の実施形態でもあり得るコンピュータユニット上に格納され得る。この計算ユニットは、上述の方法のステップを実行するように、あるいは実行を誘導するように適合されてもよい。また、上記装置の各構成要素を動作させるようにしてもよい。計算ユニットは、自動的に動作するように、および/またはユーザの注文を実行するように適合させることができる。コンピュータプログラムは、データプロセッサのワーキングメモリにロードすることができる。したがって、データプロセッサは、本開示の方法を実行するように装備されてもよい。本開示のこの例示的な実施形態は、最初からインストールされた介入を有するコンピュータプログラムと、更新によって既存のプログラムを、本開示を使用するプログラムに変えるコンピュータプログラムとの両方をカバーする。コンピュータプログラムは、光記憶媒体などの適切な媒体、あるいは他のハードウェアと一緒に、またはその一部として供給されるソリッドステート媒体上に記憶および/または配布することができるが、インターネットまたは他の有線もしくは無線電気通信システムなどを介して、他の形態で配布することもできる。しかしながら、コンピュータプログラムはワールド・ワイド・ウェブのようなネットワークを介して提示することもでき、このようなネットワークからデータ処理のワーキングメモリにダウンロードすることもできる。
【0057】
上述の実施形態は、単一の特徴の別個の技術的効果に及ぶ相乗効果を得るように互いに組み合わせることができることに留意されたい。本開示の例示的な実施形態を以下で説明する。さらに、本開示の実施形態は、異なる主題を参照して説明される。特に、いくつかの実施形態は、方法タイプの特許請求の範囲を参照して説明され、他の実施形態は、デバイスタイプの特許請求の範囲を参照して説明される。しかしながら、当業者であれば、上記および下記の説明から、別段の記載がない限り、一種類の主題に属する特徴の任意の組合せに加えて、異なる主題に関する特徴間の他の組合せも、本出願で開示されると考えられることを理解するであろう。
【0058】
本開示の例示的な実施形態は、以下の図面を参照して、以下で説明する。
【図面の簡単な説明】
【0059】
図1A】従来技術による、無荷重状態におけるFSR(力感知抵抗器)センサを概略断面図で示す。
図1B】力の影響下にある従来技術による図1AのFSRセンサを概略断面図で示す。
図2】本開示の一実施形態による、足と支持表面との間の力を検出するためのセンサ配置の上面図を示す。
図3】本開示の一実施形態による、足と支持表面との間の力を検出するためのセンサ配置の上面図を示す。
図4】ソールコンパウンド(sole compound)における本開示の一実施形態によるセンサ配置の例示的な適用を示す。
図5】本開示の一実施形態による、足と支持表面との間の力を検出するためのセンサ素子の構成構造を分解図で示す。
図6A】無荷重状態における本開示の一実施形態によるセンサ素子を概略断面図で示す。
図6B】力の影響下にあるセンサ素子を概略断面図で示す。
図7A】本開示の一実施形態による、センサ素子の異なる荷重状態を概略上面図で示す。
図7B】本開示の一実施形態による、センサ素子の異なる荷重状態を概略上面図で示す。
図7C】本開示の一実施形態による、センサ素子の異なる荷重状態を概略上面図で示す。
図7D】本開示の一実施形態による、センサ素子の異なる荷重状態を概略上面図で示す。
図8】本開示の一実施形態による、足と支持表面との間の力を検出するためのセンサシステムを概略ブロック図で示す。
図9】本開示の一実施形態による、足と支持表面との間の力を検出するための方法をフローチャートで示す。
図10】本開示の一実施形態による、被験者の歩行を診断および/または監視および/または分析するためのコンピュータ実装方法をフローチャートで示す。
図11】本開示の一実施形態による方法および/またはシステムによって線形化された信号特性を、力-電圧/抵抗図で示す。
図12】本開示の一実施形態による、被験者の歩行を分析するためのコンピュータ実装方法の例示的な結果のグラフ表示を示す。
図13A】本開示の一実施形態による、複数の導電性セクションを備える層の代替的な配置を概略上面図で示す。
図13B】本開示の一実施形態による、複数の導電性セクションを備える層の代替的な配置を概略上面図で示す。
図13C】本開示の一実施形態による、複数の導電性セクションを備える層の代替的な配置を概略上面図で示す。
図13D】本開示の一実施形態による、複数の導電性セクションを備える層の代替的な配置を概略上面図で示す。
図13E】本開示の一実施形態による、複数の導電性セクションを備える層の代替的な配置を概略上面図で示す。
図14】本開示の一実施形態による、第一および第二の半導電層の互いの代替的な配置を示す。
【発明を実施するための形態】
【0060】
以下では、本開示をより詳細に説明するために、例示的な実施形態の詳細な説明が与えられる。
【0061】
図2は、歩行分析を可能にする、足と支持表面との間の力を検出するためのセンサ配置100の例示的な実施形態を示す。センサ配置100は、検出を実行するために靴またはインソールに配置されるように構成され、ここでキャリア110によって形成される少なくとも実質的に共通の平面内で互いに隣接して配置される複数のセンサ素子10を備える。4つのセンサ素子のみが参照符号によって識別されているが、センサ素子の数は、図2に示すような4つとは異なってもよく、足根、中足および足指にわたって分布する合計15個のセンサ素子は、例として示されていることに留意されたい。さらに、センサ配置100は、個々のセンサ素子をセンサ配置100の更なる部分および/または後述するセンサシステム200に接続するように構成された複数の電線120を含む。電線120は、例えば、印刷されてもよいし、あるいは小さな断面を有するケーブルなどによって形成されてもよい。
【0062】
図3は、足と支持表面との間の力を検出するためのセンサ配置100のさらなる例示的な実施形態を示す。図3から分かるように、少なくともいくつかの実施形態では、センサ配置100は、少なくとも1つのノッチ102を有する少なくとも1つの周辺輪郭101を備え、ノッチ102は周辺輪郭101に対して内側に向けられ、周辺輪郭101は、センサ素子10が配置される共通平面を囲む円周輪郭とも呼ばれることもある。少なくとも1つのノッチ102の追加または代替として、センサ配置100は、周辺輪郭101内に配置された少なくとも1つの材料凹部103を備える。センサ配置100が多層である場合、材料凹部103は、少なくともいくつかの層(例えば、後述するように、頂部層、底部層および/または中間層、図5も参照)を指すことも、あるいは好ましくは、すべての層を指すこともでき、その結果、材料凹部は、センサ配置100の厚み方向全体にわたって延在してもよい。
【0063】
図4は、ソールコンパウンドの例示的な実施形態を示し、これは、センサ配置100の例示的な用途を表す。ソールコンパウンドは、センサ配置100の厚み方向に配置され、カバーソール120、底部ソール130、およびオプションのバッテリ保護部140の間にサンドイッチ配置で配置されたセンサ配置100を備える。センサ配置100は、特に、カバーソール120と底部ソール130との間に配置される。センサ配置100は、また、ソールコンパウンドの変化によって、さまざまな目的に適合されてもよい。
【0064】
図5は、例示的な実施形態によるセンサ素子10の例示的な1つの構成構造を分解図で示す。通常、センサ配置110のセンサ素子10は互いに同一である。センサ素子10は、第一の層11を備え、第一の層11は、非導電性キャリア箔12またはフィルムと、第一の層11の長手方向に少なくとも部分的に沿って延びる第一の半導電層13と、を備える。センサ素子10は、第二の層14をさらに備え、第二の層14は、非導電性キャリア箔15またはフィルムと、第二の層14の長手方向に少なくとも部分的に沿って延びる第二の半導電層16と、を備える。一例として、第一の層11は底部層であり、第二の層は頂部層であり、足は頂部層から置かれる。少なくとも1つの電気接続領域17は、第一および第二の層11,14の1つの半導電層に接触しており、電源(図示せず)に接続されるようになっている。一例として、第一および/または第二の半導電層16は、カーボンインクによって形成される。少なくともいくつかの実施形態では、第一の層11および第二の層14は、それらの間に配置された中間炭素層および/または接着剤層18によって離間された第一の半導電層13および第二の半導電層16とともに積層される。一例として、図5に見られるように、電気接続領域17は、センサ素子10の第一の層11の第一の半導電層13と接触している。第一の半導電層13および第二の半導電層16は、互いに離れたところに配置されており、センサ素子10に加えられる力に応じて、例えば、図6Aおよび図6Bから分かるように、互いに選択的に接触するようになっていることに留意されたい。
【0065】
さらに図5を参照すると、少なくとも一部の実施形態では、第一の半導電層13および第二の半導電層16は、無荷重状態で互いに離間し、センサ素子10に加えられる力に応答する接触させることができる2つの離間した表面を形成する。また、2つの表面が互いに接触する面積が、センサ素子10の抵抗値を示す(詳細については、図6Aおよび図6Bも参照されたい)。なお、面積とは、例えば、第一の半導電層13と第二の半導電層16とが互いに接触し、平方ミリメートル(mm)などで指定することができるエリアと呼ばれることもある。
【0066】
さらに、少なくともいくつかの実施形態では、少なくとも2つの第一および/または第二の半導電層13、16が、それらの長手延長方向に対して平行に配置され、2つの第一および/または第二の半導電層13、16は、少なくとも1つの電気接続領域17を介して互いに接続される。これは、2つの層が互いに隣接して配置されている図5に見ることができる。さらなる電気接続領域17は、他の電気接続領域17とは両側に配置されることに留意されたい。
【0067】
さらに図5を参照すると、少なくともいくつかの実施形態では、複数の導電性セクション19が、第一の層11および第二の層14のうちの他方のキャリア箔12、15上に配置され、第一の層11および第二の層14のうちの他方の導電性セクション13、16と接触し、導電性セクション19は、第一の層11および第二の層14のうちの他方の長手方向に対して横方向に延びる。一例として、図5に見られるように、導電性セクション19は、第二の層14のキャリア箔15上に配置される。導電性セクション19は、キャリア箔15と第二の半導電層16との間に配置されている。さらに、第二の層の導電性セクション19はストライプ状であり、2つの隣接するストリップは、第一の層11および/または第二の層14の長手延長方向に離間している。一例として、導電性セクション19は、銀インクによって形成されるか、または銀インクを含む。
【0068】
図6Aおよび図6Bを参照して、センサ素子10の機能原理を以下に説明する。図6Aは、無荷重状態にあるセンサ素子10を示し、図6Bは、力の影響下にあるセンサ素子10を示し、この力は、歩行解析におけるパラメータとして地面反力とも呼ばれ得る。図6Aから分かるように、無荷重状態では、第一および第二の層11、14の第一および第二の半導電層13、16の表面は、互いに少なくともわずかに離間しており、したがって、互いに接触していないか、あるいは互いにわずかに導電性接触しているだけか、または互いに導電性接触していないだけである。任意選択で、例えば、2つの半導電層13、16の間に空隙Gを設けてもよい。この無荷重状態において、センサ素子10は、したがって、入力インピーダンスに概ね対応する第一の抵抗値を有する。図6Bでは、圧縮力Fがセンサ素子10の厚み方向で第二の層14の外面に加えられ、圧縮の結果として、少なくとも第二の層14が機械的に変形する。機械的変形によって、第一および第二の半導電層13、16の2つの表面は、少なくとも一部のセクションで互いに接近するか、あるいは少なくとも一部のセクションで空隙Gのサイズをそれぞれ小さくする。言い換えると、第二の半導電層16が第一の層11の第一の半導電層13の方向に押圧されることになる。第一の半導電層13と第二の半導電層16との間の表面接触の大きさ、すなわち面積に応じて、センサ素子10の抵抗は、それに加えられる力Fに応じて変化する。原理的には、FSRセンサ(従来技術を示す図1Aおよび図1Bを参照)とは対照的に、ここでは、水平方向の経路変化が使用される。測定原理を(FSRセンサで使用されるような)垂直方向から(本明細書で使用されるような)水平方向に変化させることによって、経路は、数μmから数mmに、さらには数cmまで変化する。その結果、インク構造に対する材料の変動や環境への影響の可能性は、ほとんど目立たなくなる。一例として、本明細書では、センサ素子10で16.7mmのセンサ寸法と、FSRセンサで約30nmの寸法とを比較する。これは、約5000:1の比に相当する。このように、材料の欠陥は、センサ信号に5000分の1未満しか影響を及ぼさない。これは、環境条件の変化による材料の変動に関しても同じである。表面指向の測定によって達成される別の効果は、面積の影響を抵抗に比例して定義することができるので、線形センサ信号特性を作成することである。カーボンインクがよりコンパクトで均一な構造であるために、より小さな画面を製造に使用することもでき、その結果、はるかに正確な印刷画像が得られる。これは、1%未満の製造公差を可能にする。インクの表面がより均質なので、また、印刷適性(複数の層の塗布)をより良好に、またはより明確にすることができる。
【0069】
図7A図7Dは、一実施形態による、センサ素子10の異なる荷重状態を概略上面図で示す。センサ素子10の異なる荷重状態は、図7A図7Dにおいて、異なるハッチングまたは異なる配置のハッチングによって示され、これは、少なくとも個々の図を互いに比較することによって見ることができる。一例として、センサ素子10は、2つの第一および/または第二の半導電層13、16を備え、これらの層は、それらの長手延長方向に対して平行に配置され、および/または共通平面内に配置され、2つの第一および/または第二の半導電層13、16は、少なくとも1つの電気接続領域17を介して互いに接続される。更なる電気接続領域17は、電位または抵抗器アレイに、直接的または間接的に接続する。いくつかの実施形態では、図7Aに示されるように、上記の構成の一部、例えば半分のみが提供されてもよい。図7A図7Dでは、ストライプ状の導電性セクション19が一種のキーボードまたは鍵盤を形成しているのが分かる。ストライプ状の導電性セクション19は、例えば、半導電層13、16の電気抵抗を減少させる役割を果たす。ストライプの数および/または厚さは、電気抵抗および/または信号感度の低下を調整するために変更されてもよい。センサの応答挙動は、導電性セクション19の幅および/または半導電層13、16の特性、例えば材料特性を調整することによってもモデル化することができる。ストライプ状の導電性セクション19は、また、センサ素子10に不均一な荷重を与えることができ、これは、インソール内で使用されるときに、予想されることである。FSR技術(従来技術を示す図1Aおよび図1Bを参照)は一定の表面荷重を必要とするが、ここでのセンサ素子10は、複数の点で荷重を受けてもよい。それは、常に同じ信号応答を送る。
【0070】
図8は、足と支持表面との間の力を検出するためのセンサシステム200を概略ブロック図で示す。センサシステム200は、例えば、上述したように複数のセンサ素子10を備える。これらのセンサ素子10は、可変抵抗を有し、それに加えられた力に応答して電気検出信号を提供するように適合され、第一の電位(図示せず)に接続される。さらに、センサシステム200は、センサ素子10の電気検出信号に電気的に影響を及ぼすように適合され、第二の電位(図示せず)に接続された抵抗器アレイ210を備える。さらに、センサシステム200は、センサ素子10の電気的に影響を受ける電気信号を得るように適合された少なくとも1つの入力チャネル221と、変換された電気検出信号に基づいてデジタル検出信号を提供する少なくとも1つの出力チャネル222とを有する変換器220を備える。さらに、センサシステム200は、電気検出信号に影響を及ぼすために使用される抵抗器アレイ210の1つ以上の抵抗器の回路構成を決定するように構成されたデータ処理手段230を備える。一例として、抵抗器アレイ210は、ここではマイクロプロセッサであるデータ処理手段230の一部である。ここでは明示的には示されていないが、データ処理手段230と抵抗器アレイ210とは別個であってもよいことに留意されたい。
【0071】
少なくともいくつかの実施形態では、データ処理手段230は、相対抵抗または電圧値に関連する1つ以上の抵抗器の回路構成を決定するようにさらに適合される。
【0072】
少なくともいくつかの実施形態では、データ処理手段230は、使用される1つ以上の抵抗器の回路構成を決定することによって、使用される変換器220の測定範囲を設定するようにさらに適合され、この測定範囲は、変換器220の所定の分解能よりも小さい。少なくともいくつかの実施例では、データ処理手段230は、検出信号の特性を決定し、測定範囲を上限と下限の間に設定するようにさらに適合され、上限と下限の間の検出信号の特性は、少なくとも準線形であると決定される(例えば、図10参照)。少なくともいくつかの実施形態では、データ処理手段230は、センサ素子10の所望の感度に関連する測定範囲の上限および/または下限を設定するようにさらに適合される。
【0073】
図9は、足と支持表面との間の力を検出する方法をフローチャートで示す。ステップS1において、例えば、上述したように、少なくとも複数のセンサ素子10によって力検出信号を取得する。ステップS2において、力検出信号を分析して、力検出信号の少なくとも非線形特性を検出する。ステップS3において、構成信号を生成し、前記構成信号は、力検出信号がベースとなる電気検出信号に影響を及ぼすために使用される抵抗器アレイ220の1つ以上の抵抗器の構成を含み、この構成は、検出された非線形特性に基づいて決定される。ステップS4において、構成信号は、例えば、処理手段230に提供される。
【0074】
図10は、被験者の歩行を診断および/または監視および/または分析するためのコンピュータ実装方法をフローチャートで示し、この方法のために、上記システム200を使用することができる。第一のステップS1において、被験者の少なくとも1つの歩行周期の地面反力の時間経過を決定する。ステップS2において、地面反力の決定された時間経過を正規化する。ステップS3において、正規化された時間経過を基準と比較する。次に、ステップS4において、前記比較の結果に基づいて、被験者の歩行を決定する。
【0075】
図11は、上記のセンサシステム200および/または上記の方法によって線形化されたセンサ素子10の信号特性SCを、力-電圧/抵抗図で示す。図から分かるように、センサ素子10の測定範囲MRの閾値は、使用される抵抗器を選択することによって定義または設定され得る。一例として、測定範囲MRは、下限閾値T1と上限閾値T2との間に設定され、その結果、ウィンドウベースのアプローチが得られる。設定された測定範囲MRにおいて、センサ素子10のセンサ素子信号特性SCは、破線で示すように準線形である。
【0076】
図12は、センサシステム(200)を使用して被験者の歩行を分析するための上記のコンピュータ実装方法の例示的な結果のグラフ表示を示す。ここで、罹患した被験者(脚部の外科的介入)の1歩行サイクルの地面反力の時間経過を決定し、被験者の体重および足の接触時間に対して正規化し、基準(健常な被験者)の正規化された時間経過を比較した。ここで、点線は、脚部の外科的介入後の被験者の正規化された時間経過を表し、実線は、基準、すなわち、健常な被験者の1歩行サイクルの地面反力の時間経過を表す。点線と実線を視覚的に比較すると、外科的介入から9カ月後に被験者の歩行サイクルは明らかに改善したが、依然として、基準(健常者)との差が認められる。
【0077】
図13A図13Eは、複数の導電性セクション19を備える層の代替の配置を示す。明色の長手方向ストライプ領域は、例えば、銀インクによって形成される、または銀インクを含む導電性セクション19を表し、暗色の斜めストライプ領域は、半導電層16を表す。代替的な配置は、ストライプパターン(図12A)、三角形パターン(図12B)、矩形パターン(図12C)、単一領域パターン(図12D)、または樹枝状パターン(図12E)の形態の導電性セクション19を含む。
【0078】
図14は、第一の半導電層13と第二の半導電層16との互いの代替的な配置を示す。ここで、第二の層14の一部である第二の半導電層16は、第一の層11の一部である第一の半導電層13と比較すると、大きさが小さい。特に、センサ素子の接触表面積は、第一の半導電層13と第二の半導電層16との重なり合う面積によって決まる。
図1A
図1B
図2
図3
図4
図5
図6A
図6B
図7A
図7B
図7C
図7D
図8
図9
図10
図11
図12
図13A
図13B
図13C
図13D
図13E
図14
【国際調査報告】