(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-07-19
(54)【発明の名称】銅膜を備えたガラスシート及びその製造方法
(51)【国際特許分類】
C03C 17/09 20060101AFI20220711BHJP
【FI】
C03C17/09
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021568547
(86)(22)【出願日】2020-05-13
(85)【翻訳文提出日】2022-01-13
(86)【国際出願番号】 US2020032553
(87)【国際公開番号】W WO2020236464
(87)【国際公開日】2020-11-26
(32)【優先日】2019-05-17
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100123652
【氏名又は名称】坂野 博行
(74)【代理人】
【識別番号】100175042
【氏名又は名称】高橋 秀明
(72)【発明者】
【氏名】ホアン,ミン-ホアン
(72)【発明者】
【氏名】キム,フン
(72)【発明者】
【氏名】マンレイ,ロバート ジョージ
(72)【発明者】
【氏名】ヴァディ,ラジェッシュ
(72)【発明者】
【氏名】ジェレフ,ニコライ ジェレフ
(72)【発明者】
【氏名】ジュー,ビン
【テーマコード(参考)】
4G059
【Fターム(参考)】
4G059AA01
4G059AB02
4G059AB13
4G059AB19
4G059AC11
4G059DA04
4G059DB01
(57)【要約】
ガラスシートの主面に銅膜を堆積する方法は、銅膜の特性の望ましい範囲を決定する工程、ガラスシートの熱履歴を銅膜の特性の望ましい範囲と相関させる工程、及びガラスシートの主面に銅膜を堆積する工程を含み、ここで、ガラスシート上に堆積された銅膜の特性は望ましい範囲内である。ガラスシートの熱履歴を銅膜の特性の望ましい範囲と相関させる工程は、ガラスシート上に銅膜を堆積する前に、ガラスシートを熱処理することを含みうる。
【特許請求の範囲】
【請求項1】
ガラスシートの主面に銅膜を堆積する方法であって、
前記銅膜の特性の望ましい範囲を決定する工程、
前記ガラスシートの熱履歴を前記銅膜の特性の前記望ましい範囲と相関させる工程、及び
前記ガラスシートの前記主面に前記銅膜を堆積する工程であって、前記ガラスシート上に堆積された前記銅膜の特性が前記望ましい範囲内である、工程
を含む、方法。
【請求項2】
前記特性が、前記銅膜の表面粗さ、膜応力、又は平均結晶子サイズのうちの少なくとも1つである、請求項1に記載の方法。
【請求項3】
前記ガラスシートの前記熱履歴を前記銅膜の特性の前記望ましい範囲と相関させる工程が、前記ガラスシートの前記熱履歴を調整することを含む、請求項1又は2に記載の方法。
【請求項4】
前記ガラスシートの前記熱履歴を調整することが、前記ガラスシート上に前記銅膜を堆積する前に、所定の時間及び温度で前記ガラスシートを熱処理することを含む、請求項3に記載の方法。
【請求項5】
前記熱処理時間が約20分~約12時間の範囲であり、前記最大熱処理温度が約350℃~約700℃の範囲である、請求項4に記載の方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、その内容が依拠され、その全体がここに参照することによって本願に援用される、2019年5月17日出願の米国仮特許出願第62/849,319号の米国法典第35編特許法119条に基づく優先権の利益を主張する。
【技術分野】
【0002】
本開示は、概して、銅膜を備えたガラスシートに関し、より詳細には、銅膜の1つ以上の特性を望ましい範囲内に制御するためにガラスシートの熱履歴を使用してガラスシート上に銅膜を堆積することに関する。
【背景技術】
【0003】
銅は、その低い電気抵抗率及び優れたエレクトロマイグレーション耐性の理由から、超大規模集積回路(ULSI)用途のための代替的なメタライゼーション材料としてかなりの注目を集めている。より最近では、銅は、より高い解像度のディスプレイ及び/又はより大きいサイズのディスプレイ用により低い電気抵抗率及びより細い金属線を必要とするフラットパネルディスプレイ用途について、大きな関心を集めている。
【0004】
スパッタ堆積技術は、銅のメタライゼーションプロセスに広く使用されている。概して、銅膜の構造及び品質は、堆積プロセスのパラメータに強く依存する。このようなプロセスパラメータには、例えば、スパッタガスの組成及び圧力、プラズマ電源のタイプ、堆積電力、並びにシート温度が含まれる。堆積パラメータの影響を受ける可能性のある銅膜の特性には、導電率、膜応力、結晶化、結晶配向、及び表面粗さが含まれる。このような特性の望ましい範囲は、最終的な用途に応じて異なりうる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
銅膜の特性を制御するために(例えば、さまざまな用途のため)堆積プロセスのパラメータを変化させることは、複雑さ、時間、及び費用を伴う。したがって、このようなプロセスパラメータを変化させる必要なしに銅膜の特性を制御することが望ましいであろう。
【課題を解決するための手段】
【0006】
本明細書に開示される実施形態は、ガラスシートの主面に銅膜を堆積する方法を含む。該方法は、銅膜の特性の望ましい範囲を決定する工程を含む。該方法はまた、ガラスシートの熱履歴を銅膜の特性の望ましい範囲と相関させる工程も含む。さらに、該方法は、ガラスシートの主面に銅膜を堆積する工程を含み、ここで、ガラスシート上に堆積された銅膜の特性は望ましい範囲内である。
【0007】
本明細書に開示される実施形態のさらなる特徴及び利点は、以下の詳細な説明に記載されており、一部にはその説明から当業者には容易に明らかになり、あるいは、以下の詳細な説明、特許請求の範囲、並びに添付の図面を含む、本明細書に記載されるように開示される実施形態を実施することによって認識される。
【0008】
前述の概要及び後述する詳細な説明はいずれも、特許請求の範囲に記載される実施形態の性質及び特徴を理解するための概観又は枠組みを提供することが意図されていることが理解されるべきである。添付の図面は、さらなる理解を提供するために含まれ、本明細書に組み込まれて、その一部を構成する。図面は本開示のさまざまな実施形態を例証しており、その説明とともに、それらの原理及び動作を説明する役割を担う。
【図面の簡単な説明】
【0009】
【
図1】例となるフュージョンダウンドローガラス製造装置及びプロセスの概略図
【
図3】ガラスシートの第1の主面への銅堆積プロセスの概略図
【
図4】銅膜が主面に堆積されているガラスシートの側面図
【
図5】熱処理が施されたガラスシート及び熱処理が施されなかった対照ガラスシートの表面粗さを示すグラフ
【
図6】熱処理が施されたガラスシート及び熱処理が施されなかった対照ガラスシートにおける銅膜の計算された応力を示すグラフ
【
図7】熱処理が施されたガラスシート及び熱処理が施されなかった対照ガラスシートにおける銅膜の測定された表面粗さを示すグラフ
【
図8】対照ガラスシートに堆積された銅膜のX線回折曲線
【
図9】熱処理が施されたガラスシート及び熱処理が施されなかった対照ガラスシートにおける銅膜の計算された平均結晶子サイズを示すグラフ
【発明を実施するための形態】
【0010】
これより、その例が添付の図面に示されている本開示の好ましい実施形態について、詳細に説明する。可能な場合はいつでも、同一又は類似した部分についての言及には、図面全体を通して同じ参照番号が用いられる。しかしながら、本開示は、多くの異なる形態で具現化することができ、本明細書に記載される実施形態に限定されると解釈されるべきではない。
【0011】
本明細書では、範囲は、「約」1つの特定の値から、及び/又は「約」別の特定の値までとして表現することができる。このような範囲が表現される場合、別の実施形態は、その1つの特定の値から及び/又は他方の特定の値までを含む。同様に、例えば先行詞「約」の使用によって、値が近似値として表される場合、その特定の値は別の実施形態を形成することが理解されよう。さらには、範囲の各々の端点は、他の端点に関連して、及び他の端点とは独立してのいずれにおいても重要であることが理解されよう。
【0012】
本明細書で用いられる方向の用語(例えば、上、下、右、左、前、後、上部、底部)は、描かれた図を参照してのみ作られており、絶対的な方向を意味することは意図していない。
【0013】
特に明記しない限り、本明細書に記載されるいずれの方法も、その工程が特定の順序で実行されることを必要とすること、若しくは、装置には特定の向きが必要であると解釈されることは、決して意図していない。したがって、方法クレームが、その工程が従うべき順序を実際に記載していない場合、若しくは装置クレームが個々の構成要素に対する順序又は向きを実際に記載していない場合、あるいは、工程が特定の順序に限定されるべきであることが特許請求の範囲又は明細書に別段に明確に述べられていない場合、若しくは装置の構成要素に対する特定の順序又は向きが記載されていない場合には、いかなる意味においても、順序又は方向が推測されることは決して意図していない。これには、次のような解釈のためのあらゆる非明示的根拠が当てはまる:工程の配置、動作フロー、構成要素の順序、又は構成要素の方向に関する論理的事項;文法上の編成又は句読点から派生した平明な意味;及び、明細書に記載される実施形態の数又はタイプ。
【0014】
本明細書で用いられる場合、単数形「a」、「an」、及び「the」は、文脈上明らかに別段の指示がない限り、複数の指示対象を含む。よって、例えば、「ある1つの(a)」構成要素への言及は、文脈がそうでないことを明確に示さない限り、そのような構成要素を2つ以上有する態様を含む。
【0015】
図1に例示的なガラス製造装置10が示されている。幾つかの例では、ガラス製造装置10は、溶融容器14を含むことができるガラス溶融炉12を備えることができる。溶融容器14に加えて、ガラス溶融炉12は、任意選択的に、原料を加熱して該原料を溶融ガラスへと変換する加熱要素(例えば、燃焼バーナー又は電極)などの1つ以上の追加の構成要素を含むことができる。さらなる例では、ガラス溶融炉12は、溶融容器の近傍からの熱損失を低減する熱管理装置(例えば断熱構成要素)を含んでいてもよい。さらに別の例では、ガラス溶融炉12は、原材料のガラス溶融物への溶融を促進する電子デバイス及び/又は電気機械デバイスを含むことができる。さらにまた、ガラス溶融炉12は、支持構造(例えば、支持シャーシ、支持部材等)又は他の構成要素を含んでいてもよい。
【0016】
ガラス溶融容器14は、典型的には耐火セラミック材料、例えばアルミナ又はジルコニアを含む耐火セラミック材料などの耐火材料で構成される。幾つかの例では、ガラス溶融容器14は、耐火セラミックブリックで構成されていてもよい。ガラス溶融容器14の特定の実施形態は、以下により詳細に説明される。
【0017】
幾つかの例では、ガラス溶融炉をガラス製造装置の構成要素として組み込んで、ガラスシート、例えば連続長のガラスリボンを製造することができる。幾つかの例では、本開示のガラス溶融炉は、スロットドロー装置、フロートバス装置、フュージョンプロセスなどのダウンドロー装置、アップドロー装置、プレス圧延装置、管延伸装置、又は本明細書に開示される態様からの利益を享受するであろう他の任意のガラス製造装置を含む、ガラス製造装置の構成要素として組み込まれてもよい。例として、
図1は、その後に個別のガラスシートへと加工するためにガラスリボンを溶融延伸するためのフュージョンダウンドローガラス製造装置10の構成要素としてのガラス溶融炉12を概略的に示している。
【0018】
ガラス製造装置10(例えばフュージョンダウンドロー装置10)は、任意選択的に、ガラス溶融容器14に対して上流に位置付けられた上流側ガラス製造装置16を含みうる。幾つかの例では、上流側ガラス製造装置16の一部又は全体をガラス溶融炉12の一部として組み込むことができる。
【0019】
図示される例に示すように、上流側ガラス製造装置16は、貯蔵ビン18、原料送達デバイス20、及び該原料送達デバイスに接続されたモータ22を備えることができる。貯蔵ビン18は、矢印26で示すように、ガラス溶融炉12の溶融容器14に供給することができる、ある量の原料24を保管するように構成することができる。原料24は、典型的には、1つ以上のガラス形成金属酸化物と1つ以上の改質剤とを含む。幾つかの例では、原料送達デバイス20が所定量の原料24を貯蔵ビン18から溶融容器14に送達するように、モータ22によって原料送達デバイス20に動力を与えることができる。さらなる例では、モータ22は、溶融容器14の下流で感知された溶融ガラスのレベルに基づいて制御された速度で原料24を導入するように原料送達デバイス20に動力を与えることができる。その後、溶融容器14内の原料24を加熱して溶融ガラス28を形成することができる。
【0020】
ガラス製造装置10はまた、任意選択的に、ガラス溶融炉12に対して下流に位置付けられた下流側ガラス製造装置30を含むことができる。幾つかの例では、下流側ガラス製造装置30の一部をガラス溶融炉12の一部として組み込むことができる。幾つかの事例では、以下で論じる第1の接続導管32、又は下流側ガラス製造装置30の他の部分をガラス溶融炉12の一部として組み込むことができる。第1の接続導管32を含む下流側ガラス製造装置の要素は、貴金属から形成することができる。適切な貴金属には、白金、イリジウム、ロジウム、オスミウム、ルテニウム、及びパラジウムからなる金属の群から選択される白金族金属、又はそれらの合金が含まれる。例えば、ガラス製造装置の下流構成要素は、約70~約90質量%の白金及び約10質量%~約30質量%のロジウムを含む白金-ロジウム合金から形成することができる。しかしながら、他の適切な金属は、モリブデン、パラジウム、レニウム、タンタル、チタン、タングステン、及びそれらの合金を含みうる。
【0021】
下流側ガラス製造装置30は、溶融容器14の下流に位置し、かつ、上記第1の接続導管32によって溶融容器14に結合された、清澄容器34などの第1の調整(すなわち、処理)容器を含みうる。幾つかの例では、溶融ガラス28は、第1の接続導管32によって溶融容器14から清澄容器34へと重力供給されてもよい。例えば、重力によって、溶融ガラス28を、溶融容器14から清澄容器34へと第1の接続導管32の内部経路を通過させることができる。しかしながら、他の調整容器を、例えば溶融容器14と清澄容器34との間など、溶融容器14の下流に配置することができるものと理解されたい。幾つかの実施形態では、一次溶融容器からの溶融ガラスをさらに加熱して溶融プロセスを継続するか、又は清澄容器に入る前に溶融容器内の溶融ガラスの温度より低い温度へと冷却する調整容器を溶融容器と清澄容器との間に用いることができる。
【0022】
気泡は、清澄容器34内の溶融ガラス28から、さまざまな技法によって除去することができる。例えば、原料24は、加熱されると化学還元反応を被り、酸素を放出する、酸化スズなどの多価化合物(すなわち清澄剤)を含みうる。他の適切な清澄剤としては、限定はしないが、ヒ素、アンチモン、鉄、及びセリウムが挙げられる。清澄容器34は、溶融容器温度より高い温度へと加熱され、それによって溶融ガラスと清澄剤を加熱する。清澄剤の温度誘発性の化学還元によって生じた酸素気泡は、清澄容器内の溶融ガラスを通って上昇し、ここで、溶融炉内で生成した溶融ガラス内のガスは、清澄剤によって生成された酸素気泡中に拡散又は一体化しうる。次に、拡大した気泡は、清澄容器内の溶融ガラスの自由表面へと上昇し、その後、清澄容器から排出されうる。酸素気泡はさらに、清澄容器内での溶融ガラスの機械的混合も生じさせることができる。
【0023】
下流側ガラス製造装置30は、溶融ガラスを混合するための混合容器36など、別の調整容器をさらに含むことができる。混合容器36は、清澄容器34の下流に配置することができる。混合容器36を使用して均質なガラス溶融組成物をもたらし、それによって、そうでなければ清澄容器から出る清澄された溶融ガラス内に存在しうる化学的又は熱的不均一性のコードを低減することができる。示されるように、清澄容器34は、第2の接続導管38によって混合容器36に連結されうる。幾つかの例では、溶融ガラス28は、第2の接続導管38によって清澄容器34から混合容器36へと重力供給することができる。例えば、重力によって、溶融ガラス28を、清澄容器34から混合容器36へと第2の接続導管38の内部経路を通過させることができる。混合容器36が清澄容器34の下流に示されているが、混合容器36は、清澄容器34の上流に位置付けられてもよいことに留意すべきである。幾つかの実施形態では、下流側ガラス製造装置30は、例えば清澄容器34の上流の混合容器と清澄容器34の下流の混合容器など、複数の混合容器を含んでいてもよい。これらの複数の混合容器は、同じ設計のものであっても、異なる設計のものであってもよい。
【0024】
下流側ガラス製造装置30は、混合容器36の下流に配置することができる送達容器40などの別の調整容器をさらに含んでいてもよい。送達容器40は、溶融ガラス28を調整し、下流の成形装置内へと供給することができる。例えば、送達容器40は、出口導管44によって成形体42への溶融ガラス28の一定の流れを調整及び/又は提供するためのアキュムレータ及び/又は流量制御装置として機能することができる。示されるように、混合容器36は、第3の接続導管46によって送達容器40に連結されうる。幾つかの例では、溶融ガラス28は、第3の接続導管46によって混合容器36から送達容器40へと重力供給されうる。例えば、重力によって、第3の接続導管46の内部経路を通って混合容器36から送達容器40へと溶融ガラス28を駆動させることができる。
【0025】
下流側ガラス製造装置30は、上述の成形体42と入口導管50とを含む成形装置48をさらに含むことができる。出口導管44は、溶融ガラス28を送達容器40から成形装置48の入口導管50へと送達するように位置付けることができる。例えば、出口導管44は入口導管50の内面に入れ子にされ、かつ、そこから離間され、それによって出口導管44の外面と入口導管50の内面との間に位置付けられた溶融ガラスの自由表面を提供することができる。フュージョンダウンドローガラス製造装置の成形体42は、該成形体の上面に位置付けられたトラフ52と、成形体の底部エッジ56に沿って延伸方向に収束する収束成形面54とを含みうる。送達容器40、出口導管44、及び入口導管50を介して成形体トラフへと送達された溶融ガラスは、トラフの側壁から溢れ出て、溶融ガラスの別々の流れとして収束成形面54に沿って下降する。溶融ガラスの別々の流れは、底部エッジ56の下及び底部エッジ56に沿って合流し、重力、エッジロール72、及びプルロール82などによってガラスリボンに張力を印加することにより、ガラスが冷えてガラスの粘性が増すにつれてガラスリボンの寸法を制御するように底部エッジ56から延伸方向又は流れ方向60に延伸される、単一のガラスリボン58を生成する。したがって、ガラスリボン58は、粘弾性転移を経て、ガラスリボン58に安定した寸法特性を与える機械的性質を獲得する。ガラスリボン58は、幾つかの実施形態では、ガラスリボンの弾性領域においてガラス分離装置100によって個々のガラスシート62へと分離することができる。次いで、ロボット64によって、把持具65を使用して個々のガラスシート62をコンベヤシステムに移すことができ、その後、個々のガラスシートをさらに処理することができる。
【0026】
図2は、第1の主面162、該第1の主面162とほぼ平行な方向に延びる第2の主面164(ガラスシート62の第1の主面とは反対側)、並びに、第1の主面162と第2の主面164との間に延在し、かつ、第1及び第2の主面162、164とほぼ垂直な方向に延びるエッジ表面166を有するガラスシート62の斜視図を示している。
【0027】
図3は、ガラスシート62の第1の主面162における銅堆積プロセスの概略図を示している。
図3に示されるように、堆積プロセスは、そこを通じてスパッタガス(例えば、不活性ガス)206が流されるチャンバ200の内部のターゲット202から第1の主面162上にスパッタされた銅原子204を放出することを含む。このような銅堆積プロセスは、当業者に知られているようなスパッタプロセスを含みうる。
【0028】
図4は、銅膜208がガラスシート62の第1の主面162に堆積されたガラスシート62の側面図を示している。限定はしないが、ガラスシート62の厚さ(すなわち、矢印TSで示される第1の主面162と第2の主面164との間の距離)は、例えば、約0.1ミリメートル~約0.5ミリメートルの範囲、例えば約0.2ミリメートル~約0.4ミリメートルの範囲でありうる。限定はしないが、銅膜208の厚さ(矢印TFで示される)は、例えば、約50ナノメートル~約1000ナノメートルの範囲、例えば約100ナノメートル~約500ナノメートルの範囲でありうる。
【0029】
銅膜208は、限定はしないが、表面粗さ、膜応力、及び平均結晶子サイズを含めたさまざまな特性を有しうる。このような特性は、例えば、銅堆積プロセスのパラメータを調整することによって、望ましい範囲内に制御することができる。
【0030】
本明細書に開示される実施形態は、銅膜208の特性の望ましい範囲を決定する工程、ガラスシート62の熱履歴を銅膜208の特性の望ましい範囲と相関させる工程、及びガラスシート62の主面に銅膜208を堆積する工程を含み、ここで、ガラスシート62上に堆積された銅膜208の特性は望ましい範囲内にある。このような実施形態は、銅堆積プロセスパラメータを必ずしも変更せずに、望ましい範囲内の特性を示すように銅膜208を調整することを可能にしうる。別の言い方をすれば、本明細書に開示される実施形態は、同じ又は同様の銅堆積プロセスを使用して、ガラスシート上に堆積される銅膜を生成することを可能にすることができ、該銅膜は、ガラスシートの熱履歴に応じて異なる特性を有することができる。
【0031】
ガラスシート62の熱履歴を銅膜208の特性の望ましい範囲と相関させる工程は、その熱履歴の結果として銅膜208の特性を予測することを含む。ガラスシート62の熱履歴を銅膜208の特性の望ましい範囲と相関させる工程はまた、その熱履歴を調整することも含みうる。例えば、ガラスシートの熱履歴を調整することは、ガラスシート62の主面上に銅膜を堆積する前に、所定の時間及び温度でガラスシート62を熱処理することを含みうる。
【0032】
所定の時間及び温度でガラスシート62を熱処理することは、ガラスシート62の温度を、例えば、約20℃~約30℃の範囲の温度から最大熱処理温度まで上昇させ、次に、ガラスシート62の温度を最大熱処理温度で熱処理時間の間保持することを含みうる。このような熱処理時間は、例えば、約20分~約12時間、例えば約20分~約2時間、さらには約20分~約1時間の範囲であってよく、最大熱処理温度は、例えば、約350℃~約700℃、例えば約500℃~約600℃の範囲でありうる。
【0033】
ある特定の例示的な実施形態では、ガラスシート62の熱処理は、ガラスシート62を取り囲むガス状流体が所定の範囲内で組成的に制御される環境など、制御された環境において行うことができる。例えば、本明細書に開示される実施形態は、ガラスシート62を取り囲む環境が主に、窒素、ヘリウム、及び/又はアルゴンから選択されるガスで構成されるものを含む。このような例示的な実施形態は、ガラスシート62の熱処理が、そこを通って窒素の流れが流れるチャンバでガラスシート62を覆うことを含むものを含み、その結果、ガラスシート62は、約90モル%~約99.99モル%、例えば約95モル%~約99.9モル%の窒素を含むなど、少なくとも約90モル%、例えば少なくとも95モル%、さらには少なくとも99モル%の窒素を含むガス状流体によって取り囲まれる。
【0034】
最大熱処理温度及び時間での熱処理に続いて、ガラスシート62の温度を、例えば、約20℃~約30℃の範囲の温度まで下げることができる。ガラスシート62の温度の上昇及び下降は、特定の速度に限定されないが、例えば、約1℃/分~約300℃/分、例えば約10℃/分~約100℃/分の範囲でありうる。
【0035】
本明細書に開示される実施形態は、ガラスシート62の熱履歴を銅膜208の特性の望ましい範囲と相関させる工程が、熱履歴を銅膜208の表面粗さ、膜応力、又は平均結晶子サイズと相関させることを含むものを含む。ある特定の例示的な実施形態では、熱履歴を銅膜208の表面粗さ、膜応力、又は平均結晶子サイズと相関させる工程は、ガラスシート62の主面上に銅膜を堆積する前に、所定の時間、ガラスシートを熱処理することを含む。
【0036】
ある特定の例示的な実施形態では、特性は膜応力であり、熱処理時間は約20分~約2時間の範囲であり、最大熱処理温度は、約350℃~約700℃、例えば約500℃~約600℃の範囲である。ある特定の例示的な実施形態では、特性は表面粗さであり、熱処理時間は約20分~約12時間の範囲であり、最大熱処理温度は、約350℃~約700℃、例えば約500℃~約600℃の範囲である。ある特定の例示的な実施形態では、特性は平均結晶子サイズであり、熱処理時間は約20分~約12時間の範囲であり、最大熱処理温度は、約350℃~約700℃、例えば約500℃~約600℃の範囲である。
【0037】
本明細書に開示される実施形態は、さまざまなガラス組成物とともに使用することができる。このような組成物は、例えば、58~65質量パーセント(質量%)のSiO2、14~20質量%のAl2O3、8~12質量%のB2O3、1~3質量%のMgO、5~10質量%のCaO、及び0.5~2質量%のSrOを含有する、無アルカリガラス組成物などのガラス組成物を含みうる。このような組成物はまた、58~65質量%のSiO2、16~22質量%のAl2O3、1~5質量%のB2O3、1~4質量%のMgO、2~6質量%のCaO、1~4質量%のSrO、及び5~10質量%のBaOを含有する、無アルカリガラス組成物などのガラス組成物も含みうる。このような組成物は、さらには、57~61質量%のSiO2、17~21質量%のAl2O3、5~8質量%のB2O3、1~5質量%のMgO、3~9質量%のCaO、0~6質量%のSrO、及び0~7質量%のBaOを含有する、無アルカリガラス組成物などのガラス組成物も含みうる。このような組成物は、55~72質量%のSiO2、12~24質量%のAl2O3、10~18質量%のNa2O、0~10質量%のB2O3、0~5質量%のK2O、0~5質量%のMgO、及び0~5質量%のCaOを含み、ある特定の実施形態では、1~5質量%のK2O及び1~5質量%のMgOも含みうる、例えばアルカリ含有ガラス組成物などのガラス組成物をさらに含みうる。
【実施例】
【0038】
本明細書に開示される実施形態は、以下の非限定的な例を参照してさらに説明される。
【0039】
直径約6インチ(約15.24cm)、厚さ約0.5ミリメートルのCorning(登録商標)EagleXG(登録商標)ガラスウエハを、窒素ガスが常に流れている筐体内でガラスウエハの温度を約25℃から約600℃に上昇させることによって熱処理し、その後、約20分から約12時間の範囲のさまざまな時間、筐体内で約600℃に保持した。約20分から約1時間の範囲の時間で保持されたガラスウエハは、約20℃/分の速度で約25℃から約600℃まで加熱した。約2時間から約12時間の範囲の時間で保持されたガラスウエハは、約5℃/分の速度で約25℃から約600℃まで加熱した。
【0040】
熱処理を施したガラスウエハ及び熱処理を施さなかった対照ガラスシートの表面粗さを、原子間力顕微鏡(AFM)を使用して測定した結果が
図5に示されている。
図5から分かるように、熱処理時間の関数としてのガラスシートの表面粗さの有意な変化は観察されなかった。
【0041】
約700ナノメートルの厚さの銅膜を、スパッタ堆積技法を使用してガラスウエハの主面に直接堆積させた。同じ銅堆積技法を、対照ガラスシート及びさまざまな時間で熱処理されたガラスウエハに使用した。
【0042】
ガラスウエハの主面に堆積した銅膜の応力は、表面粗さ計を使用して銅膜堆積の前後の形状を測定することによって銅膜堆積の前後のガラスシートの形状変化を観察し、次に以下のストーニーの式に従って形状変化を膜応力に相関させることによって決定した:
【0043】
【0044】
式中、σは銅膜の応力、Ε
sはガラス基板の弾性率、ν
sはガラス基板のポアソン比、h
sはガラス基板の厚さ、h
fは銅膜の厚さであり、1/R
rは、堆積の前後で測定された基板の曲率半径の逆数の差である。
図6は、対照試料及びさまざまな時間で熱処理された試料についての銅膜の計算された応力を示している。
図6から分かるように、約20分間の熱処理は、対照試料よりも約23%低い、計算された銅膜応力をもたらし、膜応力は、熱処理時間の増加とともに徐々に増加した。
【0045】
ガラスウエハの主面に堆積された銅膜の表面粗さは、AFMによって決定した。
図7は、対照試料及びさまざまな時間で熱処理された試料についての銅膜の測定された表面粗さを示している。
図7から分かるように、約1~2時間の熱処理は、対照試料よりも約15%高い、最大の観察銅膜表面粗さをもたらした。熱処理を1~2時間を超えて増加させると、銅膜の表面粗さは徐々に減少した。
【0046】
ガラスウエハの主面に堆積された銅膜の平均結晶子サイズは、微小角入射X線回折(GIXRD)によって決定した。
図8は、対照試料に堆積された銅膜のGIXRD曲線を示している。
図8から分かるように、銅の散乱に起因した、X線回折(XRD)曲線に示されている2つの主要なピーク(Cu(111)及びCu(200))が存在する。対照試料及び各熱処理試料について、ピークCu(111)の半値全幅(FWHM)をXRD曲線からフィッティングし、平均結晶子サイズtをシェラーの式で計算した:
【0047】
【0048】
式中、Kはシェラー定数、λはX線波長、BはピークCu(111)のFWHM、θはピーク位置(2シータ)である。計算された平均結晶子サイズの結果が
図9に示されている。
図9から分かるように、熱処理された試料は、対照試料よりも小さい平均結晶子サイズを有し、約20分間熱処理された試料の平均結晶子サイズが最小であると決定された。長時間熱処理された試料では、平均結晶子サイズのわずかな増加が観察された。
【0049】
上記の実施形態は、フュージョンダウンドロープロセスを参照して説明されているが、このような実施形態は、フロートプロセス、スロットドロープロセス、アップドロープロセス、チューブドロープロセス、及びプレス圧延プロセスなどの他のガラス成形プロセスにも適用可能であるものと理解されたい。
【0050】
本開示の精神及び範囲から逸脱することなく、本開示の実施形態に対してさまざまな修正及び変形がなされうることは、当業者にとって明白であろう。したがって、本開示は、添付の特許請求の範囲及びそれらの等価物の範囲内に入ることを条件として、そのような修正及び変形にも及ぶことが意図されている。
【0051】
以下、本発明の好ましい実施形態を項分け記載する。
【0052】
実施形態1
ガラスシートの主面に銅膜を堆積する方法であって、
前記銅膜の特性の望ましい範囲を決定する工程、
前記ガラスシートの熱履歴を前記銅膜の特性の前記望ましい範囲と相関させる工程、及び
前記ガラスシートの前記主面に前記銅膜を堆積する工程であって、前記ガラスシート上に堆積された前記銅膜の特性が前記望ましい範囲内である、工程
を含む、方法。
【0053】
実施形態2
前記特性が、前記銅膜の表面粗さ、膜応力、又は平均結晶子サイズのうちの少なくとも1つである、実施形態1に記載の方法。
【0054】
実施形態3
前記ガラスシートの前記熱履歴を前記銅膜の特性の前記望ましい範囲と相関させる工程が、前記ガラスシートの前記熱履歴を調整することを含む、実施形態1に記載の方法。
【0055】
実施形態4
前記ガラスシートの前記熱履歴を調整することが、前記ガラスシート上に前記銅膜を堆積する前に、所定の時間及び温度で前記ガラスシートを熱処理することを含む、実施形態3に記載の方法。
【0056】
実施形態5
前記熱処理時間が約20分~約12時間の範囲であり、前記最大熱処理温度が約350℃~約700℃の範囲である、実施形態4に記載の方法。
【0057】
実施形態6
前記銅膜を堆積する工程がスパッタ堆積を含む、実施形態1に記載の方法。
【0058】
実施形態7
前記ガラスシートが約0.1ミリメートル~約0.5ミリメートルの範囲の厚さを有し、前記銅膜が約50ナノメートル~約1000ナノメートルの範囲の厚さを有する、実施形態1に記載の方法。
【0059】
実施形態8
前記特性が膜応力であり、前記熱処理時間が約20分~約2時間の範囲であり、前記最大熱処理温度が約350℃~約700℃の範囲である、実施形態4に記載の方法。
【0060】
実施形態9
前記特性が表面粗さであり、前記熱処理時間が約20分~約12時間の範囲であり、前記最大熱処理温度が約350℃~約700℃の範囲である、実施形態4に記載の方法。
【0061】
実施形態10
前記特性が平均結晶子サイズであり、前記熱処理時間が約20分~約12時間の範囲であり、前記最大熱処理温度が約350℃~約700℃の範囲である、実施形態4に記載の方法。
【0062】
実施形態11
前記ガラスシートが、58~65質量%のSiO2、14~20質量%のAl2O3、8~12質量%のB2O3、1~3質量%のMgO、5~10質量%のCaO、及び0.5~2質量%のSrOを含有する無アルカリガラス組成物を含む、実施形態1に記載の方法。
【0063】
実施形態12
前記ガラスシートが、58~65質量%のSiO2、16~22質量%のAl2O3、1~5質量%のB2O3、1~4質量%のMgO、2~6質量%のCaO、1~4質量%のSrO、及び5~10質量%のBaOを含有する無アルカリガラス組成物を含む、実施形態1に記載の方法。
【0064】
実施形態13
前記ガラスシートが、57~61質量%のSiO2、17~21質量%のAl2O3、5~8質量%のB2O3、1~5質量%のMgO、3~9質量%のCaO、0~6質量%のSrO、及び0~7質量%のBaOを含有する無アルカリガラス組成物を含む、実施形態1に記載の方法。
【0065】
実施形態14
前記ガラスシートが、55~72質量%のSiO2、12~24質量%のAl2O3、10~18質量%のNa2O、0~10質量%のB2O3、0~5質量%のK2O、0~5質量%のMgO、及び0~5質量%のCaO、1~5質量%のK2O、及び1~5質量%のMgOを含有するガラス組成物を含む、実施形態1に記載の方法。
【0066】
実施形態15
実施形態1に記載の方法による、その上に銅膜が堆積された主面を含む、ガラスシート。
【0067】
実施形態16
実施形態15に記載の前記ガラスシート及び堆積された銅膜を含む、電子デバイス。
【符号の説明】
【0068】
10 ガラス製造装置
12 ガラス溶融炉
14 溶融容器
16 上流側ガラス製造装置
18 貯蔵ビン
20 原料送達デバイス
22 モータ
24 原料
28 溶融ガラス
30 下流側ガラス製造装置
32 第1の接続導管
34 清澄容器
36 混合容器
38 第2の接続導管
40 送達容器
42 成形体
44 出口導管
46 第3の接続導管
50 入口導管
54 収束成形面
56 底部エッジ
58 ガラスリボン
62 ガラスシート
64 ロボット
65 把持具
72 エッジロール
82 プルロール
100 ガラス分離装置
162 第1の主面
164 第2の主面
166 エッジ表面
200 チャンバ
202 ターゲット
204 スパッタされた銅原子
206 スパッタガス
208 銅膜
【国際調査報告】