(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-07-27
(54)【発明の名称】液体金属高温自励振動ヒートパイプ及び試験方法
(51)【国際特許分類】
F28D 15/02 20060101AFI20220720BHJP
G01N 25/18 20060101ALI20220720BHJP
【FI】
F28D15/02 104Z
G01N25/18 D
F28D15/02 101A
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021568906
(86)(22)【出願日】2020-06-29
(85)【翻訳文提出日】2021-11-18
(86)【国際出願番号】 CN2020098716
(87)【国際公開番号】W WO2021031699
(87)【国際公開日】2021-02-25
(31)【優先権主張番号】201910770503.X
(32)【優先日】2019-08-20
(33)【優先権主張国・地域又は機関】CN
(31)【優先権主張番号】201921354543.8
(32)【優先日】2019-08-20
(33)【優先権主張国・地域又は機関】CN
(81)【指定国・地域】
(71)【出願人】
【識別番号】515352847
【氏名又は名称】大連海事大学
(74)【代理人】
【識別番号】100095407
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100132883
【氏名又は名称】森川 泰司
(74)【代理人】
【識別番号】100148633
【氏名又は名称】桜田 圭
(74)【代理人】
【識別番号】100147924
【氏名又は名称】美恵 英樹
(72)【発明者】
【氏名】紀 玉龍
(72)【発明者】
【氏名】呉 梦珂
(72)【発明者】
【氏名】肖 秀
(72)【発明者】
【氏名】李 延涛
(72)【発明者】
【氏名】▲ユー▼ 春栄
(72)【発明者】
【氏名】孫 玉清
【テーマコード(参考)】
2G040
【Fターム(参考)】
2G040AB08
2G040BA14
2G040BA22
2G040CA02
2G040CB03
2G040CB08
(57)【要約】
本発明は、液体金属高温自励振動ヒートパイプ及び試験方法を提供し、高温自励振動ヒートパイプ、高温自励振動ヒートパイプに接続される高温加熱炉、冷却液ブロック、高圧ポンプ、恒温液槽、流量計、フィルタ、冷却液弁及び上記各部材に信号接続される測定制御システムを含み、恒温液槽、高圧ポンプ、フィルタ、冷却液弁、冷却液供給口T継手、冷却液ブロック、冷却液排出口T継手及び流量計が順次接続され、流量計が恒温液槽に接続され、上記の全ての部材が循環接続回路を構成し、前記冷却液ブロックの前側に溝が設けられ、溝が高温自励振動ヒートパイプの凝縮部に接続され、高温自励振動ヒートパイプの断熱部が高温加熱炉に接続されている。本発明は高温自励振動ヒートパイプの高温環境での試験要件を満たすことができ、設計した高温自励振動ヒートパイプが高温環境で長時間にわたって安定的に動作可能である。
【選択図】
図2
【特許請求の範囲】
【請求項1】
三方向作動液封入口(30)と、加熱部(34)、断熱部(33)、凝縮部(32)を一体に集積したステンレスパイプアレイ(31)とを含み、前記三方向作動液封入口(30)の2つの水平方向での連通口がステンレスパイプアレイ(31)の2つの管路口に接続され、前記ステンレスパイプアレイ(31)内の作動流体は、カリウムの質量分率が25%~75%のナトリウムカリウム合金、金属ナトリウム、金属カリウム、金属セシウム又は金属ルビジウムから選ばれる1種又は1種以上の組合せである液体金属である、ことを特徴とする液体金属高温自励振動ヒートパイプ。
【請求項2】
前記高温自励振動ヒートパイプ(21)の作動液の封入率が10%~90%である、ことを特徴とする請求項1に記載の液体金属高温自励振動ヒートパイプ。
【請求項3】
液体金属高温自励振動ヒートパイプ(21)であって、
ステンレス、ニッケル基合金又はInconelニッケル基合金から選ばれる1種又は1種以上の組合せを管材とし、肉厚が0.5~3mmであり、内径が次式を満たし、
【数1】
ことを特徴とする請求項1に記載の液体金属高温自励振動ヒートパイプ。
【請求項4】
高温自励振動ヒートパイプの伝熱性能の測定に用いられ、下記試験システムによって測定する液体金属高温自励振動ヒートパイプのための試験方法であって、
前記試験システムは、高温自励振動ヒートパイプ(21)に接続される高温加熱炉(20)、冷却液ブロック(22)、高圧ポンプ(27)、恒温液槽(26)、流量計(25)、フィルタ(28)、冷却液弁(29)及び上記各部材に信号接続される測定制御システムを含み、
前記恒温液槽(26)が前記高圧ポンプ(27)の一方側に接続され、前記高圧ポンプ(27)の他方側が前記フィルタ(28)の一方側に接続され、前記フィルタ(28)の他方側が前記冷却液弁(29)の一方側に接続され、前記冷却液弁(29)の他方側が設置された冷却液供給口T継手(23)を介して前記冷却液ブロック(22)の一方側に接続され、前記冷却液ブロック(22)の他方側が設置された冷却液排出口T継手(24)を介して前記流量計(25)の一方側に接続され、前記流量計(25)の他方側が前記恒温液槽(26)に接続され、前記の全ての部材が循環接続回路を構成し、前記恒温液槽(26)の排出する冷却液が逆時計回り方向に沿って流動し、最後に前記恒温液槽(26)に戻り、冷却液が前記高圧ポンプ(27)によって循環往復流動を実現し、前記冷却液ブロック(22)の外部前側に前記高温自励振動ヒートパイプ(21)の外径寸法に合致する溝が設けられ、前記溝が前記高温自励振動ヒートパイプ(21)の凝縮部(32)に接続され、前記高温自励振動ヒートパイプ(21)の断熱部(33)が前記高温加熱炉(20)に接続され、前記高温自励振動ヒートパイプ(21)の加熱部(34)が前記高温加熱炉(20)内に配置され、
前記試験方法は、高圧ポンプ(27)を起動して冷却液の循環を開始させ、冷却液弁(29)の開度を調節し且つ流量計(25)のデータを読み取ることによって冷却液流量を調節し、フィルタ(28)によって冷却液をろ過して不純物を除去する工程と、恒温液槽(26)を起動して冷却液温度を調節して高温自励振動ヒートパイプ(21)に安定的な冷却環境を提供する工程と、高温加熱炉(20)を低出力加熱状態に調節して暖機させ、暖機プロセスで熱電対、RTD温度センサー、測定制御システムのデバッギングを行ってデータの正確性を確保する工程と、高温加熱炉(20)のパラメータ設定を調節することによって高温自励振動ヒートパイプ(21)の加熱温度、加熱速度、加熱出力及び傾斜角度を制御調節し、高温加熱炉(20)の加熱プログラムを調節することによって多段加熱プロセスパラメータを設定し、加熱速度と目標炉温を調節し且つ保温し、高温自励振動ヒートパイプ(21)が安定的に動作した後加熱出力を一定に保ち、実験データを記録する工程と、高温加熱炉(20)をオフにし、恒温液槽(26)の温度を低く調節して降温プロセスに移行し、降温プロセスが終了すると、実験を終了とする工程とを含む、ことを特徴とする請求項1~3のいずれか一項に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【請求項5】
前記恒温液槽(26)の排出する冷却液の温度範囲が5℃~300℃である、ことを特徴とする請求項4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【請求項6】
前記高温自励振動ヒートパイプ(21)と冷却液ブロック(22)の外周は全体的に、内外のいずれにもその内外壁の温度を測定してヒートリークを取得するための少なくとも4つの熱電対が設置された耐高温保温材料の保温層によって覆われている、ことを特徴とする請求項4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【請求項7】
前記冷却液供給口T継手(23)と冷却液排出口T継手(24)のどちらにも冷却液管路の中心位置に延びるRTD温度センサーが接続されている、ことを特徴とする請求項4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【請求項8】
前記高温加熱炉(20)は密封箱体構造となり、頂部に階段孔(35)を開設した炉床カバーが設けられ、前記階段孔(35)の中部貫通孔が前記高温自励振動ヒートパイプ(21)に接続され、前記階段孔(35)と炉床カバーに垂直な高温自励振動ヒートパイプ(21)の間で形成された側面隙間内に耐高温保温材料を封入して密封させ、前記高温加熱炉(20)の炉本体両側の中心位置には、歯車伝動機構で構成される、高温加熱炉(20)の全体的な傾斜角度を0~180°の傾斜角度範囲に調節するための角度調節装置を取り付けたフランジが溶接されている、ことを特徴とする請求項4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【請求項9】
前記高温自励振動ヒートパイプ(21)の加熱部(34)、断熱部(33)及び凝縮部(32)にはそれぞれ少なくとも1つの熱電対が設けられ、前記高温自励振動ヒートパイプ(21)の凝縮部(32)の上方の横方向管には、高温自励振動ヒートパイプの温度変化を取得してその伝熱特性を分析することに用いられ且つ高温自励振動ヒートパイプの熱抵抗を計算可能な熱電対が少なくとも1つ設けられている、ことを特徴とする請求項4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【請求項10】
前記高温自励振動ヒートパイプの熱抵抗は次式を満たし、
【数2】
前記高温自励振動ヒートパイプの加熱出力は次式を満たし、
【数3】
前記ヒートリークは次式を満たし、
【数4】
ことを特徴とする請求項9に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自励振動ヒートパイプの研究の技術分野に関し、具体的には、特に液体金属高温自励振動ヒートパイプ及び試験方法に関する。
【背景技術】
【0002】
自励振動ヒートパイプ(OHP)は1990年代初頭にAkachiにより提案された、新規で効率的で微小な空間、高熱流束密度条件に利用可能な伝熱素子である。自励振動ヒートパイプは曲がった毛細管で構成され、管内を真空に引いてから適量の作動流体を封入したものである。動作する時に、作動流体は加熱部で吸熱して膨張して圧力が上昇し、低温凝縮部へ流れ、気柱が冷却して収縮して破裂し、両端間に圧力差が存在し且つ隣接する管の間の圧力が不平衡であるため、作動流体が加熱部と凝縮部の間で振動運動して、熱の伝達を実現する。
【0003】
一般的には、動作温度が500℃を上回る自励振動ヒートパイプは高温自励振動ヒートパイプと呼ばれている。現在、生産、研究中の自励振動ヒートパイプの多くは動作温度が200℃を上回っていないため、自励振動ヒートパイプの航空宇宙等の高温伝熱分野への応用が制限されている。従って、高温で長時間にわたって安定的に動作可能な自励振動ヒートパイプを製作することは重要な意味を有する。
【0004】
工学用途を指導し、高温自励振動ヒートパイプの伝熱性能の規律を把握し、異なる動作条件に適用する高温自励振動ヒートパイプを設計するために、高温自励振動ヒートパイプの伝熱性能を研究する必要があり、研究過程で、実験データの正確性と信頼性を保証しなければならない。しかしながら、従来の自励振動ヒートパイプ試験方法は、中低温環境での試験要件のみを満たすことができ、高温環境での試験要件を満たすことができないため、新規な高温自励振動ヒートパイプ試験システムを構築することは重要な意味を有する。
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来技術において自励振動ヒートパイプが高温で長時間にわたって安定的に動作することが困難であり、また、従来の自励振動ヒートパイプ試験方法が高温環境での試験要件を満たせない上記の技術的問題に応じて、液体金属高温自励振動ヒートパイプ及び試験方法を提供する。本発明は主に試験システムを用いて高温自励振動ヒートパイプに高温環境での試験条件を提供し、高温自励振動ヒートパイプが冷却液によって運び去る熱を測定し計算すると共に、ヒートリークを測定し計算して、高温自励振動ヒートパイプの伝達する熱をより正確に測定して、高温自励振動ヒートパイプの伝熱性能をより正確に評価する。
【課題を解決するための手段】
【0006】
本発明の技術的手段は、以下の通りである。
【0007】
本発明の一態様である液体金属高温自励振動ヒートパイプは、三方向作動液封入口と、加熱部、断熱部、凝縮部を一体に集積したステンレスパイプアレイとを含み、前記三方向作動液封入口の2つの水平方向での連通口がステンレスパイプアレイの2つの管路口に接続されており、前記ステンレスパイプアレイ内の作動流体は、カリウムの質量分率が25%~75%のナトリウムカリウム合金、金属ナトリウム、金属カリウム、金属セシウム又は金属ルビジウムから選ばれる1種又は1種以上の組合せである液体金属である、前記液体金属は常温で液体状態となるという特徴を有し、加熱プロセスで溶解プロセスが不要であり、高温自励振動ヒートパイプの起動をより簡単にし、高温自励振動ヒートパイプの起動性能を高くし、作動液の封入難度を低くする。
【0008】
更に、前記高温自励振動ヒートパイプの作動液の封入率が10%~90%である。
【0009】
更に、前記高温自励振動ヒートパイプはステンレス、ニッケル基合金又はInconelニッケル基合金から選ばれる1種又は1種以上の組合せを管材とし、上記管材はいずれも耐高温性、耐腐食性が高いという特徴を有し、高温で作動流体に対して好適な適合性を有すると共に、高温自励振動ヒートパイプの動作温度範囲で性能が安定的で、高温自励振動ヒートパイプが高温環境で長時間にわたって安定的に稼働できることを保証可能である、肉厚が0.5~3mmであり、内径が次式を満たし、
【数1】
【0010】
本発明の他の一態様ではさらに高温自励振動ヒートパイプの伝熱性能を測定するための液体金属高温自励振動ヒートパイプ試験方法を提供し、この試験方法は下記試験システムによって測定し、前記試験システムは高温自励振動ヒートパイプに接続される高温加熱炉、冷却液ブロック、高圧ポンプ、恒温液槽、流量計、フィルタ、冷却液弁及び上記各部材に信号接続される測定制御システムを含み、
前記恒温液槽が前記高圧ポンプの一方側に接続され、前記高圧ポンプの他方側が前記フィルタの一方側に接続され、前記フィルタの他方側が前記冷却液弁の一方側に接続され、前記冷却液弁の他方側は設置された冷却液供給口T継手を介して前記冷却液ブロックの一方側に接続され、前記冷却液ブロックの他方側は設置された冷却液排出口T継手を介して前記流量計の一方側に接続され、前記流量計の他方側が前記恒温液槽に接続され、上記の全ての部材が循環接続回路を構成しており、前記恒温液槽の排出する冷却液が逆時計回り方向に沿って流動し、最後に前記恒温液槽に戻り、冷却液が前記高圧ポンプによって循環往復流動を実現し、前記冷却液ブロックの外部前側に前記高温自励振動ヒートパイプの外径寸法に合致する溝が設けられ、前記溝が前記高温自励振動ヒートパイプの凝縮部に接続され、前記高温自励振動ヒートパイプの断熱部が前記高温加熱炉に接続され、前記高温自励振動ヒートパイプの加熱部が前記高温加熱炉内に配置され、前記冷却液ブロックの内部に複数層の溝が設けられ、冷却液が前記溝を流動することで高温自励振動ヒートパイプ凝縮部の熱が冷却液に伝達されて高温自励振動ヒートパイプの冷却が実現され、前記フィルタは冷却液中の不純物をろ過して流量計を保護するためのものであり、前記流量計は冷却液流量を測定するためのものであり、前記冷却液弁は冷却液流量を調節するためのものであり、前記恒温液槽は排出された冷却液温度を一定に保つためのものであり、恒温液槽、高圧ポンプ、冷却液弁のパラメータを設定することによって冷却液の温度と流量を制御可能であり、
前記試験方法は、高圧ポンプを起動して冷却液の循環を開始させ、冷却液弁の開度を調節し且つ流量計のデータを読み取ることによって冷却液流量を調節し、フィルタによって冷却液をろ過して不純物を除去する工程と、恒温液槽を起動して冷却液温度を調節して高温自励振動ヒートパイプに安定的な冷却環境を提供する工程と、高温加熱炉を低出力加熱状態に調節して暖機させ、暖機プロセスで熱電対、RTD温度センサー、測定制御システムのデバッギングを行ってデータの正確性を確保する工程と、高温加熱炉のパラメータ設定を調節することによって高温自励振動ヒートパイプの加熱温度、加熱速度、加熱出力及び傾斜角度を制御調節し、高温加熱炉の加熱プログラムを調節することによって多段加熱プロセスパラメータを設定し、加熱速度と目標炉温を調節し且つ保温し、高温自励振動ヒートパイプが安定的に動作した後加熱出力を一定に保ち、実験データを記録する工程と、高温加熱炉をオフにし、恒温液槽の温度を低く調節して降温プロセスに移行し、降温プロセスが終了すると、実験を終了とする工程とを含む。
【0011】
更に、前記恒温液槽の排出する冷却液の温度範囲が5℃~300℃である。
【0012】
更に、高温自励振動ヒートパイプ凝縮部の熱が冷却液に伝達されることを確保し、高温自励振動ヒートパイプの伝達した熱を正確に計量可能であることを保証するように、前記高温自励振動ヒートパイプと冷却液ブロックの外周は全体的に、保温層によって覆われており、前記保温層の材料は耐高温保温材料であり、前記保温層の内外のいずれにも少なくとも4つの熱電対が設置され、保温層の内外における熱電対の示度によって保温層の内外平均温度を得てヒートリークを取得する。
【0013】
更に、前記冷却液供給口T継手と冷却液排出口T継手のどちらにも冷却液管路の中心位置に延びるRTD温度センサーが接続されている。
【0014】
更に、前記高温加熱炉は、高温自励振動ヒートパイプを加熱するためのものであり、密封箱体構造となり、頂部に階段孔を開設した炉床カバーが設けられており、前記高温自励振動ヒートパイプは階段孔の中部貫通孔を介して高温加熱炉内部に延び、その断熱部が耐高温保温材料によって覆われ且つ前記炉床カバーに垂直な方向において前記中部貫通孔内に取り付けられており、前記高温加熱炉は頂部に炉床カバーが設置されており、高温自励振動ヒートパイプが均一に受熱するように、高温加熱炉の前後左右の4つの面に加熱ロッドを取り付けてもよい。前記階段孔と鉛直に取り付けられた高温自励振動ヒートパイプが側面隙間を形成しており、前記側面隙間内に耐高温保温材料を封入して密封させ、階段孔の加工及びその中への耐高温保温材料の封入によって、保温材料の固定がより安定的になり、鉛直に上下に延在する孔による保温材料の落下現象を回避可能である。前記高温加熱炉の炉本体両側の中心位置には、歯車伝動機構で構成される、高温加熱炉の全体的な傾斜角度を0~180°の傾斜角度範囲に調節し更に高温自励振動ヒートパイプの傾斜角度を調節するための角度調節装置を取り付けたフランジが溶接されている。高温加熱炉のパラメータ設定を調節することによって高温自励振動ヒートパイプの加熱温度、加熱速度、加熱出力及び傾斜角度を制御調節可能であり、高温加熱炉の加熱プログラムを調節することによって多段加熱プロセスパラメータを設定可能であり、加熱速度と目標炉温を調節して保温し、且つ高温自励振動ヒートパイプが安定的に動作した後加熱出力が一定に保たれることを保証する。
【0015】
更に、前記高温自励振動ヒートパイプの加熱部、断熱部及び凝縮部にそれぞれ少なくとも1つの熱電対が設けられ、前記高温自励振動ヒートパイプの凝縮部上方の横方向管に少なくとも1つの熱電対が設けられている。前記高温自励振動ヒートパイプに設けられた熱電対は、高温自励振動ヒートパイプにおける各管の加熱部、断熱部及び凝縮部の温度変化状況を検出して温度曲線を得、高温自励振動ヒートパイプの熱抵抗を得、更に高温自励振動ヒートパイプの伝熱性能を研究するためのものであり、加熱部、凝縮部の熱電対の示度により加熱部、凝縮部の温度を取得可能であり、複数本の熱電対の示度の平均値を取ることによって加熱部、凝縮部の平均温度を算出可能である。
【0016】
更に、前記高温自励振動ヒートパイプの熱抵抗は次式を満たし、
【数2】
前記高温自励振動ヒートパイプの加熱出力は次式を満たし、
【数3】
前記ヒートリークは次式を満たし、
【数4】
【発明の効果】
【0017】
従来技術に比べると、本発明は以下のメリットを有する。
1.本発明による液体金属高温自励振動ヒートパイプ及び試験方法は、高温自励振動ヒートパイプの高温環境での試験要件を満たすことができ、また、設計した高温自励振動ヒートパイプが500℃以上の高温環境で長時間にわたって安定的に動作可能である。
【0018】
2.本発明による液体金属高温自励振動ヒートパイプ及び試験方法は、試験システムの冷却液管路に2つのRTD温度センサー、フィルタ、高精度流量計を設置し、冷却液供給口、冷却液排出口T継手の上部管路口を介してRTD温度センサーを挿入して冷却液出入口の温度を測定して冷却液出入口温度差を得ることができ、フィルタによって冷却液中の不純物をろ過して流量計を保護すると共に、安定的な流量を保証することができ、流量計によって流量を測定し、上記データによって高温自励振動ヒートパイプの伝達する熱を算出することができる。
【0019】
3.本発明による液体金属高温自励振動ヒートパイプ及び試験方法は、高温自励振動ヒートパイプ凝縮部を覆う保温層内外のいずれにも複数本の熱電対を設置して保温層内外壁の温度を測定することによって、ヒートリークを算出できる。
【0020】
4.本発明による液体金属高温自励振動ヒートパイプ及び試験方法は、冷却液システムを採用して高温自励振動ヒートパイプの冷却液により運び去る熱を測定し計算すると共に、ヒートリークを測定し計算することで、高温自励振動ヒートパイプの伝達する熱をより正確に測定し、高温自励振動ヒートパイプの伝熱性能をより正確に評価することができる。
【0021】
以上をまとめると、本発明の技術的解決手段を用いれば、従来技術において自励振動ヒートパイプが高温で長時間にわたって安定的に動作することが困難で、従来の自励振動ヒートパイプ試験方法が高温環境での試験要件を満たせないという問題を解決することができる。
【0022】
上記理由から、本発明は、自励振動ヒートパイプを用いて高温伝熱を行う航空宇宙等の分野に広く普及可能である。
【図面の簡単な説明】
【0023】
本発明の実施例又は従来技術における技術的解決手段をより明らかに説明するために、以下、実施例又は従来技術の記述に必要とされる添付の図面を簡単に紹介するが、下記の添付の図面が本発明の一部の実施例であり、当業者であれば、創造的労動を行わずに更にこれらの添付の図面によって他の添付の図面を得るのができることはいうまでもない。
【0024】
【
図1】本発明における高温自励振動ヒートパイプの構成図である。
【
図3】本発明に係る高温自励振動ヒートパイプと冷却液ブロックアセンブリの構成図である。
【
図4】本発明に係る高温加熱炉の炉床カバーの構成図である。
【
図5】本発明に係る高温自励振動ヒートパイプにおける熱電対の取り付け位置の分布図である。
【
図6】本発明に係る高温自励振動ヒートパイプの起動及び高温加熱炉の炉温が850℃の時の温度曲線グラフである。
【
図7】本発明に係る高温加熱炉の炉温がそれぞれ900℃、950℃及び1000℃の段階の時の温度曲線グラフである。
【
図8】本発明に係る高温加熱炉の炉温がそれぞれ1050℃と1100℃の段階の時の温度曲線グラフである。
【
図9】本発明に係る高温加熱炉の炉温がそれぞれ1150℃と1200℃の段階の時の温度曲線グラフである。
【
図10】本発明に係る高温自励振動ヒートパイプのコールドホットエンドの温度差が出力に伴って変化した曲線グラフである。
【
図11】本発明に係る高温自励振動ヒートパイプの熱抵抗が出力に伴って変化した曲線グラフである。
【発明を実施するための形態】
【0025】
矛盾しない限り、本発明における実施例及び実施例中の特徴を互いに組み合わせても良いことを説明する必要がある。以下、添付の図面を参照しながら実施例と関連付けて本発明を詳細に説明する。
【0026】
本発明の実施例の目的、技術的解決手段及びメリットをより明らかにするために、以下、本発明の実施例における添付の図面と関連付けて、本発明の実施例における技術的解決手段をより明らか且つ完全に記述するが、記述される実施例が全部の実施例ではなく本発明の一部の実施例に過ぎないことはいうまでもない。以下の少なくとも1つの例示的実施例についての記述は実際に説明するためのものに過ぎなく、本発明及びその応用又は使用に決して何の制限も加えない。当業者が本発明における実施例に基づいて創造的労動を行わずに得る他の実施例は全て本発明の保護範囲に含まれるものとする。
【0027】
[実施例1]
図1に示すように、本発明は、三方向作動液封入口30と、加熱部34、断熱部33、凝縮部32を一体に集積したステンレスパイプアレイ31とを含み、前記三方向作動液封入口30の2つの水平方向での連通口がステンレスパイプアレイ31の2つの管路口に溶接接続され、前記ステンレスパイプアレイ31内に作動流体として高温で高い気化潜熱を有する液体金属が封入されている液体金属高温自励振動ヒートパイプ21を提供する。前記液体金属はカリウムの質量分率が25%~75%のナトリウムカリウム合金であり、ナトリウムカリウム合金は常温で液体状態となるという特徴を有し、加熱プロセスで溶解プロセスが不要であり、高温自励振動ヒートパイプ21の起動をより簡単にし、高温自励振動ヒートパイプ21の起動性能を高くし、作動液の封入難度を低くした。
【0028】
本実施例では、前記高温自励振動ヒートパイプ21の作動液の封入率が10%~90%である。
【0029】
本実施例では、前記高温自励振動ヒートパイプ21はステンレス310sを管材とし、それは耐高温性、耐腐食性が高いという特徴を有し、高温で作動流体に対して好適な適合性を有すると共に、高温自励振動ヒートパイプ21の動作温度範囲で性能が安定的で、高温自励振動ヒートパイプ21が高温環境で長時間にわたって安定的に稼働できることを保証可能である。本実施例では、前記高温自励振動ヒートパイプ21の肉厚が0.5~3mmであり、内径が次式を満たし、
【数5】
【0030】
[実施例2]
図2~4に示すように、本発明は実施例1を基に更に高温自励振動ヒートパイプの伝熱性能を測定するための液体金属高温自励振動ヒートパイプ試験方法を提供し、この試験方法は下記試験システムによって測定し、前記試験システムは高温自励振動ヒートパイプ21に接続される高温加熱炉20、冷却液ブロック22、高圧ポンプ27、恒温液槽26、流量計25、フィルタ28、冷却液弁29及びデータケーブルによって上記各部材に信号接続される測定制御システムを含み、
前記恒温液槽26の右側は管路を介して前記高圧ポンプ27の左側に接続され、前記高圧ポンプ27の排水口は管路を介して前記フィルタ28の左側に接続され、前記フィルタ28の右側は管路を介して前記冷却液弁29の左側に接続され、前記冷却液弁29の右側は管路、設置された冷却液供給口T継手23を介して前記冷却液ブロック22の左側に接続され、前記冷却液ブロック22の右側は設置された冷却液排出口T継手24、管路を介して前記流量計25の左側に接続され、前記流量計25の右側は管路を介して恒温液槽26に接続され、上記全ての部材が循環接続回路を構成しており、前記恒温液槽26を経由して排出される冷却液が逆時計回り方向に沿って流動し、最後に前記恒温液槽26に戻り、冷却液は前記高圧ポンプ27によって循環往復流動を実現する。前記冷却液ブロック22の外部前側に前記高温自励振動ヒートパイプ21の外径寸法に合致する溝が設けられており、前記高温自励振動ヒートパイプ21の凝縮部32を前記溝に嵌入し、前記高温自励振動ヒートパイプ21の中部の断熱部33が前記高温加熱炉20に接続され、且つ高温自励振動ヒートパイプ21の加熱部34が高温加熱炉20の内部に延びている。冷却液ブロック22の高さと高温自励振動ヒートパイプ21の高温加熱炉20に延びる長さを調節することによって、加熱部34、断熱部33及び凝縮部32の取り付け長さを調節する。前記冷却液ブロック22の内部に複数層の溝が設けられており、冷却液が前記溝を流動することで高温自励振動ヒートパイプ21の凝縮部32の熱が冷却液に伝達され、これにより高温自励振動ヒートパイプ21が冷却される。前記フィルタ28は冷却液中の不純物をろ過して流量計25を保護するためのものであり、前記流量計25は冷却液流量を測定するための高精度質量流量計であり、前記冷却液弁29は流量計の計測範囲内で冷却液流量を調節する。前記恒温液槽26は排出される冷却液温度を一定に保つためのものである。恒温液槽26、高圧ポンプ27、冷却液弁29のパラメータを設定することによって冷却液の温度と流量を制御可能である。
【0031】
本実施例では、前記恒温液槽26の排出する冷却液温度範囲が5℃~300℃である。
【0032】
本実施例では、高温自励振動ヒートパイプ21の凝縮部32の熱が冷却液に伝達されることを確保し、高温自励振動ヒートパイプ21の伝達する熱を正確に計量可能であることを保証するように、前記高温自励振動ヒートパイプ21と冷却液ブロック22の外周は全体的に保温層で覆われている。前記保温層は、耐高温保温材料であり、内外のいずれにも耐高温セラミックNextelスリーブK型熱電対が4つ設置されており、保温層の内外における熱電対の示度により保温層の内外平均温度を得てヒートリークを得る。
【0033】
本実施例では、前記冷却液供給口T継手23と前記冷却液排出口T継手24にはいずれもねじ山によってRTD温度センサーが接続されており、RTD温度センサーは、その型番がPT100であり、冷却液管路の中心位置に延びている。
【0034】
本実施例では、前記高温加熱炉20は高温自励振動ヒートパイプ21を加熱するためのものであり、密封箱体構造となり、その頂部には階段孔35が開設されている炉床カバーが設けられており、前記高温自励振動ヒートパイプ21は階段孔35の中部貫通孔を介して高温加熱炉20の内部に延び、その断熱部33が耐高温保温材料で覆われ、前記炉床カバーに垂直な方向において前記中部貫通孔内に取り付けられており、前記高温加熱炉20は頂部に炉床カバーが設置されており、高温自励振動ヒートパイプ21が均一に受熱するように、高温加熱炉の前後左右の4つの面に加熱ロッドを取り付けてもよい。前記階段孔35と鉛直に取り付けられた高温自励振動ヒートパイプ21が側面隙間を形成しており、前記側面隙間内に耐高温保温材料を封入して密封させ、階段孔35への耐高温保温材料の封入によってより安定的になり、鉛直に上下に延在する孔による保温材料の落下現象を回避可能である。前記高温加熱炉20の炉本体両側の中心位置には、歯車伝動機構で構成される、高温加熱炉20の全体的な傾斜角度を0~180°の傾斜角度に調節し更に高温自励振動ヒートパイプ21の傾斜角度を調節する角度調節装置を取り付けたフランジが溶接されている。高温加熱炉20のパラメータ設定を調節することによって高温自励振動ヒートパイプ21の加熱温度、加熱速度、加熱出力及び傾斜角度を制御調節可能であり、高温加熱炉20の加熱プログラムを調節することによって多段加熱プロセスパラメータを設定可能であり、加熱速度と目標炉温を調節して保温し、且つ高温自励振動ヒートパイプ21が安定的に動作した後加熱出力が一定に保たれることを保証する。
【0035】
本実施例では、前記高温自励振動ヒートパイプ21の加熱部34、断熱部33及び凝縮部32にそれぞれ少なくとも1つの熱電対が設けられ、前記高温自励振動ヒートパイプ21の凝縮部32の上方の横方向管に少なくとも1つの熱電対が設けられている。前記高温自励振動ヒートパイプ21に設けられる熱電対は、全て耐高温セラミックNextelスリーブK型熱電対であり、高温自励振動ヒートパイプ21における加熱部34と凝縮部32の温度変化状況を検出して温度曲線を得て、高温自励振動ヒートパイプ21の熱抵抗を得て、更に高温自励振動ヒートパイプ21の伝熱性能を研究することに用いられ、加熱部34、凝縮部32の熱電対の示度により加熱部34、凝縮部32の温度を取得可能であり、複数本の熱電対の示度の平均値を取ることによって加熱部34、凝縮部32の平均温度を計算できる。
【0036】
[実施例3]
本実施例では、内径6mm、肉厚1mmのステンレス310sを管材とした高温自励振動ヒートパイプ21を選択して実験を行い、高温自励振動ヒートパイプ21内の作動流体の体積封入率を45%とし、カリウムの質量分率が75%のナトリウムカリウム合金を作動流体とした。本実施例では、高温自励振動ヒートパイプ21での熱電対の取り付け位置の分布図である
図5に示すように、高温自励振動ヒートパイプ21に19個の熱電対が設けられ、ステンレスパイプアレイ31の三方向作動液封入口30における横方向管路に19番目の熱電対19が設けられている。左側の第1エルボの2本の隣接管の加熱部34、断熱部33及び凝縮部32にそれぞれ1番目の熱電対1と2番目の熱電対2、7番目の熱電対7と8番目の熱電対8、13番目の熱電対13と14番目の熱電対14が設けられ、右側の第1エルボの2本の隣接管の加熱部34、断熱部33及び凝縮部32にそれぞれ5番目の熱電対5と6番目の熱電対6、11番目の熱電対11と12番目の熱電対12、17番目の熱電対17と18番目の熱電対18が設けられている。その中央のエルボのうち、2つのエルボのそれぞれから1本の管を選択して熱電対を設置し、2本の管の加熱部34、断熱部33及び凝縮部32にそれぞれ3番目の熱電対3と4番目の熱電対4、9番目の熱電対9と10番目の熱電対10、15番目の熱電対15と16番目の熱電対16が設けられており、上記熱電対は全て耐高温セラミックNextelスリーブK型熱電対である。
【0037】
[動作プロセス]
(1)まず、高温自励振動ヒートパイプ21の断熱部33を高温加熱炉20の炉床カバーの階段孔35内に固定し、高温自励振動ヒートパイプ21の加熱部34の高温加熱炉20での長さを調節し、続いて階段孔35と取り付けられた後の高温自励振動ヒートパイプ21が形成した側面隙間に耐高温保温材料を封入して密封させ、高温自励振動ヒートパイプ21の断熱部33が固定された後高温加熱炉20を所定の傾斜角度に調整し、本実施例で傾斜角度を90°にした。続いて高温自励振動ヒートパイプ21と冷却液ブロック22を耐高温保温材料で全体的に複数層覆い、且つ試験システムにおける全ての部材を連通させる。
【0038】
(2)高圧ポンプ27を起動して冷却液の循環を開始させ、冷却液弁29の開度を調節し且つ流量計25のデータを読み取ることによって冷却液流量を調節して、冷却液流量を所定値にし、且つ、10分間安定化させ、ここで、フィルタ28により冷却液をろ過して不純物を除去する。
【0039】
(3)恒温液槽26を起動して冷却液温度を調節して、冷却液温度を所定温度58℃にして、高温自励振動ヒートパイプ21に安定的な冷却環境を提供する。
【0040】
(4)低温状態で高温加熱炉20の速すぎる加熱速度はグロバーを損害させやすいので、高温加熱炉20を低出力加熱状態に調節して暖機させ、暖機プロセスで、熱電対、RTD温度センサー、測定制御システムのデバッギングを行ってデータの正確性を確保する。高温加熱炉20の暖機が終了すると、次のステップを行う。
【0041】
(5)高温加熱炉20の加熱出力を向上し、高温加熱炉20の目標温度を850℃に調節して昇温させ、高温加熱炉20の炉内温度が850℃に達すると、20分間保持し、このプロセスで、高温自励振動ヒートパイプ21の熱負荷を一定に保持させる。実験データを記録し、続いて次のステップを行う。
【0042】
(6)高温加熱炉20の目標温度を900℃に調節して昇温させ、高温加熱炉20内の温度が900℃に達すると、20分間保持し、このプロセスで、高温自励振動ヒートパイプ21の熱負荷を一定に保持させる。実験データを記録し、次のステップを行う。上記加熱プロセスを繰り返し、高温加熱炉20内の温度をそれぞれ950℃、1000℃、1050℃、1100℃に昇温させ、異なる加熱出力での高温自励振動ヒートパイプ21の伝熱性能を試験し、実験データを記録し、次のステップを行う。
【0043】
(7)高温加熱炉20をオフにし、恒温液槽26の温度を低く調節して降温プロセスに移行させ、降温プロセスが終了すると、実験を終了とする。
【0044】
(8)高温自励振動ヒートパイプ21の熱負荷を計算し、その加熱出力は次式を満たす。
【数6】
【0045】
(9)ヒートリークを計算する。
保温層の内外に設置された熱電対の示度によって保温層内外平均温度を得てヒートリークを得、ヒートリークは次式を満たし、
【数7】
【0046】
(10)高温自励振動ヒートパイプ21の熱抵抗を計算し、その熱抵抗は次式を満たし、
【数8】
【0047】
図6は高温自励振動ヒートパイプ21の起動及び高温加熱炉20の炉温が850℃の時の温度曲線グラフを示す。
図6から分かるように、高温加熱炉20が2700秒の時に暖機を終了し、加熱段階を開始し、温度上昇速度が速くなり、加熱部34の温度が790℃に達した時、加熱部34と断熱部33の温度が急に下がり、凝縮部32の温度が急に上がり、高温自励振動ヒートパイプ21が起動し、この時に高温加熱炉20の炉温が所定の850℃に到達しておらず、加熱炉出力が上昇段階にあり、この時に高温自励振動ヒートパイプ21の熱負荷が安定的な自励振動運動を保持できなく、3300秒の時に高温自励振動ヒートパイプ21の一部のエルボが動作を停止した現象が発生した。測定したところ、1番目の熱電対1、2番目の熱電対2、3番目の熱電対3及び4番目の熱電対4の温度が上がり、13番目の熱電対13、14番目の熱電対14、15番目の熱電対15及び16番目の熱電対16の温度が下がっており、この管に自励振動減衰現象が発生したことが示された。測定したところ、15番目の熱電対5と6番目の熱電対6の温度が安定的であり、それらに対応するコールドエンドの温度に急な変化が発生しておらず、これら2本の管が正常に動作していることが示された。加熱炉が持続的に昇温するにつれて、高温自励振動ヒートパイプ21が再度起動し、且つ3900秒に所定温度に達し、高温自励振動ヒートパイプ21が安定的な動作を開始した。
【0048】
図7は高温加熱炉20の炉温がそれぞれ900℃、950℃及び1000℃の段階の時の温度曲線グラフである。
図7から分かるように、高温加熱炉20の炉温が900℃と950℃の段階の時に、高温自励振動ヒートパイプ21の動作が安定的であり、断熱部33の層化現象が小さく、この時に加熱部34の温度が炉温の向上に伴って上がると同時、凝縮部32の温度が上がり、コールドホットエンドの温度差が小さくなり、熱負荷が大きくなり、熱抵抗が小さくなった。左の1番目のエルボの凝縮部32の層化現象が弱くなった時に、右の1番目のエルボの凝縮部32に層化現象が依然として存在し、測定したところ、17番目の熱電対17と18番目の熱電対18の間の温度差が大きく、その原因は高温自励振動ヒートパイプ21が安定的に動作する時にあるエルボにおいて単一の管が熱を伝達するという現象が発生したことにあり、測定したところ、19番目の熱電対19の温度が安定的であった。高温加熱炉20の炉温が1000℃の段階の時に、加熱部34の温度が変動し始め、断熱部33が層化し、左の1番目のエルボの13番目の熱電対13と14番目の熱電対14が激しく変動し且つ逆な変化傾向を示し、測定したところ、19番目の熱電対19の温度が速く上がり、この時の自励振動が激しく、環流する傾向があった。
【0049】
図8は高温加熱炉20の炉温がそれぞれ1050℃と1100℃の段階の時の温度曲線グラフである。
図8から分かるように、高温加熱炉20の炉温が1050℃の段階の時に、測定したところ、7番目の熱電対7と11番目の熱電対11の温度が下がり、8番目の熱電対8と12番目の熱電対12の温度が速く上がり、9番目の熱電対9と10番目の熱電対10が高い温度を保持し続け、また、8番目の熱電対8と12番目の熱電対12の温度が7番目の熱電対7と11番目の熱電対11の温度より高く、また、測定したところ、19番目の熱電対19の温度が速く上がり、断熱部33が明らかに層化し、それに対応する凝縮部32の温度に同様な変化傾向があり、良好且つ安定的な環流状態が形成され、伝熱効果が強化された。高温加熱炉20の炉温が1100℃の段階の時に、各熱電対の温度は炉温1050℃の段階での温度に対して変動が発生し且つ温度に上昇変化が現れ、環流状態も変動した。
【0050】
図9は高温加熱炉20の炉温がそれぞれ1150℃と1200℃の段階の時の温度曲線グラフである。
図9から分かるように、高温加熱炉20の炉温が1150℃の段階の時に、測定したところ、7番目の熱電対7と11番目の熱電対11の温度が速く上がり、18番目の熱電対18の温度が速く下がり、13番目の熱電対13と14番目の熱電対14の温度が上り、19番目の熱電対19の温度が速く下がり、加熱部34の温度変動が消え、その後、動作状態が安定化する傾向が現れ、この時に一方向循環が消え、自励振動状態が再度回復した。高温加熱炉20の炉温が1200℃の段階の時に、測定したところ、7番目の熱電対7と11番目の熱電対11の温度が激しく変動し、18番目の熱電対18の温度が上り、高温自励振動ヒートパイプ21の動作が不安定になり、性能が悪化した。
【0051】
図10は高温自励振動ヒートパイプ21のコールドホットエンドの温度差が出力に伴って変化した曲線グラフである。
図10から分かるように、高温自励振動ヒートパイプ21のコールドホットエンドの温度差が熱負荷の向上に伴って小さくなってから大きくなり、高温自励振動ヒートパイプ21の加熱出力が3306.4W(炉温1050℃)の時に最小値が現れた。
【0052】
図11は高温自励振動ヒートパイプ21の熱抵抗が出力に伴って変化した曲線グラフである。
図11から分かるように、高温自励振動ヒートパイプ21の熱抵抗が加熱出力の向上に伴って小さくなってから大きくなり、高温自励振動ヒートパイプ21の熱負荷が3306.4W(炉温1050℃)の時に最小値が現れた。
【0053】
図6~9から分かるように、本実施例における高温自励振動ヒートパイプ21は500℃を上回った高温環境で動作する能力を有する。
図10~11によって、高温自励振動ヒートパイプ21の熱抵抗が小さいほど、性能が優れることが分かった。
【0054】
図6~11から分かるように、全試験システムを使用することで高温自励振動ヒートパイプ21の異なる動作条件での実験データを正確に測定でき、そのため、本実施例における試験システムは高温自励振動ヒートパイプ21の高温環境での試験要件を満たす。
【0055】
最後に以下のことを説明すべきである。以上の各実施例は本発明の技術的解決手段を説明するためのものに過ぎなく、それを限定することがなく、上記の各実施例を参照して本発明を詳細に説明したが、上記の各実施例に記載の技術的解決手段に修正を施したり、その一部又は全部の技術的特徴に対して同等な取り替えを行ったりすることも可能であるのが当業者に理解されるべきであり、対応する技術的解決手段の本質はこれらの修正又は取り替えによって本発明の各実施例の技術的解決手段の範囲を逸脱することがない。
【0056】
(付記)
(付記1)
三方向作動液封入口(30)と、加熱部(34)、断熱部(33)、凝縮部(32)を一体に集積したステンレスパイプアレイ(31)とを含み、前記三方向作動液封入口(30)の2つの水平方向での連通口がステンレスパイプアレイ(31)の2つの管路口に接続され、前記ステンレスパイプアレイ(31)内の作動流体は、カリウムの質量分率が25%~75%のナトリウムカリウム合金、金属ナトリウム、金属カリウム、金属セシウム又は金属ルビジウムから選ばれる1種又は1種以上の組合せである液体金属である、ことを特徴とする液体金属高温自励振動ヒートパイプ。
【0057】
(付記2)
前記高温自励振動ヒートパイプ(21)の作動液の封入率が10%~90%である、ことを特徴とする付記1に記載の液体金属高温自励振動ヒートパイプ。
【0058】
(付記3)
液体金属高温自励振動ヒートパイプ(21)であって、
ステンレス、ニッケル基合金又はInconelニッケル基合金から選ばれる1種又は1種以上の組合せを管材とし、肉厚が0.5~3mmであり、内径が次式を満たし、
【数9】
ことを特徴とする付記1に記載の液体金属高温自励振動ヒートパイプ。
【0059】
(付記4)
高温自励振動ヒートパイプの伝熱性能の測定に用いられ、下記試験システムによって測定する液体金属高温自励振動ヒートパイプのための試験方法であって、
前記試験システムは、高温自励振動ヒートパイプ(21)に接続される高温加熱炉(20)、冷却液ブロック(22)、高圧ポンプ(27)、恒温液槽(26)、流量計(25)、フィルタ(28)、冷却液弁(29)及び上記各部材に信号接続される測定制御システムを含み、
前記恒温液槽(26)が前記高圧ポンプ(27)の一方側に接続され、前記高圧ポンプ(27)の他方側が前記フィルタ(28)の一方側に接続され、前記フィルタ(28)の他方側が前記冷却液弁(29)の一方側に接続され、前記冷却液弁(29)の他方側が設置された冷却液供給口T継手(23)を介して前記冷却液ブロック(22)の一方側に接続され、前記冷却液ブロック(22)の他方側が設置された冷却液排出口T継手(24)を介して前記流量計(25)の一方側に接続され、前記流量計(25)の他方側が前記恒温液槽(26)に接続され、前記の全ての部材が循環接続回路を構成し、前記恒温液槽(26)の排出する冷却液が逆時計回り方向に沿って流動し、最後に前記恒温液槽(26)に戻り、冷却液が前記高圧ポンプ(27)によって循環往復流動を実現し、前記冷却液ブロック(22)の外部前側に前記高温自励振動ヒートパイプ(21)の外径寸法に合致する溝が設けられ、前記溝が前記高温自励振動ヒートパイプ(21)の凝縮部(32)に接続され、前記高温自励振動ヒートパイプ(21)の断熱部(33)が前記高温加熱炉(20)に接続され、前記高温自励振動ヒートパイプ(21)の加熱部(34)が前記高温加熱炉(20)内に配置され、
前記試験方法は、高圧ポンプ(27)を起動して冷却液の循環を開始させ、冷却液弁(29)の開度を調節し且つ流量計(25)のデータを読み取ることによって冷却液流量を調節し、フィルタ(28)によって冷却液をろ過して不純物を除去する工程と、恒温液槽(26)を起動して冷却液温度を調節して高温自励振動ヒートパイプ(21)に安定的な冷却環境を提供する工程と、高温加熱炉(20)を低出力加熱状態に調節して暖機させ、暖機プロセスで熱電対、RTD温度センサー、測定制御システムのデバッギングを行ってデータの正確性を確保する工程と、高温加熱炉(20)のパラメータ設定を調節することによって高温自励振動ヒートパイプ(21)の加熱温度、加熱速度、加熱出力及び傾斜角度を制御調節し、高温加熱炉(20)の加熱プログラムを調節することによって多段加熱プロセスパラメータを設定し、加熱速度と目標炉温を調節し且つ保温し、高温自励振動ヒートパイプ(21)が安定的に動作した後加熱出力を一定に保ち、実験データを記録する工程と、高温加熱炉(20)をオフにし、恒温液槽(26)の温度を低く調節して降温プロセスに移行し、降温プロセスが終了すると、実験を終了とする工程とを含む、ことを特徴とする付記1~3のいずれか一つに記載の液体金属高温自励振動ヒートパイプのための試験方法。
【0060】
(付記5)
前記恒温液槽(26)の排出する冷却液の温度範囲が5℃~300℃である、ことを特徴とする付記4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【0061】
(付記6)
前記高温自励振動ヒートパイプ(21)と冷却液ブロック(22)の外周は全体的に、内外のいずれにもその内外壁の温度を測定してヒートリークを取得するための少なくとも4つの熱電対が設置された耐高温保温材料の保温層によって覆われている、ことを特徴とする付記4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【0062】
(付記7)
前記冷却液供給口T継手(23)と冷却液排出口T継手(24)のどちらにも冷却液管路の中心位置に延びるRTD温度センサーが接続されている、ことを特徴とする付記4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【0063】
(付記8)
前記高温加熱炉(20)は密封箱体構造となり、頂部に階段孔(35)を開設した炉床カバーが設けられ、前記階段孔(35)の中部貫通孔が前記高温自励振動ヒートパイプ(21)に接続され、前記階段孔(35)と炉床カバーに垂直な高温自励振動ヒートパイプ(21)の間で形成された側面隙間内に耐高温保温材料を封入して密封させ、前記高温加熱炉(20)の炉本体両側の中心位置には、歯車伝動機構で構成される、高温加熱炉(20)の全体的な傾斜角度を0~180°の傾斜角度範囲に調節するための角度調節装置を取り付けたフランジが溶接されている、ことを特徴とする付記4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【0064】
(付記9)
前記高温自励振動ヒートパイプ(21)の加熱部(34)、断熱部(33)及び凝縮部(32)にはそれぞれ少なくとも1つの熱電対が設けられ、前記高温自励振動ヒートパイプ(21)の凝縮部(32)の上方の横方向管には、高温自励振動ヒートパイプの温度変化を取得してその伝熱特性を分析することに用いられ且つ高温自励振動ヒートパイプの熱抵抗を計算可能な熱電対が少なくとも1つ設けられている、ことを特徴とする付記4に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【0065】
(付記10)
前記高温自励振動ヒートパイプの熱抵抗は次式を満たし、
【数10】
前記高温自励振動ヒートパイプの加熱出力は次式を満たし、
【数11】
前記ヒートリークは次式を満たし、
【数12】
ことを特徴とする付記9に記載の液体金属高温自励振動ヒートパイプのための試験方法。
【符号の説明】
【0066】
1 1番目の熱電対
2 2番目の熱電対
3 3番目の熱電対
4 4番目の熱電対
5 5番目の熱電対
6 6番目の熱電対
7 7番目の熱電対
8 8番目の熱電対
9 9番目の熱電対
10 10番目の熱電対
11 11番目の熱電対
12 12番目の熱電対
13 13番目の熱電対
14 14番目の熱電対
15 15番目の熱電対
16 16番目の熱電対
17 17番目の熱電対
18 18番目の熱電対
19 19番目の熱電対
20 高温加熱炉
21 高温自励振動ヒートパイプ
22 冷却液ブロック
23 冷却液供給口T継手
24 冷却液排出口T継手
25 流量計
26 恒温液槽
27 高圧ポンプ
28 フィルタ
29 冷却液弁
30 三方向作動液封入口
31 ステンレスパイプアレイ
32 凝縮部
33 断熱部
34 加熱部
35 階段孔
【国際調査報告】