IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エナジー プロデューシング システムズ オブ アメリカ エルエルシーの特許一覧

<>
  • 特表-電力生成及び分配 図1
  • 特表-電力生成及び分配 図2
  • 特表-電力生成及び分配 図3
  • 特表-電力生成及び分配 図4
  • 特表-電力生成及び分配 図5
  • 特表-電力生成及び分配 図6
  • 特表-電力生成及び分配 図7
  • 特表-電力生成及び分配 図8
  • 特表-電力生成及び分配 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-08-04
(54)【発明の名称】電力生成及び分配
(51)【国際特許分類】
   H02J 7/00 20060101AFI20220728BHJP
   H02J 7/14 20060101ALI20220728BHJP
   H02J 7/34 20060101ALI20220728BHJP
【FI】
H02J7/00 302C
H02J7/00 301C
H02J7/14 A
H02J7/34 G
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021571847
(86)(22)【出願日】2020-02-26
(85)【翻訳文提出日】2022-01-26
(86)【国際出願番号】 US2020019808
(87)【国際公開番号】W WO2020247035
(87)【国際公開日】2020-12-10
(31)【優先権主張番号】16/430,342
(32)【優先日】2019-06-03
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/800,146
(32)【優先日】2020-02-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521527222
【氏名又は名称】エナジー プロデューシング システムズ オブ アメリカ エルエルシー
(74)【代理人】
【識別番号】100134832
【弁理士】
【氏名又は名称】瀧野 文雄
(74)【代理人】
【識別番号】100165308
【弁理士】
【氏名又は名称】津田 俊明
(74)【代理人】
【識別番号】100115048
【弁理士】
【氏名又は名称】福田 康弘
(72)【発明者】
【氏名】フェザリー ロバート ジェイ.
(72)【発明者】
【氏名】トンチッチ ルドルフ エム.
(72)【発明者】
【氏名】コロスト ジェイ
【テーマコード(参考)】
5G060
5G503
【Fターム(参考)】
5G060BA08
5G060CA21
5G060DB07
5G503AA01
5G503AA07
5G503BA04
5G503BB02
5G503DA05
5G503DA07
5G503DA08
5G503DA18
5G503FA02
5G503GB06
5G503GD03
(57)【要約】
電力を生成、貯蔵及び/又は分配するシステム及び方法が開示される。システムは、2つ以上の直流バッテリサブシステムと、直流モータと交流発電機の組み合わせと、配電ネットワークと、バッテリ充電要素と、を含んでもよい。一方のバッテリサブシステムは交流発電機に電力を供給し、他方のバッテリサブシステムは生成された電力の一部を使用して充電を行ってもよい。余剰電力は他の電気負荷に使用してもよい。バッテリサブシステムの役割は、充電と電源供給の間で繰り返し定期的に切り替えられてもよい。
【選択図】図1
【特許請求の範囲】
【請求項1】
バッテリサブシステムと、
前記バッテリサブシステムに結合されたスイッチングサブシステムと、
前記スイッチングサブシステムと前記バッテリサブシステムとに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、
前記電動機能制御サブシステムに結合されたキャパシタサブシステムと、
前記電動機能制御サブシステムに結合された電気モータと、
前記電気モータに動作可能に接続され前記電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、前記電気モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、
前記発電機サブシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、
前記配電サブシステムに結合されたインダクタサブシステムと、
前記インダクタサブシステム、前記スイッチングサブシステム及び前記バッテリサブシステムに結合された整流器サブシステムと、を備える、ことを特徴とする電力システム。
【請求項2】
前記発電機サブシステムと前記バッテリシステムとを結合するバッテリ充電コントローラサブシステムを備える、ことを特徴とする請求項1に記載の電力システム。
【請求項3】
前記バッテリシステムは、第1の極性を有する第1の極と第2の極性を有する第2の極とを有し、
前記スイッチングサブシステムは前記バッテリシステムの前記第1の極に結合され、
前記電動機能制御サブシステムは、前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合され、
前記整流器サブシステムは、前記インダクタサブシステムと前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合される、ことを特徴とする請求項1に記載の電力システム。
【請求項4】
前記電気モータの回転速度は、前記コンセント負荷で利用可能な電力の所定のレベルに合わせて前記バッテリシステムの電力消耗を最適化するよう設定される、ことを特徴とする請求項1に記載の電力システム。
【請求項5】
前記電動機能制御サブシステムは、前記電気モータの相対回転速度を自動調整する、ことを特徴とする請求項1に記載の電力システム。
【請求項6】
前記電動機能制御サブシステムは、前記発電機の電力出力と前記バッテリシステムの再充電要件とに基づいて、前記コンセント負荷線で利用可能な電力の上限を自動的に設定する、ことを特徴とする請求項1に記載の電力システム。
【請求項7】
バッテリサブシステムと、
前記バッテリサブシステムに結合されたスイッチングサブシステムと、
前記スイッチングサブシステムと前記バッテリサブシステムとに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、
前記電動機能制御サブシステムに結合されたキャパシタサブシステムと、
前記電動機能制御サブシステムに結合された電気モータと、
前記電気モータに動作可能に接続され前記電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、前記電気モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、
インバータサブシステムによって前記発電機サブシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、
前記配電サブシステムに結合されたインダクタサブシステムと、
前記インダクタサブシステム、前記スイッチングサブシステム及び前記バッテリサブシステムに結合された整流器サブシステムと、を備える、ことを特徴とする電力システム。
【請求項8】
前記配電サブシステムと前記バッテリサブシステムとを結合するバッテリ充電コントローラを備える、ことを特徴とする請求項7に記載の電力システム。
【請求項9】
前記発電機サブシステムはDC出力発電機を含む、ことを特徴とする請求項7に記載の電力システム。
【請求項10】
前記電気モータ及び前記発電機サブシステムの回転速度は、前記コンセント負荷線で利用可能な電力の所定のレベルに合わせて前記バッテリサブシステムの電力消耗を最適化するよう設定される、ことを特徴とする請求項7に記載の電力システム。
【請求項11】
前記電動機能制御サブシステムは、前記電気モータに対する前記発電機サブシステムの相対回転速度を自動調整する、ことを特徴とする請求項7に記載の電力システム。
【請求項12】
前記電動機能制御サブシステムは、前記発電機の電力出力と前記バッテリサブシステムの再充電要件とに基づいて、前記コンセント負荷線で利用可能な電力の上限を自動的に設定する、ことを特徴とする請求項7に記載の電力システム。
【請求項13】
バッテリサブシステムと、
前記バッテリサブシステムに結合されたスイッチングサブシステムと、
前記スイッチングサブシステムと前記バッテリサブシステムとに結合されたインバータと、
前記インバータに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、
前記配電サブシステムに結合された整流器サブシステムと、
前記整流器サブシステムに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、
前記電動機能制御サブシステムに結合されたキャパシタサブシステムと、
前記電動機能制御サブシステムに結合された電気モータと、
前記電気モータに動作可能に接続され前記電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、前記電気モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、
前記発電機サブシステムと、前記スイッチングサブシステムと、前記インバータと、前記バッテリサブシステムとに結合されたバッテリ充電コントローラサブシステムと、を備える、ことを特徴とする電力システム。
【請求項14】
前記バッテリシステムは、第1の極性を有する第1の極と第2の極性を有する第2の極とを有し、
前記スイッチングサブシステムは前記バッテリシステムの前記第1の極に結合され、
前記バッテリ充電コントローラサブシステムは、前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合され、
前記インバータサブシステムは、前記スイッチングサブシステムと前記バッテリサブシステムの前記第2の極とに結合される、ことを特徴とする請求項13に記載の電力システム。
【請求項15】
前記電気モータの回転速度は、前記コンセント負荷で利用可能な電力の所定のレベルに合わせて前記バッテリシステムの電力消耗を最適化するよう設定される、ことを特徴とする請求項13に記載の電力システム。
【請求項16】
前記電動機能制御サブシステムは、前記電気モータの相対回転速度を自動調整する、ことを特徴とする請求項13に記載の電力システム。
【請求項17】
前記電動機能制御サブシステムは、前記発電機の電力出力と前記バッテリシステムの再充電要件とに基づいて、前記コンセント負荷線で利用可能な電力の上限を自動的に設定する、ことを特徴とする請求項13に記載の電力システム。
【請求項18】
前記インバータは前記DC電気モータを停止させ、その際、前記システムは前記バッテリサブシステムによって電力が供給され、前記バッテリサブシステムが所定のレベルまで放電すると、前記インバータは前記DC電気モータを再始動させる、ことを特徴とする請求項13に記載の電力システム。
【請求項19】
バッテリサブシステムと、
前記バッテリサブシステムに結合されたスイッチングサブシステムと、
前記スイッチングサブシステムと前記バッテリサブシステムとに結合されたインバータと、
前記インバータに結合された第1の配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む第1の配電サブシステムと、
前記第1の配電サブシステムに結合された整流器サブシステムと、
前記スイッチングサブシステムと前記インバータサブシステムと前記バッテリサブシステムとに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、
前記電動機能制御サブシステムに結合されたキャパシタサブシステムと、
前記電動機能制御サブシステムに結合された電気モータと、
前記電気モータに動作可能に接続され前記電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、前記電気モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、
前記発電機サブシステムと前記インバータサブシステムとに結合された第2の配電サブシステムと、を備える、ことを特徴とする電力システム。
【請求項20】
前記バッテリシステムは、第1の極性を有する第1の極と第2の極性を有する第2の極とを有し、
前記スイッチングサブシステムは前記バッテリシステムの前記第1の極に結合され、
前記電動機能制御サブシステムは、前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合され、
前記インバータサブシステムは、前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合される、ことを特徴とする請求項18に記載の電力システム。
【請求項21】
前記電気モータの回転速度は、前記コンセント負荷で利用可能な電力の所定のレベルに合わせて前記バッテリシステムの電力消耗を最適化するよう設定される、ことを特徴とする請求項19に記載の電力システム。
【請求項22】
前記電動機能制御サブシステムは、前記電気モータの相対回転速度を自動調整する、ことを特徴とする請求項19に記載の電力システム。
【請求項23】
前記電動機能制御サブシステムは、前記発電機の電力出力と前記バッテリシステムの再充電要件とに基づいて、前記コンセント負荷線で利用可能な電力の上限を自動的に設定する、ことを特徴とする請求項19に記載の電力システム。
【請求項24】
前記インバータは前記DC電気モータを停止させ、その際、前記システムは前記バッテリサブシステムによって電力が供給され、前記バッテリサブシステムが所定のレベルまで放電すると、前記インバータは前記DC電気モータを再始動させる、ことを特徴とする請求項19に記載の電力システム。
【請求項25】
バッテリサブシステムと、
前記バッテリサブシステムに結合されたスイッチングサブシステムと、
前記バッテリサブシステムに結合された整流器サブシステムと、
前記整流器サブシステムに結合されたブレーカサブシステムと、
前記整流器サブシステムに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、
前記電動機能制御サブシステムに結合されたキャパシタサブシステムと、
前記電動機能制御サブシステムに結合された電気モータと、
前記電気モータに動作可能に接続され前記電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、前記電気モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、
前記発電機サブシステムに結合されたインバータサブシステムと、
前記インバータサブシステム及び前記ブレーカシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、
前記発電機サブシステムと前記バッテリサブシステムとに結合されたバッテリ充電コントローラサブシステムと、を備える、ことを特徴とする電力システム。
【請求項26】
前記バッテリシステムは、第1の極性を有する第1の極と第2の極性を有する第2の極とを有し、
前記スイッチングサブシステムは前記バッテリシステムの前記第1の極に結合され、
前記電動機能制御サブシステムは、前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合され、
前記インバータサブシステムは、前記スイッチングサブシステムと前記バッテリシステムの前記第2の極とに結合される、ことを特徴とする請求項25に記載の電力システム。
【請求項27】
前記電気モータの回転速度は、前記コンセント負荷で利用可能な電力の所定のレベルに合わせて前記バッテリシステムの電力消耗を最適化するよう設定される、ことを特徴とする請求項25に記載の電力システム。
【請求項28】
前記電動機能制御サブシステムは、前記電気モータの相対回転速度を自動調整する、ことを特徴とする請求項25に記載の電力システム。
【請求項29】
前記電動機能制御サブシステムは、前記発電機の電力出力と前記バッテリシステムの再充電要件とに基づいて、前記コンセント負荷線で利用可能な電力の上限を自動的に設定する、ことを特徴とする請求項25に記載の電力システム。
【請求項30】
電力を生成、貯蔵及び分配する方法であって、
バッテリサブシステムから、キャパシタサブシステムに結合された機能制御サブシステムに、直流電力を供給する工程と、
前記機能制御サブシステムから直流モータに直流電力を供給する工程と、
前記直流モータから発電機に入力回転運動を提供する工程であって、前記直流モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるようにする工程と、
前記直流モータの出力回転運動から交流電力を生成する工程であって、回転速度を、外部配電用のワット数供給が最適化されるように設定する工程と、
生成された前記交流電力の第1の部分を、電気負荷に接続されるように構成されたコンセント負荷線に分配し、生成された前記交流電力の第2の部分を、インダクタサブシステムに分配する工程と、
前記インダクタサブシステムから整流器サブシステムに交流電力を供給し、前記整流器サブシステムを使用して追加の直流電力を生成する工程と、
前記整流器サブシステムから前記バッテリサブシステムに前記追加の直流電力を供給する工程と、を有し、
前記電気モータの前記出力回転運動の関係は、前記コンセント負荷線で利用可能な電力の所定のレベルに合わせて前記バッテリシステムの電力消耗を最適化するように設定される、ことを特徴とする電力を生成、貯蔵及び分配する方法。
【請求項31】
前記バッテリサブシステムの充電を制御する工程を有することを特徴とする請求項30に記載のシステム。
【請求項32】
電力を生成、貯蔵及び分配する方法であって、
バッテリサブシステムからインダクタサブシステムに直流電力を供給する工程と、
前記インダクタサブシステムから、キャパシタサブシステムに連結された機能制御サブシステムに、直流電力を供給する工程と、
前記機能制御サブシステムから直流モータに前記直流電力を供給する工程と、
前記直流モータから発電機に入力回転運動を提供する工程であって、前記直流モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるようにする工程と、
前記直流モータの出力回転運動から直流電力を生成する工程と、
前記直流電力を交流電力に変換する工程と、
前記交流電力を、配電システム、ローカル電力コンセント及びパワーグリッドのうちの少なくとも1つに分配する工程と、
前記交流電力の第1の部分を、前記配電システムから、負荷源及びパワーグリッドのうちの少なくとも1つに分配するとともに、前記交流電力の第2の部分を、前記配電システムから、整流器を含みかつ前記バッテリサブシステムに連結されたバッテリ充電サブシステムに分配する工程と、を有する、ことを特徴とする電力を生成、貯蔵及び分配する方法。
【請求項33】
前記バッテリサブシステムの充電を制御する工程を有することを特徴とする請求項32に記載のシステム。
【請求項34】
電力を生成、貯蔵及び分配する方法であって、
バッテリサブシステムから、インバータサブシステムに連結されたスイッチングサブシステムに、直流電力を供給する工程と、
前記インバータサブシステムから配電サブシステムに交流電力を供給する工程と、
前記交流電力の第1の部分を、電気負荷に接続されるよう構成されたコンセント負荷線に分配するとともに、前記交流電力の第2の部分を整流器サブシステムに分配する工程と、
前記整流器サブシステムから機能制御サブシステムに直流を供給する工程と、
前記機能制御サブシステムから直流モータに直流を供給する工程と、
前記直流モータから発電機に入力回転運動を提供する工程であって、前記直流モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるようにする工程と、
前記直流モータの出力回転運動から直流電力を生成する工程であって、回転速度を、外部配電用のワット数供給が最適化されるように設定する工程と、
前記直流発電機サブシステムからバッテリ充電コントローラサブシステムに直流電力を供給する工程と、
前記バッテリ充電コントローラサブシステムから前記スイッチングサブシステム、前記インバータ及び前記バッテリサブシステムに前記直流電力を供給する工程と、を有する、ことを特徴とする電力を生成、貯蔵及び分配する方法。
【請求項35】
前記バッテリサブシステムの充電を制御する工程を有することを特徴とする請求項34に記載のシステム。
【請求項36】
前記インバータを用いて前記電気モータを停止及び再始動させる工程を有することを特徴とする請求項34に記載のシステム。
【請求項37】
電力を生成、貯蔵及び分配する方法であって、
バッテリサブシステムから、インバータサブシステムに連結されたスイッチングサブシステムに、直流電力を供給する工程と、
前記直流電力を交流電力に変換する工程と、
前記交流電力の第1の部分を、電気負荷に接続されるよう構成されたコンセント負荷線に結合された第1の配電システムに分配するとともに、前記交流電力の第2の部分を第2の配電サブシステムに分配する工程と、
前記第1の配電サブシステムから整流器サブシステムに交流電力を供給する工程と、
前記整流器サブシステムから機能制御サブシステムに直流電力を供給する工程と、
前記機能制御サブシステムから直流モータに前記直流電力を供給する工程と、
前記直流モータから発電機に入力回転運動を提供する工程であって、前記直流モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるようにする工程と、
前記直流モータの出力回転運動から交流電力を生成する工程であって、回転速度を、外部配電用のワット数供給が最適化されるように設定する工程と、
前記第2の配電サブシステムに交流電力を供給する工程と、
前記交流電力を直流電力に変換する工程と、
直流電力を前記バッテリサブシステムに供給する工程と、を有する、ことを特徴とする電力を生成、貯蔵及び分配する方法。
【請求項38】
前記バッテリサブシステムの充電を制御する工程を有することを特徴とする請求項37に記載のシステム。
【請求項39】
前記インバータを用いて前記電気モータを停止及び再始動させる工程を有することを特徴とする請求項37に記載のシステム。
【請求項40】
電力を生成、貯蔵及び分配する方法であって、
バッテリサブシステムから整流器サブシステムに直流電力を供給する工程と、
前記ブレーカサブシステムから整流器サブシステムに交流電力を供給する工程と、
前記整流器サブシステムから、キャパシタサブシステムに結合された機能制御サブシステムに、直流電力を供給する工程と、
前記機能制御サブシステムから直流モータに前記直流電力を供給する工程と、
前記直流モータから発電機に入力回転運動を提供する工程であって、前記直流モータの出力回転速度と前記発電機に提供される入力回転速度とが互いに不変であるようにする工程と、
前記直流モータの出力回転運動から直流電力を生成する工程と、
前記直流電力を交流電力に変換する工程と、
前記直流電力を前記配電システムに供給する工程と、
前記交流電力の第1の部分を前記配電システムから負荷源に分配し、前記交流電力の第2の部分を前記配電システムからブレーカサブシステムに分配する工程と、
前記整流器サブシステムから前記バッテリサブシステムに直流電力を供給する工程と、
前記発電機からバッテリ充電コントローラサブシステムを介して前記バッテリサブシステムに電流を供給する工程と、を有する、ことを特徴とする電力を生成、貯蔵及び分配する方法。
【発明の詳細な説明】
【技術分野】
【0001】
<関連出願の相互参照>
本出願は、2019年6月3日に出願された米国特許出願第16/430,342号の一部継続出願である、2020年2月25日に出願された米国特許出願第16/800,146号の優先権を主張する。
【0002】
本発明は、一般に、電気エネルギーを生成、貯蔵及び/又は提供するシステム及び方法に関する。
【背景技術】
【0003】
世界中の電力消費は膨大であり、伝統的な非電動式の機械が電動式の対応物に置き換えられるにつれて今後も伸び続けるであろう。例えば、電動車両、特に乗用車は、国の道路システムにおいてますます普及している。2015年から2016年の年間売上台数約5万台を誇る米国の電気自動車メーカーの1社はわずか数年で売上台数を50万台に増やす意向を表明している。
【0004】
電力への切り替えの動機は多面的である。電力生成のコストと環境への影響は化石燃料ベースの動力のような代替動力源よりも優れていると考えられる。この優位性は、非電力の代わりに電力を利用するための消費者に対する政府や産業界のインセンティブによって増幅される。例えば、電気自動車の利用者はその輸送ニーズのために化石燃料から生じる動力源とは対照的に、電力の使用のために提供された税制上優遇措置、優先駐車、優先道路アクセス及び無料再充電をすべて獲得した。したがって、電力を生成し、貯蔵し、分配するためのシステムに対する継続的かつ増大する必要性が存在する。
【0005】
先進国では「パワーグリッド」と呼ばれることもある高度な発電及び配電システムが全国に導入されている。グリッドは広く普及しており至るところにあるが、常に利用できるわけではなく、長期間にわたり最低コストで電力供給するわけではない。停電はまれではあるものの、時折の暴風雨により長期間にわたって大きな人口セグメントへの配電が混乱する可能性がある。この停電は家庭生活及び仕事を妨げ生産性及び快適さが実質的に失われることとなる。さらに、グリッドから電力を得るコストはかなりのものであり、コストを下げるためにシステムに多くの競争を投入する能力はほとんどない。したがって、1つの家庭、ビジネス及び車両に電力供給する規模を有する、日々のオペレーションのためにグリッドに大きく依存しない移動式と定置式の両方の発電システムが必要とされている。
【0006】
したがって、本発明のいくつかのしかし必ずしもすべてではない実施形態は、家庭、ビジネス及び車両での使用のために効率的に電力を生成するシステム及び方法を提供することを目的とする。また、本発明のいくつかのしかし必ずしもすべてではない実施形態は、家庭、ビジネス及び車両での使用のために効率的に電力を貯蔵及び分配するシステム及び方法を提供することも目的とする。本発明のいくつかのしかし必ずしもすべてではない実施形態の上記の及び他の利点は電力を生成、貯蔵及び分配する技術分野の当業者には明らかであろう。
【発明の概要】
【0007】
上記の課題に対して、本出願人は改革的な電力システムを開発し、この電力システムは、バッテリサブシステムと、バッテリサブシステムに結合されたスイッチングサブシステムと、スイッチングサブシステムとバッテリサブシステムとに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、電動機能制御サブシステムに結合されたキャパシタサブシステムと、電動機能制御サブシステムに結合された電気モータと、電気モータに動作可能に接続された発電機サブシステムと、インバータサブシステムによって発電機サブシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、配電サブシステムに結合されたインダクタサブシステムと、インダクタサブシステム、スイッチングサブシステム及びバッテリサブシステムに結合された整流器サブシステムと、を備える。
【0008】
本出願人は改革的な電力システムをさらに開発し、この電力システムは、各々が第1の極性を有する第1の極と第2の極性を有する第2の極とを有する第1及び第2のバッテリサブシステムと、第1のバッテリサブシステムの第1の極と第2のバッテリサブシステムの第1の極とに結合されたスイッチングサブシステムと、スイッチングサブシステムと第1及び第2のバッテリサブシステムの第2の極とに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、電動機能制御サブシステムに結合されたキャパシタサブシステムと、電動機能制御サブシステムに結合された電気モータと、電気モータに動作可能に接続された発電機サブシステムと、発電機サブシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、配電サブシステムに結合されたインダクタサブシステムと、インダクタサブシステムと、スイッチングサブシステムと、第1及び第2のバッテリサブシステムの第2の極と、に結合された整流器サブシステムと、を備える。
【0009】
本出願人は改革的な電力システムをさらに開発し、この電力システムは、各々が第1の極性を有する第1の極と第2の極性を有する第2の極とを有する第1及び第2のバッテリサブシステムと、第1のバッテリサブシステムの第1の極と第2のバッテリサブシステムの第1の極とに結合されたスイッチングサブシステムと、スイッチングサブシステムと第1及び第2のバッテリサブシステムの第2の極とに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、電動機能制御サブシステムに結合されたキャパシタサブシステムと、電動機能制御サブシステムに結合された電気モータと、電気モータに動作可能に接続された発電機と、発電機サブシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、配電システムに結合されたインダクタサブシステムと、インダクタサブシステムと、スイッチングサブシステムと、第1及び第2のバッテリサブシステムの第2の極と、に結合された整流器サブシステムと、を備える。
【0010】
本出願人は改革的な電力システムをさらに開発し、この電力システムは、各々が第1の極性を有する第1の極と第2の極性を有する第2の極とを有する第1及び第2のバッテリサブシステムと、第1のバッテリサブシステムの第1の極と第2のバッテリサブシステムの第1の極とに結合されたスイッチングサブシステムと、スイッチングサブシステムと第1及び第2のバッテリサブシステムの第2の極とに結合されたバッテリ充電コントローラサブシステムと、スイッチングサブシステムとバッテリサブシステムとに結合されたインバータと、インバータに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、配電サブシステムに結合された整流器サブシステムと、整流器サブシステムに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、電動機能制御サブシステムに結合されたキャパシタサブシステムと、電動機能制御サブシステムに結合された電気モータと、電気モータに動作可能に接続され、電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、電気モータの出力回転速度と発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、発電機サブシステムと、スイッチングサブシステムとインバータとバッテリサブシステムとに結合されたバッテリ充電コントローラサブシステムと、を備える。
【0011】
本出願人は改革的な電力システムをさらに開発し、この電力システムは、各々が第1の極性を有する第1の極と第2の極性を有する第2の極とを有する第1及び第2のバッテリサブシステムと、第1のバッテリサブシステムの第1の極と第2のバッテリサブシステムの第1の極とに結合されたスイッチングサブシステムと、スイッチングサブシステムと第1及び第2のバッテリサブシステムの第2の極とに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、スイッチングサブシステムとバッテリサブシステムとに結合されたインバータと、インバータに結合された第1の配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む第1の配電サブシステムと、第1の配電サブシステムに結合された整流器サブシステムと、スイッチングサブシステムとインバータとバッテリサブシステムとに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、電動機能制御サブシステムに結合されたキャパシタサブシステムと、電動機能制御サブシステムに結合された電気モータと、電気モータに動作可能に接続され、電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、電気モータの出力回転速度と発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、発電機サブシステムとインバータサブシステムとに結合された第2の配電サブシステムと、を備える。
【0012】
本出願人は改革的な電力システムをさらに開発し、この電力システムは、各々が第1の極性を有する第1の極と第2の極性を有する第2の極とを有する第1及び第2のバッテリサブシステムと、第1のバッテリサブシステムの第1の極と第2のバッテリサブシステムの第1の極とに結合されたスイッチングサブシステムと、第1及び第2のバッテリサブシステムの第1及び第2の極に結合された、バッテリサブシステムに結合された整流器サブシステムを含む整流器/インダクタサブシステムと、整流器サブシステムに結合されたブレーカサブシステムと、整流器サブシステムに結合された電動機能制御サブシステムであって、プロセッサ及びメモリを含む電動機能制御サブシステムと、電動機能制御サブシステムに結合されたキャパシタサブシステムと、電動機能制御サブシステムに結合された電気モータと、電気モータに動作可能に接続され電気モータから入力回転運動を受け取る発電機を含む発電機サブシステムであって、電気モータの出力回転速度と発電機に提供される入力回転速度とが互いに不変であるよう構成された発電機サブシステムと、発電機サブシステムに結合されたインバータサブシステムと、インバータサブシステム及びブレーカシステムに結合された配電サブシステムであって、電気負荷に接続されるように構成されたコンセント負荷線を含む配電サブシステムと、発電機サブシステムとバッテリサブシステムとに結合されたバッテリ充電コントローラサブシステムと、を備える。
【0013】
本出願人は改革的な電力を生成、貯蔵及び分配する方法を開発し、この方法は、第1のバッテリサブシステムから、キャパシタサブシステムに結合された機能制御サブシステムに、直流電力を供給する工程と、機能制御サブシステムから直流モータに直流電力を供給する工程と、直流モータから入力回転運動を提供し、直流モータから出力回転運動を生成する工程と、直流モータの出力回転運動から交流電力を生成する工程と、生成された交流電力の第1の部分を、電気負荷に接続されるように構成されたコンセント負荷線に分配し、生成された交流電力の第2の部分を、インダクタサブシステムに分配する工程と、インダクタサブシステムから整流器サブシステムに交流電力を供給し、整流器サブシステムを使用して追加の直流電力を生成する工程と、整流器サブシステムから第2のバッテリサブシステムに直流電力を供給する工程と、を有し、直流モータの出力回転運動に対する入力回転運動の関係は、コンセント負荷線で利用可能な電力の所定のレベルと第1、第2及び第3の動作フェーズの所定の期間とに合わせて第1のバッテリサブシステムの電力消耗を最適化するように設定される。
【0014】
本出願人は改革的な電力を生成、貯蔵及び分配する方法をさらに開発し、この方法は、バッテリサブシステムから、インバータサブシステムに結合されたスイッチングサブシステムに直流電力を供給する工程と、インバータサブシステムから配電サブシステムに交流電力を供給する工程と、交流電力の第1の部分を、電気負荷に接続されるように構成されたコンセント負荷線に分配し、交流電力の第2の部分を、整流器サブシステムに分配する工程と、整流器サブシステムから機能制御サブシステムに直流を供給する工程と、機能制御サブシステムから直流モータに直流を供給する工程と、直流モータから発電機に入力回転運動を提供する工程であって、直流モータの出力回転速度と発電機に提供される入力回転速度とが互いに不変であるようにする工程と、直流モータの出力回転運動から直流電力を生成する工程であって、回転速度を、外部配電用のワット数供給が最適化されるように設定する工程と、直流発電機サブシステムからバッテリ充電コントローラサブシステムに直流電力を供給する工程と、バッテリ充電コントローラサブシステムからスイッチングサブシステム、インバータ及びバッテリサブシステムに直流電力を供給する工程と、を有する。
【0015】
本出願人は改革的な電力を生成、貯蔵及び分配する方法をさらに開発し、この方法は、バッテリサブシステムから、インバータサブシステムに結合されたスイッチングサブシステムに直流電力を供給する工程と、直流電力を交流電力に変換する工程と、交流電力の第1の部分を、電気負荷に接続されるように構成されたコンセント負荷線に結合された第1の配電システムに分配し、交流電力の第2の部分を第2の配電サブシステムに分配する工程と、第1の配電サブシステムから整流器サブシステムに交流電力を供給する工程と、整流器サブシステムから機能制御サブシステムに直流電力を供給する工程と、機能制御サブシステムから直流モータに直流電力を供給する工程と、直流モータから発電機に入力回転運動を提供する工程であって、直流モータの出力回転速度と発電機に提供される入力回転速度とが互いに不変であるようにする工程と、直流モータの出力回転運動から交流電力を生成する工程であって、回転速度を、外部配電用のワット数供給が最適化されるように設定する工程と、交流電力を第2の配電サブシステムに供給する工程と、交流電力を直流電力に変換する工程と、直流電力をバッテリサブシステムに供給する工程と、を有する。
【0016】
本出願人は改革的な電力を生成、貯蔵及び分配する方法をさらに開発し、この方法は、バッテリサブシステムから整流器サブシステムに直流電力を供給する工程と、整流器サブシステムから、キャパシタサブシステムに結合された機能制御サブシステムに直流電力を供給する工程であって、機能制御サブシステムから直流モータに直流電力を供給する工程と、直流モータから発電機に入力回転運動を提供する工程であって、直流モータの出力回転速度と発電機に提供される入力回転速度とが互いに不変であるようにする工程と、直流モータの出力回転運動から直流電力を生成する工程と、直流電力を交流電力に変換する工程と、直流電力を配電システムに供給する工程と、交流電力の第1の部分を配電システムから負荷源に分配し、交流電力の第2の部分を配電システムからブレーカサブシステムに分配する工程と、交流電力をブレーカサブシステムから整流器サブシステムに供給する工程と、整流器サブシステムからバッテリサブシステムに直流電力を供給する工程と、発電機からバッテリ充電コントローラサブシステムを介してバッテリサブシステムに電流を供給する工程と、を有する。
【0017】
上記の全体的な説明及び以下の詳細な説明は、例示及び説明のためのものであるに過ぎず、特許請求の範囲に記載の本発明を限定するものではないことが理解される。
【0018】
本発明の理解を助けるために、同様の要素を同様の参照符号で示している添付の図面を参照する。図面は単なる例であり、本発明を限定するものとして解釈されるべきではない。
【図面の簡単な説明】
【0019】
図1】本発明の第1実施形態による電力を生成、分配及び貯蔵するためのシステムの概略図である。
図2図1に示すシステムのバッテリサブシステム及びスイッチングサブシステムの詳細な概略図である。
図3図1に示すシステムのための代替的スイッチングサブシステムの詳細な概略図である。
図4】オングリッド電源に使用される本発明の第2の実施形態による電力を生成、分配及び貯蔵するためのシステムの構成要素の概略図である。
図5】オフグリッド電源に使用される本発明の第3の実施形態による電力を生成、分配及び貯蔵するためのシステムの構成要素の概略図である。
図6】オングリッド電源及びオフグリッド電源に使用される本発明の第4の実施形態による電力を生成、分配及び貯蔵するためのシステムの概略図である。
図7】オングリッド電源及びオフグリッド電源に使用される本発明の第5の実施形態による電力を生成、分配及び貯蔵するためのシステムの概略図である。
図8】オングリッド電源及びオフグリッド電源に使用される本発明の第6の実施形態による電力を生成、分配及び貯蔵するためのシステムの概略図である。
図9】オングリッド電源及びオフグリッド電源に使用される本発明の第7の実施形態による電力を生成、分配及び貯蔵するためのシステムの概略図である。
【発明を実施するための形態】
【0020】
次に、添付の図面に例が示されている本発明の実施形態を詳細に参照する。
【0021】
図1を参照すると、本発明の第1の実施形態では、直流(DC)バッテリシステム100は、スイッチングサブシステム200によって発電システム300に電気的に接続されてもよい。発電システム300はAC配電サブシステム400に電気的に接続されてもよく、AC配電サブシステムは負荷源500及びバッテリ充電システム600に接続されてもよい。バッテリ充電システム600は、スイッチングサブシステム200を介してバッテリシステム100に接続されてもよい。
【0022】
DCバッテリシステム100は、第1、第2及び第3のバッテリサブシステム、又はバンク110、120及び130を含むことができ、これらはそれぞれ複数の個別のバッテリ及びバッテリセルから構成することができる。各バッテリサブシステムを構成する個別のバッテリ及びバッテリセルは直列に接続されてもよい。1つの非限定的な例では、各バッテリサブシステムは、合計12個の12ボルト、200アンペアの鉛酸ディープサイクルバッテリを含んでもよい。これらのパラメータを有するバッテリサブシステムは、15分間5kWの一定出力を提供し、続いて15分間再充電(又は休止)され、そして再充電直後の場合には15分間休止(又は休止直後の場合には再充電)されてもよい。1つの非限定的な例では、各バッテリサブシステムは少なくとも1つのリチウムイオンバッテリを含むことができる。使用されるバッテリの種類、電圧、アンペア数並びに他の材料及び品質は、本発明の意図される範囲から逸脱することなくさまざまであってもよいことが理解される。
【0023】
バッテリはバッテリサブシステムに組み合わされたときに、スイッチングサブシステム200、発電システム300、負荷源500及びバッテリ充電システム600に対して、過度の放電なしに一定期間にわたって電力供給するのに十分な電力及びアンペア数を有するべきである。一実施形態では、各バッテリサブシステム110、120及び130は、バッテリ寿命の開始時に、約20%を超える放電なしに45分サイクルのうち15分間システム全体に電力供給することができる。
【0024】
第1、第2及び第3のバッテリサブシステム110、120及び130の第1の正極は、それぞれ、導体150、152及び156を介してスイッチングサブシステム200に電気的に接続されてもよい。そして、スイッチングサブシステム200は、ポイントAを介して発電システム300に、また正極性導体を介しポイントCを介してバッテリ充電システム600に電気的に接続されてもよい。第1、第2及び第3のバッテリサブシステム110、120及び130の負極は、導体154を介しポイントBを介して発電システム300とバッテリ充電システム600とに電気的に接続されてもよい。
【0025】
図2にスイッチングサブシステム200の1つの非限定的な実施形態を示す。図2を参照すると、スイッチングサブシステム200は、第1、第2及び第3の低電圧接触器220、222及び224に電気的に接続され得る1つ又は複数のタイマ210を含んでもよい。第1の低電圧接触器220は第1及び第2の高電圧接触器231及び232を制御することができ、第2の低電圧接触器222は第3及び第4の高電圧接触器233及び234を制御することができ、第3の低電圧接触器224は回路内のポイントDを介して互いに接続される第5及び第6の高電圧接触器235及び230を制御することができる。
【0026】
タイマ210並びに第1及び第3の低電圧接触器220及び224による制御下で、第1及び第6の高電圧接触器231及び230は、第1のバッテリサブシステム110を第1のバス240に、又は第2のバス242に、又はどちらのバスにも接続されないよう、選択的に接続することができる。タイマ210並びに第1及び第2の低電圧接触器220及び222は、第2及び第3の高電圧接触器232及び233を制御して、第2のバッテリサブシステム120を第1のバス240に、又は第2のバス242に、又はどちらのバスにも接続されないよう、選択的に接続することができる。同様に、タイマ210並びに第2及び第3の低電圧接触器222及び224は、第4及び第5の高電圧接触器234及び235を制御して、第3のバッテリサブシステム130を第1のバス240に、又は第2のバス242に、又はどちらのバスにも接続されないよう、選択的に接続することができる。
【0027】
タイマ210は、自動的に及び/又は以下に説明する機能制御サブシステムの制御下で、第1、第2及び第3の低電圧接触器220、222及び224に低電圧制御信号を送ることができる。このような信号は特定の低電圧接触器を作動させてこれに接続された高電圧接触器を開閉させてもよい。その結果、タイマ210、低電圧接触器220、222及び224並びに高電圧接触器230、231、232、233、234及び235の組み合わせは、バッテリサブシステム110、120及び130の各々を第1のバス240に、又は第2のバス242に、又はどちらのバスでもなく、選択的に接続することができる。タイマ210、低電圧接触器220、222、224及び高電圧接触器230~235のカスケード配置により、一度に、バッテリサブシステムのうちの1つのみが第1のバス240に接続され、バッテリサブシステムのうちの1つのみが第2のバス242に接続されることを可能とする。しかしながら、システムは、2つのバッテリサブシステムが同じバスに同時に接続され得る短期間のオーバーラップ時間の可能性を許容し得ることが理解される。
【0028】
図1及び図2を参照すると、第1のバス240はポイントAを介して発電システム300に接続されてもよく、第2のバス242はポイントCを介してバッテリ充電システム600に接続されてもよい。したがって、スイッチングサブシステム200は機能的に、以下の間での選択的な切り替えを行うよう構成されてもよい。即ち、
- 第1の動作フェーズにおいて、第1のバッテリサブシステム110の第1の極をバッテリ充電システム600に接続すると同時に、第2のバッテリサブシステム120の第1の極を発電システム300に接続することと、
- 第2の動作フェーズにおいて、第3のバッテリサブシステム130の第1の極を発電システム300に接続すると同時に、第2のバッテリサブシステム120の第1の極をバッテリ充電システム600に接続することと、
- 第3の動作フェーズにおいて、第3のバッテリサブシステム130の第1の極をバッテリ充電システム600に接続すると同時に、第1のバッテリサブシステム110の第1の極を発電システム300に接続することと、の間で選択的な切り替えを行うよう構成されてもよい。
【0029】
図3の概略図にスイッチングサブシステム200の別の実施形態を示す。図1及び図3に関して、三方向スイッチ250,252及び254は、それぞれ、関連するバッテリサブシステム(110,120及び130)の正極を、回路全体のなかのポイントA又はポイントCか、あるいは(図示のように)回路切断位置か、のうちの1つに接続することができる。三方向スイッチ250,252及び254は、図2の実施形態によって提供されるものと同様のスイッチングを提供するために、1つ又は複数のタイマ210によって制御されてもよい。
【0030】
図1を再度新たに参照すると、発電システム300は、スイッチングサブシステム200を介してバッテリシステム100に電気的に接続されバッテリシステム100により電力供給される機能制御サブシステム310を含んでもよい。機能制御サブシステム310は、オプションで、スイッチングサブシステム200内のタイマ210に接続され、タイマ210を制御することができる。機能制御サブシステム310は、一度にバッテリシステム100内のバッテリサブシステムのうちの1つから電力供給して、DC電気モータ330を駆動することができ、DC電気モータ330はAC発電機350を駆動することができる。機能制御サブシステム310は電気モータサブシステム330の速度を制御することができる。
【0031】
通常の発電機はトルク要求が高く、これにより、これまで知られているシステムにおいてギアボックスを追加する必要性があった。これらのシステムでは、トルクを下げ、モータの消費電力を下げるためにギアボックスが必要であった。トルク要求の低い新規の特別設計の発電機を用いることにより、現行システムからギアボックスが省かれる。これにより、故障する可能性がある機械要素がシステムから除去され、さらにギアボックスによりシステムに加えられる応力が除去され、システムがより効率的となる。
【0032】
また、発電システム300は、機能制御サブシステム310によって制御される冷却サブシステム360を含んでもよい。冷却サブシステム360は、機能制御サブシステム310、電動機330及び発電機350などのシステム全体の任意の及び/又はすべての発熱構成要素と動作上接してもよい。冷却サブシステム360は、当業者に知られている方法で、システムの構成要素を最適動作温度範囲に維持することができる。
【0033】
キャパシタサブシステム320は、機能制御サブシステム310に電気的に結合されてもよい。キャパシタサブシステム320は、互いに並列に相互接続された複数のキャパシタを含んでもよい。キャパシタサブシステム320は、力率ラグ及び位相シフトのようなシステム特性を制御及び補正するために使用されてもよい。キャパシタサブシステム320はまた、蓄積されたエネルギーを増大させ、機能制御サブシステム310内のプロセッサによって生成される正弦波の安定化を改善することができる。
【0034】
機能制御サブシステム310は、デジタルプロセッサと、デジタルメモリコンポーネントと、必要に応じて本明細書に記載されるかたちでシステム全体を動作させるための制御プログラミングとを含むことができる。例えば、機能制御サブシステム310は、起動シーケンス、停止シーケンス、振動監視、オーバーヒート監視及び遠隔監視のためのシステム構成要素を制御するプログラミングを含むことができる。また機能制御サブシステム310は、システムデータを提供する1つ又は複数のパラメータ監視構成要素を含むか、又はそれに接続されてもよい。そのようなデータは、バッテリ充電レベル及び容量、バッテリアンペア数、バッテリ電圧、バッテリ使用時間、バッテリ充電時間、現在時刻、システム要素温度、振動、ソースの負荷、電気モータトルク、電気モータ回転速度、発電機トルク、発電機回転速度、バッテリ充電システム負荷、整流器設定並びにインダクタ設定を含むことができるが、これらに限定されない。
【0035】
電気モータ330及び発電機350のサイズ及び動作特性は、システムによるサービスを受ける所与の予期される負荷(given expected load)500に対する最適な発電及びバッテリ寿命、並びにバッテリサブシステム110、120及び130に対する再充電率及び再充電時間を提供するように選択されてもよい。記載されるタイプのバッテリサブシステムの場合、電気モータ330は動作を維持するために144V/100Aを必要としてもよい。電気モータ330の速度は、好ましくは、発電機350によって課されるトルクを低減又は最小限にするのと同時に、負荷500に対してサービス提供するとともに1つのバッテリサブシステムを再充電するのに必要なアンペア数及び電圧を提供するために発電機を駆動するのに必要な最小回転速度に又はその付近に設定される。新規の低トルク要求発電機350の使用により、電気モータ330のトルク要求を増大させず(及び好ましくは減少させて)発電機350においてトルクを提供することができ、これにより、電気モータを駆動するバッテリサブシステム上の電力ドレインを下げ、発電機の所与の電力出力に対するバッテリ消耗特性を改善する。
【0036】
電気モータ330の速度は、機能制御サブシステム310によって、リアルタイムベースで、その瞬間その瞬間で自動的に設定されてもよい。機能制御サブシステム310は、例えばモータのシャフト上に配置された速度センサからの電気モータ330速度データ、並びに他のセンサからのバッテリ再充電及び負荷500電力要求を受信することができる。機能制御サブシステム310は、発電機350が最大トルクでその時点で必要な電力を発電機に供給し、かつモータ上で最小トルクを供給するように、電気モータ330速度を調節することができる。このようにして、機能制御サブシステム310は、リアルタイムベースで、発電条件(電気モータ回転速度及び発電機回転速度)を最適化することができる。
【0037】
発電機350は、1つ以上の電気導体を介してAC配電サブシステム400に接続されてもよい。配電サブシステムは、例えばACブレーカボックスを備えることができる。配電サブシステム400は1つ又は複数の導体を介して負荷源500及びバッテリ充電システム600に接続されてもよい。負荷源500及びバッテリ充電システム600の電力需要は、配電サブシステム400、負荷源500及び/又はバッテリ充電システム600に関連するセンサから、有線又は無線通信チャネルを介して機能制御サブシステム310に通信されてもよい。電力需要は、電気モータ330をシステムの電力需要に対して正しい回転数で作動するように設定するために、機能制御サブシステム310の自動スロットル制御モジュールによって使用されてもよい。
【0038】
バッテリ充電システム600は、1つ又は複数の回路ブレーカ620を介して整流器サブシステム630に電気的に接続されたインダクタサブシステム610を含んでもよい。インダクタサブシステム610と整流器サブシステム630との組み合わせは、3つのバッテリサブシステムを使用するシステムの場合は全システムサイクル時間の3分の1である所望の再充電サイクルにわたって、アイドルバッテリサブシステム110,120又は130のうちの1つに必要レベルの再充電を提供するために使用される。整流器サブシステム630は、現在充電中のバッテリサブシステムの再充電による再充電ドロー(recharge draw)に適応するために自己調整してもよい。換言すると、通常インダクタサブシステム610がない場合は、自己調整整流器サブシステム630は、充電サイクルの間に再充電されるバッテリサブシステムに供給される電圧及び/又はアンペア数を減少させることができる。結果として、インダクタサブシステム610がないと、バッテリサブシステムは、所望のサイクル時間で完全に再充電するのに十分迅速に再充電できない可能性がある。調整可能なレオスタットを備えたインダクタサブシステム610を追加することにより、誘導コイルを備えていないシステムと比較して、バッテリ充電システム600のアンペア数ドロー(したがって、アイドルバッテリサブシステムを再充電するのに利用可能なアンペア数)を増大させることができる。好ましくは、インダクタサブシステム610のレオスタットの設定は、機能制御部310の制御下で、再充電サイクルの間に自動的に調整されてもよい。レオスタットの設定は、好ましくはリアルタイムで調整されるべきであり、これにより、再充電中のシステムへの電力供給に使用されるバッテリサブシステムの総バッテリ消耗を最小量にして、フル又はほぼフルの再充電を所望の時間で完了させるように構成される。一実施形態によると、バッテリ充電コントローラサブシステム650(図示せず)は、発電機サブシステム350と電気バッテリシステム100とを結合することができる。
【0039】
図1から図3に示すシステムは、負荷源500に電力供給するために発電、蓄電及び配電するのと同時に、以下のようにして、消耗したバッテリサブシステム110、120及び/又は130を再充電するために電力を生成することができる。図示のシステムを使用する方法は、第1の動作フェーズ中に、有線又は無線制御信号をスイッチングサブシステム200に送信する機能制御サブシステム310によって開始されてもよい。機能制御サブシステム310の信号は、タイマ210が、第1、第2及び第3の低電圧接触器220,222及び224に低電圧制御信号を送るように構成されてもよい。タイマ210の制御信号により、第1及び第3の低電圧接触器220及び224は、第1のバッテリサブシステム110の第1の正極を、導体150並びに高電圧接触器230及び/又は231を介して第1のバス240に結合させることができる。そして、第1のバス240は、第1のバッテリサブシステム110を機能制御部310及び電気モータ330に接続する。第1のバッテリサブシステム110の第2の負極は、機能制御部310及び電気モータ330に永久的に結合されているため、第1のバッテリサブシステムを使用して電気モータに電力供給するための回路が一時的に完成する。
【0040】
第1のバッテリサブシステムが電気モータ330に電力を供給するために使用される(即ち、第1の動作フェーズ)と同時に、機能制御部310からタイマ210に送られる制御信号を使用して、第1、第2及び第3の低電圧接触器220,222及び224を制御し、他のバッテリサブシステムの接続及び切断を行うことができる。具体的には、低電圧接触器220,222及び224を使用して、高電圧接触器232,233,234及び235を制御して、第2のバッテリサブシステム120の第1の正極を第2のバス242に一時的に接続し、第3のバッテリサブシステム130の第1の正極をあらゆる回路から一時的に絶縁することができる。その結果、第1の動作フェーズの間、第2のバッテリサブシステム120は整流器サブシステム630に接続されてもよく、第3のバッテリサブシステム130は絶縁されてもよい。
【0041】
第1の動作フェーズの間、電気モータ330は、第1のバッテリサブシステム110の電力の下で回転する。電気モータ330の回転運動は、電気モータ330を介して発電機350を駆動するために使用される。電気モータ上の発電機350のトルク抵抗は、負荷源500及びバッテリ充電システム600から発電機に加えられる負荷に応じて変化してもよい。電気モータ330の速度は、発電機350に加えられる負荷に対する速度を最適化するために機能制御部310によって選択的に調整されてもよい。
【0042】
発電機350の電力出力は、配電サブシステム400によって部分的にバッテリ充電システム600に向けられる。インダクタサブシステム610及びバッテリ充電システム600の整流器サブシステム630は、好ましくは機能制御部310の制御下で、共に働き、第1の動作フェーズ中に第2のバッテリサブシステム120を再充電する。第1の動作フェーズは、設定された経過時間の後、第1のバッテリサブシステム110の設定されたレベルの放電を検出した後、又は第2のバッテリサブシステム120の設定されたレベルの再充電の後に、自動的に終了されてもよい。
【0043】
第1の動作フェーズの終了の後、第2の動作フェーズの設定が直ちに続き、その際に、機能制御部310がスイッチングシステム200に指示して、第2のバッテリサブシステム120を第1のバッテリサブシステム110に置き換え、第3のバッテリサブシステム130を第2のバッテリサブシステム120に置き換え、第1のバッテリサブシステム110を第3のバッテリサブシステム130に置き換えるようにする。換言すると、第2の動作フェーズ中、第2のバッテリサブシステム120が電力供給に使用され、第3のバッテリサブシステム130が再充電され、第1のバッテリサブシステム110が電力供給及び再充電回路から切断される。第3の動作フェーズ中、第3のバッテリサブシステム130がシステムに電力供給し、第1のバッテリサブシステム110が再充電され、第2のバッテリサブシステム120が切断される。負荷源500への電力供給が中断されないよう、第1、第2及び第3の動作フェーズを介する回転を繰り返してもよい。
【0044】
図4に本発明の別の実施形態が示されており、同図において他の実施形態に関連して記載された要素と同様に動作する同様の要素には同様の参照符号が付されている。発電システム300は、負荷源500に電力を供給するために、オングリッドインバータ370を介してAC配電システム400に接続されてもよい。また、発電システム300は、整流器/インダクタシステム700を介してDCバッテリ及び無停電電源装置(UPS)システム100に接続されてもよい。バッテリ/UPSシステム100は、整流器/インダクタシステム700を介して発電システム300に選択的に電力供給することができる。スイッチングサブシステム200は、バッテリ/UPSシステム100の回路全体への切り替えを制御して、回路を完成させるために配電システム400に接続されているバッテリ充電システム600から再充電電力を受け取ることができる。
【0045】
引き続き図4を参照すると、システム全体は、スイッチングシステム200の制御下でバッテリ/UPSシステム100を整流器/インダクタシステム700に接続することによって電力を生成するために、開始されてもよい。DC電力は、インダクタ710、ブレーカ720及び整流器730を介してバッテリ/UPSシステム100から流れてもよい。整流器730からのDC電力は発電システム300に供給される。機能制御サブシステム310は、整流器730からのDC電力をDC電気モータサブシステム330に印加する。そして、DCモータがDC発電機380を駆動させる。
【0046】
電気モータ330は発電機350に動作可能に接続される。機能制御サブシステム310は、電気モータサブシステム330の速度を制御することができる。また、発電システム300は、機能制御サブシステム310によって制御される冷却サブシステム360を含んでもよい。冷却サブシステム360は、機能制御サブシステム310、電気モータサブシステム330及びDC発電機380などのシステム全体の任意の及び/又はすべての発熱構成要素と動作上接触することができる。冷却サブシステム360は、当業者に知られているかたちでシステム要素を最適動作温度範囲内に維持することができる。
【0047】
キャパシタサブシステム320は、機能制御サブシステム310に電気的に結合されてもよい。キャパシタサブシステム320は、互いに並列に相互接続された複数のキャパシタを含んでもよい。キャパシタサブシステム320は、力率ラグ及び位相シフトのようなシステム特性を制御及び補正するために使用されてもよい。キャパシタサブシステム320はまた、蓄積されたエネルギーを増大させ、機能制御サブシステム310内のプロセッサによって生成される正弦波の安定化を改善することができる。
【0048】
機能制御サブシステム310は、デジタルプロセッサと、デジタルメモリコンポーネントと、必要に応じて本明細書に記載されるかたちでシステム全体を動作させるための制御プログラミングとを含むことができる。例えば、機能制御サブシステム310は、起動シーケンス、停止シーケンス、振動監視、オーバーヒート監視及び遠隔監視のためのシステム構成要素を制御するプログラミングを含むことができる。また機能制御サブシステム310は、システムデータを提供する1つ又は複数のパラメータ監視構成要素を含むか、又はそれに接続されてもよい。そのようなデータは、バッテリ充電レベル及び容量、バッテリアンペア数、バッテリ電圧、バッテリ使用時間、バッテリ充電時間、現在時刻、システム要素温度、振動、ソースの負荷、電気モータトルク、電気モータ回転速度、発電機トルク、発電機回転速度、バッテリ充電システム負荷、整流器設定並びにインダクタ設定を含むことができるが、これらに限定されない。
【0049】
好ましい実施形態では、DC発電機380は、低い回転速度で比較的低いトルク要件で10kWの電力を出力することができる。例えば、DC発電機380は、出力電力1kWあたり5ポンド・フィート(foot-pound)のトルクを必要としてもよい。DC発電機380から出力されるDC電力は、動作に220ACボルトを必要とするオングリッド(例えば、10kW)インバータ370に供給されてもよい。そして、オングリッドインバータ370からのAC電力は、ローカル又は国のパワーグリッド、ローカルのコンセント及び配電システム400にオンライン(on-line)で提供されてもよい。システム全体が起動して電力を生成している際、オングリッドインバータ370は、配電システム400に接続された負荷源500に対する電流要求のすべてを供給するとともに、DC電気モータサブシステム330に電力供給するために必要な電流を供給することができる。余剰電力はすべて、家庭用壁コンセント410のようなグリッドに接続された負荷に電力供給するために、オングリッドインバータ370から国のグリッドに供給することができる。国のグリッドに送られたこの余剰電力は、電力会社に販売されるか、クレジット取引されてもよい。
【0050】
上述のように、配電システム400は、整流器を含むバッテリ充電システム600に接続されてもよい。配電システムは、壁コンセント410などを含む家庭に電力を送るために国のグリッドに接続されてもよい。バッテリ充電システム600からのDC電力を使用して、バッテリ/UPSシステム100をフル充電された状態に維持してもよい。再充電に必要とされない余剰電力は、整流器/インダクタシステム700に送られて、DCモータ330に電力供給するために使用されてもよい。バッテリ/UPSシステム100がフル充電された状態にあるとき、DCモータ330を駆動するための電力はすべて、バッテリ充電システム600によって供給されてもよい。このようにして、バッテリ/UPSシステム100は、電流供給器ではなく、電流触媒(current catalyst)として機能することができる。一実施形態では、バッテリ充電コントローラサブシステム650(図示せず)は、配電サブシステム400と電気バッテリシステム100とを結合することができる。
【0051】
図5を参照すると、図4に示されているものとほぼ同一のシステムが示されている。図5のシステムは、オングリッドインバータ(370、図4)の代わりに(例えば8kWの)オフグリッドインバータ372を含むという点で、図4のシステムとは異なる。オフグリッドインバータ372は、国のパワーグリッドに接続されていない。図5のシステムは、国のパワーグリッドに接続されてなく、したがってオフグリッドインバータ372から国のパワーグリッドに電力供給する能力がない点を除いて、図4のシステムと同じように動作する。
【0052】
図6は、オングリッドインバータ370及びオフグリッドインバータ372の両方が含まれるように、図4の要素と図5の要素を組み合わせたシステムを示す。図6のシステムは、国のグリッドが落ちたときに中断されない電力供給をするために使用することができる。図6のシステムは、国のパワーグリッドが機能しているときに、システムにオングリッドインバータ370を使用させるようにする特徴部を含む。しかしながら、国のパワーグリッドが故障すると、システムはオフグリッドインバータ372を使用して電力供給することに切り替え、それによってシステムは国のパワーグリッドから切り離される。
【0053】
図7に本発明の他の実施形態が示されており、同図において他の実施形態に関連して記載された要素と同様に動作する同様の要素には同様の参照符号が付されている。
【0054】
DCバッテリシステム100は、導体150,152及び156を介してスイッチングサブシステム200に接続される。そして、スイッチングシステム200は、DC/ACインバータ640を介してAC配電システム400に接続される。AC配電システム400は、負荷源500と発電システム300の両方に接続される。そして発電システム300は、バッテリ充電コントローラサブシステム650を介してスイッチングシステム200に接続される。
【0055】
具体的には、DCバッテリシステム100の第1、第2及び第3のバッテリサブシステム110,120及び130の第1の正極は、それぞれ導体150,152及び156を介してスイッチングサブシステム200に電気的に接続されてもよい。そして、スイッチングサブシステム200は、ポイントAを介して正極性導体を介してバッテリ充電コントローラサブシステム650に、またポイントCを介して正極性導体を介してDC/ACインバータ640に電気的に接続されてもよい。第1、第2及び第3のバッテリサブシステム110,120及び130の負極は、ポイントBを介して導体154を介してバッテリ充電コントローラサブシステム650及びDC/ACインバータ640に電気的に接続されてもよい。
【0056】
一般に、バッテリ充電コントローラは、バッテリに加えられる又はバッテリから出される電流のレート(変化量)を制限する。このアプリケーションでは、バッテリ充電コントローラサブシステム650は、バッテリが予め決められ設定された高電圧レベルを超えた場合に電気バッテリサブシステム100内のバッテリの充電を停止し、バッテリ電圧がその予め決められたレベルを下回って戻った場合に充電を再び可能にする。
【0057】
一実施形態において、バッテリ充電コントローラサブシステム650は、パルス幅変調(PWM)及び最大電力点追跡器(MPPT)技術を含み、これによりバッテリのレベルに応じて充電率を調整してバッテリの最大容量のより近くまでの充電を可能にする。
【0058】
バッテリ充電コントローラサブシステム650は、バッテリ性能又は寿命を低下させ得るとともに安全リスクをもたらし得る過充電の可能性を低減することができ、過電圧に対する保護をすることができる。また、バッテリ充電コントローラサブシステム650は、バッテリ技術に応じてバッテリの完全な消耗又は著しい放電を防止するか又は制御された放電を実行して、バッテリ寿命を保護することもできる。一実施形態では、バッテリ充電コントローラサブシステム650は、発電機サブシステム380に対して必要とされる負荷又は取り出しを適用して、電気バッテリサブシステム100が所定の期間において再充電されることを確実にする。一実施形態では、バッテリ充電コントローラサブシステム650は、発電機サブシステム380に対して必要とされる負荷又は引き込みを適用して、バッテリサブシステム100が所定の速度で必要とされる電圧及びアンペア数を受けることを確実にする。
【0059】
スイッチングサブシステム200は、回路全体の内外へのDCバッテリシステム100の切り替えを制御することができ、これにより発電システム300に接続されているバッテリ充電コントローラサブシステム650を介して再充電電力を受け取ることで回路を完成させることができる。
【0060】
引き続き図7を参照すると、システム全体は、DCバッテリシステム100をスイッチングシステム200を介してかつその制御下でDC/ACインバータ640に接続することによって、電力を生成するように作動開始されてもよい。DC電力は、DCバッテリシステム100からDC/ACインバータ640及びスイッチングサブシステム200を介してAC配電システム400に流れてもよい。
【0061】
AC配電システム400からのAC電力は、発電システム300及び負荷源500に供給される。機能制御サブシステム310は、AC配電システム400に接続されている整流器630からのDC電力を、DC電気モータサブシステム330に印加する。
【0062】
符号400からのAC電力は、符号630を介して符号300に供給される。符号630からのDC電力は、符号310を介して符号330に供給される。そして、DCモータ330はDC発電機380を駆動する。上述のように、配電システム400は、整流器サブシステム630を含む発電システム300に接続されてもよい。
【0063】
とりわけ、機能制御サブシステム310は、DC電気モータサブシステム330の速度を制御することができる。DCモータ330とAC発電機350との間の結合器の回転速度は必要に応じてさまざまであってよいが、結合器の回転速度はDC電気モータ330及びAC発電機350の出力速度に対して不変である。一実施形態では、DC電気モータ330とAC発電機350とが直接連結される。
【0064】
また、発電システム300は、機能制御サブシステム310によって制御される冷却サブシステム360を含んでもよい。冷却サブシステム360は、機能制御サブシステム310、DC電気モータサブシステム330及びDC発電機380などの、システム全体の任意の及び/又はすべての発熱構成要素と動作上接触することができる。冷却サブシステム360は当業者に公知の方法でシステム要素を最適動作温度範囲に維持することができる。
【0065】
キャパシタサブシステム320は機能制御サブシステム310に電気的に結合されてもよい。キャパシタサブシステム320は互いに並列に相互接続された複数のキャパシタを含んでもよい。キャパシタサブシステム320は、力率ラグ及び位相シフトのようなシステム特性を制御及び補正するために使用されてもよい。キャパシタサブシステム320はまた、蓄積されたエネルギーを増大させ、機能制御サブシステム310内のプロセッサによって生成される正弦波の安定化を改善することができる。
【0066】
機能制御サブシステム310は、デジタルプロセッサと、デジタルメモリコンポーネントと、必要に応じて本明細書に記載されるかたちでシステム全体を動作させるための制御プログラミングとを含むことができる。例えば、機能制御サブシステム310は、起動シーケンス、停止シーケンス、振動監視、オーバーヒート監視及び遠隔監視のためのシステム構成要素を制御するプログラミングを含むことができる。また機能制御サブシステム310は、システムデータを提供する1つ又は複数のパラメータ監視構成要素を含むか、又はそれに接続されてもよい。そのようなデータは、バッテリ充電レベル及び容量、バッテリアンペア数、バッテリ電圧、バッテリ使用時間、バッテリ充電時間、現在時刻、システム要素温度、振動、ソースの負荷、電気モータトルク、電気モータ回転速度、発電機トルク、発電機回転速度、バッテリ充電システム負荷、整流器設定並びにインダクタ設定を含むことができるが、これらに限定されない。
【0067】
好ましい実施形態では、DC発電機380は、低い回転速度で比較的低いトルク要件で10kWの電力を出力することができる。例えば、DC発電機380は、出力電力1kWあたり5ポンド・フィートのトルクを必要としてもよい。
【0068】
システム全体が起動して電力を生成している際、DC/ACインバータ640は、配電システム400に接続された負荷源500に対する電流要求のすべてを供給するとともに、DC電気モータサブシステム330に電力供給するために必要な電流を供給することができる。いくつかの実施形態では、インバータ640は、DC電気モータ330を停止させて、システムがバッテリサブシステム100によって電力供給されるようにすることができる。バッテリサブシステム100が所定のレベルまで放電すると、インバータ640はDC電気モータ330を再始動させる。
【0069】
発電システム300からバッテリ充電コントローラサブシステム650を介して流れるDC電力を使用して、DCバッテリシステム100をフル充電された状態に保つことができる。
【0070】
再充電に必要とされない余剰電力は、インバータサブシステム640、配電サブシステム400、整流器サブシステム630及び電気機能制御部310に向けられて、DCモータ330に電力供給するために使用することができる。
【0071】
DCバッテリシステム100がフル充電された状態にあるとき、DCモータ330を駆動するための電力のすべてがバッテリ充電システム600によって供給されてもよい。このようにして、DCバッテリシステム100は、電流供給器ではなく、電流触媒として機能してもよい。
【0072】
図8に本発明の他の実施形態が示されており、同図において他の実施形態に関連して記載された要素と同様に動作する同様の要素には同様の参照符号が付されている。
【0073】
DCバッテリシステム100は、導体150,152及び156を介してスイッチングサブシステム200に接続される。そして、スイッチングシステム200は、DC/ACインバータ640を介して第1のAC配電システム410及び第2のAC配電システム420に接続される。第1のAC配電システム410は負荷源500と発電システム300の両方に接続される。そして発電システム300は第2のAC配電システム420に接続される。発電システム300は、第1のAC配電サブシステムからAC電力を受け取る整流器サブシステムを備える。また、発電システム300は、機能制御サブシステム310、DC電気モータ330及びAC発電機350を備え、これらはすべて以下により詳細に説明される。
【0074】
具体的には、DCバッテリシステム100の第1、第2及び第3のバッテリサブシステム110,120及び130の第1の正極は、それぞれ導体150,152及び156を介してスイッチングサブシステム200に電気的に接続されてもよい。そして、スイッチングサブシステム200は、ポイントAを介して正極性導体を介して機能制御サブシステム310に、またポイントCを介して正極性導体を介してDC/ACインバータ640に電気的に接続されてもよい。第1、第2及び第3のバッテリサブシステム110,120及び130の負極は、ポイントBを介して導体154を介して機能制御サブシステム310及びDC/ACインバータ640に電気的に接続されてもよい。
【0075】
スイッチングサブシステム200は、回路全体の内外へのDCバッテリシステム100の切り替え制御することができ、これにより発電システム300の一部である機能制御サブシステム310を介して再充電電力を受け取ることで回路を完成させることができる。
【0076】
引き続き図8を参照すると、システム全体は、DCバッテリシステム100をスイッチングシステム200を介してかつその制御下でDC/ACインバータ640に接続することによって、電力を生成するように作動開始されてもよい。そして、インバータ640からのAC電力が第1のAC配電サブシステム410に流れてもよい。
【0077】
第1のAC配電システム410からのAC電力の第1の部分は負荷源500に供給され、AC電力の第2の部分は発電システム300の一部である整流器630に供給される。
【0078】
機能制御サブシステム310は、整流器630からのDC電力をDC電気モータサブシステム330に供給する。そして、DCモータ330によりAC発電機350が駆動される。次いで、AC発電機350からのAC電力が第2のAC配電システム420に流れ、そしてインバータ640に流れて、回路が完成する。
【0079】
とりわけ、機能制御サブシステム310は、DC電気モータサブシステム330の速度を制御することができる。DCモータ330とAC発電機350との間の結合器の回転速度は必要に応じてさまざまであってよいが、結合器の回転速度はDC電気モータ330及びAC発電機350の出力速度に対して不変である。一実施形態では、DC電気モータ330とAC発電機350とが直接連結される。
【0080】
また、発電システム300は、機能制御サブシステム310によって制御される冷却サブシステム360を含んでもよい。冷却サブシステム360は、機能制御サブシステム310、DC電気モータサブシステム330及びAC発電機350などの、システム全体の任意の及び/又はすべての発熱構成要素と動作上接触することができる。冷却サブシステム360は当業者に公知の方法でシステム要素を最適動作温度範囲に維持することができる。
【0081】
キャパシタサブシステム320は機能制御サブシステム310に電気的に結合されてもよい。キャパシタサブシステム320は互いに並列に相互接続された複数のキャパシタを含んでもよい。キャパシタサブシステム320は、力率ラグ及び位相シフトのようなシステム特性を制御及び補正するために使用されてもよい。キャパシタサブシステム320はまた、蓄積されたエネルギーを増大させ、機能制御サブシステム310内のプロセッサによって生成される正弦波の安定化を改善することができる。
【0082】
機能制御サブシステム310は、デジタルプロセッサと、デジタルメモリコンポーネントと、必要に応じて本明細書に記載されるかたちでシステム全体を動作させるための制御プログラミングとを含むことができる。例えば、機能制御サブシステム310は、起動シーケンス、停止シーケンス、振動監視、オーバーヒート監視及び遠隔監視のためのシステム構成要素を制御するプログラミングを含むことができる。また機能制御サブシステム310は、システムデータを提供する1つ又は複数のパラメータ監視構成要素を含むか、又はそれに接続されてもよい。そのようなデータは、バッテリ充電レベル及び容量、バッテリアンペア数、バッテリ電圧、バッテリ使用時間、バッテリ充電時間、現在時刻、システム要素温度、振動、ソースの負荷、電気モータトルク、電気モータ回転速度、発電機トルク、発電機回転速度、バッテリ充電システム負荷、整流器設定並びにインダクタ設定を含むことができるが、これらに限定されない。
【0083】
好ましい実施形態では、DC発電機380は、低い回転速度で比較的低いトルク要件で10kWの電力を出力することができる。例えば、DC発電機380は、出力電力1kWあたり5ポンド・フィートのトルクを必要としてもよい。
【0084】
システム全体が起動して電力を生成している際、DC/ACインバータ640は、配電システム400に接続された負荷源500に対する電流要求のすべてを供給するとともに、発電機サブシステム300、特にDC電気モータサブシステム330に電力を供給するために必要な電流を供給することができる。いくつかの実施形態では、インバータ640は、DC電気モータ330を停止させて、システムがバッテリサブシステム100によって電力供給されるようにすることができる。バッテリサブシステム100が所定のレベルまで放電すると、インバータ640はDC電気モータ330を再始動させる。
【0085】
発電システム300からバッテリ充電コントローラサブシステム650を介して流れるDC電力を使用して、DCバッテリシステム100をフル充電された状態に保つことができる。
【0086】
この実施形態では、図7に示される実施形態と比較して、DC発電機380がAC発電機350で置き換えられている。これにより、AC電流を第2の配電パネル420に直接供給することができる。そして、AC電力をDC/ACインバータに直接供給し、これにより、グリッドタイの場合と同じ効果をインバータにもたらすと考えられる。インバータ内のセンサはAC電力を検出し、これを当該センサを介して第1の配電パネル410に直接供給することができるであろう。加えて、AC発電機を使用することによって、システムはインバータに含まれる充電コントローラを利用することになるので、バッテリ充電コントローラサブシステム650に対する要求はもはや存在しないこととなる。
【0087】
図9に本発明の別の実施形態が示されており、同図において他の実施形態に関連して記載された要素と同様に動作する同様の要素には同様の参照符号が付されている。
【0088】
DC発電システム300は、オングリッドインバータ370を介してAC配電システム400に接続されて負荷源500に電力を供給するようにしてもよい。また、DC発電システム300は、整流器/インダクタシステム700を介してDCバッテリシステム100に接続されてもよい。バッテリ/UPSシステム100は、整流器/インダクタシステム700を介して発電システム300に選択的に電力供給することができる。スイッチングサブシステム200は、回路全体の内外へのバッテリ100の切り替えを制御することができ、これによりDC発電機380に接続されているバッテリ充電コントローラサブシステム650から再充電電力を受け取ることで回路を完成させることができる。
【0089】
引き続き図9を参照すると、システム全体は、スイッチングシステム200の制御下でバッテリ100を整流器/インダクタシステム700に接続することによって電力を生成するように作動開始されてもよい。DC電力は、バッテリ/UPSシステム100から整流器730及びブレーカ720を介して流れてもよい。整流器730からのDC電力は発電システム300に供給される。機能制御サブシステム310は、整流器730からのDC電力をDC電気モータサブシステム330に供給する。そして、DCモータによってDC発電機380が駆動される。DCモータ330とAC発電機350との間の結合器の回転速度は必要に応じてさまざまであってもよいが、結合器の回転速度はDC電気モータ330及びAC発電機350の出力速度に対して不変である。一実施形態では、DC電気モータ330とAC発電機350とが直接連結される。
【0090】
機能制御サブシステム310は、電気モータサブシステム330の速度を制御することができる。また、発電システム300は、機能制御サブシステム310によって制御される冷却サブシステム360を含んでもよい。冷却サブシステム360は、機能制御サブシステム310、電気モータサブシステム330、ギアボックス340及びDC発電機380などの、システム全体の任意の及び/又はすべての発熱構成要素と動作上接触することができる。冷却サブシステム360は当業者に公知の方法でシステム要素を最適動作温度範囲に維持することができる。
【0091】
キャパシタサブシステム320は機能制御サブシステム310に電気的に結合されてもよい。キャパシタサブシステム320は互いに並列に相互接続された複数のキャパシタを含んでもよい。キャパシタサブシステム320は、力率ラグ及び位相シフトのようなシステム特性を制御及び補正するために使用されてもよい。キャパシタサブシステム320はまた、蓄積されたエネルギーを増大させ、機能制御サブシステム310内のプロセッサによって生成される正弦波の安定化を改善することができる。
【0092】
機能制御サブシステム310は、デジタルプロセッサと、デジタルメモリコンポーネントと、必要に応じて本明細書に記載されるかたちでシステム全体を動作させるための制御プログラミングとを含むことができる。例えば、機能制御サブシステム310は、起動シーケンス、停止シーケンス、振動監視、オーバーヒート監視及び遠隔監視のためのシステム構成要素を制御するプログラミングを含むことができる。また機能制御サブシステム310は、システムデータを提供する1つ又は複数のパラメータ監視構成要素を含むか、又はそれに接続されてもよい。そのようなデータは、バッテリ充電レベル及び容量、バッテリアンペア数、バッテリ電圧、バッテリ使用時間、バッテリ充電時間、現在時刻、システム要素温度、振動、ソースの負荷、電気モータトルク、電気モータ回転速度、発電機トルク、発電機回転速度、バッテリ充電システム負荷、整流器設定並びにインダクタ設定を含むことができるが、これらに限定されない。
【0093】
好ましい実施形態では、DC発電機380は、低い回転速度で比較的低いトルク要件で10kWの電力を出力することができる。例えば、DC発電機380は、出力電力1kWあたり5ポンド・フィートのトルクを必要としてもよい。
【0094】
DC発電機380から出力されるDC電力は、動作に220ACボルトを必要とするオングリッド(例えば、10kW)インバータ370に供給されてもよい。そして、オングリッドインバータ370からのAC電力は、ローカルの又は国のパワーグリッド、ローカルのコンセント及び配電システム400にオンラインで提供されてもよい。システム全体が起動して電力を生成している際、オングリッドインバータ370は、配電システム400に接続された負荷源500に対する電流要求のすべてを供給するとともに、配電システム400及び整流器/インダクタシステム700を介して、DC電気モータサブシステム330に電力を供給するのに必要な電流を供給することができる。余剰電力はすべて、家庭用壁コンセント410のようなグリッドに接続された負荷に電力供給するために、オングリッドインバータ370から国のグリッドに供給することができる。国のグリッドに送られたこの余剰電力は、電力会社に販売されるか、クレジット取引されてもよい。
【0095】
上述のように、配電システム400は、ブレーカ720及び整流器730を含むインダクタシステム70を介してバッテリ充電システム600に接続されてもよい。配電システムは、壁コンセント410などを含む家庭に電力を送るために国グリッドに接続されてもよい。DC発電機380からバッテリ充電コントローラサブシステム650を介して流れるDC電力を使用して、バッテリ/UPSシステム100をフル充電された状態に維持してもよい。再充電に必要とされない余剰電力は、整流器/インダクタシステム700に送られて、DCモータ330に電力供給するために使用されてもよい。バッテリ/UPSシステム100がフル充電された状態にあるとき、DCモータ330を駆動するための電力はすべて、バッテリ充電システム600によって供給されてもよい。このようにして、バッテリ/UPSシステム100は、電流供給器ではなく、電流触媒として機能することができる。
【0096】
当業者には理解されるように、本発明は、その精神又は本質的な特徴から逸脱せずに他の特定の形態で実施することができる。上述の要素は、本発明を実施するための1つの技術の例として提供される。当業者は、特許請求の範囲に記載の本発明から逸脱せずに多くの他の実施が可能であることを認識するであろう。例えば、使用されるバッテリ、電気モータ、発電機、インダクタ及び整流器の種類、サイズ及び容量は、本発明の意図された範囲から逸脱せずにさまざまであってよい。したがって、本発明の開示は、本発明の範囲を例示するものであり、限定するものではない。本発明は、添付の特許請求の範囲及びその均等物の範囲内である限り、本発明の上記修正及び変形のすべてを包含することが意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
【国際調査報告】