IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウーシー ペタバイト テクノロジ カンパニー リミテッドの特許一覧

特表2022-536770強誘電体メモリデバイス及びその形成方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-08-18
(54)【発明の名称】強誘電体メモリデバイス及びその形成方法
(51)【国際特許分類】
   H01L 27/11507 20170101AFI20220810BHJP
   H01L 45/00 20060101ALI20220810BHJP
   H01L 49/00 20060101ALI20220810BHJP
【FI】
H01L27/11507
H01L45/00 Z
H01L49/00 Z
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021573954
(86)(22)【出願日】2020-01-19
(85)【翻訳文提出日】2021-12-13
(86)【国際出願番号】 CN2020072927
(87)【国際公開番号】W WO2020258877
(87)【国際公開日】2020-12-30
(31)【優先権主張番号】16/450,919
(32)【優先日】2019-06-24
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】521038784
【氏名又は名称】ウーシー ペタバイト テクノロジ カンパニー リミテッド
【氏名又は名称原語表記】WUXI PETABYTE TECHNOLOGIES CO., LTD.
【住所又は居所原語表記】502 Jinbo Block Dong Zhuang Power Electronics Industrial Park, No.8 Hongyi Road Wuxi, Jiangsu 214000, China
(74)【代理人】
【識別番号】110002262
【氏名又は名称】TRY国際特許業務法人
(72)【発明者】
【氏名】ル ゼンウィ
【テーマコード(参考)】
5F083
【Fターム(参考)】
5F083FR02
5F083GA01
5F083GA05
5F083GA21
5F083GA27
5F083JA02
5F083JA03
5F083JA04
5F083JA06
5F083JA19
5F083JA36
5F083JA37
5F083JA38
5F083JA39
5F083JA40
5F083JA42
5F083JA43
5F083JA60
5F083KA01
5F083KA05
5F083LA21
5F083MA06
5F083MA19
5F083PR21
5F083PR40
(57)【要約】
強誘電体メモリデバイス及び強誘電体メモリデバイスを形成するための方法の実施例が開示される。一例では、強誘電体メモリセルは、第1電極、第2電極、及び第1電極と第2電極との間に配置されたドープされた強誘電体層を含む。ドープされた強誘電体層は、酸素及び1つ又は複数の強誘電体金属を含む。ドープされた強誘電体層は、第II族元素、第III族元素及びランタノイド元素のうちの1つからの少なくとも1つのドーパントを含む複数のドーパントをさらに含む。前記複数のドーパントは、前記1つ又は複数の強誘電体金属とは異なる。
【特許請求の範囲】
【請求項1】
強誘電体メモリセルであって、
第1電極と、
第2電極と、
第1電極と第2電極都の間に配置されたドープされた強誘電体層とを含み、前記ドープされた強誘電体層は、
酸素及び1つ又は複数の強誘電体金属と、
複数のドーパントと、を含み、前記複数のドーパントは、第II族元素、第III族元素、又はランタノイド元素のうちの1つからの少なくとも1つのドーパントを含み、前記1つ又は複数の強誘電体金属とは異なる、ことを特徴とする強誘電体メモリセル。
【請求項2】
前記複数のドーパントは、ドープされた強誘電体層の第1レベルから強誘電体層の第2レベルへ濃度勾配に沿って分布される、ことを特徴とする請求項1に記載の強誘電体メモリセル。
【請求項3】
第1レベル及び第2レベルのそれぞれは、第1電極及び第2電極と接触する表面のうちの対応する表面である、ことを特徴とする請求項2に記載の強誘電体メモリセル。
【請求項4】
前記複数のドーパントは、第1グループのドーパントと第2グループのドーパントを含み、
第1グループのドーパントは、第IV族元素からの少なくとも1つのドーパントを含み、
第2グループのドーパントは、第V族元素、第II族元素、第III族元素、又はランタノイド元素のうちの1つ又は複数からの少なくとも1つのドーパントを含む、ことを特徴とする請求項3に記載の強誘電体メモリセル。
【請求項5】
第1グループのドーパントは、ジルコニウム(Zr)、ハフニウム(Hf)、チタン(Ti)、又はシリコン(Si)の少なくともを含み、
第2グループのドーパントは、タンタル(Ta)、ニオビウム(Nb)、(Db)、バナジウム(V)、スカンジウム(Sc)、イットリウム(Y)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ランタノイド元素、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つを含む、ことを特徴とする請求項4に記載の強誘電体メモリセル。
【請求項6】
第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である、ことを特徴とする請求項5に記載の強誘電体メモリセル。
【請求項7】
前記複数のドーパントは、第1グループのドーパントと第2グループのドーパントを含み、
第1グループのドーパントは、第V族元素からの少なくとも1つのドーパントを含み、
第2グループのドーパントは、第II族元素、第III族元素、又はランタノイド元素のうちの1つ又は複数からの少なくとも1つのドーパントを含む、ことを特徴とする請求項3に記載の強誘電体メモリセル。
【請求項8】
第1グループのドーパントは、Ta、Nb、Db、又はVの少なくとも1つを含み、
第2グループのドーパントは、Sc、Y、Al、Ga、In、ランタノイド元素、Ca、Sr、又はBaの少なくとも1つを含む、ことを特徴とする請求項7に記載の強誘電体メモリセル。
【請求項9】
第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である、ことを特徴とする請求項8に記載の強誘電体メモリセル。
【請求項10】
前記複数のドーパントは、第1グループのドーパントと第2グループのドーパントを含み、
第1グループのドーパントは、第III族元素又はランタノイド元素からの少なくとも1つのドーパントを含み、
第2グループのドーパントは、第II族元素のうちの1つ又は複数からの少なくとも1つのドーパントを含む、ことを特徴とする請求項3に記載の強誘電体メモリセル。
【請求項11】
第1グループのドーパントは、Sc、Y、Al、Ga、In、又はランタノイド元素の少なくとも1つを含み、
第2グループのドーパントは、Ca、Sr又はBaの少なくとも1つを含む、ことを特徴とする請求項10に記載の強誘電体メモリセル。
【請求項12】
第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である、ことを特徴とする請求項11に記載の強誘電体メモリセル。
【請求項13】
第1レベル及び第2レベルのそれぞれは、ドープされた強誘電体層の中間レベル、並びに第1電極及び第2電極の1つと接触する表面のうちの対応するものである、ことを特徴とする請求項2に記載の強誘電体メモリセル。
【請求項14】
第1レベルは、第1電極及び第2電極の1つと接触する表面、並びにドープされた強誘電体層の中間レベルを含み、前記表面でのドーパント濃度は、中間レベルでのドーパント濃度と同じか又は異なり、
第2レベルは、ドープされた強誘電体層における前記表面と中間レベルとの間の別の中間レベルを含み、前記別の中間レベルでのドーパント濃度は、表面でのドーパント濃度と同じか又は異なり、且つ中間レベルでのドーパント濃度と同じか異なる、ことを特徴とする請求項2に記載の強誘電体メモリセル。
【請求項15】
第1レベルは、第1電極及び第2電極の1つと接触する表面と、ドープされた強誘電体層の中間レベルとの間のドープされた強誘電体層の別の中間レベルを含み、前記別の中間レベルでのドーパント濃度は、表面でのドーパント濃度と同じか又は異なり、且つ中間レベルでのドーパント濃度と同じか又は異なり、
第2レベルは、前記表面及びドープされた強誘電体層の中間レベルを含み、前記表面でのドーパント濃度は、中間レベルでのドーパント濃度と同じか又は異なる、ことを特徴とする請求項2に記載の強誘電体メモリセル。
【請求項16】
前記複数のドーパントは、ドープされた強誘電体層の表面に垂直な方向へ複数の濃度勾配に沿って分布され、前記複数の濃度勾配のそれぞれは、ドープされた強誘電体層の第1レベルからドープされた強誘電体層の第2レベルに延び、前記複数の濃度勾配の各第1レベルは互いに同じか又は異なり、且つ前記複数の濃度勾配の各第2レベルと互いに同じか又は異なる、ことを特徴とする請求項1に記載の強誘電体メモリセル。
【請求項17】
第1電極及び第2電極のうちの1つ又は複数は、窒化チタン(TiN)、窒化チタンシリコン(TiSiN)、窒化チタンアルミニウム(TiAlN)、炭窒化チタン(TiCN)、窒化タンタル(TaN)、窒化タンタルシリコン(TaSiN)、窒化タンタルアルミニウム(TaAlN)、窒化タングステン(WN)、ケイ化タングステン(WSi)、炭窒化タングステン(WCN)、ルテニウム(Ru)、酸化ルテニウム(RuO)、イリジウム(Ir)、ドープされた多結晶シリコン、透明導電酸化物(TCO)、又は酸化イリジウム(IrO)の少なくとも1つを含む、ことを特徴とする請求項1に記載の強誘電体メモリセル。
【請求項18】
第1電極及び第2電極のうちの1つ又は複数はTCOを含み、前記TCOは、ドープされたZnOベースのTCO、ドープされたTiOベースのTCO、ドープされたSnOベースのTCO、又はペロブスカイトTCOの少なくとも1つを含む、ことを特徴とする請求項17に記載の強誘電体メモリセル。
【請求項19】
第1電極及び第2電極のうちの前記1つ又は複数は、La1-xSrCrO(LSCO)を含む、ことを特徴とする請求項18に記載の強誘電体メモリセル。
【請求項20】
強誘電体メモリセルであって、
基板と、
基板上に垂直に延びる複数の強誘電体メモリストリングと、を含み、
前記複数の強誘電体メモリストリングのそれぞれは、導体層、第1電極、ドープされた強誘電体層、及び第2電極層を含み、これらは、強誘電体メモリストリングの中心から径方向にこの順序で配置され、
ドープされた強誘電体層は、
酸素及び1つ又は複数の強誘電体金属と、
複数のドーパントと、を含み、
前記複数のドーパントは、第II族元素、第III族元素、又はランタノイド元素のうちの1つからの少なくとも1つのドーパントを含み、前記1つ又は複数の強誘電体金属とは異なる、ことを特徴とする強誘電体メモリセル。
【請求項21】
前記複数のドーパントは、第1電極及び第2電極の一方から第1電極及び第2電極の他方へ濃度勾配に沿って分布される、第1グループのドーパント及び第2グループのドーパントを含み、
第1グループのドーパントは、ジルコニウム(Zr)、ハフニウム(Hf)、チタン(Ti)、又はシリコン(Si)の少なくとも1つを含み、
第2グループのドーパントは、タンタル(Ta)、ニオビウム(Nb)、(Db)、バナジウム(V)、スカンジウム(Sc)、イットリウム(Y)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ランタノイド元素、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つを含む、ことを特徴とする請求項20に記載の強誘電体メモリセル。
【請求項22】
第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である、ことを特徴とする請求項21に記載の強誘電体メモリセル。
【請求項23】
前記複数のドーパントは、第1電極及び第2電極の一方から第1電極及び第2電極の他方へ濃度勾配に沿って分布される、第1グループのドーパント及び第2グループのドーパントを含み、
第1グループのドーパントは、Ta、Nb、Db、又はVの少なくとも1つを含み、
第2グループのドーパントは、Sc、Y、Al、Ga、In、ランタノイド元素、Ca、Sr、又はBaの少なくとも1つを含む、ことを特徴とする請求項20に記載の強誘電体メモリセル。
【請求項24】
第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である、ことを特徴とする請求項23に記載の強誘電体メモリセル。
【請求項25】
前記複数のドーパントは、第1電極及び第2電極の一方から第1電極及び第2電極の他方へ濃度勾配に沿って分布される、第1グループのドーパント及び第2グループのドーパントを含み、
第1グループのドーパントは、Sc、Y、Al、Ga、In、又はランタノイド元素の少なくとも1つを含み、
第2グループのドーパントは、Ca、Sr又はBaの少なくとも1つを含む、ことを特徴とする請求項20に記載の強誘電体メモリセル。
【請求項26】
第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である、ことを特徴とする請求項25に記載の強誘電体メモリセル。
【請求項27】
強誘電体メモリセルを形成するための方法であって、
第1電極を形成することと、
第1電極と接触するドープされた強誘電体層を形成することであって、前記ドープされた強誘電体層は(i)酸素と1つ又は複数の強誘電体金属、及び(ii)第II族元素、第III族元素、又はランタノイド元素のうちの1つからの少なくとも1つのドーパントを含み、前記1つ又は複数の強誘電体金属とは異なる複数のドーパントを含むことと、
ドープされた強誘電体層と接触する第2電極を形成することとを含む、ことを特徴とする方法。
【請求項28】
ドープされた強誘電体層を形成することは、インサイチュドーピングプロセス、イオン注入プロセス、熱拡散プロセス、又はプラズマドーピングプロセスの少なくとも1つを含む、ことを特徴とする請求項27に記載の方法。
【請求項29】
ドープされた強誘電体層を形成することは、化学蒸着(CVD)プロセス、パルスレーザ堆積(PLD)プロセス、原子層堆積(ALD)プロセス、ゾルゲルプロセス、金属有機化学蒸着(MOCVD)プロセス、又は化学溶液堆積(CSD)プロセスの少なくとも1つでインサイチュドーピングプロセスを実行することを含み、インサイチュドーピングプロセスは、強誘電体層を形成する同じプロセスチャンバーにおいてその場で実行される、ことを特徴とする請求項28に記載の方法。
【請求項30】
ドープされた強誘電体層を形成することは、
強誘電体層を形成した後、前記複数のドーパントを強誘電体層にドープするために、イオン注入プロセス、熱拡散プロセス、又はプラズマドーピングプロセスの少なくとも1つを実行することを含む、ことを特徴とする請求項28に記載の方法。
【請求項31】
強誘電体層を形成することは、化学蒸着(CVD)、パルスレーザ堆積(PLD)、原子層堆積(ALD)、ゾルゲルプロセス、金属有機化学蒸着(MOCVD)、又は化学溶液堆積(CSD)の少なくとも1つを実行することを含む、ことを特徴とする請求項30に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施例は、強誘電体メモリデバイス及びその製造方法に関する。
【背景技術】
【0002】
強誘電体RAM(FeRAM又はFRAM(登録商標))などの強誘電体メモリは、強誘電体材料層を使用して不揮発性を実現する。強誘電体材料層は、印加された電界と蓄積された見かけの電荷との間の非線形の関係があるため、電界で極性を切り替えることができる。強誘電体メモリの利点は、低消費電力、高速書き込み性能、及び優れた最大読み取り/書き込み耐久性を含む。
【発明の概要】
【0003】
本明細書は、強誘電体メモリデバイス及びその製造方法の実施例を開示する。
【0004】
一例では、強誘電体メモリセルは、第1電極、第2電極、及び第1電極と第2電極との間に配置されたドープされた強誘電体層を含む。ドープされた強誘電体層は、酸素及び1つ又は複数の強誘電体金属を含む。ドープされた強誘電体層は、第II族元素、第III族元素及びランタノイド元素のうちの1つからの少なくとも1つのドーパントを含むがこれらに限定されない複数のドーパントをさらに含む。前記複数のドーパントは、前記1つ又は複数の強誘電体金属とは異なる。
【0005】
幾つかの実施例では、前記複数のドーパントは、ドープされた強誘電体層の第1レベルから強誘電体層の第2レベルへ濃度勾配に沿って分布される。幾つかの実施例では、第1レベルと第2レベルのドーパント濃度は異なる。幾つかの実施例では、第1レベルと第2レベルのドーパント濃度は同じである。
【0006】
幾つかの実施例では、第1レベル及び第2レベルはそれぞれ、第1電極及び第2電極と接触する表面のうちの対応する表面である。
【0007】
幾つかの実施例では、前記複数のドーパントは、第1グループのドーパントと第2グループのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、第IV族元素からの少なくとも1つのドーパントを含む。第2グループのドーパントは、第V族元素、第II族元素、第III族元素又はランタノイド元素の少なくとも1つからの少なくとも1つのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、ジルコニウム(Zr)、ハフニウム(Hf)、チタン(Ti)、又はシリコン(Si)の少なくとも1つを含む。第2グループのドーパントは、タンタル(Ta)、ニオビウム(Nb)、(Db)、バナジウム(V)、スカンジウム(Sc)、イットリウム(Y)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ランタノイド元素、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0008】
幾つかの実施例では、前記複数のドーパントは、第1グループのドーパントと第2グループのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、第V族元素からの少なくとも1つのドーパントを含み、第2グループのドーパントは、第II族元素、第III族元素又はランタノイド元素の少なくとも1つからの少なくとも1つのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Ta、Nb、Db、又はVの少なくとも1つを含み、第2グループのドーパントは、Sc、Y、Al、Ga、In、ランタノイド元素、Ca、Sr又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0009】
幾つかの実施例では、前記複数のドーパントは、第1グループのドーパントと第2グループのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、第III族元素又はランタノイド元素からの少なくとも1つのドーパントを含み、第2グループのドーパントは、第II族元素からの少なくとも1つのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Sc、Y、Al、Ga、In又はランタノイド元素の少なくとも1つを含み、第2グループのドーパントは、Ca、Sr、又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0010】
幾つかの実施例では、第1レベル及び第2レベルのそれぞれは、ドープされた強誘電体層の中間レベル、並びに第1電極及び第2電極の1つと接触する表面のうちの対応するものである。
【0011】
幾つかの実施例では、第1レベルは、第1電極及び第2電極の1つと接触する表面、及びドープされた強誘電体層の第1中間レベルを含む。表面でのドーパント濃度は、中間レベルでのドーパント濃度と同じであっても異なってもよい。幾つかの実施例では、第2レベルは、表面と中間レベルとの間のドープされた強誘電体層の別の中間レベルを含む。前記別の中間レベルのドーパント濃度は、表面でのドーパント濃度と同じであっても異なってもよく、且つ、中間レベルでのドーパント濃度と同じであっても異なってもよい。
【0012】
幾つかの実施例では、第1レベルは、第1電極及び第2電極の1つと接触する表面と、ドープされた強誘電体層の第2レベルとの間のドープされた強誘電体層の別の中間レベルを含む。前記別の中間レベルのドーパント濃度は、表面でのドーパント濃度と同じであっても異なってもよく、且つ、中間レベルでのドーパント濃度と同じであっても異なってもよい。幾つかの実施例では、第2レベルは、表面、及びドープされた強誘電体層の中間レベルを含む。表面でのドーパント濃度は、中間レベルでのドーパント濃度と同じであっても異なってもよい。
【0013】
幾つかの実施例では、前記複数のドーパントは、ドープされた強誘電体層の表面に垂直な方向に複数の濃度勾配に沿って分布される。前記複数のドーパントのそれぞれは、ドープされた強誘電体層の第1レベルから強誘電体層の第2レベルに延びることができる。前記複数の濃度勾配のそれぞれの第1レベルは互いに同じであっても異なってもよく、前記複数の濃度勾配のそれぞれの第2レベルは互いに同じであっても異なってもよい。幾つかの実施例では、第1電極及び第2電極のそれぞれは、窒化チタン(TiN)、窒化チタンシリコン(TiSiN)、窒化チタンアルミニウム(TiAlN)、炭窒化チタン(TiCN)、窒化タンタル (TaN)、窒化タンタルシリコン(TaSiN)、窒化タンタルアルミニウム(TaAlN)、窒化タングステン(WN)、ケイ化タングステン(WSi)、炭窒化タングステン(WCN)、ルテニウム(Ru)、酸化ルテニウム(RuO)、イリジウム(Ir)、ドープされた多結晶シリコン、透明導電酸化物(TCO)又は酸化イリジウム(IrO)の少なくとも1つを含む。
【0014】
幾つかの実施例では、第1及び/又は第2電極は透明導電酸化物(TCO)を含む。TCOは、ドープされたZnOベースのTCO、ドープされたTiOベースのTCO、ドープされたSnOベースのTCO、及びペロブスカイトTCOを含むが、これらに限定されない。幾つかの実施例では、第1及び/又は第2電極は La1-xSrCrO(LSCO)を含む。
【0015】
別の例では、強誘電体メモリデバイスは、基板と、基板上に垂直に延びる複数の強誘電体メモリストリングとを含む。強誘電体メモリストリングのそれぞれは、導体層、第1電極、ドープされた強誘電体層、及び第2電極層を含み得、これらは、強誘電体メモリストリングの中心から径方向にこの順序で配置される。ドープされた強誘電体層は、酸素及び1つ又は複数の強誘電体金属を含む。ドープされた強誘電体層は、第II族元素、第III族元素及びランタノイド元素のうちの1つからの少なくとも1つのドーパントを含む複数のドーパントをさらに含むが、これらに限定されない。前記複数のドーパントは、前記1つ又は複数の強誘電体金属とは異なる。
【0016】
幾つかの実施例では、前記複数のドーパントは、第1電極及び第2電極の一方から第1電極及び第2電極の他方へ濃度勾配に沿って分布される、第1グループのドーパント及び第2グループのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、ジルコニウム(Zr)、ハフニウム(Hf)、チタン(Ti)、又はシリコンの少なくとも1つを含む。第2グループのドーパントは、タンタル(Ta)、ニオビウム(Nb)、(Db)、バナジウム(V)、スカンジウム(Sc)、イットリウム(Y)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ランタノイド元素、カルシウム(Ca)、ストロンチウム(Sr)、又はバリウム(Ba)の少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0017】
幾つかの実施例では、前記複数のドーパントは、第1電極及び第2電極の一方から第1電極及び第2電極の他方へ濃度勾配に沿って分布される、第1グループのドーパント及び第2グループのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Ta、Nb、Db、又はVの少なくとも1つを含み、第2グループのドーパントは、Sc、Y、Al、Ga、In、ランタノイド元素、Ca、Sr又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0018】
幾つかの実施例では、前記複数のドーパントは、第1電極及び第2電極の一方から第1電極及び第2電極の他方へ濃度勾配に沿って分布される、第1グループのドーパント及び第2グループのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Sr、Y、Al、Ga、In又はランタノイド元素の少なくとも1つを含み、第2グループのドーパントは、Ca、Sr、又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0019】
別の例では、強誘電体メモリセルを形成するための方法が開示される。第1電極が形成される。第1電極と接触するドープされた強誘電体層が形成される。ドープされた強誘電体層は、酸素及び1つ又は複数の強誘電体金属を含む。ドープされた強誘電体層は、第II族元素、第III族元素及びランタノイド元素のうちの1つからの少なくとも1つのドーパントを含むがこれらに限定されない複数のドーパントをさらに含む。前記複数のドーパントは、前記1つ又は複数の強誘電体金属とは異なる。ドープされた強誘電体層と接触する第2電極が形成される。
【0020】
幾つかの実施例では、ドープされた強誘電体層を形成することは、インサイチュドーピングプロセス、イオン注入プロセス、熱拡散プロセス、又はプラズマドーピングプロセスの少なくとも1つを含む。幾つかの実施例では、インサイチュドーピングプロセスは、化学蒸着(CVD)プロセス、パルスレーザ堆積(PLD)プロセス、原子層堆積(ALD)プロセス、ゾルゲルプロセス、金属有機CVD(MOCVD)プロセス、又は化学溶液堆積(CSD)プロセスを含むが、これらに限定されない。幾つかの実施例では、インサイチュドーピングプロセスは、強誘電体層を形成する同じプロセスチャンバーにおいてその場で実行される。幾つかの実施例では、イオン注入プロセス、熱拡散プロセス、プラズマドーピングプロセス又はそれらの組み合わせは、強誘電体層が堆積された後、複数のドーパントを強誘電体層にドープするために実行される。
【0021】
幾つかの実施例では、強誘電体層を形成することは、化学蒸着(CVD)、パルスレーザ堆積(PLD)、原子層堆積(ALD)、ゾルゲルプロセス、金属有機CVD(MOCVD)、又は化学溶液堆積(CSD)の少なくとも1つを実行することを含む。
【図面の簡単な説明】
【0022】
本明細書に組み込まれ、明細書の一部を形成する添付の図面は、本開示の実施例を例示し、明細書とともに、本開示の原理を説明し、当業者が本開示を使用できるようにするのにさらに役立つ。
図1】本開示の幾つかの実施例に係る、ドープされた強誘電体層を有する例示的な強誘電体メモリセルの断面図である。
図2A-2E】それぞれ、本開示の幾つかの実施例に係る例示的なドープされた強誘電体層の断面図である。
図3A-3C】本開示の幾つかの実施例に係る、強誘電体メモリセルを形成するための例示的な製造プロセスを示す。
図3D-3G】本開示の幾つかの実施例に係る、強誘電体メモリセルを形成するための別の例示的な制造プロセスを示す。
図4】本開示の幾つかの実施例に係る、強誘電体メモリセルを形成するための例示的な方法のフローチャートである。
図5】本開示の幾つかの実施例に係る例示的な強誘電体メモリデバイスの平面図を示す。
図6】本開示の幾つかの実施例に係る例示的な強誘電体メモリデバイスの断面図を示す。 本開示の実施例は、添付の図面を参照しながら説明される。
【発明を実施するための形態】
【0023】
本発明の構成及び配置が説明されるが、この説明は例示のみを目的としていることを理解されたい。当業者は、本開示の精神及び範囲から逸脱することなく、他の構成及び配置を使用できることを理解することができる。本発明が他の様々な用途にも使用できることは当業者には明らかであろう。
【0024】
なお、本発明の明細書に言及される「1つの実施形態」、「一実施形態」、「例示的な実施例」、「幾つかの実施例」などは、記載された実施例が特定の特徴、構造又は特性を含むことがあるが、すべての実施例が必ずしも前記特定の特徴、構造、又は特性を含むとは限らないことを意味することに留意されたい。また、そのような表現は必ずしも同じ実施例を指すとは限らない。また、特定の特徴、構造又は特性がある実施形態と併せて説明される場合、明示的に記載されているかどうかにかかわらず、他の実施例と組み合わせてそのような特定の特徴、構造又は特性を実施することは当業者の知識の範囲内である。
【0025】
一般に、用語は、文脈での使用法に基づいて少なくとも部分的に理解することができる。例えば、本明細書で使用される「1つ又は複数」という用語は、少なくとも部分的に文脈に基づいて、任意の特徴、構造、又は特性を単数形で説明するために、あるいは特徴、構造、又は特性の組み合わせを複数形で説明するために使用することができる。同様に、「1つ」、「一」、又は「該」などの用語は、少なくとも部分的に文脈に基づいて、単数形の使用法、又は複数形の使用法を表すと理解することができる。
【0026】
容易に理解できるように、本発明における「上に」、「の上に」、「上方に」の意味は、最も広い意味で解釈されるべきである。「上に」は、何かの上に直接あることを意味するだけでなく、中間の特徴があるか又は両者の間に中間層がある状況で何かの上にあることも含むことができる。また、「の上に」又は「上方に」は、何かの上又は上方にあることを指すだけでなく、両者の間に中間の特徴又は中間層がない状況で何かの上又は上方に(つまり、何かの上に直接)あることも含むことができる。
【0027】
さらに、ここでは、「の下面に」、「の下に」、「下部に」、「の上に」、「上部に」などの空間関連の用語は、図面に示される別の要素又は特徴に対する1つの要素又は特徴の関係の説明を容易にするために使用することができる。図面に示されるデバイスの向きに加えて、使用中又は操作中のデバイスの他の向きをカバーすることを意図している。装置は、他の方法で方向付ける(90°回転又は他の向き)ことができ、ここで使用される空間に関連する説明は、それに応じて説明することができる。
【0028】
本明細書で使用される「基板」という用語は、後続の材料層が追加される材料を指す。基板自体をパターン化することができる。基板に追加された材料は、パターン化することも、パターン化しないままにすることもできる。さらに、基板は、シリコン、ゲルマニウム、ガリウムヒ素、リン化インジウムなどのような様々な半導体材料を含み得る。あるいは、基板は、ガラス、プラスチック、又はサファイアウェーハなどの非導電性材料で作ることもできる。
【0029】
本明細書で使用される「層」という用語は、特定の領域に厚さを有する材料の部位を指す。層は、下部又は上部構造全体に広がることができ、あるいは、下部又は上部構造の範囲よりも狭い範囲を有することもできる。また、層は、同質性又は異質性の連続構造の1つの領域であり得、この領域の厚さは、該連続構造の厚さよりも薄い。例えば、層は、この連続構造の頂面又は底面の間の任意の対の水平面の間に、又はこの連続構造の頂面又は底面に位置することができる。層は、水平方向、垂直方向、及び/又はテーパー面に沿って延びることができる。基板は層であり得、1つ又は複数の層を含み得、及び/又はその上に1つ又は複数の層を有し得、及び/又はその下に1つ又は複数の層を有し得る。層は、複数の層を含むことができる。例えば、相互接続層は、1つ又は複数の導体及び接触層(接触部、相互接続線及び/又は貫通孔が形成される)及び1つ又は複数の誘電体層を含み得る。
【0030】
本明細書で使用される「公称的/公称的に」という用語は、ある部品又はプロセスの製品又はプロセスの設計段階で設定された特性又はパラメータの期待値又は目標値を指し、前記期待値よりも高い及び/又はより低い値の範囲も含む。この値の範囲は、製造プロセスのわずかな違い又は許容誤差によって引き起こされる可能性がある。本明細書で使用される「約」は、対象の半導体デバイスに関連する特定の技術ノードに基づいて変化する可能性のある所与の量の値を指す。特定の技術ノードに基づいて、用語「約」は、次のような所与の数量の値を指すことができる。前記数量は、例えば、該値の10%~30%の範囲内で変化する(該値±10%、±20%、又は±30%など)。
【0031】
本明細書で使用される用語「3次元(3D)メモリデバイス」は、次のような半導体デバイスを指す。前記半導体デバイスは、横方向に配向された基板上に垂直に配向されたメモリセルトランジスタストリング(本明細書では「メモリストリング」と呼ばれる)を有し、メモリストリングが基板に対して垂直方向に延びる。ここで使用される「垂直的/垂直的に」は、基板の横方向の表面に公称的に垂直であることを意味する。
【0032】
他のタイプのメモリデバイスと比較して、比較的小さいメモリセル密度は、既存の強誘電体メモリデバイスの主な制限要因である。これは、強誘電体材料のサイズが、例えば、閾値結晶(強誘電体相形成)の厚さよりも小さくなり、縮小すると、強誘電体材料は、強誘電体性を失う傾向があるためである。この効果は、強誘電体の減分極電界に関連する。前記減分極電界により、強誘電体材料は、斜方晶系の結晶構造を失う可能性があるため、ポストアニーリング条件に関係なく、結晶化できない。
【0033】
本開示による各実施例では、強誘電体メモリデバイスが提供される。前記強誘電体メモリは、強誘電体メモリセルのアレイを有する。前記強誘電体メモリデバイスは、他の強誘電体メモリデバイスと比較して、より小さなダイ(die)サイズ、より高い膜品質、より高いデバイス密度、及び改善された性能を有する。濃度勾配に沿って分布された複数グループのドーパントを有するドープされた強誘電体層を使用することによって、複数の顕著な利点を持つ高誘電率(高K)の強誘電体膜の結晶化を促進することができる。まず、結晶化プロセス中のドープされた強誘電体層の構造的欠陥は、ドーパントによって補償し低減することができる。次に、残留分極を、例えば、30%以上増加することができる。残留分極は、電界が完全に除去されたときに材料に残っている分極の尺度である。また、閾値結晶化を低下させることができ、例えば、5nm以下低下させることができる。それにより、メモリセルのサイズが大幅に縮小できるので、メモリセルアレイの密度が増加する。ドープされた構造を使用して斜方晶相を大幅に強化することにより、非常に薄い厚さ、例えば5nm以下のドープされた強誘電体層で強誘電特性を実現することができる。例えば、強誘電体層に追加された2成分のドーパントは、結晶化歪み中に弾性的(elastic)であり、高k強誘電体相の形成を改善する。幾つかの実施例では、ドープされた強誘電体層は、3次元メモリデバイスなどの高アスペクト比のトレンチコンデンサ内に形成することができる。
【0034】
図1は、本開示の幾つかの実施例に係る例示的な強誘電体メモリセル100の断面図を示す。強誘電体メモリセル100は、強誘電体メモリデバイスの記憶素子であり、様々な設計及び配置を含むことができる。図1に示すように、強誘電体メモリセル100は、「1T-1C」セルであり、基板108上に形成されたコンデンサー102、トランジスター104、及びコンデンサー102とトランジスター104との間の相互接続106を含む。基板108は、シリコン(例えば、単結晶シリコン)、シリコンゲルマニウム(SiGe)、ガリウムヒ素(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)又は任意の他の適切な材料を含むことができる。
【0035】
幾つかの実施例では、コンデンサー102は、下電極110、上電極112、及び垂直方向に下電極110と上電極112との間に配置されたドープされた強誘電体層114を含む。ドープされた強誘電体層114は、下面で下電極110と接触して電気的に接続し、且つ上面で上電極112と接触して電気的に接続することができる。下電極110は、相互接続106を介してトランジスター104に電気的に接続することができ、且つ、上電極112は、電源(図示せず)に電気的に接続することができ、その結果、電界は、ドープされた強誘電体層114に印加することができる。説明を簡単にするために、本開示で1T-1Cの例を示す。各実施例では、ドープされた強誘電体層114は、セルごとに1つ以上のコンデンサーを有する任意の他のタイプのメモリセルに使用することができる。例えば、ドープされた強誘電体層114は、「2T-2C」セル又は「nT-mC」(nとmは整数)セルにも使用することができる。メモリセルのタイプ(例えば、単一のメモリセル内のコンデンサーの数)は、本開示の実施例によって制限されるべきではない。
【0036】
下電極110及び上電極112の材料は、窒化チタン(TiN)、窒化チタンシリコン(TiSiN)、窒化チタンアルミニウム(TiAlN)、炭窒化チタン(TiCN)、窒化タンタル(TaN)、窒化タンタルシリコン(TaSiN)、窒化タンタルアルミニウム(TaAlN)、窒化タングステン(WN)、ケイ化タングステン(WSi)、炭窒化タングステン(WCN)、ルテニウム(Ru)、酸化ルテニウム(RuO)、イリジウム(Ir)、ドープされた多結晶シリコン、透明導電酸化物(TCO)又は酸化イリジウム(IrO)の少なくとも1つを含み得るが、これらに限定されない。
【0037】
幾つかの実施例では、第1及び/又は第2電極は、ドープされたZnOベースのTCO、ドープされたTiOベースのTCO、ドープされたSnOベースのTCO、及びペロブスカイトTCOを含むがこれらに限定されないTCOを含む。幾つかの実施例では、第1及び/又は第2電極はLa1-xSrCrO(LSCO)を含む。
【0038】
幾つかの実施例では、下電極110及び上電極112は同じ材料を含む。幾つかの実施例では、下電極110及び上電極112は異なる材料を含む。下電極110又は上電極112の厚さは、2nm~20nm(例えば、2nm、3nm、4nm、5nm、8nm、10nm、15nm、18nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、これらの値のいずれかを下限とする任意の範囲、又はこれらの値のいずれか2つによって定義された任意の範囲)など、約2nm~約50nmであってもよい。幾つかの実施例では、下電極110と上電極112は同じ厚さを有する。幾つかの実施例では、下電極110と上電極112は異なる厚さを有する。
【0039】
幾つかの実施例では、ドープされた強誘電体層114は、強誘電体膜の結晶化を改善できる複数のドーパントでドープされた強誘電体酸化物材料を含む。例えば、ドーパントは、ドープされた強誘電体層の結晶化中に弾性(elasticity)を提供することができ、それにより、強誘電体膜の結晶化中に形成される欠陥の数を低減し、高k強誘電体相の形成を改善することができる。幾つかの実施例では、ドープされた強誘電体層114は、1つ以上の強誘電体層を含み得ることが理解できる。
【0040】
強誘電体酸化物材料は、強誘電体複合酸化物を含むことができる。幾つかの実施例では、強誘電体酸化物材料は、酸素、及び1つ又は複数の強誘電体金属を含む。強誘電体金属は、ジルコニウム(Zr)、ハフニウム(Hf)及びチタン(Ti)を含み得るが、これらに限定されない。幾つかの実施例では、強誘電体金属は、アルミニウム(Al)、ニッケル(Ni)及び/又は鉄(Fe)をさらに含む。幾つかの実施例では、強誘電体酸化物材料はHfOを含む。幾つかの実施例では、強誘電体酸化物材料は、酸素、及び2つ又は複数の強誘電体金属を含む。2つの強誘電体金属のモル比は、0.1~10(例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10、これらの値のいずれかを下限とする任意の範囲、又はこれらの値のいずれか2つによって定義された任意の範囲)である。一例では、強誘電体酸化物材料はZrHfOを含み、ZrとHfのモル比は1である。別の例では、強誘電体酸化物材料はTiHfOを含み、TiとHfのモル比は1である。幾つかの実施例では、強誘電体酸化物材料は、酸素、及びシリコンなどの非金属材料を含む。
【0041】
ドープされた強誘電体層114はまた、結晶構造の一部として形成された複数のドーパントを含み得る。幾つかの実施例では、ドーパントは、強誘電体酸化物材料の結晶化中に形成される欠陥を補償して、ドープされた強誘電体層114の膜の品質を改善する。例えば、周期表における1つ又は複数の族の元素は、その物理的性質及び/又は化学的性質に基づいて、ドーパントとして選択され得る。幾つかの実施例では、元素は、ドープされた強誘電体層114における欠陥の補償を最適化するために選択され得る。
【0042】
幾つかの実施例では、ドーパントは、強誘電体酸化物材料中の強誘電体金属とは異なり、且つ、第II族元素(例えば、カルシウム(Ca)、ストロンチウム(Sr)又はバリウム(Ba))、第III族元素(例えば、スカンジウム(Sc)、イットリウム(Y)、アルミニウム(Al)、ガリウム(Ga)及びインジウム(In))、及びランタノイド元素(即ち、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメシウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu))からの1つ又は複数のドーパントを含む。ドーパントは、垂直方向(例えばz軸)に沿って所望の深さ範囲内で濃度勾配に沿って分布することができる。説明を容易にするために、深さ範囲は、垂直方向に沿って、ドープされた強誘電体層114の第1レベルと第2レベルとの間にあると説明される。説明を容易にするために、本開示では、濃度勾配は、ドープされた強誘電体層の第1レベルからドープされた強誘電体層114の第2レベルへのドーパント濃度の漸進的な減少を指す。幾つかの実施例では、第1レベルと第2レベルのドーパント濃度は異なる。幾つかの実施例では、第1レベルと第2レベルのドーパント濃度は同じである。幾つかの実施例では、ドーパントは、例えば、垂直方向又はドープされた強誘電体層114の表面に垂直な方向に沿って、複数の濃度勾配/プロファイルで、ドープされた強誘電体層114に分布され得る。ある濃度勾配の第1レベルでのドーパント濃度は、別の濃度勾配の第1レベルでのドーパント濃度と同じであっても異なってもよい。ある濃度勾配の第2レベルでのドーパント濃度は、別の濃度勾配の第2レベルでのドーパント濃度と同じであっても異なってもよい。ドーパントは、ドープされた強誘電体層114において、任意の適切なドーピングプロファイル(例えば、指数型ドーピングプロファイル、放物線型ドーピングプロファイル、又は線形ドーピングプロファイル)で分布され得る。従って、ドーパント濃度は、それに応じて、ドープされた強誘電体層114の深さとともに変化することができる。ドープされた強誘電体層114では、ドーピングプロファイルは、異なる深さ範囲で同じであり得るか又は変化し得る(例えば、あるレベルから別のレベル、又はある表面から別の表面へ)。ドープされた強誘電体層114における特定のタイプのドーピングプロファイルは、本開示の実施例によって制限されるべきではない。1つの例示的なドーピングプロファイルは、図1に示される。ドーパントは、矢印で示されるように、上面(例えば、第1レベル)から下面(例えば、第2レベル)へ濃度勾配に沿って分布され得る。即ち、ドーパント濃度は、ドープされた強誘電体層114の上面から下面へ徐々に低減する。幾つかの実施例では、ドーパント濃度の範囲は、約1017~1021/cm(例えば、ドープされた強誘電体層114の上面で)から約1021~1017/cm(例えば、ドープされた強誘電体層114の下面で)、又はその逆の範囲であり得る。
【0043】
ドープされた強誘電体層114は、2成分のドーパント、例えば、第1グループのドーパント及び第1グループのドーパントと異なる第2グループのドーパントを含み得る。幾つかの実施例では、第1グループのドーパントは、第IV族元素からの少なくとも1つのドーパントを含み、第2グループのドーパントは、第V族元素、第II族元素、第III族元素及びランタノイド元素の1つ又は複数からの少なくとも1つのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Zr、Hf、又はTiの少なくとも1つを含む。第1グループのドーパントは、強誘電体酸化物材料中の強誘電体金属とは異なる。一例では、強誘電体酸化物材料がZrHf(例えば、ZrHfO、x=y=1)を含む場合、第1グループのドーパントは、Zr又はHfの代わりに、Tiを含む。別の例では、強誘電体酸化物材料がTiHf(例えば、TiHfO、x=y=1)を含む場合、1グループのドーパントは、Ti又はHfの代わりに、Zrを含む。幾つかの実施例では、第2グループのドーパントは、タンタル(Ta)、ニオビウム(Nb)、(Db)、バナジウム(V)、Sc、Y、Al、Ga、In、ランタノイド元素、Ca、Sr又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100であり、例えば、100:1、90:1、80:1、50:1、25:1、10:1、5:1、1:1、1:5、1:10、1:25、1:50、1:80、1:90、1:100、これらの値のいずれかを下限とする任意の範囲、又はこれらの値のいずれか2つによって定義された任意の範囲である。2成分のドーパントは、強誘電体メモリデバイスの性能を顕著に改善し、強誘電体層の厚さとアニール温度を低下させることができるので、メモリ回路の設計により多くの自由度がある。厳密に設計されたドーピング勾配は、強誘電体メモリデバイスのスイッチング電荷、疲労、インプリント(imprint)、及び/又は保持(retention)などの強誘電体特性を改善することができる。
【0044】
幾つかの実施例では、第1グループのドーパントは、第V族元素からの少なくとも1つのドーパントを含み、第2グループのドーパントは、第II族元素、第III族元素及びランタノイド元素の1つ又は複数からの少なくとも1つのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Ta、Nb、Db、又はVの少なくとも1つを含む。幾つかの実施例では、第2グループのドーパントは、Sc、Y、Al、Ga、In、ランタノイド元素、Ca、Sr又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0045】
幾つかの実施例では、第1グループのドーパントは、第III族元素及びランタノイド元素からの少なくとも1つのドーパントを含み、第2グループのドーパントは、第II族元素の1つ又は複数からの少なくとも1つのドーパントを含む。幾つかの実施例では、第1グループのドーパントは、Sr、Y、又はランタノイド元素の少なくとも1つを含む。幾つかの実施例では、第2グループのドーパントは、Ca、Sr、又はBaの少なくとも1つを含む。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。例えば、第III族ドーパントと第II族ドーパントのモル比は約1:1であってもよい。
【0046】
幾つかの強誘電体メモリデバイスでは、膜の厚さが5nm未満の場合、追加されたポストアニール条件に関係なく膜が結晶化できないため、強誘電体膜は斜方晶系の結晶構造を失う可能性がある。上記のように、本明細書に開示されるドーパントは、例えば、結晶化中に形成される欠陥を補償することによって、強誘電体酸化物材料の結晶化を改善することができる。従って、幾つかの実施例では、強誘電体層の厚さは、1nm~5nm(例えば、1nm、1.5nm、2nm、2.5nm、3nm、3.5nm、4nm、4.5nm、5nm、これらの値のいずれかを下限とする任意の範囲、又はこれらの値のいずれか2つによって定義された任意の範囲)など、約1nm~約5nmであってもよい。
【0047】
幾つかの実施例では、トランジスター104は、ソース/ドレイン領域120と、ゲート誘電体122及びゲート導体124を有するゲートスタックとを含み得る。ソース/ドレイン領域120は、所望のドーピングレベルのn型又はp型ドーパントを有する、基板108内のドープされた領域であり得る。ゲート誘電体122は、酸化シリコン(SiO)、窒化シリコン(SiN)などの誘電体材料、あるいは、酸化アルミニウム(Al)、酸化ハフニウム(HfO)、酸化タンタル(Ta)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)又はそれらの任意の組み合わせを含むがこれらに限定されない高k誘電体材料を含み得る。ゲート導体124は、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、ポリシリコン、ケイ化物又はそれらの任意の組み合わせを含むがこれらに限定されない導電材料を含み得る。ゲート導体124は、強誘電体メモリセル100のワードラインとして機能することができる。相互接続(図示せず)は、相互接続106と接触しておらず、強誘電体メモリセル100のビットラインとして機能する、ソース/ドレイン領域120のうちの1つと接触することができる。
【0048】
ドーパントはまた、他の適切なドーピングプロファイルで、ドープされた強誘電体層114内に分布され得る。幾つかの実施例では、ドーパントのドーピングプロファイルは、結晶化プロセス及び/又は強誘電体酸化物材料の材料属性などの要因に基づいて決定される。図2A~2Eは、幾つかの実施例による、ドープされた強誘電体層114内の例示的なドーピングプロファイルの断面図を示す。各断面図の付近の矢印は、濃度勾配の方向(例えば、ドーパント濃度が減少する方向)を示す。図2A~2Eに示されるドープされた強誘電体層114は、図1に示されるドープされた強誘電体層114のように、第1と第2グループのドーパントの適切な組み合わせを含み得る。図2A~2Eのドープされた強誘電体層114において第1グループのドーパントと第2グループのドーパントとして使用される可能性のある元素の詳細については、図1のドープされた強誘電体層114内のドーパントの説明を参照されたい。ここでは繰り返さない。
【0049】
図2Aに示される例として、第1レベルは、ドープされた強誘電体層114の下面204を指し、第2レベルは、ドープされた強誘電体層114の上面202を指し、ドーパント濃度は、ドープされた強誘電体層114の下面204から上面202に減少することができる。矢印によって示されるように、ドーパント濃度は、約1021/cm(例えば、下面204で)から約1017/cm(例えば、上面202で)に減少することができる。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0050】
図2Bに示される別の例では、第1レベルは、ドープされた強誘電体層114の上面202及び下面204のそれぞれを指し、第2レベルは、ドープされた強誘電体層114の第1中間レベル206を指すことができる。本開示では、中間レベル(例えば、第1中間レベル206、第2中間レベル208、及び第3中間レベル210)は、上部境界(例えば、上面/レベル)と下部境界(例えば、下面/レベル)との間の任意の適切なレベル/深さ/位置/表面を表す。即ち、中間レベルは、必ずしも2つの境界間のちょうど中央の位置に配置されるとは限らない。中間レベルは、2つの境界間の中央位置から任意の所望の距離だけ離れてもよく、この距離は、実際の設計/応用によって決定される。例えば、第1中間レベル206は、ドープされた強誘電体層114における上面202と下面204との間の任意の適切なレベル/深さであり得る。幾つかの実施例では、第1中間レベル206は、上面202と下面204との間のほぼ中央位置であり得、上面202及び下面204のそれぞれに対してほぼ同じ距離を有し得る。幾つかの実施例では、ドーパント濃度は、図2Bの矢印によって示されるように、上面202及び下面204のそれぞれから第1中間レベル206に向かって減少し得る。幾つかの実施例では、ドーパント濃度は、それぞれ、約1021/cm(例えば、上面202で)及び約1021/cm(例えば、下面204で)から約1017/cm(例えば、中間レベル206で)に減少する。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0051】
図2Cに示されるまた別の例では、第1レベルは、ドープされた強誘電体層114の第1中間レベル206を指し、第2レベルは、ドープされた強誘電体層114の上面202及び下面204のそれぞれを指すことができる。幾つかの実施例では、ドーパント濃度は、図2Cの矢印によって示されるように、第1中間レベル206から上面202及び下面204のそれぞれに向かって減少し得る。幾つかの実施例では、ドーパント濃度は、約1021/cm(例えば、第1中間レベル206で)から約1017/cm(例えば、上面202で)、及び約1017/cm(例えば、下面204で)に減少する。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0052】
図2Dに示される別の例では、上面202、第1中間レベル206及び下面204は、それぞれ第1レベルであり得、2つの隣接する第1レベルの間の中間レベルは第2レベルであり得る。例えば、第2中間レベル208(例えば、上面202と第1中間レベル206との間で)及び第3中間レベル210(例えば、下面204と第1中間レベル206との間で)は、それぞれ第2レベルであり得る。第2中間レベル208は、上面202と第1中間レベル206との間の任意の適切な深さ/レベルであり得、第3中間レベル210は、第1中間レベル206と下面204との間の任意の適切な深さ/レベルであり得る。幾つかの実施例では、第2中間レベル208は、上面202と第1中間レベル206との間の中間位置であり得、第3中間レベル210は、第1中間レベル206と下面204との間の中間位置であり得る。例えば、第2中間レベル208は、上面202及び第1中間レベル206からほぼ同じ距離を有し、第3中間レベル210は、第1中間レベル206及び下面204からほぼ同じ距離を有する。幾つかの実施例では、図2Dの矢印によって示されるように、ドーパント濃度は、それぞれ、第1中間レベル206から第2中間レベル208及び第3中間レベル210に向かって減少し、上面202及び下面204のそれぞれから第2中間レベル208及び第3中間レベル210に向かって減少する。幾つかの実施例では、ドーパント濃度は、それぞれ、約1021/cm(例えば、第1中間レベル206で)から約1017/cm(例えば、第2中間レベル208で)、及び約1017/cm(例えば、第3中間レベル210で)に減少する。幾つかの実施例では、ドーパント濃度は、それぞれ、約1021/cm(例えば、上面202で)から約1017/cm(例えば、第2中間レベル208で)に減少し、且つ約1021/cm(例えば、下面204で)から約1017/cm(例えば、第3中間レベル210)に減少する。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。
【0053】
図2Eに示される別の例では、第2及び第3中間レベル208及び210はそれぞれ第1レベルであり得、上面202、第1中間レベル206及び下面204はそれぞれ第2レベルであり得る。図2Eに示すように、第2及び第3中間レベル208及び210は、ドープされた強誘電体層114における異なる表面/深さを表し、第2及び第3中間レベル208及び210でのドーパント濃度は、同じであっても異なってもよい。幾つかの実施例では、第2中間レベル208は、上面202と第1中間レベル206との間の中間位置であり得、第3中間レベル210は、第1中間レベル206と下面204との間の中間位置であり得る。幾つかの実施例では、図2Eの矢印によって示されるように、ドーパント濃度は、それぞれ第2中間レベル208及び第3中間レベル210から第1中間レベル206に向かって減少し、且つ、それぞれ第2中間レベル208及び第3中間レベル210から上面202及び下面204のそれぞれに向かって減少する。幾つかの実施例では、ドーパント濃度は、それぞれ、約1021/cm(例えば、第2中間レベル208で)及び約1021/cm(例えば、第3中間レベル210で)から約1017/cm(例えば、第1中間レベル206で)に減少する。幾つかの実施例では、ドーパント濃度は、それぞれ、約1021/cm(例えば、第2中間レベル208で)から約1017/cm(例えば、上面202で)に減少し、且つ、約1021/cm(例えば、第3中間レベル210で)から約1017/cm(例えば、下面204で)に減少する。幾つかの実施例では、第1グループのドーパントと第2グループのドーパントのモル比は、約100:1~約1:100である。説明を容易にするために、本開示は、ドープされた強誘電体層114の深さとともに変化するドーパント濃度を示すための例として、限られた数の中間レベルのみを示す。幾つかの実施例では、任意の適切な数の中間レベルを、ドープされた強誘電体層114内に形成することができる。例えば、設計/応用によって、中間レベルの数は10を超えることができる。中間レベルの特定の数及び位置は、本開示の実施例によって制限されるべきではない。
【0054】
図3A~3C及び図3D~3Gのそれぞれは、幾つかの実施例による、強誘電体メモリセル内の電極と接触するドープされた強誘電体層を形成するための例示的な制造プロセスを示す。図4は、電極と接触するドープされた強誘電体層を形成するための方法400のフローチャートを示す。プロセス300及び320によって形成されたドープされた強誘電体層の例は、図1に示されるドープされた強誘電体層114を含む。説明を容易にするために、プロセス300及び320は、図4と一緒に説明される。方法400に示される操作は網羅的ではなく、他の操作も、示される操作の前、後、又は間に実行できることを理解されたい。また、前記操作の幾つかは、同時に、又は図4に示されるものとは異なる順序で実行され得る。
【0055】
図4を参照すると、方法400は、第1電極が形成される操作402で開始する。図3Aに示すように、下電極302は、例えば、層間誘電体(ILD)層(図示せず)に形成される。同様に、図3Dに示すように、下電極322は、例えば、ILD層(図示せず)に形成される。下電極302/322は、物理蒸着(PVD)、化学蒸着(CVD)、電気化学堆積、原子層堆積(ALD)、及びパルスレーザ堆積(PLD)の少なくとも1つのプロセスを使用して堆積された導電層を含み得る。下電極302/322の厚さは、2nm~50nmであり得る。導電層を形成するための製造プロセスは、フォトエッチング、化学機械研磨(CMP)、湿式エッチング/乾式エッチング又はそれらの任意の組み合わせを含み得る。ILD層は、CVD、PLD、ALD、ゾルゲルプロセス、MOCVD、CSD又はそれらの任意の組み合わせを含むがこれらに限定されない、1つ又は複数の薄膜堆積プロセスによって堆積された誘電体材料を含み得る。
【0056】
方法400は操作404に進む。図4に示すように、操作404では、第1電極と接触するドープされた強誘電体層が形成される。幾つかの実施例では、ドープされた強誘電体層は第1電極の上に形成される。
【0057】
図3Bは、インサイチュドーピング法を使用して、ドープされた強誘電体層304を形成する操作を示す。図3Bに示すように、ドープされた強誘電体層304は、下電極302の上に形成される。前記ドープされた強誘電体層304は、下電極302と接触する。ドープされた強誘電体層304は、誘電体材料(例えば、強誘電体酸化物材料)を含み得る。誘電体材料は、酸化物と、Zr、Hf及びSiなどの1つ又は複数の強誘電体金属とを含み得るが、これらに限定されない。誘電体材料は、第II族元素、第III族元素及びランタノイド元素のうちの1つからの少なくとも1つを有するドーパントでドープされ得る。ドープされた強誘電体層304の厚さは、1nm~5nmなど、1nm~50nmであり得る。幾つかの実施例では、設計/応用に応じて、ドープされた強誘電体層304の部分(例えば、異なる深さ範囲で)は、異なる堆積方法によって形成され得る。例えば、ドープされた強誘電体層304の半分は、CVDプロセスによって形成され得、ドープされた強誘電体層304の残りは、その後、PVDによって形成され得る。ドープされた強誘電体層304を形成するための特定のプロセスは、本開示の実施例によって制限されるべきではない。
【0058】
幾つかの実施例では、誘電体材料は、約20℃~約600℃、例えば20℃~600℃(例えば、20℃、40℃、60℃、80℃、100℃、200℃、300℃、400℃、500℃、600℃、これらの値のいずれかを下限とする任意の範囲、又はこれらの値のいずれか2つによって定義された任意の範囲)の温度でCVDを使用して堆積されたものである。例えば、CVDプロセスは、ドーピング温度が室温~600℃の反応性ガスを使用する。幾つかの実施例では、反応性ガスは、蒸発した前駆体ガスを含む。反応性ガスは、Hf含有化合物、Zr含有化合物、又はSi含有化合物のうちの少なくとも1つを含み得る。一例では、反応性ガスは、Hf含有反応性ガス及びZr含有反応性ガスのうちの少なくとも1つを含む。ドーパント元素(例えば、Ti及びTa)を有するドーパント反応性ガスも、反応中に反応器に導入されて、誘電体材料を形成することができる。ドーパント反応性ガスを反応性ガスと混合して堆積中に誘電体材料を形成することができる。その結果、ドーパントは、所望のドーピングプロファイルで、続いて形成されるドープされた強誘電体層304に分布することができる。幾つかの実施例では、ドーパント反応性ガスの流速は、続いて形成されるドープされた強誘電体層304において所望の深さで所望のドーパント濃度に到達できるように調整することができる。例えば、より高い流速によって、より高いドーパント濃度をもたらす可能性があり、逆もまた同様である。説明のために、図3Bでは、元素304-1は、誘電体材料を形成するための1つ又は複数の反応性ガス分子を表し、元素304-2は、第1グループのドーパントを形成するための1つ又は複数のドーパント反応性ガス分子を表し、元素304-3は、第2グループのドーパントを形成するための1つ又は複数のドーパント反応性ガス分子を表す。元素304-2及び304-3の流速は、ドーパントが所望のドーピングプロファイルで続いて形成されるドープされた強誘電体層304に分布され得るように、動的に調整することができる。幾つかの実施例では、元素304-2と元素304-3のモル比は、元素304-2及び304-3の流速を調整することによって調整することができる。誘電体層を形成するための制造プロセスはまた、フォトエッチング、CMP、湿式エッチング/乾式エッチング又はそれらの任意の組み合わせを含み得る。
【0059】
幾つかの実施例では、誘電体材料は、20℃~600℃など、約20℃~600℃の温度で、ALDプロセスを使用して堆積される。例えば、ALDプロセスは、堆積温度が室温~600℃の前駆体を使用する。前駆体は、Hf含有化合物、Zr含有化合物、又はSi含有化合物のうちの少なくとも1つを含み得る。一例では、前駆体は、Hf含有化合物、Zr含有化合物、及び少なくとも1つのドーパント含有前駆体(例えば、Ta及びTi)のうちの少なくとも1つを含む。Hf含有化合物及びZr含有化合物は、同じ配位子を共有することができる。例えば、前駆体は室温で液相又は固体である。前駆体は、ドーパントがドープされた強誘電体層304の所望の深さに分布され、所望のドーピングプロファイルを形成するように、所望の順序で反応器に導入することができる。誘電体層を形成するための制造プロセスはまた、フォトエッチング、CMP、湿式エッチング/乾式エッチング又はそれらの任意の組み合わせを含み得る。
【0060】
幾つかの実施例では、誘電体材料は、20℃~300℃など、約0℃~600℃の温度で、PVDプロセスを使用して堆積される。幾つかの実施例では、所望の2成分のドーパント(例えば、HfZrTiO)を有する誘電体材料(例えば、強誘電体酸化物材料HfO)を含むターゲット材料は、ドープされた強誘電体層304を形成するように、基板上にスパッタし堆積される。反応性ガス(酸素など)は、ドープされた強誘電体層304において所望の組成を達成するために、不活性ガス(Arなど)とともに使用される。幾つかの実施例では、複数のターゲット材料(例えば、Hf、Zr及びTi)がPVDチャンバー内に置かれるとともに、反応性ガス(例えば、酸素)及び/又は不活性ガス(例えば、Ar)がPVDチャンバー内に注入されて、ドープされた強誘電体層304が形成される。所望のドーピングプロファイル及び化学量論比は、PVDチャンバー圧力、反応性ガスの流速、不活性ガスの流速、各ターゲット材料のスパッタ速度、PVDチャンバーの温度、及び各ターゲット材料のスパッタシーケンスを制御することによって取得される。幾つかの実施例では、誘電体材料(例えば、強誘電体酸化物材料HfO)を含むターゲット材料及びドーパント原子(例えば、Ti及びZr)を含むターゲット材料は、ドープされた強誘電体層304を形成するために、同時に又は連続して基板上にスパッタし堆積される。チャンバー圧力、各ターゲット材料のスパッタ速度、チャンバー温度、各ターゲット材料のスパッタ時間、及び各ターゲット材料のスパッタシーケンスは、ドーパントがドープされた強誘電体層304の所望の深さに分布されて、所望のドーピングプロファイルを形成するために、制御することができる。誘電体層を形成するための制造プロセスはまた、フォトエッチング、CMP、湿式エッチング/乾式エッチング又はそれらの任意の組み合わせを含み得る。
【0061】
図3E及び3Fは、イオン注入プロセスを使用してドープされた強誘電体層325を形成するための操作を示す。図3Fに示すように、ドープされた強誘電体層325が下電極322の上に形成される。前記ドープされた強誘電体層325は下電極322と接触する。誘電体材料324は、まず、CVD、PLD、ALD、ゾルゲルプロセス、MOCVD、CSDプロセス、又はそれらの任意の組み合わせのうちの1つ又は複数を使用して形成され得る。ドープされた強誘電体層304を形成するための上記のCVD、ALD、又はPLDプロセスとは異なり、誘電体材料324の堆積プロセス中に(例えば、第1及び第2グループのドーパントを形成するための)ドーパント含有反応性ガスが導入されない。次に、誘電体材料324に対してイオン注入プロセス328を実行して、第1及び第2グループのドーパントを形成することができる。その後、ドープされた強誘電体層325を形成することができる。幾つかの実施例では、第1及び第2グループのドーパントを形成するためのイオン(例えば、矢印として示されている)が混合され、同時に誘電体材料324に注入される。幾つかの実施例では、第1及び第2グループのドーパントを形成するためのイオンは、別々に誘電体材料324に注入され得る。イオンの投与量及び注入エネルギーは、ドーパントが続いて形成されるドープされた強誘電体層325において所望のドーピングプロファイルを有し得るように、制御することができる。幾つかの実施例では、イオン注入後に熱アニーリングプロセスを実行して、続いて形成されるドープされた強誘電体層325のドーピングプロファイルをさらに変更/調整して、ドーパントを活性化し、誘電体材料324の格子に再分布し、イオン注入プロセス328による欠陥を補償する。幾つかの実施例では、プラズマドーピング(例えば、プラズマドーピング中に、1つ又は複数のターゲット材料がバイアスされて衝撃を受けて、ドーパントイオンが誘電体材料324に注入される)などの他の適切なドーピング方法、及び熱拡散(例えば、熱拡散中に、ドーパントが堆積され、誘電体材料324に駆動されて所望のドーピングプロファイルを形成する)もまた、ドープされた強誘電体層325において所望のドーピングプロファイルを形成するために使用され得る。
【0062】
幾つかの実施例では、所望のドーピングプロファイルを有する強誘電体層を形成するために、様々なドーピング方法を組み合わせることができる。幾つかの実施例では、異なるドーピング方法を組み合わせて、例えば、同時に、順次に、又は交互に使用して、ドープされた強誘電体層に所望のドーピングプロファイルを形成することができる。1つのグループのドーパント又は単一のドーパント元素をドーピングするために、異なるドーピング方法を実行することむできる。幾つかの実施例では、第1及び第2グループのドーパントは、異なるドーピング方法を使用して形成される。例えば、第1グループのドーパントは、CVD、PLD、ALD、ゾルゲルプロセス、MOCVD又はCSDプロセスのうちの1つ又は複数によって成形され得、第2グループのドーパントは、イオン注入によって形成され得、逆もまた同様である。幾つかの実施例では、異なる深さ範囲のドーピングプロファイルは、同じドーピング方法又は異なるドーピング方法を使用して形成することができる。図2Bに示されるドープされた強誘電体層114を例にとると、下面204と第1中間レベル206との間のドーピングプロファイルは、CVDによって形成され得、第1中間レベル206と上面202との間のドーピングプロファイルは、CVD及び/又はIMPによって形成され得る。
【0063】
方法400は、操作406に進む。図4に示すように、操作406では、ドープされた強誘電体層と接触する第2電極が形成される。図3Cに示すように、ドープされた強誘電体層304の上に上電極306が形成される。前記上電極306は、ドープされた強誘電体層304と接触する。同様に、図3Gに示すように、ドープされた強誘電体層325の上に上電極326が形成される。前記上電極306は、ドープされた強誘電体層325と接触する。上電極306/326は導電層を含み得る。前記導電層は、PVD、CVD、電気化学堆積、PLD、化学蒸着及びALDのうちの少なくとも1つを使用して堆積される。上電極306/322の厚さは、2nm~50nmであり得る。誘電体層を形成するための制造プロセスはまた、フォトエッチング、CMP、湿式エッチング/乾式エッチング又はそれらの任意の組み合わせを含み得る。
【0064】
図5は、本開示の幾つかの実施例に係る例示的な強誘電体メモリデバイス500の平面図を示す。強誘電体メモリセル100は、平面強誘電体メモリデバイスの一部であり、強誘電体層は、少なくとも2つのグループのドーパントでドープされる。同様のドープされた強誘電体層を、強誘電体メモリデバイス500などの3次元強誘電体メモリデバイスに実装して、強誘電体属性及びメモリセルアレイ密度を改善することができる。
【0065】
強誘電体メモリデバイス500は、強誘電体メモリストリング502のアレイを含み得る。前記強誘電体メモリストリング502は、1つ又は複数のILD層504に配置され、基板(図示せず)の上に垂直に延びる。各強誘電体メモリストリング502は、平面図において円形であり、強誘電体メモリストリング502の中心からこの順序で径方向に配置された導体層506、第1電極508、ドープされた強誘電体層510及び第2電極512を含む。即ち、ドープされた強誘電体層510は、径方向に第1電極508と第2電極512との間に配置することができる。導体層506は、第1電極508内の残りの領域を充填し、金属などの導体材料を含む。平面図における強誘電体メモリストリング502の形状は、円形に限定されず、矩形、方形、楕円形などの他の任意の形状であり得ることが理解される。
【0066】
図6は、本開示の幾つかの実施例に係る例示的な強誘電体メモリデバイス600の断面図を示す。幾つかの実施例では、図6は、A-A方向に沿った強誘電体メモリデバイス500の断面図を示す。図6に示すように、強誘電体メモリデバイス600は、基板602、及び基板602の上に配置された1つ又は複数のILD層604を含む。強誘電体メモリデバイス600はまた、複数の強誘電体メモリストリング606を含み得る。前記強誘電体メモリストリング606は、ILD層604を通って基板602の上に垂直に延びる。幾つかの実施例では、強誘電体メモリデバイス600は、相互接続を介して、トランジスター(トランジスター及び相互接続は図6に示されていない)に電気的に接続される。
【0067】
各強誘電体メモリストリング606は、円柱形の形状(例えば柱形)を有し得る。導体層608、第1電極610、ドープされた強誘電体層612、及び第2電極614は、強誘電体メモリストリング606の中心からこの順序で横方向に(例えば、径方向に)配置され得る。ドープされた強誘電体層612は、それが右又は左に90度回転されることを除いて、上記の図1に詳述されたドープされた強誘電体層114と同様であり得る。ドープされた強誘電体層612は、径方向に第1電極610と第2電極614との間に配置することができる。ドープされた強誘電体層612のドーピングプロファイルは、それが右又は左に90度回転されることを除いて、上記の図2A~2Eに詳述された例と同様であり得る。
【0068】
幾つかの実施例では、第1電極610及び第2電極614のそれぞれは、窒化チタン(TiN)、窒化チタンシリコン(TiSiN)、窒化チタンアルミニウム(TiAlN)、炭窒化チタン(TiCN)、窒化タンタル(TaN)、窒化タンタルシリコン(TaSiN)、窒化タンタルアルミニウム(TaAlN)、窒化タングステン(WN)、ケイ化タングステン(WSi)、炭窒化タングステン(WCN)、ルテニウム(Ru)、酸化ルテニウム(RuO)、イリジウム(Ir)、ドープされた多結晶シリコン、透明導電酸化物(TCO)、又は酸化イリジウム(IrO)の少なくとも1つを含み得る。幾つかの実施例では、第1電極610及び第2電極614のそれぞれは、2nm~50nmの厚さ(径方向)を有し得る。
【0069】
各強誘電体メモリストリング606を製造するために、垂直開口(例えば、穴又は溝)は、湿式エッチング及び/又は乾式エッチングを使用して、1つ又は複数のILD層604を通してエッチングされ得る。第2電極614、ドープされた強誘電体層612及び第1電極610は、PVD、CVD、電気化学堆積、ALD及びそれらの任意の組み合わせなどの1つ又は複数の薄膜堆積プロセスを使用して、垂直開口の側壁及び底部をカバーするように垂直開口にこの順序で堆積することができる。ドープされた強誘電体層612は、ドープされた強誘電体層304又は325を形成するための上記と同様のプロセスを使用して形成することができる。導体層608は、次に、垂直開口の残りの空間を充填するために堆積させることができる。幾つかの実施例では、導体層608は、垂直開口の空間を部分的に充填し、誘電体構造(図示せず)は、垂直開口の残りの空間を満たすために堆積させることができる。
【0070】
様々な具体的な実施例の前述の詳細な説明は、他の人が過度の実験や本発明の基本概念から逸脱することなく、本分野の基本的な常識を使用することで、様々な用途に適合するようにこれらの具体的な実施例を容易に修正/調整するために、本発明の一般的な性質を完全に開示することを意図している。従って、上記の調整及び修正は、本発明の教示及び指導に基づくものであり、これらの修正及び調整を、本発明の記載された実施例の同等物の意味及び範囲内に保つことを意図している。本明細書で使用される語彙や用語は説明を目的としたものであり、専門知識を有する者が本発明の示唆及び指導によってこれらの語彙や用語を理解できるようにするためのものであり、本発明の内容を限定するために使用されるべきではないことが理解されたい。
【0071】
本発明は、機能モジュールを使用して特定の機能及び特定の関係を説明することによって、本発明の実施事例の説明を実施する。説明を容易にするために、上記の機能モジュールの定義は任意である。必要な特定の機能と特定の関係を実現できる限り、他の代替定義を採用することもできる。
【0072】
発明の概要及び要約は、本発明の1つ又は複数の実施形態を説明したことがあるが、発明者によって考案されたすべての例示的な実施例を含むわけではなく、したがって、本発明及び特許請求の範囲を限定することを意図するものではない。
【0073】
本発明の範囲は、上記の実施例のいずれにも限定されず、特許請求の範囲及びその同等物によって定義されるべきである。
図1
図2A
図2B
図2C
図2D
図2E
図3A
図3B
図3C
図3D
図3E
図3F
図3G
図4
図5
図6
【国際調査報告】