IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ルーマス リミテッドの特許一覧

特表2022-538957光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法
<>
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図1
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図2
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図3
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図4
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図5
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図6
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図7
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図8
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図9
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図10
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図11
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図12
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図13
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図14
  • 特表-光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-09-07
(54)【発明の名称】光ガイド光学素子を介した眼の画像化に基づくアイトラッキングの装置および方法
(51)【国際特許分類】
   G02B 27/02 20060101AFI20220831BHJP
   G02B 5/18 20060101ALI20220831BHJP
   H04N 5/64 20060101ALI20220831BHJP
【FI】
G02B27/02 Z
G02B5/18
H04N5/64 511A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021564398
(86)(22)【出願日】2020-06-25
(85)【翻訳文提出日】2021-10-28
(86)【国際出願番号】 IL2020050715
(87)【国際公開番号】W WO2020261279
(87)【国際公開日】2020-12-30
(31)【優先権主張番号】62/867,249
(32)【優先日】2019-06-27
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/869,582
(32)【優先日】2019-07-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】518105275
【氏名又は名称】ルーマス リミテッド
【氏名又は名称原語表記】Lumus Ltd.
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際特許業務法人
(72)【発明者】
【氏名】エイタン・ロネン
【テーマコード(参考)】
2H199
2H249
【Fターム(参考)】
2H199CA04
2H199CA42
2H199CA47
2H199CA48
2H199CA54
2H199CA62
2H199CA64
2H199CA67
2H199CA69
2H199CA86
2H199CA87
2H199CA92
2H199CA96
2H249AA02
2H249AA12
2H249AA62
(57)【要約】
光透過基板が、眼に対向して平行な表面の第1のものを有して配置された平行な表面を有する。光学素子が、第1の表面に関連付けられており、入射光をコリメートするように第1のタイプの入射光に光パワーを印加し、第2のタイプの入射光に実質的に光パワーを印加しない。光カップリング構成が、基板に関連付けられており、基板内を伝播するように第1の表面に入射する第1のタイプのコリメートされた光の一部をカップリングインすることと、基板内を伝播する第2のタイプの光の一部をカップリングアウトすることと、を行うように構成されている。基板に関連付けられた光学系が、第1のタイプのコリメートされた光を光の収束ビームに変換し、収束ビームは、光学センサによって感知される。プロセッサが、光学センサからの信号を処理することにより、眼の現在の注視方向を導出する。
【特許請求の範囲】
【請求項1】
装置であって、
内部反射によって光を誘導するための少なくとも2つの平行な主表面を有する光透過基板であって、前記主表面の第1のものが、眼に対向して配置されている、光透過基板と、
前記主表面の前記第1のものに関連付けられた光学素子であって、光学素子は、第1のタイプの入射光に光パワーを印加して前記第1のタイプの前記入射光をコリメートするように、かつ光学素子が、第2のタイプの入射光に実質的に光パワーを印加しないように、入射光の少なくとも1つの特性に従って前記入射光に光パワーを印加するように構成されている、光学素子と、
光カップリング構成であって、前記基板に関連付けられ、
前記光学素子によってコリメートされ前記主表面の前記第1のものに入射する前記第1のタイプの光の一部を、前記基板内を伝播するようにカップリングインすることと、
前記基板内を伝播する前記第2のタイプの光の一部をカップリングアウトすることと、を行うように構成されている、光カップリング構成と、
前記基板に関連付けられ、前記第1のタイプのコリメートされた光を捕捉された光の収束ビームに変換するように構成された光学系と、
前記捕捉された光を感知するように配置された光学センサと、
前記光学センサに電気的に関連付けられ、前記光学センサからの信号を処理して前記眼の現在の注視方向を導出するように構成された少なくとも1つのプロセッサと、を備える、装置。
【請求項2】
前記入射光の少なくとも1つの特性が、前記入射光の偏光方向を含む、請求項1に記載の装置。
【請求項3】
前記入射光の少なくとも1つの特性が、前記入射光によって占められる電磁スペクトルの領域を含む、請求項1に記載の装置。
【請求項4】
前記入射光の少なくとも1つの特性が、前記入射光の偏光方向と、前記入射光によって占められる電磁スペクトルの領域とを含む、請求項1に記載の装置。
【請求項5】
前記第1のタイプの前記光が、第1の偏光方向に偏光される光の成分を含み、前記第2のタイプの前記光が、第2の偏光方向に偏光される、請求項1に記載の装置。
【請求項6】
前記第1のタイプの前記光が、第1の光スペクトル内にあり、前記第2のタイプの前記光が、第2の光スペクトル内にある、請求項1に記載の装置。
【請求項7】
前記第1のタイプの前記光が、第1の偏光方向に偏光される光の成分を含み、かつ第1の光スペクトル内にあり、前記第2のタイプの前記光が、第2の偏光方向に偏光され、かつ第2の光スペクトル内にある、請求項1に記載の装置。
【請求項8】
前記基板の前記主表面の第2のものに関連付けられた偏光子をさらに備える、請求項1に記載の装置。
【請求項9】
前記基板が、前記眼からのアイレリーフ距離で前記主表面の前記第1のものを有して配置されており、前記光学素子が、前記アイレリーフ距離にほぼ等しい焦点距離を有する、請求項1に記載の装置。
【請求項10】
第2の光カップリング構成であって、前記光学系に関連付けられ、
前記カップリングアウトされた光が前記光学系によって受け入れられるように、前記基板内を伝播する前記第1のタイプの光の一部をカップリングアウトすることと、
内部反射によって前記基板内を伝播するように、ディスプレイソースから前記第2のタイプの光の一部をカップリングインすることと、を行うように構成されている、第2の光カップリング構成をさらに備える、請求項1に記載の装置。
【請求項11】
前記第1のタイプの光で前記眼を照明するように配置された照明配置をさらに備える、請求項1に記載の装置。
【請求項12】
前記第2のタイプのカップリングインしコリメートされた光が前記基板内の内部反射によって伝播し、かつ前記光カップリング構成によって前記基板から前記眼に向かってカップリングアウトされるように、画像に対応する前記第2のタイプのコリメートされた光を前記基板に導入するように前記基板に結合された画像プロジェクタをさらに備える、請求項1に記載の装置。
【請求項13】
前記画像プロジェクタが、偏光光源からの照明に応答して偏光を生成する反射ディスプレイデバイスを含み、前記反射ディスプレイデバイスによって生成された前記偏光が、前記光学系によってコリメートされる、請求項12に記載の装置。
【請求項14】
前記光カップリング構成が、前記基板の前記主表面に対して斜めに前記基板内に配置された複数の部分的に反射する表面を含む、請求項1に記載の装置。
【請求項15】
前記第1のタイプの光が、前記基板内で第1の伝播方向に伝播し、前記第2のタイプの光が、前記基板内で、前記第1の伝播方向と反対の第2の伝播方向に伝播する、請求項1に記載の装置。
【請求項16】
装置であって、
内部反射によって光を誘導するための一対の平行な主表面を有する光透過基板であって、前記主表面の第1のものが、見る人の眼に対向して配置されている、光透過基板と、
前記主表面の前記第1のものに関連付けられたレンズであって、
第1のタイプの入射光をコリメートするように前記第1のタイプの前記入射光に光パワーを印加することであって、前記第1のタイプの前記入射光が、第1の光スペクトル内にあり、第1の偏光方向に偏光を有する光の成分を含む、印加することと、
第2のタイプの入射光に実質的に光パワーを印加しないことであって、前記第2のタイプの前記入射光が、第2の光スペクトル内にあり、第2の偏光方向に偏光を有する、印加しないことと、を行うように構成されている、レンズと、
前記第1のタイプの光の一部が前記レンズによってコリメートされるように前記レンズに向かって前記眼によって反射して戻ってくるように、前記第1のタイプの前記光で前記眼を照明するように配置された照明配置と、
光学モジュールであって、
光源からの照明に応答して、画像に対応する前記第2のタイプの光を生成する反射ディスプレイデバイスと、
前記第2のタイプのコリメートされた光を生成するように前記反射ディスプレイデバイスによって生成された前記光をコリメートするように構成された光学系と、
光学センサと、を含む、光学モジュールと、
第1の伝播方向に内部反射によって前記基板内を伝播するように、前記第2のタイプの前記コリメートされた光を前記基板にカップリングするように構成された光カップリング構成と、
前記基板の前記主表面に対して斜めに前記基板内に配置された複数の部分的に反射する表面であって、
前記基板内を前記第1の伝播方向に伝播する前記第2のタイプの光の一部をカップリングアウトすることと、
第2の伝播方向に前記基板内を伝播するように、前記主表面の前記第1のものに入射する前記第1のタイプのコリメートされた光の一部をカップリングインすることと、を行うように構成されており、前記光学カップリング構成が、前記第1のタイプの伝播している光をカップリングアウトするようにさらに構成されている、複数の部分的に反射する表面と、
前記光学センサに電気的に結合された少なくとも1つのプロセッサと、を備え、
前記光学モジュールの前記光学系が、前記光カップリング構成によってカップリングアウトされた前記光を受け入れるように、かつ前記カップリングアウトされた光を捕捉された光の収束ビームに変換するようにさらに構成されており、前記光学センサが、前記捕捉された光を感知するように構成されており、前記少なくとも1つのプロセッサが、前記光学センサからの信号を処理して、前記眼の現在の注視方向を導出するように構成されている、装置。
【請求項17】
装置であって、
内部反射によって光を誘導するための少なくとも2つの実質的に平行な主表面を有する第1の光透過基板であって、前記主表面の第1のものが、見る人の眼に対向して配置されている、第1の光透過基板と、
前記主表面に対して斜めに前記第1の基板内に配置された少なくとも部分的に反射する表面であって、内部反射によって前記第1の基板内を伝播するようにカップリングイン領域内の前記主表面の前記第1のものに入射する入射光線をカップリングインするように構成され、前記入射光線が、第1の光スペクトルにあり、前記眼の照明に応答して前記眼から発せられ、前記入射光線が、少なくとも光線の第1のセットおよび光線の第2のセットを含み、光線の前記第1のセットが、第1の次元で前記カップリングイン領域の少なくとも一部にまたがる角度分布を有し、光線の前記第2のセットが、第2の次元で前記カップリングイン領域の少なくとも一部にまたがっている、少なくとも部分的に反射する表面と、
前記第1の基板内を伝播する前記光線をカップリングアウトするように構成されたカップリングアウト配置と、
光学モジュールであって、
少なくとも1つのレンズであって、前記レンズの第1の次元での第1の焦点距離および前記レンズの第2の次元での第2の焦点距離を有し、
光線の前記第1のセットに対応する前記カップリングアウトされた光線を、光線の前記第1のセットの角度分布を示す前記角度分布を有する捕捉された光の非収束ビームに変換することと、
光線の前記第2のセットに対応する前記カップリングアウトされた光線を、捕捉された光の収束ビームに変換することと、を行うように構成されている、少なくとも1つのレンズと、
前記レンズから前記第1の焦点距離に実質的に等しい距離に配置されて前記捕捉された光を感知するように構成された光学センサと、を含む、光学モジュールと、
前記光学センサからの信号を処理して前記眼の現在の注視方向を導出するように構成された前記光学センサに電気的に結合された少なくとも1つのプロセッサと、を備える、装置。
【請求項18】
前記第1の光スペクトルの光で前記眼を照明するように配置された照明配置をさらに備える、請求項17に記載の装置。
【請求項19】
内部反射によって光を誘導するための相互に平行な第1および第2の主表面を含む複数の表面を有する第2の光透過基板であって、前記第2の基板の前記第1の主表面が、前記眼に対向して配置されており、前記第2の基板の前記第2の主表面が、前記第1の基板の前記主表面の前記第1のものに対向している、第2の光透過基板と、
前記第2の基板に関連付けられたカップリングアウト構成であって、前記第1の光スペクトルとは異なり、かつ前記第2の基板内を伝播する第2の光スペクトルの光の一部を、前記第2の基板から前記眼に向かってカップリングアウトするように構成されている、カップリングアウト構成と、をさらに備える、請求項17に記載の装置。
【請求項20】
前記第2の基板に結合され、画像に対応する前記第2の光スペクトルでコリメートされた光を生成するように構成された画像プロジェクタであって、前記コリメートされた光が、前記第2の基板内の内部反射によって伝播し、かつ前記カップリングアウト構成によって前記第2の基板から前記眼に向かってカップリングアウトされる、画像プロジェクタをさらに備える、請求項19に記載の装置。
【請求項21】
前記画像プロジェクタと、前記画像プロジェクタによって生成された前記コリメートされた光を前記第2の基板にカップリングインするように構成された前記第2の基板とに関連付けられたカップリングイン配置をさらに備える、請求項20に記載の装置。
【請求項22】
前記カップリングアウト構成が、前記第2の基板の前記主表面に対して斜めに前記第2の基板内に配置された複数の部分的に反射する表面を含む、請求項19に記載の装置。
【請求項23】
前記カップリングアウト構成が、前記第2の基板の前記主表面のうちの1つに関連付けられた回折光学素子を含む、請求項19に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
この出願は、2019年6月27日に出願された米国仮特許出願第62/867,249号および2019年7月2日に出願された米国仮特許出願第62/869,582号からの優先権を主張し、これらの開示は参照によりその全体が本明細書に組み込まれる。
【0002】
本発明は、アイトラッキングに関する。
【背景技術】
【0003】
ニアアイディスプレイ(NED)、ヘッドマウントディスプレイ(HMD)、およびヘッドアップディスプレイ(HUD)の光学配置では、観察者の眼が位置するエリア(一般に眼球運動ボックスまたはEMBと呼ばれる)をカバーするために大きな開口が必要とする。コンパクトなデバイスを実装するために、観察者の眼に投影される画像は、大きな開口を生成するために増倍される小さな開口を有する小さな光学画像ジェネレータ(プロジェクタ)によって生成される。
【0004】
一次元での開口増倍へのアプローチが、その内部で画像が内部反射によって伝播する透明な材料の平行面のスラブに基づいて開発されている。画像波面の一部は、斜めに角度が付けられた部分反射器を使用することによって、またはスラブの片面に回折光学素子を使用することによって、スラブからカップリングアウトされる。そのようなスラブは、本明細書では、光ガイド光学素子(LOE)、光透過基板、または導波路と呼ぶ。そのような開口増倍の原理は、図1に概略的に示され、図1は、内部反射によって光を誘導するための一対の平行な面26、26Aを有する光ガイド光学素子20を示している。ビームにまたがるサンプル光線18Aおよび18Bを含む照明ビーム18によってここに概略的に表される投影された画像18は、第1の反射する表面16によってここに概略的に示されるように、光ガイド光学素子20にカップリングインされて、基板内の内部反射によってトラップされる反射光線28を生成し、光線30も生成する。画像は、繰り返される内部反射によって基板に沿って伝播し、平行な面26、26Aに対して斜めの角度(αsur)で部分的に反射表面22のシーケンスに衝突し、そこで画像強度の一部が反射されて、観察者の眼24に向かって光線32A、32Bとして基板からカップリングアウトされる。ゴースト画像を生じさせる可能性のある望ましくない反射を最小限に抑えるために、部分的に反射表面22は、好ましくは、第1の範囲の入射角に対して低い反射率を有する一方で、第2の範囲の入射角に対して所望の部分反射率を有するようにコーティングされる。ここで、部分的に反射する表面22の法線に対して小さな傾斜を有する光線(ここでは角度βrefとして表される)は、カップリングアウトするための反射光線を生成するために分割される一方、高い傾斜(法線に対して)の光線は、無視できる反射で伝達される。
【0005】
投影された画像18は、コリメートされた画像であり、すなわち、各ピクセルは、観察者から遠く離れたシーンからの光に相当する、対応する角度の平行光線のビームによって表される(コリメートされた画像は、「無限大にコリメートされる」と呼ばれる)。ここでは、画像は、画像内の単一の点、典型的には画像の重心に対応する光線によって単純に表されるが、実際には、この中心ビームの各側への角度の範囲が含まれ、それら光線は、対応する角度の範囲で基板にカップリングインされ、および同様に対応する角度でカップリングアウトされ、それにより、観察者の眼24に異なる方向に到達する画像の部分に対応する視野を作成する。
【0006】
NED、HMD、またはHUDの設計に役立つ可能性のある光学機能は、アイトラッキング、または観察者の眼が頭の方向に対して見ている方向(一般に注視方向と呼ばれる)を感知することである。過去のアイトラッキングアプローチは、横からEMBに向かって見ている1つ以上の軸外カメラを介してEMBを画像化することに依拠していた。ユーザの不快感を軽減するために、カメラは、比較的小さいサイズにする必要があり、これにより、EMB画像化のパフォーマンスが制限される可能性がある。カメラのサイズが小さいことと、高い軸外角度でサンプリングされたEMB画像から注視方向を導出することは一般的に困難であるため、このようなアイトラッキングアプローチのパフォーマンスは比較的低くなる。
【発明の概要】
【0007】
本発明の態様は、光ガイド光学素子を介して眼を画像化することに基づいて人間の眼の注視方向を追跡するためのアイトラッカーおよび対応する方法を提供し、NED、HMDまたはHUDの一部として統合するのに特に適している。
【0008】
本発明の一実施形態の教示によれば、内部反射によって光を誘導するための少なくとも2つの平行な主表面を有する光透過基板であって、主表面のうちの第1の主表面が、眼に対向して配置されている、光透過基板と、第1の主表面に関連付けられた光学素子であって、光学素子は、第1のタイプの入射光に光パワーを印加して第1のタイプの入射光をコリメートするように、かつ光学素子が、第2のタイプの入射光に実質的に光パワーを印加しないように、入射光の少なくとも1つの特性に従って入射光に光パワーを印加するように構成されている、光学素子と、光カップリング構成であって、基板に関連付けられ、光学素子によってコリメートされ第1の主表面に入射する第1のタイプの光の一部を、基板内を伝播するようにカップリングインすることと、基板内を伝播する第2のタイプの光の一部をカップリングアウトすることと、を行うように構成されている、光カップリング構成と、基板に関連付けられ、第1のタイプのコリメートされた光を捕捉された光の収束ビームに変換するように構成された光学系と、捕捉された光を感知するように配置された光学センサと、光学センサに電気的に関連付けられ、光学センサからの信号を処理して眼の現在の注視方向を導出するように構成された少なくとも1つのプロセッサと、を備える、装置を提供する。
【0009】
任意選択で、入射光の少なくとも1つの特性は、入射光の偏光方向を含む。
【0010】
任意選択で、入射光の少なくとも1つの特性は、入射光によって占められる電磁スペクトルの領域を含む。
【0011】
任意選択で、入射光の少なくとも1つの特性は、入射光の偏光方向と、入射光によって占められる電磁スペクトルの領域と、を含む。
【0012】
任意選択で、第1のタイプの光は、第1の偏光方向に偏光される光の成分を含み、第2のタイプの光は、第2の偏光方向に偏光される。
【0013】
任意選択で、第1のタイプの光は、第1の光スペクトル内にあり、第2のタイプの光は、第2の光スペクトル内にある。
【0014】
任意選択で、第1のタイプの光は、第1の偏光方向に偏光される光の成分を含み、かつ第1の光スペクトル内にあり、第2のタイプの光は、第2の偏光方向に偏光され、かつ第2の光スペクトル内にある。
【0015】
任意選択で、装置は、基板の主表面の第2のものに関連付けられた偏光子をさらに備える。
【0016】
任意選択で、基板は、眼からのアイレリーフ距離で第1の主表面を有して配置されており、光学素子は、アイレリーフ距離にほぼ等しい焦点距離を有する。
【0017】
任意選択で、装置は、第2の光カップリング構成であって、光学系に関連付けられ、カップリングアウトされた光が光学系によって受け入れられるように、基板内を伝播する第1のタイプの光の一部をカップリングアウトすることと、内部反射によって基板内を伝播するように、ディスプレイソースから第2のタイプの光の一部をカップリングインすることと、を行うように構成されている、第2の光カップリング構成をさらに備える。
【0018】
任意選択で、装置は、第1のタイプの光で眼を照明するように配置された照明配置をさらに備える。
【0019】
任意選択で、装置は、第2のタイプのカップリングインしコリメートされた光が基板内の内部反射によって伝播し、かつ光カップリング構成によって基板から眼に向かってカップリングアウトされるように、画像に対応する第2のタイプのコリメートされた光を基板に導入するように基板に結合された画像プロジェクタをさらに備える。
【0020】
任意選択で、画像プロジェクタは、偏光光源からの照明に応答して偏光を生成する反射ディスプレイデバイスを含み、反射ディスプレイデバイスによって生成された偏光は、光学系によってコリメートされる。
【0021】
任意選択で、光カップリング構成は、基板の主表面に対して斜めに基板内に配置された複数の部分的に反射する表面を含む。
【0022】
任意選択で、第1のタイプの光は、基板内で第1の伝播方向に伝播し、第2のタイプの光は、基板内で、第1の伝播方向と反対の第2の伝播方向に伝播する。
【0023】
本発明の教示の実施形態によれば、内部反射によって光を誘導するための一対の平行な主表面を有する光透過基板であって、主表面のうちの第1の主表面が、見る人の眼に対向して配置されている、光透過基板と、第1の主表面に関連付けられたレンズであって、第1のタイプの入射光をコリメートするように第1のタイプの入射光に光パワーを印加することであって、第1のタイプの入射光が、第1の光スペクトル内にあり、第1の偏光方向に偏光する光の成分を含む、印加することと、第2のタイプの入射光に実質的に光パワーを印加しないことであって、第2のタイプの入射光が、第2の光スペクトル内にあり、第2の偏光方向に偏光を有する、印加しないことと、を行うように構成されている、レンズと、第1のタイプの光の一部がレンズによってコリメートされるようにレンズに向かって眼によって反射して戻ってくるように、第1のタイプの光で眼を照明するように配置された照明配置と、光学モジュールであって、光源からの照明に応答して、画像に対応する第2のタイプの光を生成する反射ディスプレイデバイスと、コリメートされた第2のタイプの光を生成するように反射ディスプレイデバイスによって生成された光をコリメートするように構成された光学系と、光学センサと、を含む、光学モジュールと、第1の伝播方向に内部反射によって基板内を伝播するように、第2のタイプのコリメートされた光を基板にカップリングインするように構成された光カップリング構成と、基板の主表面に対して斜めに基板内に配置された複数の部分的に反射する表面であって、基板内を第1の伝播方向に伝播する第2のタイプの光の一部をカップリングアウトすることと、第2の伝播方向に基板内を伝播するように、第1の主表面に入射するコリメートされた第1のタイプの光の一部をカップリングインすることと、を行うように構成されており、光学カップリング構成が、第1のタイプの伝播している光をカップリングアウトするようにさらに構成されている、複数の部分的に反射する表面と、光学センサに電気的に結合された少なくとも1つのプロセッサと、を備える装置であって、光学モジュールの光学系が、光カップリング構成によってカップリングアウトされた光を受け入れるように、かつカップリングアウトされた光を捕捉された光の収束ビームに変換するようにさらに構成されており、光学センサが、捕捉された光を感知するように構成されており、少なくとも1つのプロセッサが、光学センサからの信号を処理して、眼の現在の注視方向を導出するように構成されている、装置もまた提供する。
【0024】
本発明の教示の実施形態によれば、内部反射によって光を誘導するための少なくとも2つの実質的に平行な主表面を有する第1の光透過基板であって、主表面のうちの第1の主表面が、見る人の眼に対向して配置されている、第1の光透過基板と、主表面に対して斜めに第1の基板内に配置された少なくとも部分的に反射する表面であって、内部反射によって第1の基板内を伝播するようにカップリングイン領域内の第1の主表面に入射する入射光線をカップリングインするように構成され、入射光線が、第1の光スペクトルにあり、眼の照明に応答して眼から発せられ、入射光線が、少なくとも第1の光線のセットおよび第2の光線のセットを含み、第1の光線のセットが、第1の次元で前記カップリングイン領域の少なくとも一部にまたがる角度分布を有し、第2の光線のセットが、第2の次元でカップリングイン領域の少なくとも一部にまたがっている、少なくとも部分的に反射する表面と、第1の基板内を伝播する光線をカップリングアウトするように構成されたカップリングアウト配置と、光学モジュールであって、少なくとも1つのレンズであって、第1の次元での第1の焦点距離および第2の次元での第2の焦点距離を有し、光線の第1のセットに対応するカップリングアウトされた光線を、光線の第1のセットの角度分布を示す角度分布を有する捕捉された光の非収束ビームに変換することと、光線の第2のセットに対応するカップリングアウトされた光線を、捕捉された光の収束ビームに変換することと、を行うように構成されている、少なくとも1つのレンズと、レンズから第1の焦点距離に実質的に等しい距離に配置されて捕捉された光を感知するように構成された光学センサと、を含む、光学モジュールと、光学センサからの信号を処理して眼の現在の注視方向を導出するように構成された光学センサに電気的に結合された少なくとも1つのプロセッサと、を備える、装置もまた提供する。
【0025】
任意選択で、装置はさらに、第1の光スペクトルの光で眼を照明するように配置された照明配置をさらに備える。
【0026】
任意選択で、装置は、内部反射によって光を誘導するための相互に平行な第1および第2の主表面を含む複数の表面を有する第2の光透過基板であって、第2の基板の第1の主表面が、眼に対向して配置されており、第2の基板の第2の主表面が、第1の基板の第1の主表面に対向している、第2の光透過基板と、第2の基板に関連付けられたカップリングアウト構成であって、第1の光スペクトルとは異なり、かつ第2の基板内を伝播する第2の光スペクトルの光の一部を、第2の基板から眼に向かってカップリングアウトするように構成されている、カップリングアウト構成と、をさらに備える。
【0027】
任意選択で、装置は、第2の基板に結合され、画像に対応する第2の光スペクトルでコリメートされた光を生成するように構成された画像プロジェクタであって、コリメートされた光が、第2の基板内の内部反射によって伝播し、かつカップリングアウト構成によって第2の基板から眼に向かってカップリングアウトされる、画像プロジェクタをさらに備える。
【0028】
任意選択で、装置は、画像プロジェクタと、画像プロジェクタによって生成されたコリメートされた光を第2の基板にカップリングインするように構成された第2の基板とに関連付けられたカップリングイン配置をさらに備える。
【0029】
任意選択で、カップリングアウト構成は、第2の基板の主表面に対して斜めに第2の基板内に配置された複数の部分的に反射する表面を含む。
【0030】
任意選択で、カップリングアウト構成は、第2の基板の主表面のうちの1つに関連付けられた回折光学素子を含む。
【0031】
本明細書で別段の定義がない限り、本明細書で使用されるすべての技術用語および/または科学用語は、本発明が関係する当業者によって通常理解されるのと同じ意味を有する。本明細書に記載されたものと同様または同等の方法および材料が、本発明の実施形態の実施または試験に使用され得るが、例示的な方法および/または材料が、以下に記載されている。矛盾する場合は、定義を含む特許明細書が支配する。さらに、材料、方法、および例は、例示にすぎず、必ずしも限定することを意図するものではない。
【図面の簡単な説明】
【0032】
本発明のいくつかの実施形態は、添付の図面を参照して、例としてのみ本明細書に記載されている。詳細な、図面への具体的な言及について、示された細目は、例として、および本発明の実施形態の例示的な議論の目的のためであることを強調しておく。これに関して、図面と併せてなされた説明により、本発明の実施形態がどのように実施され得るかが当業者に明らかになる。
【0033】
ここで、図面に注意を向けると、図面では、同様の参照番号または文字は、対応するまたは同様の構成要素を示す。図面は以下のとおりである。
【0034】
図1】ニアアイディスプレイで使用するための、部分的に反射する表面を採用する従来技術の光ガイド光学素子の、上記の概略側面図である。
図2】画像を表示するために、かつ人間の眼の注視方向を追跡するために、本発明の実施形態に従って構築されかつ動作可能な装置の概略側面図であり、光透過基板を介して眼から画像プロジェクタへの光の伝播を示している。
図3図2の装置の代替構成の概略側面図であり、光透過基板と画像プロジェクタとの間で光をカップリングするための光カップリング構成が反射する表面として実装されている。
図4図2の装置の概略側面図であり、画像プロジェクタからの画像光の伝播、および外部シーンの光の眼への伝播を示している。
図5図2~4の画像プロジェクタの概略分解平面図であり、画像プロジェクタの出力への画像光の伝播を示している。
図6図5の画像プロジェクタの概略分解平面図であり、アイトラッキング光の光学センサへの伝播を示している。
図7】リターデーションプレートの追加によって修正された、図5および図6の画像プロジェクタの概略分解平面図であり、アイトラッキング光の光学センサへの伝播を示している。
図8】眼鏡のフォームファクタで実装された、図1の装置の部分的な概略等角図である。
図9】画像を表示するために、かつ人間の眼の注視方向を追跡するために、本発明の別の実施形態に従って構築され、かつ動作可能であり、アイラッキングのための第1の光透過基板および画像投影のための第2の光透過基板を有する、装置の概略側面図であり、第2の光透過基板を介した眼から画像プロジェクタへの光の伝播を示している。
図10図9の装置の第1の光透過基板の部分概略側面図であり、眼から第1の光透過基板への光ビームのカップリングを示している。
図11図10と同様の部分概略側面図であり、第1の次元で眼からの光ビームにまたがる複数の光線を示している。
図12図9の装置の光学モジュールの概略側面図であり、図11の光線に対応する光線がレンズによって光学センサに向けられていることを示している。
図13図9および図10の装置の第1の光透過基板の等角図であり、第2の次元で眼からの光ビームにまたがる複数の光線を示している。
図14図9の装置の光学モジュールの概略側面図であり、図13の光線に対応する光線がレンズによって光学センサに集束されていることを示している。
図15図9の画像プロジェクタの概略分解平面図であり、画像プロジェクタの出力への画像光およびアイトラッキング光の伝播を示している。
【発明を実施するための形態】
【0035】
本発明の実施形態は、眼を画像化すること、および/または光ガイド光学素子を介して眼によって反射される光の角度分布を識別することに基づいて、人間の眼の注視方向を追跡するための様々な装置および対応する方法を提供する。
【0036】
本発明による様々なアイトラッキング装置の原理および動作は、説明に付随する図面を参照することにより、よりよく理解され得る。
【0037】
本発明の少なくとも1つの実施形態を詳細に説明する前に、本発明は、以下の説明に述べられた、ならびに/または図面および/もしくは例に示された構成要素および/または方法の構築の詳細および配置への適用に必ずしも限定されないことを理解されたい。本発明は、他の実施形態が可能であるか、または様々な方法で実践または実施できる。
【0038】
導入として、多くの用途において、特にヘッドアップまたはニアアイディスプレイの文脈において、ユーザの注視方向を決定するためのアイトラッキング配置を提供することは有用である。アイトラッキングを実行するための一般的なアプローチの1つは、典型的には、画像内の瞳孔の位置を決定し、それによって眼の向きを導出する目的で、眼の画像をサンプリングすることである。アイトラッキングのための画像をサンプリングするために、図1と同様の原理で動作する光ガイド光学素子を採用することは特に有利であろう。
【0039】
そのような原理または同様のそのような原理で動作する光ガイド光学素子を使用するアイトラッキングの解決策が本明細書に記載されている。本発明の特定の態様による一組の解決策では、眼は、眼から反射された光(第1のタイプの光と称する)を光ガイド光学素子にカップリングインすることによって画像化され、それによって、光は、光ガイド光学素子を通って逆経路に沿って、画像プロジェクタからの画像光(第2のタイプの光と称する)の逆伝播方向に伝播し、画像プロジェクタに配置された光学センサに集束され、ここで、光の感知に応答して光学センサによって生成された信号は、注視方向を導出するために処理システムによって処理される。眼は、光ガイド光学素子から無限遠に位置していないので(むしろ、典型的には約20ミリメートルのオーダーのアイレリーフ距離で)、眼から反射された光は、光学素子、好ましくは、光学センサに集束された光から注視方向を正確に導出するために光ガイド光学素子にカップリングインされる前に、第1のタイプと第2のタイプの光とを区別する偏光および/またはスペクトル選択レンズによってコリメートされる。
【0040】
本発明の態様による別の一組の解決策では、注視方向は、特殊な部分的に反射する表面によって、好ましくは、眼から反射されてコリメートされていない光を光ガイド光学素子にカップリングインする、投影された画像が伝播するLOEとは別の専用の光ガイド光学素子において、決定され、これにより、カップリングインされた光は、光ガイド光学素子を通って逆経路に沿って伝播し、それぞれ直交する次元において2つの焦点距離を有するレンズを含む光学モジュールにカップリングアウトされ、そのレンズにより、カップリングアウトされた光は光学センサに向けられる。
【0041】
ここで図面を参照すると、図2~8は、画像を表示するために、かつ眼110と光ガイド光学素子(LOE)102との間に配置されたコリメート光学素子112(以下、レンズ112と称する)によって人間の眼110の注視方向を導出するために、本発明の様々な実施形態に従って構築され、かつ動作可能な、概して100で示される装置の構造および動作の様々な態様を示している。LOE102は、透明な材料から形成され、内部反射(好ましくは全内部反射)によって光を誘導するための一対の平行な面(平面の主表面)104、106を有する。LOE102は、眼110に対向して平行な面104の1つを有して配置され、ここで、眼110は、面104からアイレリーフ(ER)距離111でEMB109内に位置する。部分的に反射する表面108のセットとして実装される光カップリング構成は、LOE102に関連付けられ、カップリングイン領域内の面104に入射する光の一部を、(全)内部反射によってLOE102内を伝播するようにカップリングインするように構成されている。特に、部分的に反射する表面108は、平行な面104、106に対して斜めに、LOE102内(すなわち、面104、106の間)に配置される。「アクティブ領域」または「アクティブエリア」とも称される、LOE102のカップリングイン領域は、一般に、面104の平面内の部分的に反射する表面108の投影がまたがる領域として定義される。
【0042】
レンズ112は、レンズ112がLOE102と眼110との間に位置付けられるように(LOE102への光学的取り付けによって)面104に関連付けられている。レンズ112は、好ましくは、ER111にほぼ等しい焦点距離を有する。(照明配置138による眼110の照明に応答して)眼110から反射された光は、レンズ112によってコリメートされ、コリメートされた光は、面104に入射し、部分的に反射する表面108によってLOE102に、内部反射によってLOE102内を伝播するようにカップリングインされる。光学素子140(以下、レンズ140と称する)は、LOE102内を伝播する捕捉された光を受け入れ、LOE102内を伝播するコリメートされた光(平行光線のセット)を捕捉された光の収束ビームに変換するように、LOE102に関連付けられている。好ましくは、レンズ140は、捕捉された光を感知するように構成された光学センサ128と共に光学モジュール126に統合され、レンズ140は、LOE102内を伝播する捕捉された光を、LOE102から光学モジュール126にカップリングアウトする光カップリング構成124を介してLOE102に関連付けられている。処理システム130は、記憶媒体134(コンピュータメモリ等など)に結合された少なくとも1つのコンピュータ化されたプロセッサ132を含み、光学センサ128と電気的に関連付けられ、眼110の現在の注視方向を導出するために光学センサ128からの信号を処理するように構成されている。
【0043】
光カップリング構成124は、入射光をLOE102から光学モジュール126に偏向させる任意のカップリング構成であり得る。適切な光カップリング構成には、反射する表面(図2に概略的に示されている)およびプリズム(図3に概略的に示されている)が含まれるが、これらに限定されない。
【0044】
一般的に言えば、眼110は、照明配置138によって光で照明される。論じられるように、照明配置138は、電磁スペクトルの明順応領域の外側の波長を有する光で眼110を照明するように構成されている。言い換えれば、照明配置138は、人間の眼には見えない光で眼110を照明するように構成されている。人間の眼からの反射、特に眼の網膜からの反射は、可視波長よりも近赤外線の方が大幅に高くなる。したがって、照明配置138は、電磁スペクトルの近赤外線(NIR)領域の波長を有する光で眼110を照明するように構成されることが好ましい。さらに、本開示の後続のセクションで詳細に論じられるように、照明配置138はまた、好ましくは、照明配置138からの照明に応答して眼110によって反射される光が、レンズ112の表面に対して特定の偏光方向(典礼的にはp偏光)を有する光の成分を少なくとも含むように、眼110を照明するように構成される。
【0045】
ここで特に図2および図3を参照すると、これは、LOE102を介して眼110から光学センサ128への光線の横断を示している。一般に、眼110から光学センサ128にLOE102内を伝播する光は、逆伝播方向(互換的に第1/第2の伝播方向、第1/第2の方向、または逆方向と称する)にLOE102内を伝播するものとして参照され、一方、画像プロジェクタから眼110にLOE102内を伝播する画像光は、LOE102内を順伝播方向(互換的に第2/第1の伝播方向、第2/第1の方向、または順方向と称する)に伝播するものとして参照される。眼110に入射する照明配置138からの光の強度の一部は、眼110によって反射される。眼110から発する反射光は、図2および図3において、サンプル光線114A~114Fとして概略的に表される。眼110から発する光は、レンズ112によってコリメートされ、コリメートされた光は、光線116A~116Fとして概略的に表される(各光線114A~114Fのそれぞれは、対応するコリメートされた光線116A~116Fを有する)。コリメートされた光線116A~116Fは、一般に面104に垂直なLOE102の面104に入射し、部分的に反射する表面108によってLOE102にカップリングインされて、LOE102内の内部反射によってトラップされる反射光線118(下向き光線)を生成し、(上に向かう)光線120も生成する。眼110から反射された光は、光(光線118および120)を、LOE102から光学モジュール126に光線122A、122B、および122Cとしてカップリングアウトする光カップリング構成124(図2では反射する表面として、図3ではプリズムとして概略的に示されている)に到達するまで基板に沿って伝播する。レンズ140は、コリメートされたカップリングアウトされた光(光線122A、122B、および122C)を、カップリングアウトされた光(光線122A、122B、および122C)を光学センサ128に集束させるように、捕捉された光の収束ビームに変換する。
【0046】
光学モジュール126は、レンズ140および光学センサ128をその中に統合することに加えて、好ましくは、光学モジュール126が、画像投影および光集束および感知の二重の機能を実行するように、画像を生成し、眼110によって見るためにLOE102に投影するための構成要素も含む(図1の投影された画像18と同様)。論じられるように、レンズ140はまた、光学モジュール126のディスプレイデバイスによって生成された光線をコリメートするように機能する。
【0047】
ここで図4を参照すると、これは、LOE102内の順方向への光の伝播を示している。図1と同様に、ここでは、ビームにまたがるサンプル光線142A、142B、および142Cを含む照明ビーム142によって概略的に表される投影された画像142は、光学モジュール126によって生成され、LOE102内の内部反射によってトラップされる反射光線144(上に向かう光線)を生成し、光線146(下に向かう光線)も生成するように、光カップリング構成124(ここでは反射する表面によって概略的に示されている)を介して、LOE102にカップリングインされる。画像142は、面104、106間で繰り返される内部反射によってLOE102に沿って伝播し、部分的に反射する表面108に衝突し、そこで、画像強度の一部が反射されて、LOE102から眼110に向かって光線148A、148B、および148Cとしてカップリングアウトされる。しかしながら、眼110に到達する前に、光線148A~148Cは必然的にレンズ112を通過する。
【0048】
レンズ112は、(光学センサ128による)捕捉された光の正確な感知および(処理システム130による)眼球110の現在の注視方向を導出するための光学センサ128からの信号の処理を可能にするために、光線114A~114Fをコリメートするように、眼110から発する光に光パワーを印加することが重要である一方で、光線148A、148B、および148Cへの光パワーの印加が眼110によって見られたときに、投影された画像142を歪めることになるので、レンズ112が、LOE102を介して光学モジュール126から眼球110に伝播する画像光に光パワーを印加しないことも同様に重要である。したがって、本実施形態の特定の特徴は、レンズが、2つのタイプの光(光線114A~114Fによって表される、LOE102を介して光学モジュール126の集束および感知構成要素に伝播する眼から反射された光(第1のタイプの光と称する)と、光線142A~142Cによって表される、光学モジュール126の画像投影構成要素からの画像光(第2のタイプの光と称する))を区別できるようにレンズ112を設計し、これらのタイプの光のうちの一方のみ(つまり、第1のタイプの光、すなわち、反射された眼の光)に光パワーを印加することである。本文書の文脈において、「第1のタイプの光」、「第1のタイプの光波」、「第1の光のタイプ」、「第1の光波のタイプ」という用語、およびそれらの変形は互換的に使用される。本文書の文脈において、「第2のタイプの光」、「第2のタイプの光波」、「第2の光のタイプ」、「第2の光波のタイプ」という用語、およびそれらの変形は互換的に使用される。
【0049】
特定の好ましい実施形態によれば、区別は、レンズ112に入射する光の少なくとも1つの特性に基づいて実行される。言い換えれば、レンズ112は、レンズ112が、入射光の少なくとも1つの特性(特徴)に従って、入射光に光パワーを選択的に印加するように設計されている。特定の実施形態では、1つの特性、例えば、第1のタイプの光と第2のタイプの光とを区別するための基礎として、入射光の波長(すなわち、光スペクトル)が使用され、他の実施形態では、第1のタイプの光と第2のタイプの光を区別するための基礎として、別の特性、例えば、入射光の成分の偏光方向または偏光方向が使用され、その一方で、さらに他の好ましい実施形態では、第1のタイプの光と第2のタイプの光とを区別するための基礎として、入射光の光スペクトル(波長)および偏光方向の両方が使用される。
【0050】
一般に、眼110を照明する光とは対照的に、画像光142(第2のタイプの光)は、電磁スペクトルの明順応領域(すなわち、380ナノメートル(nm)と約700nmの間)の波長を有することに留意されたい。したがって、レンズ112は、光パワーが、電磁スペクトルの明順応領域の外側の波長を有する光にのみ印加されるように設計することができる。さらに、多くの用途において、光学モジュール126によって投影される画像光は、特定の偏光方向に直線偏光される(好ましくは、s偏光される)ことが好ましい。したがって、レンズ112は、レンズ112が、光学モジュール126によって投影されるカップリングアウトされた画像光の偏光方向に対して回転された偏光方向を有する偏光に光パワーを印加するように設計され得る。したがって、レンズ112は、好ましくは、光パワーが第1のタイプの入射光波をコリメートするように第1のタイプの入射光波に印加され、かつレンズ112が、第2のタイプの入射光波に光パワーを印加しないように、偏光およびスペクトル選択型であるように設計され、その設計では、第1のタイプの入射光波は、第1の偏光方向(例えば、p偏光)の成分を有し、第1の光スペクトル(例えば、電磁スペクトルのNIR領域)の波長を有しており、かつ第2のタイプの入射光波は、第1の偏光方向に対して回転した第2の偏光方向を有し(例えば、s偏光)、第2の光スペクトルの波長(例えば、電磁スペクトルの明順応(または可視光)領域)を有する。この目的のために、第1のタイプの入射光波の場合、レンズ112は、ER111にほぼ等しい焦点距離を有する。
【0051】
レンズ112の前述の例示的な構成では、光線114A~114F(第1のタイプの光)は、眼110から発する光のp偏光(レンズ112の表面に対して)成分を表し、電磁スペクトルのNIR領域の波長を有し、その一方で、LOE102からカップリングアウトされた光線148A~148C(第2のタイプの光)は、(レンズ112の表面に対して)s偏光され、電磁スペクトルの可視領域の波長を有する。レンズ112によって実行される偏光および波長依存の光パワー区別の結果として、レンズ112は、光線116A~116F(第1のタイプの光)をコリメートするように、p偏光NIR光波に光パワーを印加し、LOE102から(部分的に反射する表面108によって)カップリングアウトされた光線148A~148C(第2のタイプの光)がレンズ112によって歪められることなくレンズ112を通過するように、LOE102からカップリングアウトされたs偏光可視画像光波に光パワーを印加しない。さらに、レンズ112は、眼110から反射されたNIR光のいかなるs偏光成分にも光パワーを印加しない。
【0052】
複屈折(偏光)および/またはスペクトル特性を示す材料の1つの特定のクラスは液晶であり、これは、異なる偏光の光、場合によっては異なる波長に対して異なる効果がある。例えば、ネマティック相液晶分子は、2つの異なる直線偏光(s偏光とp偏光)の入射光に対して異なる反応を示す。例示的であるが非限定的な実施形態では、レンズ112は、液晶材料の層から構成されるネマティック相液晶レンズとして実施される。液晶材料の層は、調整可能な焦点距離を提供する状態を想定し、それにより、レンズ112は、その光のコリメータとして機能するように、1つの偏光方向(例えば、p偏光)の偏光に対して規定の焦点距離を有し、レンズ112は、直交偏光(例えば、s偏光)の光に光パワーを印加しない。ネマティック相液晶中の各液晶分子は、各直線偏光に対して異なる感受性を有し、したがって、液晶分子の異なる屈折率を誘発することができる。そのため、一方の偏光方向の入射光は屈折率の変化を「認識」しないが、もう一方の偏光の入射光は屈折率の変化を「認識」し、それによってその偏光の光に対してレンズ効果を誘発する。
【0053】
ねじれネマティック液晶では、各液晶分子は、各円偏光(例えば、右円偏光(またはRHP)、および左円偏光(またはLHP))に対して異なる感受性を有する。典型的には、ねじれネマティック液晶の感受性は、RHPの場合は正のパワーレンズ効果が誘発され、LHPの場合は負のパワーレンズ効果が誘発されるようなものである。液晶レンズ112によって誘発される同じ焦点距離を有する別の等方性レンズを導入することは、一方の偏光に対して光パワーを2倍にし、他方の偏光に対しては光パワーを生じさせないようにすることができる。光パワーは、RHPおよびLHP光に異なって印加されるので、好ましくは4分の1波長板150を眼110とレンズ112との間に配置して、眼110からの反射光の円偏光方向を適切に回転させる。
【0054】
液晶材料で構成されたレンズは、一般に、入射光の回折分散を生成する薄い回折格子タイプの構造(フレネルレンズと同様)で構成されている。各回折格子は、その回折格子の特定の回折次数に対してより大きな強度を持つように設計することができる。その特定の回折次数の高強度は有彩色である(すなわち、波長依存)。したがって、回折格子は、NIR領域の波長に対して、一次以上の回折ノードの対強度は、零次の回折ノードの強度よりも高くなるように設計することができる。明順応領域では、高次ノードの強度は小さいか、まったくないかである必要がある。回折格子の配向は、NIRおよび明順応領域の光について上記の条件が満たされるように空間的に変化し、それによって、レンズ112が光を効果的にコリメートするようなレンズ効果を生み出し、第2の光スペクトルの波長を有する入射光(例えば、電磁スペクトルの明順応(または可視光)領域)は、レンズ112によって本質的に影響を受けない。ここで、液晶材料の複屈折特性を利用することなく、液晶分子の屈折率を空間的に変化させるように、液晶分子の回折格子の配向が変更されることに留意されたい。
【0055】
一般に、レンズ112は、波長と偏光の組み合わせに基づいて区別するように設計され得る。しかしながら、第1の光スペクトルと第2の光スペクトルとの間のスペクトル分離が、画像プロジェクタからの光に悪影響を与えることなく十分に大きい場合、波長のみに基づく第1および第2のタイプの光の識別で十分である可能性がある。一般的に言えば、画像プロジェクタからの光に対するレンズ112の効果は、例えば、MTF、ヘイズ、チェッカーボードコントラストなどを含む1つ以上の画質メトリックに基づいて評価することができる。
【0056】
本開示の装置100は、光学モジュール126によって投影された画像が、面104、106および部分的に反射する表面108を通して観察者に見える実世界のシーンにオーバーレイされる拡張現実(AR)システムで使用される場合に特に適用可能であることに留意されたい。したがって、LOE102の面104、106を通過する実世界のシーンからの光波が、眼110に到達する前にレンズ112によって歪まされないことも好ましい。実世界のシーンからの光波がレンズ112によって歪まされるのを防ぐために、第2の偏光方向(例えば、s偏光)に入射光の成分のみを透過する偏光子136が面106に関連付けられる。偏光子136およびLOE102は、好ましくは、共通の伸長方向を有する(本明細書では、x軸に対応するものとして任意に示されている)。好ましくは、偏光子136は、実世界の視野全体からの光(入射光線の広い角度分布に対応する)が、面106に衝突する前に、偏光子136によって適切に偏光されるように、面106の全体(または全体に近い)を横切って延びるように配置される。
【0057】
実世界のシーンに対する偏光子136の効果は、図4に概略的に示されている。図示のように、実世界のシーン画像152は、ここでビームにまたがるサンプル光線152Aおよび152Bを含む照明ビーム152によって概略的に表されるように、光線152Aおよび152Bのs偏光成分のみを透過する偏光子136に衝突する。光線152Aおよび152Bは、s偏光され、明順応領域に波長を有するので、光線148A~148Cと同様に、s偏光された光線152Aおよび152Bは、レンズ112を通過し、レンズ112によって歪まされることなく(すなわち、レンズ112は、光線152Aおよび152Bにいかなる光パワーも印加しない)、眼110に到達する。
【0058】
背景のセクションで論じたように、ゴースト画像を生じさせる可能性のある不要な反射を最小限に抑えるために、部分的に反射する表面は、好ましくは、第1の範囲の入射角に対して低い反射率を有し、一方で、第2の範囲の入射角に対して所望の部分反射率を有するように、コーティングされる。図1の従来技術の構成では、これらのコーティングは、典型的には、投影された画像の波長範囲および偏光に固有である。例えば、投影された画像が電磁スペクトルの明順応領域の波長を有するs偏光で構成されている場合、部分的に反射する表面は、第1の範囲の入射角で明順応領域のs偏光の光について低い反射率を有し、一方で、第2の範囲の入射角で明順応領域のs偏光の光について所望の部分反射率を有するように、コーティングされる。このコーティングスキームは、光が順方向にのみ伝播し、部分的に反射する表面22がLOE20から光をカップリングアウトするためにのみ使用されるため、図1の構成にとって理想的である。しかしながら、図2~4の構成では、第1のタイプの光(眼110から反射されたNIR光のp偏光成分)は、逆方向に伝播し、第2のタイプの光(画像プロジェクタからのs偏光明順応光)は、順方向に伝播し、部分的に反射する表面108は、第1のタイプの光をLOE102にカップリングインし、第2のタイプの光をLOE102からカップリングアウトするように構成され、修正されたコーティングスキームは、第1のタイプの光に適切な所望の反射率を確保するように従うべきである。具体的には、部分的に反射する表面108は、好ましくは、図1の構成のようにコーティングされ、さらに、規定の範囲の入射角でNIR領域におけるp偏光の光について所望の反射率を有するように、コーティングされる。
【0059】
前に論じたように、光学モジュール126は、画像投影と光集束および感知との二重の役割を実行する。以下の段落は、画像142を投影するための画像プロジェクタ、ならびに眼110から反射された光を光学センサ128に集束させるための集束および感知配置の両方としての役割における光学モジュール126の構造および動作を説明する。
【0060】
まず図5を参照すると、光学モジュール126(画像プロジェクタ126とも呼ぶ)は、それぞれが光波透過材料から形成された照明プリズム160およびコリメーション集束プリズム180を含む。照明プリズム160は、光波入口面168、画像表示面170、光波出入口面172、および光波出口面174を含むいくつかの外表面を有する。偏光選択型ビームスプリッタ構成166は、光波入口面168に対して斜めの平面上のプリズム160内に配置される。プリズム160は、2つの構成プリズム、すなわち、第1の構成プリズム162および第2の構成プリズム164に基づいており、プリズム162、164のうちの少なくとも1つは、斜辺の側面に、偏光選択型ビームスプリッタ構成166の少なくとも一部を形成する偏光ビームスプリッタ(例えば、ワイヤグリッドビームスプリッタ)が設けられており、これは、s偏光の光を反射し、p偏光の光を透過する(ビームスプリッタの表面に入射する)。プリズム162、164の2つの斜辺の側面は、互いに接合されて、接合された単一照明プリズムアセンブリを形成する。この単一の接合プリズムは、反射ディスプレイデバイス(画像投影用)を照明するために、かつ眼110から反射された入射光を、光波出口面174に関連付けられた光学センサ128に向けるために使用される。偏光ビームスプリッタは、斜辺の側面の1つに直接偏光選択コーティングを介して、またはその上に偏光選択コーティングが堆積された、例えば、シート、箔、またはガラス板などの薄い材料片を介して設けることができ、これにより、薄い材料片が斜辺の側面の1つに取り付けられている。
【0061】
特定の好ましい実施形態では、表面170および172は、相互に平行であり、表面168および174は、相互に平行である。特定の特に好ましい実施形態では、プリズム160は、直方体プリズム、すなわち、互いに直交する長方形の面を有しており、ここに図示される特定の特に好ましい例では、それは、各構成プリズム162および164が45度の直角断面形状を有する正方形の直方体プリズムである。
【0062】
コリメーション集束プリズム180はまた、第1の光波出入口面190(光波出入口面172と整列して平行)、第2の光波出入口面194、コリメーション集束表面192、および第4の表面188を含むいくつかの外表面を有する。偏光およびスペクトル選択ビームスプリッタ構成186は、表面188に対して斜めの平面上のプリズム180内に配置される。図5に見られるように、ビームスプリッタ構成166および186は平行な平面にある。プリズム180は、2つの構成プリズム、すなわち、第1の構成プリズム182および第2の構成プリズム184に基づいており、プリズム182、184のうちの少なくとも1つには、斜辺の側面に、偏光およびスペクトル選択ビームスプリッタ構成186の少なくとも一部を形成する偏光およびスペクトル選択ビームスプリッタが設けられており、これは、p偏光の光を反射し、第1の光スペクトル(例えば、NIR領域)の波長を有するs偏光を透過し、s偏光の光を反射し、第2の光スペクトル(例えば、明順応(または可視光)領域)の波長を有するp偏光の光を透過する。プリズム182、184の2つの斜辺の側面は、互いに接合されて、接合された単一のコリメーション集束プリズムアセンブリを形成する。この単一の接合プリズムは、反射ディスプレイデバイスからの光を光学素子(コリメート集束構成要素であるレンズ140)に向けてディスプレイ光をコリメートするように使用され、また、眼110から反射された入射光を光学素子に向けて照明プリズム160を介して光を光学センサ128に集束させるように使用される。偏光およびスペクトル選択型ビームスプリッタは、斜辺の側面のうちの1つに直接、誘電体コーティングの形態で、偏光およびスペクトル選択型コーティングを介して設けることができる。
【0063】
特定の好ましい実施形態では、表面190および192は、相互に平行であり、表面188および194は、相互に平行である。特定の特に好ましい実施形態では、プリズム180は、直方体プリズム、すなわち、互いに直交する長方形の面を有しており、ここに図示される特定の特に好ましい例では、それは、各構成プリズム182および184が45度の直角断面形状を有する正方形の直方体プリズムである。
【0064】
偏光源176(光源(例えば、LED)と偏光子との組み合わせであり得る)は、光波入口面168に関連付けられている。偏光源176は、入射ビーム158として概略的に表される第2の光スペクトル(すなわち、可視領域)で偏光した光を射出するように構成されている。画像に対応する反射光の空間変調を生成する反射型ディスプレイデバイス178(好ましくは、液晶オンシリコン(LCoS)マイクロディスプレイとして実装される)は、画像ディスプレイ表面170に関連付けられる。反射ディスプレイデバイス178は、ビームスプリッタ構成166から反射された偏光源176からの入射ビーム158によって照明される。反射ディスプレイデバイス178は、所望の画像の明るい領域に対応する反射光が、偏光源に対して回転した偏光を有するように構成されている。したがって、図5に示されるように、偏光照明158は、第1の偏光、典型的にはビームスプリッタ構成166の表面に対するs偏光で光波入口面168を通ってプリズム160に入り、反射ディスプレイデバイス178に衝突する画像ディスプレイ表面170に向かって反射される。画像の明るい領域に対応するピクセルは、変調された回転偏光(典型的にはp偏光された)で反射されるので、明るいピクセルからの放射は、ビームスプリッタ構成166を透過し、光波出入口面172を通った透過を介してプリズム160を出る。次に、光は、第2の偏光(典型的には、偏光およびスペクトル選択ビームスプリッタ構成186の表面に対してp偏光された)で光波出入口面190を通ってプリズム180に入り、コリメーション集束面192に到達し、そこで光は、コリメーション集束面192の少なくとも一部に関連付けられた少なくとも1つのリターデーションプレート196、好ましくは4分の1波長プレートを通過し、リターデーションプレート196の少なくとも一部を覆う少なくとも1つの光波コリメート集束構成要素、すなわちレンズ140に入り、レンズ140の反射する表面141によってリターデーションプレート196を通して反射して戻される。偏光軸に対して45度でその速軸と整列されたリターデーションプレート196を通る二重通過は、偏光を回転させ(例えば、p偏光をs偏光に変換する)、その結果、コリメートされた画像照明は、偏光およびスペクトル選択型ビームスプリッタ構成186で光波出入口面194に向けて反射され、照明ビーム142としてプリズム180を出る。次に、照明ビーム142は、光カップリング構成124によってLOE102にカップリングインされる。
【0065】
図6は、光カップリング構成124によってLOE102からカップリングアウトされた後、眼110から光学モジュール126を通って反射されたコリメートされた光が続く光経路を概略的に示している。図2および図3を見返すと、LOE102を通って逆方向に伝播する眼110から反射されたコリメートされた光116A~116Fは、照明ビームの122を代表する光線122A~122Cとして、光カップリング構成124によってLOE102からカップリングアウトされる。照明122(典型的にはNIR領域内)は、コリメートされる2つの直交偏光成分(すなわち、第1の偏光成分(例えば、ビームスプリッタ構成186の表面に対するp偏光)および第2の偏光成分(例えば、コリメートされていない、ビームスプリッタ構成186の表面に対するs偏光)を含み得る。照明122は、光波出入口面194を通ってプリズム180に入る。論じたように、偏光およびスペクトル選択ビームスプリッタ構成186は、p偏光の光を反射し、第1の光スペクトル(例えば、NIR領域)の波長を有するs偏光の光を透過する。したがって、照明122の第2の偏光成分は、ビームスプリッタ構成186によって透過され、表面188を介してプリズム180を出る。照明122(コリメートされている)の第1の偏光成分(典型的には、ビームスプリッタ構成186の表面に対するp偏光)は、偏光およびスペクトル選択ビームスプリッタ構成186によって反射され、コリメーション集束面192に到達し、そこで光は、リターデーションプレート196を通過し、コリメート集束構成要素140に入り、レンズ140の反射する表面141によってリターデーションプレート196を通って反射されて戻る。コリメート集束構成要素140は、図5のコリメートされていない照明158をコリメートするように作用するが、コリメート集束構成要素140は、図6のコリメートされた照明122に対して反対の機能、すなわち、平行光線(コリメートされた光線122A、122B、および122C)のセットを、捕捉された光の収束ビームに変換するように光パワーを入射コリメートされた光線に印加すること、すなわち、照明122を光学センサ128に集束させること、を実行する。さらに、図5を参照して説明したのと同様に、偏光軸に対して45度でその速軸と整列したリターデーションプレート196を通る二重通過は、照明122の偏光を回転させることで(例えば、p偏光をs偏光に変換する)、集束された照明が偏光およびスペクトル選択ビームスプリッタ構成186を通って透過し、光波出入口面190を通った透過を介してプリズム180を出る。次に、光は、第1の偏光(典型的には、ビームスプリッタ構成166の表面に対するs偏光)で、光波出入口面172を通ってプリズム160に入る。前述のように、ビームスプリッタ構成166は、s偏光の光を反射し、p偏光の光を透過する。これらの反射および透過特性は、入射光の偏光のみに基づいているため、NIRと可視光の両方がビームスプリッタ構成166によって同じ方法で処理される。したがって、s偏光のNIR光は、ビームスプリッタ構成166で光波出口面174に向かって反射され、光学センサ128に衝突する集束された照明ビーム198としてプリズム160を出る。
【0066】
本明細書に記載の実施例において特定の偏光波経路が従った各場合について、偏光は交換可能であり、それにより、例えば、ビームスプリッタ構成166、186およびレンズ112の偏光選択特性を変更する際に、p偏光の光の各言及は、s偏光の光に置き換えることが可能であり、その逆も可能であることに留意されたい。例えば、レンズ112は、(NIR)光のs偏光成分をコリメートするように構成され得る。そのような構成では、偏光源176は、p偏光入射ビーム158を射出するように構成され、ビームスプリッタ構成166は、p偏光の光を反射し、s偏光の光を透過し(明順応領域およびNIR領域の両方で)、ビームスプリッタ構成186は、s偏光の光を反射し、NIR領域の波長を有するp偏光の光を透過し、p偏光の光を反射し、明順応(可視光)領域の波長を有するs偏光の光を透過する。
【0067】
図5および図6に示される偏光およびスペクトル選択ビームスプリッタ構成186は、特定の欠点、特に、入射光の適切なスペクトルおよび偏光選択透過および反射を提供するコーティングの設計の複雑さを有し得る。図5および図6に示されるビームスプリッタ設計の1つの代替案が図7に示されている。ここで、ビームスプリッタ構成186は、偏光選択型ビームスプリッタ構成(ビームスプリッタ構成166と同様)として実装され、すなわち、それは、s偏光の光を反射し、第1および第2の光スペクトルの両方(すなわち、可視光およびNIR光が、ビームスプリッタ構成186によって同じように扱われる)のp偏光の光を透過する。図7に示されるビームスプリッタ構成186は、第1または第2の光スペクトルの間の光を区別しないので、2つの追加のリターデーションプレートが、NIR光の偏光回転を処理するために配置される。具体的には、リターデーションプレート195は、光波出入口面194の少なくとも一部に関連付けられ、別のリターデーションプレート197は、プリズム160と180との間に配置されるように、光波出入口面172および光波出入口面190に関連付けられている。リターデーションプレート195、197は、第1の光スペクトル(すなわち、NIR光)の入射光に対して半波長板として機能し、それにより、入射NIR光の偏光を回転させ、第2の光スペクトル(すなわち、明順応(可視)光)の入射光に対して全波長板として機能し、それにより、入射明順応光の偏光状態に影響を与えない。
【0068】
したがって、リターデーションプレート195に衝突する照明122の第1の偏光(典型的にはp偏光)成分は、リターデーションプレート195によって、その偏光を第2の直交偏光に回転させ(例えば、p偏光をs偏光に変換する)、リターデーションプレート195に衝突する照明122の第2の偏光(典型的にはs偏光)成分は、リターデーションプレート195によって、その偏光を第1の直交偏光に回転させる(例えば、s偏光をp偏光に変換する)。照明122(リターデーションプレート195を通過した後)は、光波出入口面194を通ってプリズム180に入る。(偏光選択型ビームスプリッタ構成186の表面に対して)p偏光としてプリズムに入る照明122の成分は、ビームスプリッタ構成186によって透過し、表面188を介してプリズム180を出る。(偏光選択型ビームスプリッタ構成186の表面に対して)s偏光としてプリズムに入る照明122の成分は、ビームスプリッタ構成186によって反射され、コリメーション集束面192に到達し、そこでその成分は、リターデーションプレート196を通過し、コリメート集束構成要素(すなわち、レンズ)140に入り、偏光を回転させるように(例えば、s偏光をp偏光に変換する)、レンズ140の反射する表面141によってリターデーションプレート196を通して反射して戻り、その結果、集束された照明が偏光選択型ビームスプリッタ構成186を通って透過し、光波出入口面190を通った透過を介してプリズム180を出る。次に、光は、第1の偏光(典型的にはp偏光)でリターデーションプレート197に衝突し、その偏光を、リターデーションプレート197によって第2の直交偏光に回転させ(例えば、p偏光をs偏光に変換する)、その結果、照明122は、ビームスプリッタ構成166の表面に対してs偏光を伴って、光波出入口面172を通ってプリズム160に入る。ここで、s偏光の光は、ビームスプリッタ構成166によって光波出口面174に向かって反射され、光学センサ128に衝突する集束照明ビーム198としてプリズム160を出る。
【0069】
リターデーションプレート195、197は、明順応光に対して全波長板として機能するので、偏光源176からプリズム180の出力(光波出入口面194)へとプリズム160、180を通る通過経路、ならびに通過する光の偏光方向は、リターデーションプレート195、197の影響を受けないことに留意されたい。
【0070】
図7に示される光学モジュール126の構成は、レンズ112が、少なくとも部分的に偏光分離に基づいて、第1のタイプの光、すなわち、アイトラッキング光(眼110からの光)と第2のタイプの光、すなわち、画像光(反射ディスプレイデバイス178からの光)とを区別する状況に適用可能であることに留意されたい。レンズ112がスペクトル分離のみに基づいてこれらの2つのタイプの光を区別する構成では、リターデーションプレート195は必要とされない。これは、アイトラッキング光が一般にレンズ112によって両方がコリメートされるsおよびp偏光成分を含むように眼が照明され得るという事実による(レンズ112は、アイトラッキング光によって占められる光スペクトルの光、例えば、偏光に関係のないNIR領域の光をコリメートするので)。したがって、LOE102から光学モジュール126にカップリングアウトされた照明122は、(ビームスプリッタ構成186の表面に対して)s偏光およびp偏光の成分についてコリメートされる。ここで、p偏光成分は、表面194を通ってプリズム180に入り、ビームスプリッタ構成186によって透過され、表面188を通ってプリズム180を出る。s偏光成分は、表面194を通ってプリズム180に入り、ビームスプリッタ構成186によって反射され、表面192を通ってプリズム180を出て、コリメーション集束表面192に到達し、そこでその成分は、リターデーションプレート196を通過し、コリメート集束構成要素(すなわち、レンズ)140に入り、偏光を回転させるように(例えば、s偏光をp偏光に変換する)、レンズ140の反射する表面141によってリターデーションプレート196を通して反射して戻り、その結果、集束された照明がビームスプリッタ構成186を通って透過し、光波出入口面190を通った透過を介してプリズム180を出る。
【0071】
ビームスプリッタ構成166、186の他の実装は、例えば、光学モジュール126のビームスプリッタ構成166、186の一方または両方の、入射光の強度の約半分を反射し、かつ入射光の強度の約半分を透過する単純な50~50ビームスプリッタとしての実装を含むものとして、本明細書で企図される。あるいは、両方のビームスプリッタ構成を、第2の光スペクトル(可視光)の入射光用の偏光選択型ビームスプリッタ構成として、および第1の光スペクトル(NIR光)の入射光用の単純な50~50ビームスプリッタとして実装することができる。例えば、ビームスプリッタ構成は、s偏光可視光を反射し、p偏光可視光を透過し、入射NIR光の強度の約半分を反射し、入射NIR光の強度の約半分を透過することができる。ただし、このような50~50のビームスプリッタ構成では、最初に入射する光の強度の約25%のみが出力に到達することに留意されたい。
【0072】
本明細書では、照明配置138の様々な構成が企図されている。すべての照明配置構成において、照明配置138は、第1のタイプの光(すなわち、第1の偏光方向に偏光されている(例えば、p偏光されている)光の成分を含む第1の光スペクトルの光(例えば、NIR光))で眼110を照明するように構成された1つ以上の光源を含む。理想的には、照明配置138の光源は、EMB109に可能な限り鉛直に近い照明方向に眼110を照明するように配置される。代替の構成では、光源は、眼110を側面から照明するように、眼110の視野の周辺に配置される。さらに別の構成では、照明配置138は、光学モジュール126の一部として配置され、画像142を生成し、かつ眼110で見るためにLOE102に投影することに加えて、照明配置138から光をLOE102に注入して、EMB109に鉛直なカップリングアウト方向に部分的に反射する表面108によってLOE102からカップリングアウトされるように、順方向に伝播するように構成することもできる。
【0073】
以下の段落は、特に図8を参照して、照明配置138の配置オプションのいくつかを説明する。図8に示される装置100の非限定的な実装は、照明配置138の一般的な配置オプションに関するコンテキストを提供することを意図している。ここに示される特定の非限定的な実装では、装置100は、観察者の耳に掛けるためのサイドアーム156を備えた眼鏡フレーム154として実装されたヘッドマウント機械体を備えた眼鏡フォームファクタに実装される。ヘルメットに取り付けられたフォームファクタ、車両のフロントガラスのフォームファクタ、および他のヘッドアップディスプレイおよびニアアイディスプレイのフォームファクタなどの他のフォームファクタもまた、明らかに本発明の範囲内にあることに留意されたい。照明配置138は、光源138Aによって射出された光線が、EMB109に鉛直に近いEMB190に到達するように、(例えば、面204への直接または間接の取り付けを介して)LOE102のアクティブ領域の近くに配置された少なくとも1つの光源138A(図8では2つの光源として表されている)を含み得る。代替的に、または光源138Aに加えて、照明配置138は、観察者の頭の側面の近くに配置された少なくとも1つの他の光源138Bを含むことができる(図8では、これは、サイドアーム156に取り付けられた光カップリング構成124に取り付けられているものとして示されている)。そのような構成では、偏光源138Bによって射出された光線は、軸外角度でEMB190に到達する。論じたように、眼110から反射される光は、光の2つの直交偏光成分(すなわち、s偏光成分およびp偏光成分)を含み得、レンズ112は、これらの2つの偏光方向のうちの1つのみをコリメートするように構成される。本明細書に記載の例では、レンズ112は、好ましくは、(p偏光をコリメートするように)眼110から反射された光のp偏光成分に光パワーを印加し、眼110から反射された光のs偏光成分に光パワーを印加しないように構成される。
【0074】
照明配置138は、眼110の特定の領域または眼110全体をNIR光で照明するように構成され得る。詳細に論じられるように、眼110によって反射される照明(すなわち、光線114A~114Fによって表される第1のタイプの光)は、(レンズ112によって)コリメートされ、部分的に反射する表面108によってLOE102にカップリングインされ、次にLOE102から(光学カップリング構成124によって)カップリングアウトされ、そこで(レンズ140によって)光学センサ128上に集束される。光学センサ128は、集束光の感知に応答して信号を生成し、それらの信号は、信号を処理して眼110の現在の注視方向を導出するように構成された処理システム130に転送される。特定の非限定的な実施形態では、装置100は、眼110の特定の領域に存在するパターンを画像化することによって、注視方向(眼110の角度向き、または眼110の視線)を取得する。このようなパターンの位置とその動きは、現在の注視方向と眼の動きを示す。人間の眼は、例えば、網膜の血管によって生成されるパターンを含む、様々な追跡可能な特徴を含む。これらの追跡可能な特徴は、処理システム130によって実行される適切な画像処理命令によって実施される適切な追跡アルゴリズムを使用して追跡することができる。
【0075】
注視方向を導き出し追跡するための非限定的なプロセスでは、網膜パターンがマッピングされ、追跡可能な特徴が初期設定プロセス中に決定され、その後、連続追跡プロセスが実行される。例えば、画像マーカーは、観察者が初期化中に見ることができるように観察者に表示され得る。観察者がマーカーの方を向いている間、照明配置138は、短いパルスおよび(光学センサ128を介して)得られた眼底の完全な画像によって眼底(網膜の可視部分)を完全に照明する。次に、この画像は、処理システム130によって処理されて、追跡可能な特徴(例えば、視神経乳頭および中心窩)を識別する。連続追跡プロセス中に、眼の選択された関心領域(ROI)110は、照明配置138によって選択的に照明され、現在の注視方向(視線)を決定するための対応する照明パルス中にROIの画像(光学センサ128によって取得される)がサンプリングされ処理される(処理システム130によって)、この導出された注視方向を使用して、後続の照明サイクルのROIの位置を更新し、更新されたROIを照明することによって連続追跡プロセスを繰り返す。追跡測定の頻度が眼の動きの速度と比較して高いと仮定すると、この更新プロセスは典型的には、継続的な追跡を維持するのに効果的であり、任意選択で他の眼からの追跡情報と組み合わせられる。注視方向が変わると、照明エリアも変わる。ROIの更新は、最後にサンプリングされた画像から決定された「現在の」注視方向に従って実行され得るか、または、場合によっては、前の2つ以上の測定間の眼の動きに基づく予測外挿を使用し得る。追跡に失敗した場合、追跡可能な機能が回復するまで、照明された領域のサイズを一時的に増やすことができる。
【0076】
再び図8を見ると、処理システム130は、様々な専用グラフィックプロセッサ、ディスプレイドライバ、および任意の適切なオペレーティングシステムの下で動作し、適切なソフトウェアまたはファームウェアモジュールを実装するコンピュータ化されたプロセッサ(総称してプロセッサ132と称する)の任意の組み合わせを含むがこれらに限定されない、当技術分野で知られている任意の適切なタイプの処理ハードウェアおよび/またはソフトウェアを使用して実装することができる。記憶媒体134は、揮発性データストレージなどの1つ以上のコンピュータ化されたメモリデバイスとすることができる。処理システム130は、情報およびグラフィックコンテンツの双方向転送のために、LANおよび/またはWANデバイスとの有線または無線通信を可能にするための様々な通信コンポーネントをさらに含み得る。装置100は、適切な電源から電力を供給され、これは、ケーブル133を介して接続された電源131としてここに概略的に示されている、バッテリーおよび/または提供される外部電源の任意の組み合わせであり得る。バッテリー電源を使用する場合、バッテリーは、眼鏡またはヘルメットに取り付けられた構造の一部として統合することができる。
【0077】
レンズ112および偏光子136などの、LOE102の面104、106に関連付けられた光学部品は、例えば、LOE102への機械的取り付けを含む任意の適切な取り付け技術を使用して、LOE102に光学的に取り付けられる一方で、光学部品とLOE102の面との間のエアギャップまたは材料(例えば、ゲル)ギャップを維持する。そのようなエアギャップまたは材料ギャップを占める材料は、LOE102内の全内部反射の状態を維持するのに十分に低い屈折率を有する。光学部品をLOE102に光学的に取り付けるための他の適切な代替案には、LOE102の面と光学部品との間に超微細構造を有するエアギャップフィルムの配置、または低屈折率材料の透明層(低屈折率材料の薄いプレートなど)の配置が含まれる。このような光学的取り付け方法の詳細は、出願人が共有している米国特許第10,520,731号および米国特許出願公開第2018/0067315号に記載されている。4分の1波長板150は、同様の光学的取り付け技術を使用してレンズ112に取り付けられ得る。
【0078】
これまでに説明した装置100の実施形態は、アイトラッキング光をLOE102にカップリングインするための、かつ(光学モジュール126からの)画像光をLOE102からカップリングアウトするための部分的に反射する表面108のセットとして実装される光カップリング構成に関するが、部分的に反射する表面108は、1つの非限定的な光カップリング構成の単なる例示であり、他の光カップリング構成を使用して、アイトラッキング光をLOE102にカップリングインし、LOE102から画像光をカップリングアウトすることができる。光カップリング構成は、レンズ112からのアイトラッキング入射放射の一部を、LOE102内の内部反射を通して伝播する角度に偏向し、同様に、画像入射放射の偏向部分がLOE102を出るような角度への内部反射によってLOE102内をすでに伝播している(光学モジュール126からの)画像入射放射の一部を偏向する、任意の光カップリング配置であり得る。そのような適切な光学カップリング配置の他の例には、これらに限定されないが、面104、106のいずれかに配置された1つ以上の回折光学素子が含まれる。
【0079】
図2~8に関して説明された装置の実施形態は、アイトラッキング光(観察者の眼から反射された光)の特定の成分のみをコリメートして、カップリングインしコリメートされた光を画像プロジェクタ(光学モジュール126)に統合された光学センサに集束させることができるようにするための偏光および/またはスペクトル(波長)感知性コリメート素子(レンズ112)の利用に関する。眼を画像化し、光が眼から発する角度を決定するために、眼からのコリメートされていない光が光ガイド光学素子にカップリングインされ、2つの直交軸に対して異なる曲率半径を有する双円錐レンズによって、光学センサに方向付けられる、他のアイトラッキング解決策が本明細書で企図される。そのような解決策は、好ましくは、投影された画像が伝播するLOEとは別の専用の光ガイド光学素子に配置された、特殊な少なくとも部分的に反射する表面を採用する。
【0080】
ここで図9~15を参照すると、画像を表示するための、かつ光ガイド光学素子(LOE)に関連付けられたカップリングイン構成によって人間の眼210の注視方向を導出するための、本発明の様々な実施形態に従って構築され動作する、概して200で示される装置の構造および動作の様々な態様が示されている。ここに示される好ましいが非限定的な実装では、カップリングイン構成は、眼210から発する光に対して少なくとも部分的に反射する表面208として実装される。表面208は、以下、少なくとも部分的に反射する表面208と互換的に称される。表面208は、(照明配置242による照明に応答して)眼から反射された光を伝播するように構成され、眼210で見るためにカップリングアウトされることになる投影された画像を伝播するように構成された第2のLOE212とは別である、第1のLOE202に関連付けられている。LOE202は、透明な材料から形成され、内部反射(好ましくは全内部反射)によって光を誘導するための一対の平行な面(平面の主表面)204、206を有する。表面208は、(全)内部反射によってLOE202内を伝播するように、カップリングイン領域243内の面204に入射する光の一部をカップリングインするように構成されている。特に、表面208は、LOE202内(すなわち、面204、206の間)に平行な面204、206に対して斜めに配置され、その結果、カップリングインされた光は、面204、206からの内部反射によって基板202内にトラップされる。「アクティブ領域」または「アクティブエリア」とも称される、LOE202のカップリングイン領域243は、面204の二次元領域である。
【0081】
表面208によってカップリングインされた光は、カップリングアウト光学構成207(図9にプリズムとして概略的に示されているが、例えば、反射する表面としても実施され得る)に到達するまで、逆方向にLOE202を通って伝播する。好ましくは、部分的に反射する表面として実装されたミキサー205は、カップリングアウト光学構成207から上流にかつ隣接する面204、206に平行な平面(好ましくは面204と206の間の中間平面)上でLOE202内に配置されて、LOE202を通って伝播する光の不均一性を軽減する。光は、カップリングアウト光学構成207によって、LOE202から光学モジュール236にカップリングアウトされる。光学モジュール236は、レンズ240(双円錐レンズ)および光学センサ238を含む(ただし、センサ238は、光学モジュール236の外部にあってもよい)。カップリングアウトされた光は、レンズ240を通過し、レンズ240は、眼210から反射された光を感知するように構成された光学センサ238に光を向ける。処理システム230は、記憶媒体234(コンピュータメモリ等など)に結合された少なくとも1つのコンピュータ化されたプロセッサ232を含み、光学センサ238と電気的に関連付けられ、眼210の現在の注視方向を導出するために光学センサ238からの信号を処理するように構成されている。
【0082】
眼210で見るためにカップリングアウトされることになる投影された画像を伝播するように構成された第2のLOE212は、透明な材料から形成され、内部反射(好ましくは全内部反射)によって光を誘導するための一対の平行な面(平面の主表面)214、216を有する。LOE212は、眼210に対して対向するように平行な面214の1つで展開され、ここで、眼210は、面214からアイレリーフ(ER)距離213でEMB209内に配置される。画像プロジェクタ228は、ここでは、ビームにまたがるサンプル光線222A、222B、および222Cを含む照明ビーム222によって概略的に表されるように、画像222(無限遠にコリメートされた)を投影するように構成される。投影された画像222は、反射する表面によってここに概略的に示されるように、カップリングイン光学構成224によってLOE212にカップリングインされ(ただし、例えば、プリズムなどの他の構成が本明細書で企図される)、基板内の内部反射によってトラップされる反射光線223を生成し、光線225も生成するようにする。画像は、繰り返される内部反射によって基板に沿って伝播し、平行な面214、216に対して斜めの角度で部分的に反射する表面218のシーケンスとして実装される第2のLOE212に関連付けられた光学カップリングアウト構成に衝突し、そこで画像強度の一部が反射されて、光線226A、226B、および226Cとして眼210に向かって基板からカップリングアウトされる。部分的に反射する表面218は、LOE212での使用に適切な1つの非限定的な光学カップリングアウト構成の単なる例示であり、他の光学カップリング構成を使用して、LOE212から画像光をカップリングアウトすることができることに留意されたい。光カップリングアウト構成は、画像の偏向された部分がLOE212を出るような角度に内部反射によってLOE212内を伝播する画像の一部を偏向させる任意の光学カップリング構成であり得る。そのような適切な光学カップリング配置の他の例には、これらに限定されないが、面214、216のいずれかに配置された1つ以上の回折光学素子が含まれる。
【0083】
LOE202は、眼210に対向するように平行な面204の1つを有するが、LOE212が眼210とLOE202との間に介在しており、面204および216が平行(またはほぼ平行)となり、互いに整列し、隣接するように、配置される。眼210は、面204からアイレリーフ(ER)距離211に位置する。図面に示される非限定的な構成では、LOE202および212は、LOE202および212が共通の伸長方向(本明細書ではx軸に対応するものとして任意に示される)を有し、面204、206、214、216が相互に平行となるように配置される。LOE202および212は、好ましくは、面204、216で互いに光学的に取り付けられて、界面平面を画定する。機械的配置、および光学接合を含むがこれらに限定されない、任意の適切な機構を使用して、LOE202および212を互いに光学的に取り付け得る。例えば、面204、206は、面204、206の少なくとも1つの少なくとも一部に光学接合の層を提供することによって互いに接合されて、個別の機能を実行する2つの光ガイドから形成された接合された単一の光学構造を形成し得る。
【0084】
図2~8を参照して説明した実施形態のように、本実施形態では、眼210は、第1の光スペクトルの光が、表面208によってLOE202にカップリングインされ、照明222(すなわち、投影された画像)が、第2の光スペクトル(明順応、すなわち、可視領域)内にあるように、好ましくは、第1の光スペクトル(好ましくはNIR領域)の光で照明される。前の実施形態で論じたように、部分的に反射する表面218は、好ましくは、第1の範囲の入射角に対して低い反射率を有する一方で、第2の範囲の入射角に対して所望の部分反射率を有するようにコーティングされる。さらに、面214、216および部分的に反射する表面218は、眼210によって反射された光が、LOE202にカップリングインされる前の強度の損失を最小限に抑えてLOE212を通過するように、好ましくは、第1の光スペクトルの光に対して高い透過率を有し、するようにコーティングされる。
【0085】
前述の実施形態(図2~8)においてLOE102にカップリングインされる眼からの入射光とは対照的に、本実施形態では、LOE202にカップリングインされる眼210からの入射光はコリメートされず、異なるそれぞれの入射角で表面208に衝突する入射光線の角度分布をもたらす。特に図10を参照すると、EMB209の第1の次元に沿ったEMB09内の2つの異なる点からの入射光(第1の次元は、図面において任意にラベル付けされたXYZ座標系のx軸に沿っている)が、LOE202にカップリングインされるように表面208に衝突する。ここでは第1の照明ビーム244および第2の照明ビーム250によって概略的に表されている入射光は、照明配置242からの照明に応答して眼210によって反射される光(好ましくはNIR領域)である。なお、2つのビーム244、250は、表面208によってLOE202にカップリングインされるEMB209からのビームのサンプルを単に示しているだけであり、EMB209内の追加のそれぞれの点からの追加のビームもまた、表面208によってLOE202にカップリングインされる。見てわかるように、ビーム244、250のそれぞれは、一般に、異なる入射角で表面208に到達し、その結果、ビーム244、250は、内部反射によってLOE202内にトラップされるそれぞれの反射ビーム245、251を生成するが、これらは、面204、206に対して異なる角度でLOE202内を伝播する。
【0086】
図11に示されるように、ビーム244、250のそれぞれは、ビームにまたがる光線を含む。図示の例では、ビーム244は、(x軸に沿った)第1の次元のカップリングイン領域243の少なくとも一部に沿ってビーム244にまたがるサンプル光線246A、246B、および246Cを含み、光線246Aおよび246Cは、ビーム244の周辺光線である。同様に、ビーム250は、(x軸に沿った)第1の次元のカップリングイン領域243の少なくとも一部に沿ってサンプル光線252A、252B、および252Cを含み、光線252Aおよび252Cは、ビーム250の周辺光線である。光線246A、246B、246C、252A、252B、および252Cのそれぞれは、面204の第1の次元(図面のx軸)に沿った面204の異なるそれぞれの点で面204に入射し、したがって、異なるそれぞれの入射角で表面208に入射する。したがって、光線246A、246B、246C、252A、252B、および252Cのそれぞれは、異なる入射角で表面208に到達し、その結果、反射ビーム245、251は、それぞれ、LOE202内を伝播する、間隔を置いて離された反射光線(それぞれのビームにまたがる)を含む。
【0087】
表面208によってLOE202にカップリングインされる光(ビーム244、250にまたがり、かつビーム244、250にまたがる光線にまたがる)の角度分布は、表面208の開口幅(EMB209に平行な平面に投影される幅)の関数である。開口幅は、表面208の配置角度βの急峻さ(面204に対して測定される)に反比例するので、急峻な配置角度の場合、開口幅は効果的に小さく、それにより、角度またがり次元において高解像度を提供する(図面のx軸)。本実施形態では、表面208は、部分的に反射する表面218よりも急な角度で配置され、角度の狭い角度分布のみをカバーする光が表面208によってLOE202にカップリングインされるように表面208の開口幅がLOE202とEMB209との間の距離に対して十分に狭いような十分に急な角度で配置される。
【0088】
解像度は、面204に平行な平面上に投影された表面208の幅によって大まかに概算することができる。図9では、幅はwとして示され、h/tan(β)として計算することができる。ここで、hは、LOE202の厚さ(すなわち、平らな面204、206間の最小距離)である。例えば、h=1mmおよびβ=65°の場合、
【数1】
である。0.47mmの解像度は、人間の眼の瞳孔の解像度よりも小さいので、hおよびβのそのようなパラメータは、光学センサ238で高解像度画像を提供し、幅を減少させること(配置角度βを増加させることおよび/または厚さhを減らすことにより)は、さらに高い解像度の画像が生成し得る。しかしながら、幅が減少するにつれて、光学センサ238によって出力される信号の強度も減少し、出力信号の全体的な信号対雑音比が減少することに留意されたい。したがって、光学センサ238での妥当な信号対雑音比に対応する小さな開口幅の間の適切なバランスを見つけるように注意を払う必要がある。
【0089】
ここで図12に眼を向けると、カップリングアウトされた光線247A、247B、および247C、ならびにカップリングアウトされた光線253A、253B、および253Cが、光学モジュール236で受け入れられていることが示されている。光線247A、247B、および247C、ならびに光線253A、253B、および253Cは、表面208の第1の次元(幅)の角度分布にまたがる入射光線に対応する。特に、カップリングアウト光線247A、247B、および247Cは、入射光線246A、246B、および246Cに対応し、カップリングアウト光線253A、253B、および253Cは、入射光線252A、252B、および252Cに対応する。カップリングアウトされた光線247A、247B、および247C、ならびにカップリングアウトされた光線253A、253B、および253Cは、レンズ240を通過し、レンズ240は、光線に光パワーを印加して、光線を光学センサ238に向ける。
【0090】
前述のように、レンズ240はバイコニックであり、これは、本文脈では、異なる軸に対して異なる曲率半径を有することを指す。異なる曲率半径は、2つのそれぞれの次元(直交次元)で2つの焦点距離、すなわち、第1の次元のf1の第1の焦点距離および(第1の次元に直交する)第2の次元のf2の第2の焦点距離を有するレンズ240につながる。光学センサ238は、レンズ240からf1の距離で配置される。は、第1の焦点距離f1および第1の焦点距離f1における光学センサ238の位置決めは、レンズ240が光線247A、247B、および247C(および光線253A、253B、および253C)を捕捉された光の非収束ビームに変換するようなものであり、非収束ビームは、光線247A、247B、および247C(および光線253A、253B、および253C)の角度分布が対応するビーム244および(ビーム250)の(表面208の幅の次元における)角度分布を示すように、光学センサ238の異なるそれぞれの領域に到達する。さらに、光線247A、247B、および247C、ならびに光線253A、253B、および253Cは、光線247A、247B、および247Cのセット間の全体的な角度分離、ならびに光学センサ238での光線253A、253B、および253Cがビーム244と250との間の(表面208の幅の次元における)角度分離を示すように、光学センサ238の異なるそれぞれの領域に到達する。したがって、光学センサ238は、適度に高い角度分解能で、表面208によってLOE202にカップリングインされたEMB209から発する光(ビーム244、250)の相対角度を測定することができる。角度分解能は、一般に、表面208(前述)の有効開口幅とアイレリーフ(ER211)の関数であり、sin-1(w/ER)として表すことができる。0.47mmの有効開口幅(w)および27mmのアイレリーフ(ER)の場合、光学センサ238によって提供される角度分解能は、約1度である。補足的に、小さな角度分解能の結果として、LOE202の主平面間の平行性の要件は、眼210への画像投影に使用されるLOE212の要件よりもはるかに寛大であり、約1分角の平行性が必要になる場合がある。
【0091】
レンズ240は、第1の焦点距離の次元に直交する次元の第2の焦点距離f2を有する。レンズ240の双円錐のアスペクトは、2つの直交する次元に沿ってカップリングイン領域243にまたがる入射光(眼210から反射される)を介して眼210の画像化を可能にする。(x軸に沿った)一次元にまたがる入射光線に対応するカップリングアウトされた光を向けることによる(レンズ240による)画像化は、図10~12を参照して議論された。以下の段落は、レンズ240によって光学センサ238上に(z軸に沿った)第2の次元にまたがる入射光線に対応するカップリングアウトされた光線を集束させることによる眼210の画像化を説明する。
【0092】
ここで図13を参照すると、ビーム244、250はまた、(z軸に沿った)第2の次元のカップリングイン領域243の少なくとも一部に沿ってそれぞれのビームにまたがる光線を含む。図示の例では、ビーム244は、EMB209の共通点から発生し、かつ(x軸に沿った)第2の次元のカップリングイン領域243の少なくとも一部に沿ってビーム244にまたがるサンプル光線248A、248B、および248Cを含み、光線248Aおよび248Cは、ビーム244の周辺光線である。同様に、ビーム250は、EMB209の共通点から発生し、かつ(x軸に沿った)第2の次元のカップリングイン領域243の少なくとも一部に沿ってビーム250にまたがるサンプル光線254A、254B、および254Cを含み、光線254Aおよび254Cは、ビーム250の周辺光線である。XY平面における光線246A、246B、および246Cの投影は、共通の入射角で表面208に入射する。したがって、光線246A、246B、および246Cは、表面208によってLOE202にカップリングインされると、LOE202を通って伝播する、間隔を置いて配置された平行光線のセットを生成する。同様に、XY平面における光線254A、254B、および254Cの投影は、共通の入射角で表面208に入射する。したがって、光線254A、254B、および254Cは、表面208によってLOE202にカップリングインされると、LOE202を通って伝播する、間隔を置いて配置された平行光線のセットを生成する。
【0093】
ここで図14に眼を向けると、カップリングアウトされた光線249A、249B、および249C、およびカップリングアウトされた光線255A、255B、および255Cが、光学モジュール236で受け入れられていることが示されている。光線249A、249B、および249C、ならびに光線255A、255B、および255Cは、表面208の第1の次元(z軸に沿った高さ)にまたがる入射光線に対応する。特に、カップリングアウト光線249A、249B、および249Cは、入射光線248A、248B、および248Cに対応し、カップリングアウト光線255A、255B、および255Cは、入射光線254A、254B、および254Cに対応する。カップリングアウトされた光線249A、249B、および249C、ならびにカップリングアウトされた光線255A、255B、および255Cは、レンズ240を通過し、レンズ240は、光線249A、249B、および249Cを光学センサ238の画像平面上の異なる共通領域(またはスポット)に集束するように、かつ光線255A、255B、および255Cを光学センサ238の画像平面上の異なる共通スポットに集束させるように、光線に光パワーを印加する。言い換えれば、レンズ240は、光線249A、249B、および249Cのセットを捕捉された光の収束ビームに変換し、同様に、光線255A、255B、および255Cのセットを捕捉された光の収束ビームに変換する。これらの光線のセットを画像平面に集束させる能力は、レンズ240をLOE202の出力開口に位置付けることによって、かつ適切な第2の焦点距離f2でレンズ240を設計することによって可能になる。
【0094】
一般に、レンズ240は、好ましくは、第2の焦点距離f2がf2=uf1/(u-f1)で与えられるように設計され、ここで、uは、光線が第2の次元に沿って表面208からレンズ240まで移動する面内距離であり、レンズ240は、u=ER+L2/cos(θ)によって与えることができ、ここで、L2は、表面208からカップリングアウト光学構成207までの面内距離であり、θは、光が伝播する角度(面204に対して測定される)である。
【0095】
図2~8を参照して説明した実施形態と同様に、本実施形態の光学センサ238は、センサに到達する光線の感知に応答して信号を生成し、これらの信号は、眼110の現在の注視方向を導出するために信号を処理するように構成された処理システム130に転送される。注視方向の導出は、図2~8を参照して前述したものと同様のステップを使用して実行され得る。さらに、入射光(ビーム244、250)の相対角度を測定する光学センサ238の能力を使用して、本実施形態における注視方向の導出を強化することができる。
【0096】
照明配置242の可能な配置構成は、概して、図8を参照して説明した照明配置138の配置構成と同様である。例えば、装置200は、観察者の耳に掛けるためのサイドアームを備えた眼鏡フレームとして実装されたヘッドマウント機械体を備えた眼鏡フォームファクタで実装され得る。ヘルメットに取り付けられたフォームファクタ、車両のフロントガラスのフォームファクタ、および他のヘッドアップディスプレイおよびニアアイディスプレイのフォームファクタなどの他のフォームファクタもまた本明細書で企図されている。照明配置242は、1つ以上のNIR光源を含むことができ、これは、例えば、面214への直接または間接の取り付けを介して、例えば、LOE202のアクティブ領域の近くに配置することができ、光源によって射出された光線は、EMB209に、EMB209に対する鉛直近くで到達する。代替的に、または前述の構成に加えて、照明配置242は、例えば、画像プロジェクタ228またはカップリングイン光学構成224に取り付けられた(これらは、好ましくは、眼鏡フレームのサイドアームの1つに取り付けられる)、観察者の頭の側面の近くに配置された少なくとも1つの他のNIR光源を含むことができる。そのような構成では、NIR光源によって射出された光線は、軸外角度でEMB209に到達する。
【0097】
さらに、LOE212を使用して、EMB209に鉛直な方向で眼210を照明し得る。そのような構成では、照明配置242は、図15に示されるように、画像プロジェクタ228の一部として統合される。画像プロジェクタ228は、画像プロジェクタ228が光学センサを含まないことを除いて、図5に示される画像プロジェクタ126と概ね類似している(光学センサ238は、画像プロジェクタ228とは別の光学的である光学モジュール236に配置されるので)。さらに、光学センサ238は、画像プロジェクタ228の一部ではないので、スペクトル選択性のための適切なコーティングでビームスプリッタ構成166および186を設計する必要はない。したがって、図15に示される画像プロジェクタ228の非限定的な例では、ビームスプリッタ構成166および186の両方は、第1の光スペクトルの入射光および第2の光スペクトルの入射光について(すなわち、可視光およびNIR光は、ビームスプリッタ構成166と186によって同じように扱われる)、入射光を第1の偏光方向(例えば、ビームスプリッタ構成166、186の表面に対してs偏光された)に反射し、第2の偏光方向(例えば、ビームスプリッタ構成166、186の表面に対してp偏光された)の入射光を透過する、偏光選択型ビームスプリッタである。さらに、光はLOE212を通って順方向にのみ伝播し、したがって光はLOE212から画像プロジェクタ228に入らないので、表面172は光波出口面172であり、表面190は光波入口面190であり、表面194は光波出口面194である。
【0098】
図5を参照して説明したのと同様に、偏光源176は、入射ビーム158として概略的に表される第2の光スペクトル(すなわち、可視領域)の偏光の光を射出する。偏光照明158は、第1の偏光、典型的には偏光選択型ビームスプリッタ構成166の表面に対するs偏光で光波入口面168を通ってプリズム160に入り、偏光選択型ビームスプリッタ構成166によって画像表示面170に向かって反射され、反射ディスプレイデバイス178に衝突する。画像の明るい領域に対応するピクセルは、変調された回転偏光(典型的にはp偏光された)で反射されるので、明るいピクセルからの放射は、ビームスプリッタ構成166を透過し、光波出口面172を通った透過を介してプリズム160を出る。次に、光は、第2の偏光(典型的には、偏光選択型ビームスプリッタ構成186の表面に対するp偏光)で光波入口面190を通ってプリズム180に入り、コリメーション面192に到達し、そこで光はリターデーションプレート196を通過し、レンズ140に入り、レンズ140の反射する表面141によってリターデーションプレート196を通って反射されて戻る。偏光軸に対して45度でその速軸と整列されたリターデーションプレート196を通る二重通過は、偏光を回転させ(例えば、p偏光をs偏光に変換する)、その結果、コリメートされた画像照明は、偏光選択型ビームスプリッタ構成186で光波出口面194に向けて反射され、照明ビーム222としてプリズム180を出る。次に、照明ビーム222は、カップリングイン光学構成224によって(図9に示されるように)LOE212にカップリングインされる。
【0099】
例えば、偏光NIR光源(NIR光源と偏光子との組み合わせであり得る)として実装された照明配置242は、この構成では光波入口面188である表面188に関連付けられている。偏光NIR光源は、入射ビーム268として概略的に表されている、第1の光スペクトルの偏光の光(すなわち、偏光NIR光)を射出するように構成される。偏光照明268は、第1の偏光、典型的には偏光選択型ビームスプリッタ構成188の表面に対するp偏光で光波入口面188を通ってプリズム180に入り、偏光選択型ビームスプリッタ構成186を通って透過し、光波出口面194を通った透過を介して照明ビーム270としてプリズム180を出る。次に、p偏光の照明ビーム270は、カップリングイン光学構成224(照明ビーム222と同様)によってLOE212にカップリングインされる。p偏光照明270は、(照明222と同様に)LOE212を通って伝播し、部分的に反射する表面218によってLOE212からカップリングアウトされる。この構成では、LOE212内を伝播するNIR照明が部分的に反射する表面218によってカップリングアウトされること、および眼210から発せられるNIR光が(カップリングアウトされたNIR光による照明に応答して)LOEに戻ってカップリングインされないことを確実にするように注意する必要がある。この目的のために、部分的に反射する表面218は、好ましくは、LOE212内を伝播するs偏光NIR照明が部分的に反射する表面218によってカップリングアウトされるが、眼210から発するs偏光NIR照明が、規定の入射角の範囲外の入射角で部分的に反射する表面218に入射し、したがって、反射せずに部分的に反射する表面を通過するように、規定の入射角範囲でNIR領域内のs偏光の光に対して所望の反射率を有するようにコーティングされる。
【0100】
これまで装置200の実施形態を共通の(平行な)伸長方向を有するLOE202および212の文脈内で説明したが、LOEが互いに直交する伸長方向を有する他の実施形態が可能である。例えば、LOE212は、x軸の方向に伸長方向を有するように配置され得(図9に示されるように)、一方で、LOE202は、z軸の方向に伸長方向を有するように配置され得る。さらに、装置100および200の実施形態は、LOE102および212が「一次元導波路」または「1D導波路」であるという文脈の中で説明されており、これは、LOE102および212がそれぞれ一次元で開口拡張を実行するように(画像プロジェクタ126、228からの)画像光を誘導する「スラブ型導波路」を画定する一対の平行な主表面(面104、106および面214、216)を有するということを意味することに留意されたい。しかしながら、本実施形態によるアイトラッキング装置は、追加のスラブ型導波路が、直交次元で開口拡張を実行し、全体的な二次元開口拡張効果を生成するように、直交次元で画像光を誘導するLOE102、212のそれぞれに結合される、構造を含む、他の導波路構造に等しく適用可能である。あるいは、LOE102、212の一方または両方は、「二次元導波路」または「2D導波路」であり、これは、(画像プロジェクタ126、228からの)画像光が単一の導波路を使用して開口拡張を実行するようにLOEに沿って伝播する際にその画像光を2次元で誘導するのに役立つ2つの相互に直交する主表面の対を有することを意味する。
【0101】
本開示の実施形態は、電磁スペクトルの近赤外領域の光で眼を照明するために配置された照明配置の文脈の中で説明されたが、本開示の実施形態は、電磁スペクトルの特定の領域のアイトラッキング光を射出する照明配置に限定されるべきではない。アイトラッキングの目的でNIR光を使用することの説明は、例えば、本開示の様々な装置の構造および動作のより明確な説明を提供することを目的とする。赤外線領域の光、および低強度で短いパルス持続時間で射出される紫外線を含むがこれらに限定されない、他のタイプの光もアイトラッキングの目的で使用され得る。
【0102】
特定の非限定的な実施形態によれば、本開示の様々なアイトラッキング装置は、対象者の両眼を同時に追跡するために、ならびに画像を両眼に投影するために複製され得る。例えば、装置100および/または装置200は、両眼に対して複製され得る。2つのアイトラッカーからのデータを組み合わせることにより、追跡の安定性と継続性を向上させることを可能にし得る。例えば、眼が動いている間、眼の追跡可能な部分は、片方の眼でトラッカーに表示され、もう一方の眼では表示されなくてもよい。追跡可能な特徴の追跡を採用する追跡アルゴリズムを使用する場合、両眼の同時追跡により、1つのアイトラッカーのみが死角を追跡できる期間を通して追跡を継続的に維持することを可能にする。
【0103】
装置が両眼型である場合、各眼はそれ自身の画像投影およびアイトラッキング装置を有し、様々な処理および電源構成要素は、任意選択で2つのアイトラッキングシステム間で共有され得る。両眼型アイトラッキングデバイスによって収集されたアイトラッキング情報は、上記のように、追跡の安定性および連続性を強化するために融合することができる。
【0104】
本開示の様々な実施形態の説明は、例示の目的で提示されてきたが、網羅的であることも、開示される実施形態に限定されることも意図されていない。記載された実施形態の範囲および趣旨から逸脱しない多くの修正および変形が、当業者には明らかであろう。本明細書で使用される用語は、実施形態の原理、市場で見られる技術に対する実際の適用または技術的改善を最もよく説明するため、または当業者以外の人が本明細書に開示される実施形態を理解できるようにするために選択された。
【0105】
本明細書で使用される場合、単数形「a」、「an」および「the」は、文脈が明らかに他のことを指示しない限り、複数の参照を含む。
【0106】
「例示的」という言葉は、本明細書では、「例、実例、または例示として役立つ」ことを意味するために使用される。「例示的」として記載される任意の実施形態は、必ずしも他の実施形態よりも好ましいまたは有利であると解釈されるべきではなく、および/または他の実施形態からの特徴の組み込みを除外するものではない。
【0107】
明確にするために、別個の実施形態の文脈で記載される本発明の特定の特徴はまた、単一の実施形態で組み合わせて提供され得ることが理解される。逆に、簡潔にするために、単一の実施形態の文脈で記載される本発明の様々な特徴はまた、別個に、または任意の適切な部分的な組み合わせで、または本発明の他の任意の記載された実施形態で適切であるとして提供され得る。様々な実施形態の文脈で記載される特定の特徴は、実施形態がそれらの要素なしでは動作しない場合を除いて、それらの実施形態の本質的な特徴と見なされるべきではない。
【0108】
添付の特許請求の範囲が多重の依存関係なしに起草されている点において、これは、このような複数の依存関係を許可しない法域の正式な要件に対応するためにのみ行われている。請求項を多重依存にすることによって暗示されるであろう特徴のすべての可能な組み合わせが明示的に想定されており、本発明の一部と見なされるべきであることに留意されたい。
【0109】
本発明は、その特定の実施形態と併せて記載されてきたが、多くの代替、修正、および変形が当業者には明らかになるであろうことは明白である。したがって、添付の請求項の趣旨および広い範囲に入るすべてのこのような代替、修正、および変形を包含することが意図されている。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
【国際調査報告】