(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-09-08
(54)【発明の名称】哺乳動物モデル及び人工神経系の運動状態、又は挙動間の動態を模擬するアーキテクチャ、システム、並びに方法
(51)【国際特許分類】
G06N 3/00 20060101AFI20220901BHJP
【FI】
G06N3/00 140
【審査請求】未請求
【予備審査請求】有
(21)【出願番号】P 2021576513
(86)(22)【出願日】2020-07-03
(85)【翻訳文提出日】2021-12-22
(86)【国際出願番号】 IB2020056280
(87)【国際公開番号】W WO2021001791
(87)【国際公開日】2021-01-07
(32)【優先日】2019-07-03
(33)【優先権主張国・地域又は機関】NZ
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】519327490
【氏名又は名称】ソウル マシーンズ リミティド
(74)【代理人】
【識別番号】110000338
【氏名又は名称】特許業務法人HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】サガー、マーク
(57)【要約】
人工神経系における挙動と感情状態間の動態をモデリングするためのアーキテクチャ、システム、並びに方法の実施形態が、本明細書で記載されている。仮想オブジェクト、デジタルエンティティ、又はロボットをアニメーション化するための、人工神経系のコンピュータ実装感情システムが提供されており、このシステムは、複数の状態であって、この複数の状態の各状態が、上記人工神経系の感情状態(ES)を表す、複数の状態と、複数の入力を処理するためのモジュールとを含み、上記処理された複数の入力が、上記複数の状態に適用される。他の実施形態も説明、主張することがある。
【選択図】
図4A
【特許請求の範囲】
【請求項1】
仮想オブジェクト、デジタルエンティティ、又はロボットをアニメーション化するための、人工神経系のコンピュータ実装感情システムにおいて、前記システムは、複数の状態であって、前記複数の状態の各状態が、前記人工神経系の感情状態(ES)を表す、複数の状態と、複数の入力を処理するためのモジュールとを含み、前記処理された複数の入力が、前記複数の状態に適用される、コンピュータ実装感情システム。
【請求項2】
前記人工神経系の前記ESが競合ESである、請求項1に記載の感情システム。
【請求項3】
前記複数の状態それぞれのレベルが、前記複数の入力の前記適用の影響を受ける、請求項1に記載の感情システム。
【請求項4】
前記複数の状態それぞれの前記レベルは、前記人工神経系のアクティブな感情状態を表す、請求項3に記載の感情システム。
【請求項5】
前記複数の入力がそれぞれ、神経入力を表す、請求項1に記載の感情システム。
【請求項6】
神経入力が前記感情システムに供給される知覚入力である、請求項5に記載の感情システム。
【請求項7】
前記知覚入力は、視覚的、聴覚的、又はタッチ入力の1つである、請求項6に記載の感情システム。
【請求項8】
前記知覚入力は、入力モジュールを介してユーザから生成される、請求項6に記載の感情システム。
【請求項9】
前記知覚入力は、コンピュータで生成される、請求項6に記載の感情システム。
【請求項10】
前記人工神経系の前記アクティブな感情状態を、知覚可能形式でユーザに伝達する出力モジュールを更に含む、請求項4に記載の感情システム。
【請求項11】
前記知覚可能形式は、視覚的、及び聴覚的の1つである、請求項10に記載の感情システム。
【請求項12】
前記知覚可能形式は、哺乳動物モデルの少なくとも一部の視覚的二次元表記である、請求項10に記載の感情システム。
【請求項13】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力をそれぞれ積分する、請求項10に記載の感情システム。
【請求項14】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力それぞれの変化率を決定する、請求項10に記載の感情システム。
【請求項15】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力それぞれの前記変化率を決定し、前記複数の入力をすべて纏めて合計し、前記複数の入力の決定された変化率をすべて合計する、請求項10に記載の感情システム。
【請求項16】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力をそれぞれ積分し、前記複数の入力をすべて纏めて合計し、前記複数の入力すべての積分を合計する、請求項10に記載の感情システム。
【請求項17】
前記人工神経系の3つの競合ESを表す、少なくとも3つの状態を含む、請求項10に記載の感情システム。
【請求項18】
第1状態から第2状態に変化するのに必要な時間よりも、前記第2状態から前記第1状態に変化するのに必要な時間が短い、請求項17に記載の感情システム。
【請求項19】
第3状態から前記第2状態に変化するのに必要な時間よりも、前記第2状態から前記第3状態に変化するのに必要な時間が短い、請求項18に記載の感情システム。
【請求項20】
前記第1状態は、怒りESを表し、前記第2状態は、中立ESを表し、前記第3状態は、恐怖ESを表す、請求項19に記載の感情システム。
【請求項21】
予測を行うための予測器と、前記予測器の予測誤差を計算するための誤差モジュールを更に含み、前記予測誤差が、入力を含む、請求項1に記載の感情システム。
【請求項22】
予測誤差の前記入力が、前記人工神経系における神経発火の密度に対応するように構成されている、請求項21に記載の感情システム。
【請求項23】
前記人工神経系は、予測誤差に反応し、持続的な神経発火の密度に応答して、摂動状態に入るように構成されている、請求項22に記載の感情システム。
【請求項24】
前記人工神経系は、予測誤差に反応し、神経発火の密度の増加に応答して、摂動状態に入るように構成されている、請求項22に記載の感情システム。
【請求項25】
前記人工神経系は、前記摂動状態に応答して、新たな解決策アプローチを試みるように構成されている、請求項23、又は24に記載の感情システム。
【請求項26】
前記摂動状態は、驚き、恐怖、興味、又は怒りからなる群の1つ以上の状態に相当する、請求項23、又は24に記載の感情システム。
【請求項27】
前記人工神経系は、前記新たな解決策アプローチに起因する予測誤差の減少に応答して、前記摂動状態から出るように構成されている、請求項25に記載の感情システム。
【請求項28】
1つ以上のESが、前記人工神経系のネットワーク状態によって表される、請求項1~27のいずれか一項に記載の感情システム。
【請求項29】
1つ以上のESが、前記人工神経系のネットワーク活動の動態パターンによって表される、請求項1~28のいずれか一項に記載の感情システム。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に記載の様々な実施形態は、哺乳動物モデル及び人工神経系の挙動、並びに感情状態(複数)を模擬するための機器と方法に関する。
【背景技術】
【0002】
哺乳動物モデル及び人工神経系の挙動状態と感情状態との間の動態を模擬することが望ましい場合がある。本明細書の実施形態は、これを行うためのアーキテクチャ、システム、並びに方法を提供する。
【図面の簡単な説明】
【0003】
【
図1】様々な実施形態に係わる、人工神経系の感情状態、又は挙動間の動態、あるいは不健全状態の簡略図である。
【0004】
【
図2A】様々な実施形態に係わる、2つの感情状態、又は挙動間の動態、あるいは不健全状態を模擬するモジュールの簡略図である。
【0005】
【
図2B】様々な実施形態に係わる、3つの感情状態、又は挙動間の動態、あるいは不健全状態を模擬するモジュールの簡略図である。
【0006】
【
図2C】様々な実施形態に係わる、8つの感情状態、又は挙動間の動態、あるいは不健全状態を模擬するモジュールの簡略図である。
【0007】
【
図3A】様々な実施形態に係わる、
図2A~
図2Cで示すモジュール(複数)用の信号、又は加重を生成可能とする多重入力データ処理モジュールの図である。
【0008】
【
図3B】様々な実施形態に係わる、各モジュールが
図2A~
図2Cで示すモジュール用の信号、又は加重を生成可能とする複数の多重入力データ処理モジュールの図である。
【0009】
【
図4A】様々な実施形態に係わる、
図2A~
図2C、及び
図4B~
図4Cで示すモジュール(複数)用の信号、又は加重を生成可能とするデータ処理モジュールネットワークの簡略化したブロック図である。
【0010】
【
図4B】様々な実施形態に係わる、感情をモデリングする動的システムの図である。
【0011】
【
図4C】様々な実施形態に係わる、皮質下回路の図である。
【0012】
【
図4D】様々な実施形態に係わる、刺激入力が感情に影響を与える仕組みについて例示するグラフである。
【0013】
【
図4E】様々な実施形態に係わる、感情トリガとしての予測誤差の神経密度を示す図である。
【0014】
【
図4F】様々な実施形態に係わる、感情が新たな解決策アプローチを誘発し得る仕組みについて説明する図である。
【0015】
【
図5A】様々な実施形態に係わる、ハードウェアモジュールのブロック図である。
【0016】
【
図5B】様々な実施形態に係わる、別のハードウェアモジュールのブロック図である。
【0017】
【
図6A】様々な実施形態に係わる、哺乳動物モデルのデジタル表記を提供するユーザ知覚可能デバイスの簡略図である。
【0018】
【
図6B】様々な実施形態に係わる、哺乳動物モデルの解剖学的表記の簡略図である。
【発明を実施するための形態】
【0019】
一実施形態では、人工神経系の感情状態(複数)、又は挙動(複数)間の動態を模擬できる。一実施形態では、人工神経系は、生命体にモデル化されていない単独の人工神経系である。別の実施形態では、人工神経系は、任意の種類の動物又は生物を表す仮想生物などのアバタを表すか、あるいは模擬可能である。一実施形態では、人工神経系は、哺乳動物モデルを表すか、あるいは模擬する。
【0020】
別の実施形態では、人工神経系は、物理的ロボットをアニメーション化する。ロボットは、実世界(カメラ、マイクロフォン、タッチセンサ、又は他の任意の適切なセンサなど)に接続されたセンサを含み得る。ロボットには、手足などのエフェクタ/モータ/アクチュエータ、アニメーション表示できる顔構造、可聴出力用のスピーカ、又は他の適切なアクチュエータ/エフェクタを含められる。
【0021】
一実施形態では、哺乳動物モデルなどのアバタは、
図6Aで示すようなスクリーン60A上の画像62A、又は
図6Bで示すような解剖学的モデル60Bなどのユーザ知覚可能形式を介して、ユーザに提示されるか、あるいは、ユーザが知覚することができる。
図6Aで見られるように、実施形態70Aのアバタは、1つ以上の模擬された感情状態(複数)を有し得る。本明細書で考察する感情状態は、外受容的状況と内受容的状況によって誘発される内臓運動活動、並びに運動活動の組み合わせを含み得る。ユーザは、アバタの顔の表情(複数)72A、動作言語74A、あるいはスピーカ66Aを介して投影された発話により、アバタの感情を知覚することができる。一実施形態では、アバタの感情状態(複数)、又は挙動(複数)は、
図6Bで見られるように、アバタ60Bの少なくとも一部を解剖学的表記により提示することができる。
【0022】
いずれの実施形態においても、人工神経系の感情状態(複数)、又は挙動(複数)は、状態と挙動との間の動態により変動、あるいは変化し得る。一実施形態では、状態、又は挙動間の動態は、知覚がアバタ上に投影され得る投影、あるいはこのような知覚された環境により、影響を受ける、つまり、作用される場合がある。知覚は、視覚、聴覚、嗅覚(臭い)、味、並びに触覚(タッチ)をはじめとする、様々な感覚知覚を含み得る。実世界環境方式からの知覚は、カメラ、マイクロフォン、タッチセンサ、又は他の任意の適切なセンサなどのセンサを通じて、アバタに送られる。
【0023】
一実施形態では、挙動は、任意のエージェント駆動プロセスでよい。挙動には、限定されないが、顔の表情(複数)72A、動作言語74A、話者66Aを介して投影された発話などを含む、あらゆる動作又は行動が含まれ得る。より一般的には、挙動は、感情システムにより動的に監視、変調、又は制御される進捗測定を基にして、様々なルーチンをアクティブ化する任意の数学的ソルバを含み得る。感情システムは、神経発火の密度の影響を受ける場合があり、一実施形態では、複数のレベル、又は差分からの予測誤差の密度の影響を受ける。
【0024】
一実施形態では、アバタ60Bの解剖学的表記は、センサを含み得るか、あるいはシステム50B(
図5B)は、その環境における様々な感覚を検出する1つ以上のセンサを含み得る。同様に、アバタのデジタル表記70Aを生成するデジタルシステム50Bは、その環境内の1つ以上の感覚を検出するセンサを含み得る。更に、システム60Bは、システム50B、若しくは、アバタがプログラムの一部を成すコンピュータプログラム(ゲーム、人工現実デバイス、仮想現実デバイス、又は他のデジタルソースなど)のような、システム50Bに結合された他のシステムから、アバタ70A、60Bに適用されるセンサ情報を受信可能である。
【0025】
一実施形態では、デジタルシステム50Bのデジタル入力モジュール56は、視覚的知覚データ(標準、又は広域スペクトル)を収集して、供給するための視覚的センサを含み得る。更に、入力モジュール56は、音声知覚データ(標準、又は哺乳動物の標準音声範囲を超える)を収集して、供給するための1つ以上のマイクロフォンも含められる。入力モジュール56は、デジタル表記として供給可能な嗅覚信号を検出するために、化学的に試験される空気サンプルを受信するデバイスを、更に含み得る。入力モジュール56は、哺乳動物が味わうことができる元素の存在を検出するために化学的に試験される物理的なサンプルを受容し、更に、検出された塩化ナトリウムレベル(塩辛い味)、糖化合物レベル(甘い味)、酸レベル(酸っぱい味)、コショウレベル(痛みを引き起こす)などにより、こうした味をデジタル表記するデバイスを含められる。更に、入力モジュール56は、ユーザがアバタ70A、60B上の様々な場所におけるタッチのレベル(複数)の指示を提供可能にするタッチパッド、又は他のデバイスも含み得る。
【0026】
一実施形態では、アバタ70A、70Bの現感情状態(複数)、知覚入力の組み合わせ、並びにこれらの強度を評価して、感情状態(複数)、又は挙動(複数)間の動態を決定、あるいは模擬することが可能である。一実施形態で述べたように、1つ以上の知覚入力自体は、アバタ60Aのデジタル現実の一部となり得る。一実施形態では、アバタ60A、60Bには、物理的哺乳動物に似せた多数の模擬された感情状態(複数)又は挙動(複数)があり得、模擬された各感情状態又は挙動のレベルは、物理的な哺乳類の分析に部分的に基づいて、決定される。このような分析は、物理的哺乳動物における何かしらの感情状態と挙動との間の物理的哺乳動物の脳機能、及び知覚される動態を含み得る。
【0027】
物理的哺乳動物の脳では、知覚入力に応答して、神経化学物質を放出させる運動挙動回路、及び内臓運動回路の様々な神経活性化を、様々な脳領域で生成できる。更に、神経化学物質の生成レベルも、知覚入力の強度に応じて変化し得る。更に、知覚入力によっては、脳(意識領域と潜在意識領域)の様々な皮質領域と皮質下領域に作用するものがあり、更に、物理的哺乳動物における何かしらの感情状態と挙動との間で知覚される動態を生み出すことがある。例えば、扁桃体と視床下部は、恐怖反応、感情反応、ホルモン分泌、覚醒、及び記憶といった、幾つかの感情状態(本明細書で考察する感情状態とは、外部と内部の状況で誘発される内臓運動、及び運動活動の組み合わせ)又は挙動の生成に関与し得る。
【0028】
加えて、海馬という、脳の側頭葉内側部にある小さな器官は、大脳辺縁系の重要な部分を形成し、物理的哺乳動物の感情を調節することができる。更に、海馬は、扁桃体及び内皮質からの感情的な状況を符号化することもできる。視床下部は、下垂体などの脳腺、及び脳幹核(青斑核など)によって制御される腺などの他の腺に連結しているので、感情状態又は挙動間の動態を調節するのに役立つ神経化学物質を生成可能である。扁桃体と視床下部、及び脳幹の上流活性によって放出される神経化学物質は、ドーパミン、セロトニン、ノルエピネフリン(NE)、並びにオキシトシンを含み得る。
【0029】
一実施形態では、アバタの感情状態(複数)は、
図1で示される様々な感情状態又は挙動の間に動的モデルを作成することによって、模擬可能である。一実施形態において、アバタ70A、70Bについて測定、又は生成された知覚入力とその強度を、単独で、あるいは経時に亘り合成して、更に、その派生物(早く変化する程度)も含めて使用して、知覚入力で生成可能な様々な神経化学物質を効果的に生成、あるいは模擬可能である。
図1を参照して説明したように、模擬された神経化学物質、あるいは、測定、又は生成された知覚入力を使用して、アバタ70A、70Bでの物理的哺乳動物の競合する感情段階又は挙動の間の動態を模擬し、更に、アバタの現在、つまり、活動中の感情状態又は挙動を決定することができる。
【0030】
図1は、様々な実施形態に係わる、人工神経系の感情状態、又は挙動12A~C間の動態、あるいは不健全状態10の簡略図である。
図1で見られるように、競合する感情状態(ES)には、ES恐怖12A、ES中立12B、及びES怒り12Cが含まれ得る。一実施形態では、人工神経系には、ES12A~Cごとに異なるレベル(実施形態では0~100%)があると考えられる。動態、又は不健全状態10を使用して、入力(神経化学的、知覚的、あるいはそれらの組み合わせ)の存在により、様々なES 12A~Cレベルが経時に亘り変化することを模擬できる。
【0031】
図1で見られるように、ある感情状態の間の動態、又は不健全状態10は、現ES12A~Cレベル、ES12A~Cのそれぞれのデルタ値、あるいは変化の差分に基づいて、変化することがある。例えば、怒りのES12Cが増加している場合、それは短い時間間隔で起こるかもしれないし、又は、経路14Bを介して知覚、若しくは神経化学物質の存在、つまり、入力を低くする必要があるかもしれない。同様に、恐怖のES12Aが増加している場合、それは短い時間間隔で起こるかもしれないし、又は、経路14Aを介して知覚、若しくは神経化学物質の存在、つまり、入力を低くする必要があるかもしれない。しかし、怒りのES12Cが減少している場合、これは長い時間かかるかもしれないし、又は、経路14Cを介して知覚、若しくは神経化学物質の存在、つまり、入力を増やす必要があるかもしれない。同様に、恐怖のES12Aが減少している場合、これは長い時間かかるかもしれないし、又は、経路14Dを介して知覚、若しくは神経化学物質の存在、つまり、入力を増やす必要があるかもしれない。こうしたシナリオの各々において、モデル化された神経化学物質、又は知覚入力は、様々なES12A~Cレベルが変化する時間に亘り存在してもよく、あるいは存在しなくてもよい。一実施形態では、様々なES12A~C間の動態が常に存在し、模擬される。
【0032】
一実施形態では、
図1で示す様々なES12A~Cの間の動態は、
図2A~
図2Cで示す模擬された再帰型モジュール20A~Cでよい。モジュール20A~Cにおいて、各感情状態又は挙動12A~Hは、それ自身、並びにモジュール20A~C内の他のすべての状態、あるいはニューロンとともにフィードバックループ内にあるネットワーク又はニューロンの状態であってもよい。
図2A~
図2Cのネットワーク状態又はニューロン12A~Hで表される各感情状態又は挙動の有効レベルは、模擬された神経化学物質又は知覚入力、その強度、持続時間、及び変化率に応じて、変化し得る。
【0033】
図2Aは、様々な実施形態に係わる、2つの感情状態、又は挙動12B~C間の動態、あるいは不健全状態を模擬するモジュール20Aの簡略図である。
図2Aで見られるように、模擬モジュール20Aは、ES中立(12B)、及びES怒り(12C)を表す2つのニューロン、又はネットワーク状態12B、及び12Cを含む。
図2Aで見られるように、モジュール20Aは、
図1で示す経路と同様、状態、又はニューロン12Bと12Cとの間の経路14B、及び14Cを含む。状態12Bと12Cの間で変化があれば、状態12B、12Cとそれ自身との間のフィードバックを受ける。一実施形態において、各状態12B~Cのレベルの変化は、試行された変化の向き(高い方、又は低い方)、並びに模擬神経化学物質、あるいは知覚入力、それらの強度、持続時間、及び変化率に基づいて変化し得る。
【0034】
図2Bは、様々な実施形態に係わる、3つの感情状態、又は挙動12A~C間の動態、あるいは不健全状態を模擬するモジュール20Bの簡略図である。
図2Bで見られるように、模擬モジュール20Bは、ES恐怖(12A)、ES中立(12B)、及びES怒り(12C)を表す3つのニューロン、又はネットワーク状態12A~Cを含む。
図2Bで見られるように、モジュール20Bは、
図1で示す経路と同様、状態、又はニューロン12Bと12Cとの間の経路14B、及び14C、並びに状態、又はニューロン12Aと12Bとの間の経路14A、及び14Dを含む。状態12A~Cの間で変化があれば、状態12A~Cとそれ自身との間のフィードバックを受ける。一実施形態において、各状態12A~Cのレベルの変化は、試行された変化の向き(高い方、又は低い方)、並びに模擬神経化学物質、あるいは知覚入力、それらの強度、持続時間、及び変化率に基づいて変化し得る。
【0035】
任意の数のESについて、同様のモジュールを作成できる。例えば、
図2Cは、様々な実施形態に係わる、多く報告された8つの感情状態、又は挙動12A~H間の動態、あるいは不健全状態を模擬するモジュール20Cの簡略図である。
図2Cで見られるように、模擬モジュール20Cは、ES恐怖(12A)、ES中立(12B)、ES怒り(12C)、ES苦悩(12D)、ES驚き(12E)、ES興味(12F)、ES笑い(12G)、並びにES喜び(12H)を表す3つのニューロン、又は状態12A~Hを含む。モジュール20A、20Bと同様、状態12A~Hの間で変化があれば、状態12A~Hとそれ自身との間のフィードバックを受ける。
【0036】
一実施形態において、各状態12A~Hのレベルの変化は、試行された変化の向き(高い方、又は低い方)、並びに模擬神経化学物質、あるいは知覚入力、それらの強度、持続時間、及び変化率に基づいて変化し得る。
図3Aは、様々な実施形態に係わる、模擬神経化学物質、あるいは知覚入力、それらの強度、持続時間、及び変化率に基づいて、
図2A~
図2Cで示す状態(複数)12A~H用の信号、又は加重を生成可能とする多重入力データ処理モジュール30Aの図である。
図3Bは、様々な実施形態に係わる、
図2A~
図2Cで示す状態12A~H用の信号、又は加重を各モジュールが生成可能とする複数の多重入力データ処理モジュール30Bの図である。
【0037】
図3Aと
図3Bで見られるように、多重入力データ処理モジュール30Aはそれぞれ、複数の神経入力A~Zを受け取ることができる。一実施形態において、神経入力は、模擬された神経化学物質、又は知覚入力とそれらの強度となり得る。次いで、各モジュール30Aは、各神経入力A~Zを経時に亘って積分し、同様に、モジュール32を介して入力の導関数を決定することができる。モジュール30A、30Bは、加算器34を介して、神経入力A~Zの積分後の神経入力、元の神経入力、及び導関数を合計できる。一実施形態において、合計された神経入力A~Zの積分後の神経入力、元の神経入力、及び導関数を処理して、モジュール36を介して、モジュール20A~Cの状態12A~Zごとに加重と信号を生成できる。一実施形態では、
図3Aで見られるように、入力データ処理モジュール30Aは、モジュール20A~Cのすべての状態12A~Zについて、加重と信号を生成することができる。一実施形態では、
図3Bで見られるように、別個のモジュール32、36、及び加算器34は、モジュール20A~Cの状態12A~Zごとに、加重と信号を生成することができる。
【0038】
図4Aは、種々の実施形態に係わる、神経入力A~Zを処理するか、又はモジュール30A、30Bで生成された信号を処理するために、動的感情状態システム20A~Cの感情状態12A~Hで使用可能な、フィードフォワード学習データ処理モジュールネットワーク、又はインスタンス40の図である。ネットワーク40は、複数の層42A、42B~42Nを含み、各層4A、42B~42Nは、それぞれ、1つ以上のデータ処理、あるいは計算ユニットモジュール(DPM)A1~N1、A2~N2、及びA3~N3を含む。各DPM A1~N1、A2~N2、及びA3~N3は、データ、又はデータベクトルを受信し、出力データ、又はデータベクトルを生成する。
【0039】
入力データ、又はデータベクトルIは、データ処理モジュール(DPM)A1~N1の第1層12Aに供給可能であり、入力データベクトルIは、多重入力データ処理モジュールネットワーク3A、3Bで生成可能である。一実施形態では、前述のように、モジュール30A、30Bで生成された信号は、入力データベクトルIを形成可能である。一実施形態では、層42A、42B、42Cの各DPM1A~A1~N1、A2~N2、及びA3~N3は、隣接層(複数)42A、42B、42NのDPM A1~N1、A2~N2、及びA3~N3へと完全に接続されていてもよい。例えば、層42AのDPM A1は、層42Bの各DPM A2~N2へと接続されてもよい。
【0040】
一実施形態では、ネットワーク40は、ニューラルネットワークで良く、各DPM A1~N1、A2~N2、及びA3~N3は、ニューロンでよい。更に、各DPM A1~N1、A2~N2、及びA3~N3は、ベクトルとして複数のデータ要素を受信し、これを重み付けアルゴリズムで結合して、単一データを生成することができる。次いで、一実施形態では、単一データムを1.0に制約した上で制約、つまり、圧縮することができる(若しくは、最大の大きさ1.0まで圧縮)。ネットワークは、特徴群に相当する1つ以上のデータベクトルを受信可能であり、特徴は瞬間に相当し得る。
【0041】
一実施形態では、ネットワーク40は、現感情状態12A~12Gを維持して、別の感情状態12A~12Gに制御を送るなどのラベル、あるいは期待結果、又は予測を含む、入力トレーニングベクトルを受信できる。別の実施形態では、ネットワーク40は、モジュール30A、30Bで生成された信号を基に、状態12A~12Gに関する所望の制御信号のラベル、あるいは期待結果、又は予測を含む、入力トレーニングベクトルを受信可能である。ネットワーク40は、重み行列を使用、又は調整して、期待結果、又はラベル、並びにネットワーク、インスタンス、あるいはモデル40で予測される結果、又はラベルとの間の差分を低減可能である。一実施形態では、誤差、又は距離Eは、ユーザ定義の距離関数で決定可能である。ネットワーク、又はモデル40は、各層のDPM A1~N1、A2~N2、及びA3~N3の大きさを制約して、対応する入力ベクトルが入力(複数)Iとしてネットワーク、又はモデル40に提示された際、結果を正しく予測するよう、モデル又はネットワーク40を訓練することを試行する機能も、更に含められる。ネットワーク10Aでは、最終層12Nの各DPM3A~3Nが、出力データ、予測結果、あるいはデータベクトルO1~ONを提供可能である。一実施形態では、データベクトルは、制御を有するべき状態を決定できる。
【0042】
図4Bは、幾つかの実施形態において、皮質下回路48Aの図である。皮質下回路48Aは、50Aと50Bなどのコンピュータシステムに実装され、状態12A~12Hのいずれか等の単一感情に対するシステムの挙動反応をモデル化することができる。第1に、感情的に受け入れられる刺激を、トリガリング領域への入力として受け取ることができる。感情的に受け入れられる刺激は、例えば、触覚、視覚、聴覚、嗅覚等でよい。トリガリング領域は、システムへのトリガに反応する脳の部位に対応し、ニューラルネットワークといった1つ以上のニューロンでモデル化可能である。トリガリング領域は、特定知覚経路に限定されないトリガを含む、様式に依存しない活動パターン43Aを含み得る。例えば、様式に依存しない活動パターン43Aは、トリガが触覚的、視覚的、又は聴覚的であるかどうかに関わらず、短時間トリガ、又は持続的トリガであり得る。これらは、特定様式に限定されない一般的な機構と見なすことができ、内皮質のモデルに存在し、これによってモデル化可能である。幾つかの実施形態では、様式に依存しない活動パターン43Aは、経時に亘る刺激の変化率、及び経時に亘る刺激の持続的な活動のレベルに反応し得る。トリガリング領域には、内受容的パターン43Bも含められ、これは、身体又は人工神経系の内部状態の検知に関連するトリガである。内受容的パターン43Bは、固有の機構と見なすことができ、脳幹と、島皮質及び前帯状皮質などの内皮質の特殊領域のモデルに存在し、これによりモデル化可能である。また、トリガリング領域には、外受容的パターン43Bも含められ、これは、身体又は人工神経系の状態外部の検知機能に関連するトリガである。外受容的パターン43Bは、内皮質のモデルに存在し、これによってモデル化できる。更に、トリガリング領域には、任意のパターン43Dも含められ、これは、身体又は人工神経系を訓練して、トリガと感情とを関連付けることで生じるパブロフ反応等の、学習済み感情トリガのようなものである。任意のパターン43Dは、内皮質のモデルに存在し、これによってモデル化できる。変調は、挙動反応46Aだけでなく、トリガ回路43自体にも影響を及ぼすことがある(例えば、敏感、又は鈍感に)。
【0043】
トリガリング領域43A~Dは、固有トリガ、組み込みトリガ、及び学習済みトリガを構成することができる。固有トリガは、様式に依存しない活動パターン43Aなどの神経発火に基づくトリガを含み得る。このトリガは、注意、神経化学物質などを介して変調されるよう、ニューロン同士の接続、並びに、こうした接続上の活動に基づき得る。固有トリガもまた、組み込み型であっても良く、これは、神経発火でモデル化されずに、挙動反応回路まで直接進む。一実施形態では、内受容的パターン43B、及び外受容的パターン43Cは、組み込み型である。組み込み型の一例は、疼痛のようなものであり、これは、挙動反応に組み込められる。しかしながら、他の実施形態では、内受容的パターン43Bと外受容的パターン43Cも、ニューラルネットワークを介した神経発火に基づく。例えば、疼痛又は報酬刺激は、挙動を引き起こす神経発火のバーストを誘起できる。かくして、固有トリガは、組み込み型であるか、又は神経発火に基づくかのいずれかであり、両アプローチを併用することができる。
【0044】
学習済みトリガは、刺激と感情との間のマッピングに基づく。このようにして、任意のパターン43Dを感情に結び付けることができる。例えば、ネガティブな刺激が提示される直前にベルが提示されると、ベルがネガティブな感情と結びつくことがある。ニューラルネットワーク、連想マップ、又は他のモデルは、本来は任意の刺激であるベルと、その刺激の存在下で知覚された感情との間に関連性を持たせることができる。
【0045】
トリガをマッピング回路44Aに送信しても良く、この回路は、簡略化のために、内臓運動と運動活動をもたらす視床下部、及び/又は他の皮質下核を纏めてモデル化するために、本明細書で図示されている。マッピング回路は、ニューラルネットワークなどの複数のニューロンを含められ、単一感情に対する視床下部/皮質下反応をモデル化することができる。マッピング回路44Aは、複数の(運動)挙動反応46Aの1つ以上をトリガすることができる。より複雑な実施形態は、前帯状皮質などの感情処理と挙動反応に関与する可能性のある皮質領域における更なるマッピングを含められる。
【0046】
信号処理後、マッピング回路44Aは、信号出力を変調(内臓運動)神経化学的反応モデル45Aに送信する。神経化学的反応モデル45Aでは、身体又は人工神経系における神経化学物質の放出をモデル化する。神経化学的反応モデル45Aは、ニューラルネットワークなどの複数のニューロンを含み得る。更に、マッピング回路44Aは、信号出力を挙動反応46Aに送信する。挙動反応46Aは、ニューラルネットワークなどの1つ以上のニューロンを含み得る。挙動反応46Aは、感情状態12A~12Hのいずれかを含み得る。挙動反応は、顔の表情(複数)72A、動作言語74A、あるいは発話といった身体又は人工神経系による運動実行を、引き起こし得る。
【0047】
図4Cは、複数の皮質下系を組み合わせた動的システム48を示す。一実施形態では、動的システム48は、状態12A~12Hのそれぞれなど、システムによってモデル化された感情ごとの皮質下システムを含む。トリガリング領域43Eは、感情ごとに複数のトリガリング領域43A、43B、43C、及び43Dを含み得る(各感情は、対応するトリガリング領域43A、43B、43C、及び43Dを有し得る)。同様に、マッピング回路44は、各感情用の別個のマッピング回路44Aを含み得る。出力信号は、マッピング回路44から神経化学状態45に送信可能であり、この状態は、各神経化学物質の発現レベルのベクトルを含み得る。マッピング回路44は、出力信号を挙動反応モデル46へと送信できる。挙動反応モデル46Aは、感情ごとに提供できる。挙動反応モデル46は、例えば、感情状態12A~12Hを含み得る。
【0048】
挙動反応モデル46は、多くの方法で互いに接続できる。まず、挙動反応モデルは、興味が恐怖を抑え込む等のように、別の挙動反応モデルを抑制することができる。更に、幾つかの実施形態では、相互抑制は、双方が他方を抑制する挙動反応モデルでモデル化できる。幾つかの実施形態では、挙動がそれぞれ競合して注意を集め、互いを置き換えようとするため、感情ごとの挙動反応モデルは、他の感情すべての挙動反応モデルを抑制する。第2に、挙動反応モデルは、再帰型動的回路を通じて他の挙動反応モデルと相互作用できる。再帰型動的回路は、カタストロフィネットワークをモデル化可能であり、カタストロフィとは、ある状態から別の状態への突然の切り替えを称する(良い状態、悪い状態があり得る)。再帰型動的回路は、動態又は不健全状態10で示されているような複雑な動作をモデル化する場合があり、ここで、動作はトリガだけでなく、最新の現状態にも依存する。
【0049】
挙動反応モデル46は、神経化学状態45でも変調可能である。神経化学状態では、マッピング回路44からの入力を処理し、出力信号を挙動反応モデル46に送信することができる。出力信号は、挙動反応モデル46の応答を変調することができる。この変調は、ある神経化学物質の放出により哺乳動物で発生する変調をモデル化し得る。
【0050】
挙動反応モデル46同士の接続は、例えば、モジュール20A、20B、又は20Cでモデル化可能であり、単一感情の挙動反応モデルはそれぞれ、状態12A~12Hの1つに対応する。モジュール20A、20B、及び20Cのノード同士の接続は、挙動反応モデル46間の抑制と再帰関係をモデル化できる。各接続は、ある挙動反応モデルから別のモデルまでの信号の起こり得る伝送をモデル化可能である。更に、神経化学的状態45による変調は、挙動反応モデル46へのニューラルネットワーク入力によってモデル化することもできる。
【0051】
図4Dは、様式に依存しない活動パターンに従って、刺激入力が人工神経系の感情にどのように影響するかについて説明するグラフ90である。Y軸では、神経発火の密度を測定する。神経発火の密度は、刺激入力の特性から神経発火の密度へとマッピングする写像関数によって決定され得るか、あるいは影響を受け得る。例えば、写像関数は、刺激入力の特性と神経発火の密度との間の単調写像でよい。したがって、神経発火の密度を、単調スケールでの尺度とすることができる。強度、音高、エントロピといった任意の特性をマッピングできる。例えば、幾つかの実施形態において、強いタップは弱いタップよりも密度の濃い神経発火に対応し、叫び声は通常の口調で話すよりも密度の濃い神経発火に対応する。X軸では時間を測定する。
【0052】
刺激の変化率は、感情状態の誘起を左右する。神経発火密度が急激に増加すると、人工神経系は、驚き感情90Aへと誘起される。増加率がやや遅い場合、誘起される感情は恐怖90Bである。最後に、増加率が人工神経系で管理するには十分遅い場合、誘起される感情は興味90Cである。
【0053】
一例として、神経発火密度が極めて急激に増加すると、驚き90Aの状態をもたらす可能性がある。神経発火密度が経時に亘ってゆっくりと増加すると、人工神経系が刺激の増加に対処できなくなるので、恐怖90Bの感情状態が誘起され得る。一方、神経発火密度が経時に亘って増加するが、管理できる速度では、興味90Cの感情状態が誘起される。
【0054】
持続的な刺激は、感情状態にも影響を与える。高レベルでの持続的な刺激入力は、怒り90Dの感情状態を誘起し得る。幾分低いレベルでの持続的な刺激入力では、90Eの感情状態を誘起し得る。幾つかの実施形態において、何らかの持続的な刺激入力は、刺激入力の特徴に関係なく、ネガティブな感情状態をもたらす。例えば、心地よいメロディーでさえも、長時間に亘り継続的に再生されると、怒り又は不満を誘発することがある。同様に、同じ褒め言葉を何度も受けると、人工神経系が怒り及び不満の感情を感じることもある。
【0055】
一実施形態では、神経発火の密度の減少は、ポジティブな感情と関連付けられる。例えば、喜び90Fの感情状態を誘起させることができる。人工神経系は、神経発火が減少して、刺激に圧倒されなくなると、喜びを感じる場合がある。
【0056】
図4Eは、身体、又は人工神経系の予測誤差の神経密度が固有感情トリガである可能性があることを示す図である。一実施形態では、予測誤差は、非次元刺激入力である。写像関数は、予測誤差が多い場合、この誤差を高密度の神経発火へと単調写像し、予測誤差が少量であれば、低密度の神経発火へと単調写像できる。幾つかの実施形態では、予測誤差が減少しない場合、人工神経系はイライラし始め、新たな解決策アプローチを引き起こす摂動挙動を示す。同様に、予測誤差の変化を管理できる場合、動物は興味を示す。
【0057】
一実施形態では、人工神経系は、最初に、入力である第1観測値80Aを受け取る。入力は、触覚、視覚、聴覚、嗅覚、又は味覚などの任意の様式でよい。入力は、ポジティブ、ネガティブ、あるいは中立の誘意性であり、例えば、タップ、波、ノイズ、発話、叫び、物体又は身体の一部へと物理的に近づくこと、味、匂い、音、音楽、又はメロディーなどであってよい。入力は、環境に関する観察を含み得る。入力80Aは、予測器82に入力可能であり、この予測器は、入力80Aに基づいて、予測84を生成する機械学習モデルのようなものである。幾つかの実施形態において、予測器82は、ニューラルネットワークなどの1つ以上のニューロンを含む。幾つかの実施形態では、予測84は、入力80Aに基づいて起こることの予測を含む。予測器82は、適宜、予測84を生成する際の人工神経系の挙動を考慮に入れることができる。
【0058】
第2時間において、人工神経系は、第2観測値80Bを受信できる。この第2観測値80Bは、世界の状態に関するグラウンドトゥルース観測値を含み得る。人工神経系は、誤差計算86を実施して、グラウンドトゥルースの結果の予測84と第2観測値80Bとの誤差を計算できる。例えば、誤差計算86は、予測84、又は最小二乗法等の他の誤差計算からの第2観測値80Bの減算演算でよい。これは、予測誤差88を算出し、この誤差は、予測84内の誤差を測定する値である。
【0059】
予測誤差88は、様式に依存しない活動パターン43Aトリガ領域の刺激入力を含む。
【0060】
刺激入力として、予測誤差88は、神経発火の密度に影響を及ぼし、これにより、様式に依存しない活動パターンに従って、人工神経系における感情に作用し得る。グラフ90に関して、予測誤差88の状況において、予測84がグラウンドトゥルース観測値80Bと異なるほど、神経発火の活動は密になる。
【0061】
経時に亘る予測誤差88の変化率は、感情状態の誘起を左右し得る。予測誤差88が急激に増加すると、人工神経系は、驚き感情90Aへと誘起される。増加率がやや遅い場合、誘起される感情は恐怖90Bである。最後に、増加率が人工神経系で管理するには十分遅い場合、誘起される感情は興味90Cである。
【0062】
一例として、予測と観測されたグラウンドトゥルースが突然急激に異なると、驚き90Aの状態になることがある。予測と観察された現実との差が時間とともにゆっくりとした速度で広がっている場合、人工神経系が予測と現実との差が急激に広がっていることを観測し、観測された現実を理解したり、制御したりすることができないので、恐怖90Bの感情状態が誘起される場合がある。一方、予測値と観測されたグランドトゥルースとの差が経時に亘り増加するが、その速度を管理できるのであれば、興味90Cの感情状態が誘起される。人工神経系は、予測と実際の結果との間で受ける違いに興味を持ち、好奇心を持つことになる。
【0063】
持続予測誤差88も感情状態に影響をもたらす。高レベルでの持続的な予測誤差88は、怒り90Dの感情状態を誘起し得る。幾分低いレベルでの持続的な予測誤差88では、90Eの感情状態を誘起し得る。世界について間違った予測をすることが続くと、怒り又は不満を感じることがある。
【0064】
一実施形態では、予測誤差88の減少は、ポジティブな感情と関連付けられる。経時に亘り予測誤差88が減少すると、喜び90Fが誘起されることがあり、この場合、人工神経系は、環境を一層予測し易くなったと感じるか、あるいは、より分かりやすくなって、結果を予測できるようになったと感じる。
【0065】
図4Fは、感情状態の変化が、人工神経系に対して1つ以上の新たな解決策アプローチを試みるよう、誘起する可能性について説明する
図94である。現状態92は、世界の現状態を表しており、これは、1つ以上の外部物体の状態、及び人工神経系の物理的状態を含み得る。人工神経系は、その挙動を通じて現状態92に作用し得る。現状態92は極小値94Aにあり、人工神経系が目指すことは、解決状態を含む最小値94Bに到達するということである。予測誤差88が依然として高いままである場合、人工神経系は、怒り90D、又は不満90Eの状態になり、人工神経系を環境に作用させる。環境の人工神経系の摂動は、現状態92を急速に変化させ、勾配94Cを超えて上昇して、最小値94Bに到達することができる。また、人工神経系が興味、又は好奇心の状態にある際、人工神経系は環境と相互作用し、現状態92を摂動させて、最小値94Bへと到達し得る。幾つかの実施形態において、より良い解状態に到達するための人工神経系による現状態92の摂動は、焼きなまし法に対応するか、又はこれに近似する可能性がある。焼きなまし法は、関数のグローバル最適値を近似する確率的手法である。
【0066】
図5Aは、様々な実施形態に係わる、1つ以上のデータ処理モジュールA1~N1、A2~N2、A3~N3、12A~12Z、並びにモジュール30A、30Bを含み得る、ハードウェアモジュール50Aのブロック図である。モジュール50Aは、メモリモジュール54に結合されたプロセッサモジュール52を含み得る。一実施形態では、メモリモジュール54、及びプロセッサモジュール52は、単一チップ上に存在し得る。プロセッサモジュール52は、プロセッサ52、又はメモリモジュール54で記憶された命令を処理して、1つ以上のA1~N1、A2~N2、A3~N3、12A~12Z、並びにモジュール30A、30Bの機能を実行可能である。プロセッサモジュール52は、プロセッサ52又はメモリモジュール54が記憶した命令を更に処理して、ネットワーク上でデータ、又はデータベクトルを通信可能である。
【0067】
図5Bは、様々な実施形態に係わる、ユーザが人工神経系の動作を制御し、モデル70A、70Bに入力を供給したり、あるいは、アバタ70A、70Bの1つ以上の入力を模擬するプログラムを実行したりするために、使用可能なシステム50Bのブロック図である。システム50Bは、メモリモジュール54に結合されたプロセッサモジュール52を含み得る。一実施形態では、メモリモジュール54、及びプロセッサモジュール52は、単一チップ上に存在し得る。プロセッサモジュール52は、プロセッサ52又はメモリモジュール54が記憶した命令を処理して、種々の機能を実行できる。プロセッサモジュール52は、プロセッサ52又はメモリモジュール54が記憶した命令を更に処理して、ネットワーク上でデータ、又はデータベクトルを通信可能である。更に、システム50Bは、デジタル入力モジュール56、及びデジタル出力モジュール58も含められる。デジタル入力モジュール56は、記載のように、ユーザが神経入力、知覚入力といった様々な入力を供給し、更に、1つ以上のアバタ70A、70Bの他の動作を制御できるようにすることができる。デジタル出力モジュール58は、スクリーン60A上で表示できるか、あるいは、アバタ70Bの解剖学的表記を制御するための信号を生成可能である。
【0068】
本明細書で開示されている本発明は、神経行動モデリングフレームワークの中で、具現化されたエージェント又はアバタを作成し、アニメーション化するために使用可能であって、US10181213B2号で開示されており、更に本発明の譲受人に譲渡され、参照により本明細書で援用される。
【0069】
理解すべき点として、これまで感情システムと挙動について哺乳動物モデルの文脈で述べてきたが、感情システムと挙動は抽象化され、他の生物若しくはアバタのモデルで、又は生物モデルとは切り離して使用されることがある。すなわち、それらは、アバタに接続されていない完全に人工神経系といった抽象化された神経系で使用される場合がある。
【0070】
モジュールは、アーキテクチャ10の設計者が要求し、更に、様々な実施形態の特定の実装に適切であるように、ハードウェア回路、シングル、又はマルチプロセッサ回路、メモリ回路、ソフトウェアプログラムモジュールとオブジェクト、ファームウェア、並びに、これらの組み合わせを含み得る。様々な実施形態の機器とシステムは、市販アーキテクチャ構成以外の用途でも有用であり得る。これらは、本明細書に記載の構造を利用し得る機器とシステムの要素と特徴すべてに関する徹底した説明となることを意図するものではない。
【0071】
様々な実施形態の新規機器とシステムを含み得る用途には、高速コンピュータで使用される電子回路、通信と信号処理回路、モデム、シングル、又はマルチプロセッサモジュール、単一、又は多重組み込みプロセッサ、データスイッチ、並びに、多層マルチチップモジュールを含む用途固有のモジュールが含まれる。また、このような機器及びシステムは、テレビ、携帯電話、パーソナルコンピュータ(例えば、ラップトップコンピュータ、デスクトップコンピュータ、ハンドヘルドコンピュータ、タブレットコンピュータ等)、ワークステーション、無線、ビデオプレーヤ、オーディオプレーヤ(例えば、MP3プレーヤ)、自動車、医療機器(例えば、心臓モニタ、血圧モニタ等)など、多岐にわたる電子システム内で、且つこれらに結合可能なサブコンポーネントとして更に含まれ得る。幾つかの実施形態は、複数の方法を含み得る。
【0072】
本明細書記載の活動は、記載の順序以外の順序で実行してもよい。本明細書で特定された方法について述べた様々な活動は、反復して、連続して、あるいは平行して実行できる。ソフトウェアプログラムは、ソフトウェアプログラムで定義された機能を実行するために、コンピュータベースのシステム内のコンピュータ可読媒体から起動可能である。様々なプログラミング言語を用いて、本明細書で開示の方法を実装、実行するように設計されたソフトウェアプログラムを作成することができる。プログラムは、Java又はC++といったオブジェクト指向言語を使用して、オブジェクト指向形式で構造化してもよい。あるいは、プログラムを、アセンブリ又はC言語といった手続き型言語を使用して、手続き型指向形式で構造化してもよい。ソフトウェアコンポーネントは、アプリケーションプログラムインターフェイス、又はリモートプロシージャコールをはじめとするプロセス間通信技術など、当業者によく知られる機構を使用して、通信可能である。様々な実施形態の教示は、任意の特定プログラミング言語又は環境に限定されない。
【0073】
本明細書の一部を成す添付の図面は、例示目的であって、限定するものではなく、主題を実施可能とする特定実施形態を示す。図示の実施形態は、当業者が本明細書で開示の教示を実施可能とする上で十分詳細に述べられている。本開示の範囲から逸脱することなく構造的、且つ論理的置換、並びに変更できるよう、他の実施形態を利用し、そこから導き出すことができる。それ故、本詳細説明は、限定的な意味で捉えるべきではなく、様々な実施形態の範囲は、かかる特許請求の範囲が与えられる同等物の全範囲と合わせて、添付の特許請求の範囲によってのみ定義される。
【0074】
本発明の主題のそのような実施形態は、単に便宜上、そして、複数が実際に開示されている場合には、本願の範囲を単一発明、又は発明の概念へと自発的に限定することを意図することなく、本明細書では、「発明」という用語で個別に、又は集合的に言及されることがある。したがって、特定実施形態を本明細書で例示、並びに説明してきたが、同じ目的を実現するよう計算された任意の構成を、示された特定実施形態の代わりに使用してもよい。本開示は、様々な実施形態のいずれか、並びにすべての適合形態、あるいは変形形態を網羅することを意図している。上記説明を検討すると、上記の実施形態、及び本明細書で具体的に記載されていない他の実施形態の組み合わせも、当業者には明らかであろう。
【0075】
開示の要約は、読者が技術開示の性質を迅速に確認できるようにする要約を求める、連邦規則法典第37巻§1.72(b)に準拠するよう、提供されている。これは、特許請求の範囲、又は意味を解釈、あるいは限定するために使用されないことを踏まえた上で、提出される。前述の詳細な説明では、開示を合理化する目的で、様々な特徴が単一の実施形態としてまとめられている。本開示方法は、各請求項に明示的に記載されているよりも特徴を多く必要とするものと解釈されないものとする。むしろ、本発明の主題を、開示された単一実施形態のすべての特徴よりも少ない特徴で見出すことができる。したがって、以下の特許請求の範囲は、発明を実施するための形態に組み込まれ、各請求項は、別個の実施形態として独立している。
【手続補正書】
【提出日】2021-03-31
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
仮想オブジェクト、デジタルエンティティ、又はロボットをアニメーション化するための、人工神経系のコンピュータ実装感情システムにおいて、前記システムは、複数の状態であって、前記複数の状態の各状態が、前記人工神経系の感情状態(ES)を表す、複数の状態と、複数の入力を処理するためのモジュールとを含み、前記モジュールは、経時に亘って前記入力の様式に依存しない活動パターンを決定し、前記処理された複数の入力は前記複数の状態に適用され、前記複数の状態の1つ以上のそれぞれの現レベルは、前記複数の入力の前記適用の影響を受け、前記複数の状態の1つ以上の前記それぞれの現レベルは、前記人工神経系のアクティブな感情状態の1つを表す、コンピュータ実装感情システム。
【請求項2】
前記人工神経系の前記ESが競合ESである、請求項1に記載の感情システム。
【請求項3】
前記複数の入力がそれぞれ、神経入力を表す、請求項1に記載の感情システム。
【請求項4】
神経入力が前記感情システムに供給される知覚入力である、請求項3に記載の感情システム。
【請求項5】
前記知覚入力は、視覚的入力、聴覚的入力、及びタッチ入力の少なくとも1つを含む、請求項4に記載の感情システム。
【請求項6】
少なくとも1つのそれぞれの知覚入力は、入力モジュールを介してユーザから生成される、請求項5に記載の感情システム。
【請求項7】
少なくとも1つのそれぞれの知覚入力は、コンピュータで生成される、請求項6に記載の感情システム。
【請求項8】
前記人工神経系のそれぞれの現レベルの前記アクティブな感情状態の1つ以上を、知覚可能形式でユーザに伝達する出力モジュールを更に含む、請求項1に記載の感情システム。
【請求項9】
前記知覚可能形式は、視覚的形式、及び聴覚的形式の1つである、請求項8に記載の感情システム。
【請求項10】
前記知覚可能形式は、哺乳動物モデルの少なくとも一部の視覚的二次元表記である、請求項9に記載の感情システム。
【請求項11】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力をそれぞれ積分する、請求項1に記載の感情システム。
【請求項12】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力それぞれの変化率を決定する、請求項1に記載の感情システム。
【請求項13】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力それぞれの前記変化率を決定し、前記複数の入力をすべて纏めて合計し、前記複数の入力の決定された変化率をすべて合計する、請求項1に記載の感情システム。
【請求項14】
複数の入力を処理するためのモジュールが、経時に亘って前記複数の入力をそれぞれ積分し、前記複数の入力をすべて纏めて合計し、前記複数の入力すべての積分を合計する、請求項1に記載の感情システム。
【請求項15】
前記人工神経系の3つの競合ESを表す、少なくとも3つの状態を含む、請求項1に記載の感情システム。
【請求項16】
第1状態から第2状態に変化するのに必要な時間よりも、前記第2状態から前記第1状態に変化するのに必要な時間が短い、請求項15に記載の感情システム。
【請求項17】
第3状態から前記第2状態に変化するのに必要な時間よりも、前記第2状態から前記第3状態に変化するのに必要な時間が短い、請求項16に記載の感情システム。
【請求項18】
前記第1状態は、怒りESを表し、前記第2状態は、中立ESを表し、前記第3状態は、恐怖ESを表す、請求項17に記載の感情システム。
【請求項19】
仮想オブジェクト、デジタルエンティティ、又はロボットをアニメーション化するための人工神経系のコンピュータ実装感情システムにおいて、前記システムは、複数の状態であって、前記複数の状態の各状態が、前記人工神経系の感情状態(ES)を表す、複数の状態と、
ある種の刺激の発生に関連する受信知覚入力に少なくとも部分的に基づいて、予測誤差を計算するための予測器モジュールであって、前記知覚入力は、複数の受信入力の神経入力に対応する、予測器モジュールとを含み、前記予測誤差は、前記人工神経系の現レベルの少なくとも1つのアクティブESの変化を引き起こす刺激入力を含む、コンピュータ実装感情システム。
【請求項20】
前記予測器モジュールは、1つ以上の受信知覚入力に少なくとも部分的に基づいて、1つ以上の予測を計算し、それぞれの予測に基づいて、1つ以上の予測誤差を計算する、請求項19に記載の感情システム。
【請求項21】
前記予測誤差に基づく前記刺激入力は、前記人工神経系の現レベルの少なくとも1つのアクティブESの前記変化に関連する神経発火の密度の量に対応する、請求項19に記載の感情システム。
【請求項22】
前記人工神経系は、予測誤差に反応し、持続的な量の神経発火の密度に応答して、摂動状態に入るように構成されている、請求項21に記載の感情システム。
【請求項23】
前記人工神経系は、予測誤差に反応し、神経発火の密度量の増加に応答して、摂動状態に入るように構成されている、請求項21に記載の感情システム。
【請求項24】
前記人工神経系は、前記摂動状態に応答して、1つ以上の新たな解決策アプローチを試みるように構成されている、請求項22、又は23に記載の感情システム。
【請求項25】
前記摂動状態は、驚き、恐怖、興味、及び怒りの少なくとも1つに相当する、請求項22、又は23に記載の感情システム。
【請求項26】
前記人工神経系は、前記新たな解決策アプローチの少なくとも1つに起因する前記予測誤差の減少に応答して、前記摂動状態から出るように構成されている、請求項24に記載の感情システム。
【請求項27】
1つ以上のESが、前記人工神経系のネットワーク状態で表される、請求項1、又は請求項19に記載の感情システム。
【請求項28】
1つ以上のESが、前記人工神経系のネットワーク活動の動態パターンによって表される、請求項1、又は請求項19に記載の感情システム。
【国際調査報告】